KR20110012170A - Host cells transformed with hydrogenase or nitrogenase of rhodobacter sphaeroide and method for preparing hydrogen using the same - Google Patents
Host cells transformed with hydrogenase or nitrogenase of rhodobacter sphaeroide and method for preparing hydrogen using the same Download PDFInfo
- Publication number
- KR20110012170A KR20110012170A KR1020090069770A KR20090069770A KR20110012170A KR 20110012170 A KR20110012170 A KR 20110012170A KR 1020090069770 A KR1020090069770 A KR 1020090069770A KR 20090069770 A KR20090069770 A KR 20090069770A KR 20110012170 A KR20110012170 A KR 20110012170A
- Authority
- KR
- South Korea
- Prior art keywords
- gene
- hydrogen production
- seq
- nitrogenase
- hydrogen
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0067—Oxidoreductases (1.) acting on hydrogen as donor (1.12)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0095—Oxidoreductases (1.) acting on iron-sulfur proteins as donor (1.18)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2523/00—Culture process characterised by temperature
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y118/00—Oxidoreductases acting on iron-sulfur proteins as donors (1.18)
- C12Y118/06—Oxidoreductases acting on iron-sulfur proteins as donors (1.18) with dinitrogen as acceptor (1.18.6)
- C12Y118/06001—Nitrogenase (1.18.6.1)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
본 발명은 (1) 로도박터 스페로이드의 하이드로게나제 유전자로 형질전환된 에스케리키아 속 숙주세포 및 로도박터 스페로이드의 니트로게나제 유전자로 형질전환된 에스케리키아 속 숙주세포를 제조하는 단계; 및 (2) 상기 숙주세포를 공동 배양하여 수소를 생산하는 단계를 포함하는 수소 생산방법에 관한 것이다.The present invention comprises the steps of (1) preparing Escherichia