KR101048125B1 - Urea injection quantity control device and method of vehicle - Google Patents

Urea injection quantity control device and method of vehicle Download PDF

Info

Publication number
KR101048125B1
KR101048125B1 KR1020080113489A KR20080113489A KR101048125B1 KR 101048125 B1 KR101048125 B1 KR 101048125B1 KR 1020080113489 A KR1020080113489 A KR 1020080113489A KR 20080113489 A KR20080113489 A KR 20080113489A KR 101048125 B1 KR101048125 B1 KR 101048125B1
Authority
KR
South Korea
Prior art keywords
amount
ammonia
nox
scr catalyst
urea
Prior art date
Application number
KR1020080113489A
Other languages
Korean (ko)
Other versions
KR20100054528A (en
Inventor
한평현
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080113489A priority Critical patent/KR101048125B1/en
Priority to US12/511,757 priority patent/US20100122520A1/en
Priority to DE102009036394A priority patent/DE102009036394A1/en
Publication of KR20100054528A publication Critical patent/KR20100054528A/en
Application granted granted Critical
Publication of KR101048125B1 publication Critical patent/KR101048125B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

본 발명은 SCR(Selective Catalytic Reduction) 촉매가 장착되는 차량에서, SCR촉매에서 발생되는 암모니아의 전체 소비량을 정확하게 예측하고, 그에 따라 암모니아 저장량을 제어함으로써 운전조건의 빠른 변화에 대하여 NOx 정화의 응답성을 향상시키는 것이다.The present invention accurately predicts the total consumption of ammonia generated in an SCR catalyst in a vehicle equipped with an SCR (Selective Catalytic Reduction) catalyst, thereby controlling the ammonia responsiveness to rapid changes in operating conditions by controlling the amount of ammonia stored. To improve.

본 발명은 NOx 배출량에 따른 암모니아 소비량과 암모니아 저장량, 암모니아 반응율, HC 흡착량 및 에이징도를 적용하여 SCR촉매에서 발생되는 암모니아 전체 소비량을 계산하는 과정; 상기 계산된 암모니아 소비량에 따라 암모니아 필요량을 계산하여 요소 필요량을 계산하는 과정; SCR촉매의 온도를 검출하여 분사 가능온도이면 상기 계산된 필요량의 요소 분사를 실행하는 과정을 포함한다.The present invention is a process for calculating the total consumption of ammonia generated in the SCR catalyst by applying ammonia consumption, ammonia storage amount, ammonia reaction rate, HC adsorption amount and aging degree according to NOx emissions; Calculating urea requirements by calculating ammonia requirements according to the calculated ammonia consumption; Detecting the temperature of the SCR catalyst and performing urea injection of the required amount if the injection temperature is possible.

SCR촉매, 요소, 암모니아(NH3), 소비량 예측, 반응량, 에이징도, 흡착량 SCR catalyst, urea, ammonia (NH3), consumption forecast, reaction amount, aging degree, adsorption amount

Description

차량의 요소 분사량 제어장치 및 방법{SYSTEM FOR CONTROL UREA INJECTION QUANTITY OF VEHICLE AND METHOD THEREOF}Urea injection volume control device and method of vehicle {SYSTEM FOR CONTROL UREA INJECTION QUANTITY OF VEHICLE AND METHOD THEREOF}

본 발명은 SCR(Selective Catalytic Reduction) 촉매가 장착되는 차량에 관한 것으로, 보다 상세하게는 SCR촉매에서 발생되는 암모니아의 전체 소비량을 정확하게 예측하고, 그에 따라 암모니아 저장량을 제어함으로써 운전조건의 빠른 변화에 대하여 NOx 정화의 응답성을 향상시키는 차량의 요소 분사량 제어장치 및 방법에 관한 것이다.The present invention relates to a vehicle equipped with a SCR (Selective Catalytic Reduction) catalyst, and more particularly, to accurately predict the total consumption of ammonia generated from the SCR catalyst, and to control the ammonia storage accordingly to quickly change the operating conditions. A urea injection amount control apparatus and method for a vehicle for improving the responsiveness of NOx purification.

디젤 엔진이 적용되는 차량은 북미디젤 Tier2/BIN5 규제나 유로 6의 배기가스 규제에 따라 배기가스에 포함된 NOx, CO, THC, 그을음(soot), 입자상 물질(Particulate Matters) 등의 유해물질을 제거시키기 위한 다양한 형태의 후처리 장치가 장착된다.Vehicles with diesel engines remove harmful substances such as NOx, CO, THC, soot, and particulate matter contained in exhaust gases in accordance with North American Diesel Tier 2 / BIN5 regulations or Euro 6 emission regulations. Various types of post-treatment devices are mounted.

후처리 장치로는 엔진과 근접하게 배치되어 NMHC(Non-Methane HydroCarbons) 변환기능을 실행하는 DOC(Diesel Oxidation Catalyst), 입자상 물질(Particulate Matters :PM)을 포집하는 CPF(Catalyzed Particulate Filter), 환원작용을 통해 NOx를 정화하는 SCR촉매가 포함된다.The post-treatment unit is located close to the engine and performs DOC (Diesel Oxidation Catalyst), which collects Non-Methane HydroCarbons (NMHC), Catalytic Particulate Filter (CPF) to collect particulate matter (PM), and reduction. SCR catalyst is included to purify NOx.

상기의 SCR촉매는 NOx를 정화하기 위한 환원제로 암모니아(NH3)를 사용하며, NOx에 대한 선택도가 매우 우수할 뿐만 아니라 산소가 존재하는 경우에도 NOx와 암모니아 사이의 반응이 촉진되는 장점이 있다.The SCR catalyst uses ammonia (NH3) as a reducing agent for purifying NOx, and has an advantage that the reaction between NOx and ammonia is promoted even in the presence of oxygen as well as excellent selectivity to NOx.

SCR촉매의 NOx정화성능을 일정수준으로 이상으로 유지하기 위해 SCR촉매의 전단부에 배치되는 도징모듈(Dosing Module)로 요소(Urea)를 분사하고, 분사된 요소의 증발 및 분해에 따라 생성되는 암모니아를 취득하여 SCR촉매의 내부에 암모니아 저장량을 유지시킨다.In order to maintain the NOx purification performance of the SCR catalyst above a certain level, the urea is injected into a dosing module disposed at the front end of the SCR catalyst, and ammonia generated by evaporation and decomposition of the injected urea To maintain ammonia storage in the SCR catalyst.

도징모듈과 SCR촉매의 사이에 믹서가 배치되며, 이는 도징모듈을 통해 분사되는 요소입자를 충돌시켜 입자를 쪼개는 역할을 하며, 웰 웨이팅(Wall Wetting)이 발생되지 않도록 요소입자를 반사시키는 역할을 한다.A mixer is disposed between the dosing module and the SCR catalyst, which collides with the urea particles injected through the dosing module, thereby splitting the particles, and reflecting the urea particles so that well wetting does not occur. .

이는 배기가스와 분사된 요소입자가 골고루 섞어 SCR촉매 입구단에서의 균일성(Uniformity)을 좋게 하여 배기가스내의 NOx와 분사된 요소로부터 취득된 암모니아를 최적으로 혼합시켜 NOx의 정화효율을 향상시킨다.This improves the NOx purification efficiency by optimally mixing NOx in the exhaust gas and ammonia obtained from the injected urea by uniformly mixing the exhaust gas and the injected urea particles at the SCR catalyst inlet end.

종래의 차량에 적용되어 있는 요소 분사량 제어방법은 운행 상태에서 NOx 발생량과 암모니아의 비율인 양론비(NH3/NOx)에 따라 암모니아의 필요량을 산출하고, 암모니아 필요량에 따른 요소량을 산출한 다음 요소탱크 내에 설치된 펌프의 작동에 의해 일정 압력, 대략 5bar정도의 압력이 걸리는 도징모듈의 인젝터를 작동시켜 산출된 요소량의 분사한다.The urea injection amount control method applied to the conventional vehicle calculates the required amount of ammonia according to the stoichiometric ratio (NH 3 / NOx), which is the ratio of NOx generation amount and ammonia in the driving state, and calculates the urea amount according to the ammonia requirement. By operating the pump installed in the tank, the injector of the dosing module, which takes a certain pressure, about 5 bar pressure, is operated to inject the calculated amount of urea.

다른 하나의 방법은 SCR촉매상의 암모니아 저장량에 따라 암모니아 필요량을 산출하고, 암모니아 필요량에 따라 요소량을 산출한 다음 요소탱크 내에 설치된 펌프의 작동에 의해 일정 압력, 대략 5bar정도의 압력이 걸리는 도징모듈의 인젝터를 작동시켜 산출된 요소량의 분사한다. The other method is to calculate the ammonia requirement according to the ammonia storage amount in the SCR catalyst, calculate the urea amount according to the ammonia requirement, and then apply the pressure of the dosing module that takes a certain pressure, about 5 bar, by the operation of the pump installed in the urea tank. The injector is operated to inject the calculated amount of urea.

종래의 요소 분사량 제어방법에서 전자의 방식은 느린 응답성과 암모니아 소비량 대비 낮은 성능 및 슬립량의 제어가 어려운 단점이 있다. In the conventional urea injection amount control method, the former method has a disadvantage in that it is difficult to control a slow response and a low performance and slip amount compared to ammonia consumption.

그리고, 후자의 방식은 전자의 방식에 비하여 성능개선을 가져올 수 있으나, 촉매의 특성을 제대로 반영하지 못하는 경우 전자의 방식보다 상황을 악화시킬 수도 있는 문제점이 있다. In addition, the latter method may bring performance improvement compared to the former method, but may have a problem that may worsen the situation than the former method when the characteristics of the catalyst are not properly reflected.

또한, 기본적인 반응에 따른 NOx정화율에 근거한 제어가 이루어지고 있어, 보다 정밀한 제어가 이루어지지 못하여 배기 조건이 크게 변하는 경우에 효과적으로 대응하지 못하는 문제점이 있다.In addition, the control based on the NOx purification rate according to the basic reaction is made, there is a problem that can not effectively cope with the case that the exhaust conditions are greatly changed because more precise control is not made.

본 발명은 상기한 문제점을 해결하기 위하여 발명한 것으로, 그 목적은 SCR촉매에서 NOx배출량에 따른 암모니아 소비량과 암모니아 누적 저장량, HC의 흡탈착 , 암모니아의 산화반응, 에이징 등에 소비되는 암모니아의 소비량을 정확하게 계산하여 필요한 암모니아 저장량을 제어함으로써 안정된 정화효율 및 정화성능을 향상시키는 것이다.The present invention has been invented to solve the above problems, and its purpose is to accurately calculate the consumption amount of ammonia consumed according to NOx emission amount and ammonia accumulation amount, adsorption and desorption of HC, oxidation reaction of ammonia, aging, etc. It is to improve the stable purification efficiency and purification performance by controlling the required ammonia storage amount by calculating.

상기한 목적을 실현하기 위한 본 발명의 특징에 따른 차량의 요소 분사량 제 어장치는, 엔진; 배기가스에 포함된 NOx와 NH3의 환원반응을 NOx를 정화하는 SCR촉매; 상기 SCR촉매의 양단간 NOx 농도를 검출하는 제1,2NOx센서; 상기 SCR촉매의 선단에 우레아 수용액을 분사하는 도징모듈; 상기 SCR촉매의 온도를 검출하는 온도센서를 포함하며,A urea injection amount control apparatus for a vehicle according to a feature of the present invention for realizing the above object includes an engine; SCR catalyst for purifying NOx by the reduction reaction of NOx and NH3 contained in the exhaust gas; First and second NOx sensors detecting NOx concentration between both ends of the SCR catalyst; A dosing module for injecting an aqueous urea solution at the tip of the SCR catalyst; It includes a temperature sensor for detecting the temperature of the SCR catalyst,

SCR촉매에서 발생되는 암모니아 전체 소비량을 예측하여 암모니아 필요량을 계산하고, 암모니아 필요량에 따라 요소의 분사량을 결정하는 제어부를 포함한다.It includes a control unit for estimating the total ammonia consumption generated in the SCR catalyst to calculate the ammonia requirement, and determine the injection amount of the urea according to the ammonia requirement.

또한, 본 발명의 특징에 따른 차량의 요소 분사량 제어방법은, NOx 배출량에 따른 암모니아 소비량과 암모니아 저장량, 암모니아 반응율, HC 흡착량 및 에이징도를 적용하여 SCR촉매에서 발생되는 암모니아 전체 소비량을 계산하는 과정; 상기 계산된 암모니아 소비량에 따라 암모니아 필요량을 계산하여 요소 필요량을 계산하는 과정; SCR촉매의 온도를 검출하여 분사 가능온도이면 상기 계산된 필요량의 요소 분사를 실행하는 과정을 포함한다.In addition, the method of controlling the urea injection amount of the vehicle according to the characteristics of the present invention, the process of calculating the total ammonia consumption from the SCR catalyst by applying the ammonia consumption, ammonia storage amount, ammonia reaction rate, HC adsorption amount and aging degree according to the NOx emissions ; Calculating urea requirements by calculating ammonia requirements according to the calculated ammonia consumption; Detecting the temperature of the SCR catalyst and performing urea injection of the required amount if the injection temperature is possible.

전술한 구성에 의하여 본 발명은 SCR촉매에서 발생되는 암모니아 소비량을 정확하게 예측하고, 예측된 값을 기준으로 암모니아의 저장량을 제어함으로써 NOx의 정화성능을 향상시키고 운전조건의 빠른 변화에 응답성을 향상시켜 에미션 안정화를 제공하는 효과가 기대된다.By the above-described configuration, the present invention accurately predicts ammonia consumption generated in the SCR catalyst and controls the storage amount of ammonia based on the predicted value, thereby improving the purification performance of NOx and improving the responsiveness to the rapid change of operating conditions. The effect of providing emission stabilization is expected.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상 세히 설명한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.

본 발명은 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 실시예에 한정되지 않으며, 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Since the present invention can be implemented in various different forms, the present invention is not limited to the exemplary embodiments described herein, and parts not related to the description are omitted in the drawings in order to clearly describe the present invention.

도 1은 본 발명의 실시예에 따른 차량의 요소 분사량 제어장치를 개략적으로 도시한 도면이다.1 is a view schematically illustrating an apparatus for controlling urea injection amount of a vehicle according to an exemplary embodiment of the present invention.

본 발명은 동력원인 엔진(2), 엔진(2)에서 연소된 배기가스를 배출시키는 배기 파이프(6), SCR촉매(10), 제1NOx센서(12), 제2NOx센서(14), 온도센서(16), 제어부(18), 도징모듈(20), 믹서(22), 요소탱크(30), 펌프(32), 요소공급라인(34) 및 압력센서(36)을 포함한다.The present invention is an engine (2) as a power source, an exhaust pipe (6) for discharging exhaust gas combusted from the engine (2), an SCR catalyst (10), a first NOx sensor (12), a second NOx sensor (14), a temperature sensor 16, the control unit 18, the dosing module 20, the mixer 22, the urea tank 30, the pump 32, the urea supply line 34 and the pressure sensor 36.

상기 SCR촉매(10)는 V2O5/TiO2 또는 Pt/Al2O3 또는 제올라이트(Zeolite)로 이루어지며, 동력원인 엔진(2)과 연결되는 배기 파이프(6)의 소정 위치에 배치되어 도징모듈(20)에서 분사되는 요소로부터 취득되는 암모니아와 NOx의 환원반응으로 NOx를 정화한다.The SCR catalyst 10 is made of V 2 O 5 / TiO 2 or Pt / Al 2 O 3 or zeolite, and is disposed at a predetermined position of the exhaust pipe 6 connected to the engine 2 as a power source. The NOx is purified by a reduction reaction of ammonia and NOx obtained from the urea injected from the dosing module 20.

제1NOx센서(12)는 SCR촉매(10)의 입구측에 배치되어 SCR촉매(10)에 유입되는 배기가스에 포함된 NOx 양을 검출하여 그에 대한 정보를 제어부(18)에 제공한다.The first NOx sensor 12 is disposed at the inlet side of the SCR catalyst 10 to detect the amount of NOx contained in the exhaust gas flowing into the SCR catalyst 10 and provide information to the controller 18.

제2NOx센서(14)는 SCR촉매(10)의 출구측에 배치되어 SCR촉매(10)의 환원반응에 의해 정화된 배기가스에 포함된 NOx 양의 검출하여 그에 대한 정보를 제어부(18)에 제공한다.The second NOx sensor 14 is disposed at the outlet side of the SCR catalyst 10 to detect the amount of NOx contained in the exhaust gas purified by the reduction reaction of the SCR catalyst 10 and provide information to the controller 18 about the amount thereof. do.

온도센서(16)는 배기가스의 온도에 의해 활성화되는 SCR촉매(10)의 온도를 검출하여 그에 대한 정보를 제어부(18)에 제공한다.The temperature sensor 16 detects the temperature of the SCR catalyst 10 activated by the temperature of the exhaust gas and provides information about the SCR catalyst 10 to the controller 18.

제어부(18)는 엔진(2)의 운전조건과 배기가스 온도, 제1,제2NOx센서(12)(14)의 정보로부터 분석되는 배기계에서의 암모니아 전체 소비량을 예측하여 암모니아 필요량을 계산하고, 암모니아 필요량에 따라 요소의 분사량을 결정하여 도징모듈(20)을 통해 요소 분사를 제어한다.The controller 18 calculates the ammonia requirements by estimating the total ammonia consumption in the exhaust system analyzed from the operating conditions of the engine 2, the exhaust gas temperature, and the information of the first and second NOx sensors 12 and 14, The injection amount of the urea is determined according to the required amount, and the urea injection is controlled through the dosing module 20.

상기 제어부(18)는 NOx 배출량에 따른 암모니아 소비량, 암모니아 저장량, 암모니아 반응량, HC 흡착량 및 고온 노출에 따른 에이징도를 적용하여 암모니아 소비량을 예측하고, 예측된 값에 따라 요소의 분사를 통해 암모니아 저장량을 제어한다.The control unit 18 predicts ammonia consumption by applying ammonia consumption according to NOx emissions, ammonia storage amount, ammonia reaction amount, HC adsorption amount and high temperature exposure, and ammonia through urea injection according to the predicted value. Control the amount of storage.

상기 NOx배출량에 따른 암모니아 소비량은 "NOx 배출량 × 양론비(NH3/NOx) × 암모니아 반응율"로부터 계산되고, 암모니아 저장량은 현재의 저장량과 신규 유입량이 가산된 값에서 소비량(반응량 + 탈착량)이 감산되어 계산된다.Ammonia consumption according to the NOx emission amount is calculated from "NOx emission × stoichiometric ratio (NH 3 / NOx) × ammonia reaction rate", and the ammonia storage amount is the consumption amount (reaction amount + desorption amount) at the value added with the current storage amount and the new inflow amount. Is subtracted and calculated.

암모니아 반응량은 NOx와의 반응량과 산소와의 반응량이 구분되며, NOx와의 반응량은 배기조건의 변화에 따른 반응경로 비중 변화를 반영한 NOx 정화율 및 양론비가 적용되어 계산된다.The reaction amount of ammonia is divided into the reaction amount with NOx and oxygen, and the reaction amount with NOx is calculated by applying the NOx purification rate and stoichiometric ratio reflecting the change of the specific gravity of the reaction path according to the change of exhaust conditions.

HC흡착량은 현재 누적된 흡착량과 신규로 진행되는 흡착량에서 탈착량과 반응량이 감산되어 계산된다.The HC adsorption amount is calculated by subtracting the desorption amount and the reaction amount from the currently accumulated adsorption amount and the newly adsorbed amount.

도징모듈(20)는 제어부(18)의 제어에 따라 인젝터가 작동되어 온도조건에서 결정되는 요소량의 분사를 실행한다.The dosing module 20 operates the injector under the control of the controller 18 to execute the injection of the urea amount determined by the temperature condition.

믹서(22)는 도징모듈(20)과 SCR촉매(10)의 사이에 배치되어 도징모듈(20)을 통해 분사되는 액상요소 입자를 충돌시켜 입자를 쪼개는 역할을 하며 이를 통해 배기가스와 분사된 요소입자가 골고루 섞어 SCR촉매 입구단에서의 균일성을 좋게 하여 배기가스내의 NOx와 요소로부터 취득된 암모니아를 최적으로 혼합시킨다.Mixer 22 is disposed between the dosing module 20 and the SCR catalyst 10 to collide the liquid element particles injected through the dosing module 20 to split the particles, thereby the exhaust gas and the injected elements The particles are evenly mixed to improve the uniformity at the inlet end of the SCR catalyst to optimally mix NOx in the exhaust gas and ammonia obtained from urea.

요소탱크(30)는 분사하기 위한 요소 수용액이 수용되고, 내부에 장착되는 펌프(32)의 구동으로 요소공급라인(34)에 설정된 균등한 압력을 형성시켜 PWM신호에 따라 도징모듈(20)이 작동되는 경우 SCR촉매(10)의 전단에 액상요소의 고압분사가 제공되도록 한다.The urea tank 30 accommodates the urea solution for spraying and forms an even pressure set in the urea supply line 34 by the driving of the pump 32 mounted therein so that the dosing module 20 is in accordance with the PWM signal. When activated, the high pressure injection of the liquid element is provided at the front end of the SCR catalyst 10.

압력센서(36)는 요소공급라인(34)에 형성되는 압력을 검출하여 그에 대한 정보를 제어부(18)에 제공하여 엔진(2)이 시동 온을 유지하고 있는 상태에서 항상 설정된 압력이 유지될 수 있도록 한다.The pressure sensor 36 detects the pressure formed in the urea supply line 34 and provides information about the pressure to the control unit 18 so that the set pressure can be maintained at all times while the engine 2 is kept starting. Make sure

먼저, SCR촉매의 특성에 대하여 설명하면 다음과 같다.First, the characteristics of the SCR catalyst will be described.

도 2는 엔진 시동직후 요소분사와 촉매의 정화 특성을 도시한 도면이다.2 is a view showing urea injection and purification characteristics of a catalyst immediately after starting an engine.

도시된 바와 같이 엔진 시동 직후 일정량, 예를 들어 요소 200g/h를 일정 시간 동안 분사하였을 때 분사 후 "A" 영역에 나타난 바와 같이 일정 시간 동안 NOx 배출량이 꾸준히 감소하는 양상을 보인다. As shown, when a certain amount, for example, 200 g / h of the urea is injected immediately after starting the engine for a certain time, as shown in the "A" area after injection, the NOx emission is steadily decreased for a certain time.

이러한 현상은 SCR촉매(10)의 내부에 NOx의 반응을 위해 일정 수준 이상의 암모니아가 흡착되어 있다는 것을 알 수 있으며, 이러한 안정화에 걸리는 시간은 암모니아의 흡착량이 큰 저온에서 더 오래 걸리게 되고, 반대로 고온에서는 암모니 아의 흡착량이 작기 때문에 안정화 소요시간이 짧아진다. This phenomenon can be seen that more than a certain level of ammonia is adsorbed in the SCR catalyst 10 for the reaction of NOx, the time required for stabilization takes longer at low temperatures with a large amount of adsorption of ammonia, on the contrary Since the amount of ammonia adsorption is small, the stabilization time is shortened.

따라서, 운전조건이 불규칙적으로 변하는 차량에서는 일정 수준 이상의 암모니아를 미리 흡착시키는 경우 NOx의 정화에 대한 응답성을 빠르게 할 수 있다.Therefore, in a vehicle in which the driving conditions are changed irregularly, responsiveness to the purification of NOx can be accelerated when ammonia or more is adsorbed in advance.

도 3은 SCR 촉매의 온도와 암모니아 저장량의 관계를 도시한 그래프이다.3 is a graph showing the relationship between the temperature of the SCR catalyst and the ammonia storage amount.

그래프에서 알 수 있는 바와 같이, SCR촉매(10)의 온도 증가에 따라 암모니아 흡착 저장량이 급격히 감소하다가 일정온도인 260℃ 이상에서는 거의 일정한 수준을 유지하는 것을 알 수 있다. As can be seen from the graph, the storage capacity of the ammonia adsorption decreases rapidly with increasing temperature of the SCR catalyst 10, but it can be seen that the constant temperature is maintained at a constant temperature of 260 ° C. or higher.

그러나, SCR촉매(10)의 온도가 220℃ 이하를 유지하는 저온에서 암모니아를 최대로 미리 흡착시킨 상태에서 SCR촉매(10)의 온도조건이 갑자기 조건이 260℃ 이상으로 변경되는 경우가 발생하면 SCR촉매(10)가 갖는 암모니아 저장 가능량을 초과하는 현상이 발생하게 되고, 이에 따라 암모니아가 탈착되어 암모니아 슬립이 발생한다.However, when the temperature condition of the SCR catalyst 10 suddenly changes to 260 ° C. or more in a state where the ammonia is pre-adsorbed at a maximum in a low temperature at which the temperature of the SCR catalyst 10 is maintained at 220 ° C. or less, SCR occurs. The phenomenon exceeding the ammonia storage capacity of the catalyst 10 occurs, whereby ammonia is desorbed to generate ammonia slip.

이러한 현상은 암모니아를 미리 흡착시키더라도 가능한 조건 변화를 감안하여 최대 흡착 가능량을 감소시키는 것이 필요하다는 것을 알 수 있으며, 흡착량을 제어하기 위해서는 특정 시점의 흡착량을 정확히 아는 것이 필요하며, 이를 위해서는 반응량을 정확히 아는 것이 필요하다.This phenomenon can be seen that even if ammonia is adsorbed in advance, it is necessary to reduce the maximum adsorption possible amount in consideration of the possible change in conditions. It is necessary to know the quantity exactly.

하기의 표 1은 SCR촉매(10)상에서 발생할 수 있는 다양한 반응을 나열한 것으로, 암모니아(NH3)의 소비경로가 NOx의 반응 이외에 다양하게 존재함으로 알 수 있으며, 특히 암모니아 산화는 고온에서 활발하게 일어날 수 있는 반응으로 암모니아 필요량을 계산하는데 고려되어야 하는 항목이다.Table 1 below lists various reactions that may occur on the SCR catalyst 10, and it can be seen that the consumption path of ammonia (NH 3) exists in addition to the reaction of NOx, and in particular, ammonia oxidation may be actively performed at high temperature. This is an item that should be considered when calculating the ammonia requirements for the reaction.

Figure 112008078839557-pat00001
Figure 112008078839557-pat00001

도 4는 SCR촉매의 온도에 따른 NOx의 정화율을 도시한 그래프이다.4 is a graph showing the purification rate of NOx according to the temperature of the SCR catalyst.

NO2/NOx의 비율이 낮을수록 SCR촉매(10)의 온도가 상승함에 따라 정화율 역시 급격한 증가를 보이나 NO2/NOx의 비율이 높은 경우 저온에서의 정화율은 급격하게 증가하고 일정온도, 대략 200℃에 도달하게 되면 최대의 정화율을 안정되게 유지한다.As the ratio of NO 2 / NOx is lower, the purification rate also increases rapidly as the temperature of the SCR catalyst 10 increases, but when the ratio of NO 2 / NOx is high, the purification rate at low temperature increases rapidly and is constant. When the temperature reaches 200 ° C, the maximum purification rate is kept stable.

이러한 현상은 NO2/NOx 비율과 온도는 양론비, 반응속도, 정화율의 중요한 인자라는 것을 알 수 있으며, HC가 SCR촉매(10)에 흡착되어 있는 경우 NOx의 정화반응을 방해하므로, HC의 흡탈착, 산화반응도 고려되어야 한다.This phenomenon can be seen that the ratio of NO 2 / NOx and temperature are important factors of stoichiometry, reaction rate, and purification rate, and when HC is adsorbed on SCR catalyst 10, it hinders the purification reaction of NOx. Adsorption and desorption and oxidation should also be considered.

이외에도 유속(공간속도), 촉매 에이징도에 따른 성능 변화도 고려되어야 하는 것은 당연하다.In addition, it is obvious that performance changes due to flow rate (space velocity) and catalyst aging should also be considered.

상기한 특징을 정리하면 다음과 같은 결론을 얻을 수 있다.Summarizing the above characteristics, the following conclusion can be obtained.

SCR촉매(10)에 암모니아를 미리 흡착시켜서 저온에서의 빠른 응답성을 학보하는 것이 필요하고, 암모니아 흡착량을 제어하기 위해서는 반응량을 정확히 아는 것이 필요하며, NOx의 정화반응과 함께 암모니아 산화, HC의 흡탈착 및 산화반응도 고려되어야 한다.It is necessary to study the rapid response at low temperature by adsorbing ammonia to the SCR catalyst 10 in advance, and in order to control the amount of ammonia adsorption, it is necessary to know the reaction amount correctly. Adsorption and desorption and oxidation reactions should also be considered.

또한, 유속(공간속도), 촉매 에이징 정도도 고려되어야 하며, NO2/NOx 비율, 양론비, 반응속도 등 역시 NOx의 정화율을 결정하는 중요한 인자이다.In addition, the flow rate (space velocity) and the degree of catalyst aging must also be considered, and the NO 2 / NO x ratio, stoichiometric ratio, and reaction rate are also important factors that determine the purification rate of NO x.

전술한 바와 같은 SCR촉매의 특징에 따라 다양한 조건에 따른 암모니아의 소비량을 정확하게 계산하고, 그에 따라 암모니아 저장량을 제어하는 동작에 대하여 좀 더 구체적으로 설명하면 다음과 같다.According to the characteristics of the SCR catalyst described above, the operation of accurately calculating the consumption amount of ammonia under various conditions and controlling the ammonia storage amount accordingly will be described in more detail as follows.

차량의 운행이 실행되면 제어부(18)는 SCR촉매(10)의 온도, 배기가스의 유속, NOx의 농도, 암모니아 누적 저장량, NO2/NOx, 에이징도 등을 포함하는 제반적인 운전정보를 검출한 다음 NOx의 질량유속과 양론비(NH3/NOx)를 곱 연산하여 암모니아 양론비 당량을 계산한다(S101).When the vehicle is running, the controller 18 detects general driving information including the temperature of the SCR catalyst 10, the flow rate of the exhaust gas, the concentration of NOx, the cumulative amount of ammonia, NO 2 / NOx, and the aging degree. Next, the mass flow rate of NOx and the stoichiometric ratio (NH 3 / NO x) are multiplied to calculate the ammonia stoichiometric ratio equivalent (S101).

상기에서 양론비(NH3/NOx)는 촉매온도와 NO2/NOx 비율, 에이징도의 함수로 결정된다.The stoichiometric ratio (NH 3 / NO x) is determined as a function of catalyst temperature, NO 2 / NO x ratio, and aging degree.

상기와 같이 암모니아 양론비 당량이 계산되면 상기 S101에서 계산된 암모니아 당량과 암모니아 반응율을 곱 연산하여 암모니아 소비량을 계산한다(S102).  When the ammonia stoichiometric ratio equivalent is calculated as described above, the ammonia consumption is calculated by multiplying the ammonia equivalent calculated in S101 and the ammonia reaction rate (S102).

그리고, 상기 S102에서 계산된 암모니아 소비량에 암모니아 저장량 제어량을 합 연산하여 암모니아 필요량을 계산하고(S103), 상기 S103에서 계산된 암모니아 필요량에 분자량비(요소/NH3)를 곱 연산한 다음 그 결과를 요소수내 요소 질량분율로 나누어 요소의 필요량을 계산한다(S104).In addition, ammonia consumption is calculated by adding the ammonia storage amount controlled to the ammonia consumption calculated in S102 (S103), multiplying the ammonia required calculated in S103 by the molecular weight ratio (urea / NH 3 ), and then calculating the result. The required amount of urea is calculated by dividing by the urea mass fraction in the urea water (S104).

상기한 절차에 따라 암모니아 확보에 필요한 요소의 필요량이 계산되면 온도센서(14)를 통해 측정되는 SCR촉매(10)의 온도를 검출하여(S105), SCR촉매(10)의 온도가 분사 가능온도, 예를 들어 NOx의 정화가 실행될 수 있는 최저온도인 200℃ 이상의 온도를 유지하는지 판단한다(S106).According to the above procedure, if the required amount of the elements required to secure ammonia is calculated, the temperature of the SCR catalyst 10 measured by the temperature sensor 14 is detected (S105), and the temperature of the SCR catalyst 10 is the sprayable temperature, For example, it is determined whether the temperature of 200 ° C. or more, which is the lowest temperature at which NOx purification can be performed, is maintained (S106).

상기 S106의 판단에서 분사 가능온도의 조건이 아니면 제어부(18)는 도징모듈(20)의 인젝터 작동으로 오프시켜 요소의 분사를 실행하지 않고 분사정지의 상태를 유지하며(S111), 분사 가능온도의 조건이면 요소 필요량이 분사가능 최소량 보다 큰 값을 갖는지 판단한다(S107).If it is not the condition of the sprayable temperature in the determination of S106, the control unit 18 is turned off by the injector operation of the dosing module 20 to maintain the state of the spray stop without the injection of the element (S111), If it is a condition, it is determined whether the required amount of urea has a value larger than the minimum sprayable amount (S107).

상기 S107의 판단에서 요소 필요량이 분사가능 최소량 보다 작은 값을 갖는 상태이면 제어부(18)는 요소 분사를 정지하고(S111), 요소 필요량이 분사가능 최소량 보다 큰 값을 갖는 상태이면 요소 필요량이 분사가능 최대량 보다 작은 값을 갖는지 판단한다(S108).In the judgment of S107, if the amount of urea required is less than the minimum sprayable amount, the controller 18 stops urea injection (S111). If the amount of urea has a value greater than the minimum sprayable amount, the required amount of urea can be injected. It is determined whether the value is smaller than the maximum amount (S108).

상기 S108의 판단에서 요소 필요량이 분사가능 최대량 보다 작은 값을 갖는 상태이면 제어부(18)는 도징모듈(20)의 인젝터를 제어하여 상기 S104에서 계산된 요소 필요량을 분사한다(S109).If it is determined in S108 that the required amount of urea has a value smaller than the maximum sprayable amount, the controller 18 controls the injector of the dosing module 20 to inject the required amount of urea calculated in S104 (S109).

그러나, 상기 S108의 판단에서 요소 필요량이 분사가능 최대량 보다 큰 값을 갖는 상태이면 제어부(18)는 도징모듈(20)의 인젝터를 제어하여 설정된 분사가능 최대량으로 요소의 분사를 실행한다(S110).However, if it is determined in S108 that the required amount of urea has a value larger than the maximum sprayable amount, the controller 18 controls the injector of the dosing module 20 to execute the spraying of the urea at the maximum sprayable amount set (S110).

상기에서 분사 가능 최대량은 도징모듈(20)의 하드웨어, 배기온도 및 유속, 촉매의 온도조건에 따라 제한값으로 설정되며, 그 값은 편차에 따라 가변된다.The maximum amount that can be sprayed is set as a limit value according to the hardware, the exhaust temperature and the flow rate of the dosing module 20, the temperature conditions of the catalyst, the value is changed according to the deviation.

도 3은 암모니아 반응율을 계산하는 절차를 도시한 흐름도이다.3 is a flowchart illustrating a procedure for calculating an ammonia reaction rate.

상기 도 2의 S102 과정에서 암모니아 소비량을 계산하기 위해 적용한 암모니아 반응율은 다음과 같이 계산된다.The ammonia reaction rate applied to calculate the ammonia consumption in S102 of FIG. 2 is calculated as follows.

촉매온도와 배기가스 유속, NOx 농도, 암모니아 누적 저장량, NO2/NOx, 고온노출에 따른 에이징도, HC 흡착량의 함수로부터 암모니아와 NOx의 반응율을 계산하고(S201), 촉매온도와 배기가스 유속, 암모니아 누적 저장량, NO2/NOx, 고온노출에 따른 에이징도, HC 흡착량의 함수로부터 암모니아와 산소의 반응율을 계산한다(S202).The reaction rate of ammonia and NOx is calculated from a function of catalyst temperature and exhaust gas flow rate, NOx concentration, ammonia cumulative storage amount, NO2 / NOx, high temperature exposure, HC adsorption amount (S201), catalyst temperature and exhaust gas flow rate, The reaction rate of ammonia and oxygen is calculated from a function of cumulative ammonia storage amount, NO2 / NOx, aging according to high temperature exposure, and HC adsorption amount (S202).

그리고, 상기 S201에서 계산된 암모니아와 NOx의 반응율과 상기 S202에서 계산된 암모니아와 산소의 반응율을 합 연산하여 암모니아 반응율을 계산한다(S203).The reaction rate of ammonia and NOx calculated in S201 and the reaction rate of ammonia and oxygen calculated in S202 are calculated to calculate ammonia reaction rate (S203).

도 7은 암모니아 저장량 제어값을 결정하는 절차를 도시한 흐름도이다.7 is a flowchart illustrating a procedure for determining an ammonia storage amount control value.

상기 도 2의 S103 과정에서 암모니아 필요량을 계산하기 위해 적용한 암모니아 저장량 제어값은 다음과 같이 계산된다.The ammonia storage control value applied to calculate the ammonia requirement in step S103 of FIG. 2 is calculated as follows.

촉매온도와 배기유속, 에이징도 및 HC 흡착량의 함수로부터 암모니아 목표 저장량을 계산하고(S301), 상기 계산된 암모니아 목표 저장량에서 현재의 누적 저장량을 차 연산하여 암모니아 저장량의 차이값을 계산한다(S302).The ammonia target storage amount is calculated from the function of the catalyst temperature, the exhaust velocity, the aging degree, and the HC adsorption amount (S301), and the difference value of the ammonia storage amount is calculated by differentially calculating the current accumulated storage amount from the calculated ammonia target storage amount (S302). ).

이후, 상기 S302에서 계산된 암모니아 저장량의 차이값과 배기가스 온도, 배기가스의 유속, 촉매온도의 함수로부터 암모니아 저장량 제어값을 계산한다(S303).Thereafter, the ammonia storage amount control value is calculated from a function of the difference value of the ammonia storage amount calculated in S302 and the exhaust gas temperature, the flow rate of the exhaust gas, and the catalyst temperature (S303).

도 8은 암모니아 저장량을 계산하는 절차를 도시한 흐름도이다.8 is a flowchart illustrating a procedure for calculating an ammonia storage amount.

SCR촉매(10)에 누적되어 있는 암모니아 저장량이 현재의 운전조건에 따라 소비되는 암모니아 반응량을 계산한다(S401).The ammonia storage amount accumulated in the SCR catalyst 10 is calculated according to the current operating conditions (S401).

즉, NOx의 배출량에 따른 암모니아 소비량과 암모니아와 산소의 반응율을 적용하여 암모니아의 반응량을 계산한다.That is, the reaction amount of ammonia is calculated by applying the ammonia consumption according to the emission of NOx and the reaction rate of ammonia and oxygen.

누적 저장량에서 상기 S401에서 계산되는 암모니아 반응량을 차 연산하여 현재 SCR 촉매(10)에 저장되어 있는 누적 저장량을 계산한다(S402).The cumulative storage amount is calculated by calculating the difference in the ammonia reaction amount calculated in S401 from the cumulative storage amount to calculate the cumulative storage amount currently stored in the SCR catalyst 10 (S402).

그리고, 도징모듈(20)을 통한 요소의 분사로 생성되는 신규로 유입양을 계산한다(S403).Then, the new inflow amount generated by the injection of the element through the dosing module 20 is calculated (S403).

상기 신규 유입양은 요소 분사량에 요소 질량분율을 곱 연산하여 산출되는 결과값을 분자량 비로 나누어 계산되는 결과값으로 결정된다.The new inflow amount is determined as a result calculated by dividing the result value calculated by multiplying the urea injection amount by the urea mass fraction.

이후, SCR촉매(10)가 저장할 수 있는 최대 저장량을 촉매온도, 배기가스 유속, 에이징도의 함수로 계산하고(S404), SCR촉매(10)의 현재 포화도를 누적 저장량/최대 저장량으로 계산한다(S405).Thereafter, the maximum storage amount that the SCR catalyst 10 can store is calculated as a function of the catalyst temperature, the exhaust gas flow rate, and the aging degree (S404), and the current saturation degree of the SCR catalyst 10 is calculated as the cumulative storage amount / maximum storage amount ( S405).

그리고, SCR촉매(10)에서 암모니아 탈착량을 계산한 다음(S406) 실질적인 저장량을 계산한다(S407).Then, the ammonia desorption amount is calculated in the SCR catalyst 10 (S406), and then the actual storage amount is calculated (S407).

상기 S407에서 계산되는 실질적인 저장량은 상기 S402에서 산출된 누적 저장량에 S403에서 산출된 신규 유입량을 더한 결과에서 상기 S406에서 산출된 탈착량을 차 연산한 결과로 계산된다.The actual storage amount calculated in S407 is calculated as the difference of the desorption amount calculated in S406 from the result of adding the new storage amount calculated in S403 to the cumulative storage amount calculated in S402.

그리고, 실질적인 저장량이 "0"을 초과하는지 판단하여(S408), "0" 미만이면 상기 S401의 과정으로 리턴되어 전술한 동작을 반복하고, 계산된 실질적인 저장량이 "0"을 초과하면 계산된 값을 암모니아의 저장량으로 적용한다(S409).If the actual storage amount exceeds "0" (S408), if it is less than "0", it returns to the process of S401 and repeats the above-described operation, and the calculated value when the calculated actual storage amount exceeds "0" Is applied as a storage amount of ammonia (S409).

도 9는 HC 흡착량을 계산하는 절차를 도시한 도면이다.9 is a diagram illustrating a procedure for calculating the HC adsorption amount.

SCR촉매(10)에 누적된 HC의 흡착량에 촉매온도와 배기가스 온도, 에이징도를 포함하는 함수를 적용하여 HC의 반응량을 계산하고(S501), SCR촉매(10)에 누적된 HC의 흡착량에서 상기 S501에서 계산된 반응량을 차 연산하여 SCR촉매(10)에 흡착되어 있는 실질적인 HC 흡착량인 누적 흡착량을 계산한다(S502).The reaction amount of HC is calculated by applying a function including the catalyst temperature, the exhaust gas temperature, and the aging degree to the adsorption amount of HC accumulated in the SCR catalyst 10 (S501), and the amount of HC accumulated in the SCR catalyst 10 is calculated. The cumulative amount of adsorption, which is a substantial amount of HC adsorption adsorbed on the SCR catalyst 10, is calculated by calculating the amount of reaction calculated in S501 from the amount of adsorption (S502).

그리고, HC 유입량에 촉매온도와 배기가스 유속, 포화도를 포함하는 함수를 적용하여 SCR촉매(10)에 신규로 흡착되는 HC 흡착량을 계산하고(S503), 촉매온도와 배기가스 유속 및 에이징도를 포함하는 함수를 적용하여 SCR촉매(10)에 흡착될 수 있는 최대 HC 흡착량을 계산한다(S504).In addition, the HC adsorption amount newly adsorbed to the SCR catalyst 10 is calculated by applying a function including the catalyst temperature, the exhaust gas flow rate, and the saturation rate to the HC inflow amount (S503), and the catalyst temperature, the exhaust gas flow rate, and the aging degree are calculated. A maximum HC adsorption amount that can be adsorbed to the SCR catalyst 10 is calculated by applying a function including the SCR (S504).

이후, 상기 S502에서 계산된 누적 흡착량과 상기 S504에서 계산된 최대 흡착량의 관계로부터 SCR촉매(10)에서의 HC 포화도를 계산하고(S505), 상기 S520에서 계산된 누적 흡착량에 촉매온도, 배기가스 온도, 포화도를 포함하는 함수를 적용하여 SCR촉매(10)에서의 HC 탈착량을 계산한다(S506).Thereafter, HC saturation in the SCR catalyst 10 is calculated from the relationship between the cumulative adsorption amount calculated in S502 and the maximum adsorption amount calculated in S504 (S505), and the catalyst temperature, The desorption amount of HC in the SCR catalyst 10 is calculated by applying a function including exhaust gas temperature and saturation (S506).

상기 S502에서 계산된 누적 HC 흡착량과 상기 S503에서 계산된 신규 HC 흡착량을 가산한 값에서 상기 S506에서 계산된 HC 탈착량을 차 연산하여 실질적인 HC 흡착량을 계산한다(S507).The actual HC adsorption amount is calculated by calculating the difference between the HC desorption amount calculated in S506 from the value obtained by adding the accumulated HC adsorption amount calculated in S502 and the new HC adsorption amount calculated in S503 (S507).

상기 S507에서 계산된 실질적인 HC 흡착량이 "0"을 초과하는지 판단하여(S508), "0"을 초과하지 않으면 상기 S501의 과정으로 리턴되어 전술한 과정을 반복하고, "0"을 초과하면 상기 S507에서 계산된 HC 흡착량을 적용하여 암모니아 제어량 제어값을 결정하는데 활용한다(S509).It is determined whether the actual HC adsorption amount calculated in step S507 exceeds "0" (S508). If the amount does not exceed "0", the process returns to step S501 and repeats the above-described step. HC adsorption amount calculated in the above is applied to determine the ammonia control amount control value (S509).

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It is included in the scope of rights.

도 1은 본 발명의 실시예에 따른 차량의 요소 분사량 제어장치를 개략적으로 도시한 도면이다.1 is a view schematically illustrating an apparatus for controlling urea injection amount of a vehicle according to an exemplary embodiment of the present invention.

도 2는 차량에서 엔진 시동직후 요소의 분사와 촉매의 정화 반응을 도시한 도면이다.FIG. 2 shows the injection of urea and the purification of catalyst immediately after engine start in a vehicle.

도 3은 차량에서 SCR 촉매 온도와 암모니아 저장량의 관계를 도시한 그래프이다.3 is a graph showing the relationship between the SCR catalyst temperature and the ammonia storage amount in a vehicle.

도 4는 차량에서 온도에 따른 NOx 정화율을 도시한 그래프이다.4 is a graph showing the NOx purification rate with temperature in a vehicle.

도 5는 본 발명의 실시예에 따른 차량에서 요소 분사량 제어를 실행하는 흐름도이다.5 is a flowchart for performing urea injection amount control in a vehicle according to an embodiment of the present invention.

도 6은 본 발명의 실시예에 따른 차량에서 암모니아 반응율 계산을 실행하는 흐름도이다.6 is a flowchart for performing ammonia reaction rate calculation in a vehicle according to an embodiment of the present invention.

도 7은 본 발명의 실시예에 따른 차량에서 암모니아 저장량 제어값 계산을 실행하는 흐름도이다.7 is a flowchart for performing ammonia storage value control value calculation in a vehicle according to an embodiment of the present invention.

도 8은 본 발명의 실시예에 따른 차량에서 암모니아 저장량 계산을 실행하는 흐름도이다.8 is a flowchart for performing ammonia storage amount calculation in a vehicle according to an embodiment of the present invention.

도 9는 본 발명의 실시예에 따른 차량에서 HC 흡착량 계산을 실행하는 흐름도이다.9 is a flowchart for performing HC adsorption amount calculation in a vehicle according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

2 : 엔진 6 : 배기 파이프 2: engine 6: exhaust pipe

10 : SCR촉매 12 : 제1NOx센서10: SCR catalyst 12: 1st NOx sensor

14 : 제2NOx센서 16 : 온도센서14 second NOx sensor 16 temperature sensor

18 : 제어부 20 : 도징모듈 18: control unit 20: dosing module

22 : 믹서 30 : 요소탱크22: mixer 30: urea tank

32 : 펌프 34 : 요소공급라인32: pump 34: urea supply line

Claims (8)

삭제delete 엔진; 배기가스에 포함된 NOx와 NH3의 환원반응을 NOx를 정화하는 SCR촉매; 상기 SCR촉매의 양단간 NOx 농도를 검출하는 제1,2NOx센서; 상기 SCR촉매의 선단에 우레아 수용액을 분사하는 도징모듈; 상기 SCR촉매의 온도를 검출하는 온도센서; SCR촉매의 암모니아 소비량을 예측하여 요소 분사량을 결정하는 제어부를 포함하는 차량의 요소 분사량 제어장치에 있어서,engine; SCR catalyst for purifying NOx by the reduction reaction of NOx and NH3 contained in the exhaust gas; First and second NOx sensors detecting NOx concentration between both ends of the SCR catalyst; A dosing module for injecting an aqueous urea solution at the tip of the SCR catalyst; A temperature sensor detecting a temperature of the SCR catalyst; In the urea injection amount control apparatus of a vehicle comprising a control unit for determining the urea injection amount by predicting the ammonia consumption of the SCR catalyst, 상기 제어부는 NOx 배출량에 따른 암모니아 소비량, 암모니아 저장량, 암모니아 반응율, HC 흡착량 및 고온 노출에 따른 에이징도를 적용하여 암모니아 소비량을 예측하고, 예측된 값에 따라 암모니아 저장량을 제어하는 차량의 요소 분사량 제어장치.The control unit predicts ammonia consumption by applying ammonia consumption according to NOx emissions, ammonia storage amount, ammonia reaction rate, HC adsorption amount and high temperature exposure, and controls urea injection amount of a vehicle controlling ammonia storage amount according to the predicted value. Device. 제2항에 있어서,The method of claim 2, 상기 제어부는 "NOx 배출량 × 양론비(NH3/NOx) × 암모니아 반응율"을 적용 하여 NOx배출량에 따른 암모니아 소비량을 계산하는 차량의 요소 분사량 제어장치.The control unit is a urea injection amount control device for calculating ammonia consumption according to the NOx emissions by applying the "NOx emissions × stoichiometric ratio (NH 3 / NOx) × ammonia reaction rate". 제2항에 있어서,The method of claim 2, 상기 제어부는 "현재의 저장량" + "신규 유입량" - "소비량(반응량 + 탈착량)"을 적용하여 암모니아 저장량을 계산하는 차량의 요소 분사량 제어장치.The control unit is a urea injection amount control device for calculating the ammonia storage amount by applying the "current storage amount" + "new inflow amount"-"consumption amount (reaction amount + desorption amount)". 제2항에 있어서,The method of claim 2, 상기 제어부는 암모니아 반응량을 NOx와의 반응량과 산소와의 반응량으로 구분하며, NOx와의 반응량은 배기조건의 변화에 따른 반응경로 비중 변화가 반영된 NOx 정화율 및 양론비를 적용하여 계산하는 차량의 요소 분사량 제어장치.The control unit divides the reaction amount of ammonia into the reaction amount with NOx and the reaction amount with oxygen, and the reaction amount with NOx is calculated by applying the NOx purification rate and stoichiometric ratio reflecting the change of the specific gravity of the reaction path according to the change of exhaust conditions. Urea injection rate control device. NOx 배출량에 따른 암모니아 소비량과 암모니아 저장량, 암모니아 반응율, HC 흡착량 및 에이징도를 적용하여 SCR촉매에서 발생되는 암모니아 전체 소비량을 계산하는 과정; 상기 계산된 암모니아 소비량에 따라 암모니아 필요량을 계산하여 요소 필요량을 계산하는 과정; SCR촉매의 온도를 검출하여 분사 가능온도이면 상기 계산된 필요량의 요소 분사를 실행하는 과정을 포함하는 차량의 요소 분사량 제어방법에 있어서,Calculating the total ammonia consumption from the SCR catalyst by applying ammonia consumption, ammonia storage amount, ammonia reaction rate, HC adsorption amount and aging degree according to NOx emission; Calculating urea requirements by calculating ammonia requirements according to the calculated ammonia consumption; In the method for controlling the urea injection amount of a vehicle comprising detecting the temperature of the SCR catalyst and performing the urea injection of the required amount if the injection possible temperature, 상기 암모니아 반응율은 NOx와의 반응율과 산소와의 반응율을 포함하고, The ammonia reaction rate includes a reaction rate with NOx and a reaction rate with oxygen, 상기 암모니아 저장량은, "SCR촉매에 저장된 누적 저장량" + "요소에서 추출되는 신규 유입량" - "반응량 및 탈착량이 적용된 암모니아 소비량"으로 계산되는 것을 특징으로 하는 차량의 요소 분사량 제어방법. The ammonia storage amount is calculated as "cumulative storage amount stored in the SCR catalyst" + "new inflow amount extracted from urea"-"ammonia consumption amount applied to the reaction amount and desorption amount". 삭제delete 삭제delete
KR1020080113489A 2008-11-14 2008-11-14 Urea injection quantity control device and method of vehicle KR101048125B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080113489A KR101048125B1 (en) 2008-11-14 2008-11-14 Urea injection quantity control device and method of vehicle
US12/511,757 US20100122520A1 (en) 2008-11-14 2009-07-29 System for Controlling Urea Injection Quantity of Vehicle and Method Thereof
DE102009036394A DE102009036394A1 (en) 2008-11-14 2009-08-06 System and method for controlling the urea injection quantity of a vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080113489A KR101048125B1 (en) 2008-11-14 2008-11-14 Urea injection quantity control device and method of vehicle

Publications (2)

Publication Number Publication Date
KR20100054528A KR20100054528A (en) 2010-05-25
KR101048125B1 true KR101048125B1 (en) 2011-07-08

Family

ID=42105317

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080113489A KR101048125B1 (en) 2008-11-14 2008-11-14 Urea injection quantity control device and method of vehicle

Country Status (3)

Country Link
US (1) US20100122520A1 (en)
KR (1) KR101048125B1 (en)
DE (1) DE102009036394A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2475320B (en) * 2009-11-16 2016-09-28 Gm Global Tech Operations Llc Method for controlling a diesel emission fluid injected quantity in a NOx reduction system employing a SCR catalyist
US8640448B2 (en) 2010-05-03 2014-02-04 Cummins Inc. Transient compensation control of an SCR aftertreatment system
US9038373B2 (en) 2010-05-03 2015-05-26 Cummins Inc. Ammonia sensor control of an SCR aftertreatment system
US9476338B2 (en) 2010-05-03 2016-10-25 Cummins Inc. Ammonia sensor control, with NOx feedback, of an SCR aftertreatment system
US8454916B2 (en) 2010-06-18 2013-06-04 GM Global Technology Operations LLC Selective catalytic reduction (SCR) catalyst depletion control systems and methods
US8429898B2 (en) * 2010-06-18 2013-04-30 GM Global Technology Operations LLC Selective catalytic reduction (SCR) catalyst depletion control systems and methods
FI20105744A (en) 2010-06-29 2011-12-30 Waertsilae Finland Oy REGULATION METHOD AND ARRANGEMENT FOR SELECTIVE CATALYTIC REDUCTION
CN102588055A (en) * 2012-02-24 2012-07-18 潍柴动力扬州柴油机有限责任公司 Independent type SCR (selective catalytic reduction) metered injection control method and system
EP2918805B1 (en) * 2012-11-07 2017-06-21 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal-combustion engine
KR101416409B1 (en) 2012-12-31 2014-07-08 기아자동차 주식회사 System for control urea injection quantity of vehicle and method thereof
FR3004538B1 (en) 2013-04-12 2015-05-29 Continental Automotive France METHOD FOR DETERMINING THE ACTUAL QUANTITY OF AN ACTIVE PRODUCT ENTERING A CATALYSIS DEVICE OF AN EXHAUST LINE OF A VEHICLE
US10001042B2 (en) 2014-03-03 2018-06-19 Cummins Inc. Systems, methods, and apparatus for reductant dosing in an SCR aftertreatment system
US10391448B2 (en) * 2016-05-25 2019-08-27 Florida Power & Light Company Selective catalytic reduction (SCR) control optimization
CN106018696B (en) * 2016-06-21 2017-10-20 西华大学 Optimization urea concentration experimental rig and method for diesel engine after treatment
CN112717689B (en) * 2019-10-28 2022-07-08 国家电投集团远达环保工程有限公司重庆科技分公司 Selective catalytic reduction denitration device and method
CN113266448B (en) * 2021-05-27 2022-04-26 潍柴动力股份有限公司 Control method and system for urea injection amount and vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314256A (en) * 2002-04-22 2003-11-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064126B2 (en) * 1985-06-10 1994-01-19 株式会社日本触媒 Exhaust gas purification method
JP3951774B2 (en) * 2002-03-29 2007-08-01 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
DE602004030732D1 (en) * 2003-09-30 2011-02-03 Nissan Diesel Motor Co Emission control device for a motor
JP4526831B2 (en) * 2004-02-16 2010-08-18 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
KR20080113489A (en) 2007-06-25 2008-12-31 주식회사 동부하이텍 Image sensor and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003314256A (en) * 2002-04-22 2003-11-06 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device

Also Published As

Publication number Publication date
KR20100054528A (en) 2010-05-25
DE102009036394A1 (en) 2010-05-20
US20100122520A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
KR101048125B1 (en) Urea injection quantity control device and method of vehicle
Praveena et al. A review on various after treatment techniques to reduce NOx emissions in a CI engine
KR100974599B1 (en) System for control urea injection quantity of vehicle and method thereof
KR101145621B1 (en) Apparatus and method for control ammonia occlusion amount of selective catalytic reduction system
KR101416409B1 (en) System for control urea injection quantity of vehicle and method thereof
US9546584B2 (en) Multi-stage SCR system
KR100993364B1 (en) System for control urea injection quantity of vehicle and method thereof
JP5296291B2 (en) Exhaust gas purification system
US20110030343A1 (en) Scr reductant deposit removal
KR20060069355A (en) Methods of controlling reductant addition
US10450933B2 (en) Downstream oxygen sensor performance for selective catalytic reduction
CN109751105B (en) Down-flow selective catalytic reduction steady state ammonia slip detection with positive perturbations
KR101040347B1 (en) System for calculation efficiency conversion of selective catalytic reduction in diesel vehicle and method thereof
KR101316856B1 (en) System for control urea injection quantity of vehicle and method thereof
KR20100007602A (en) System for control urea injection of vehicle and method thereof
CN109469540B (en) Selective catalytic reduction steady state ammonia slip detection under positive disturbance
US10309278B2 (en) Method for desulfurization of selective catalytic reduction devices
KR100992816B1 (en) System for correction a stored ammonia quantity of emission reduce line on diesel vehicle and method thereof
JP2007100508A (en) Exhaust emission control device of internal combustion engine, and exhaust emission control method for internal combustion engine
KR101534714B1 (en) Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
US20190063285A1 (en) Emissions control system of a combustion engine exhaust system
KR101180941B1 (en) System for control urea injection quantity of vehicle and method thereof
BR102013007639A2 (en) Method for use in connection with an exhaust gas aftertreatment system
KR20120018999A (en) Method of controll for reducing injection quantity
KR20140137498A (en) Reductant injection volume control device of a vehicle and method of controlling the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150630

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee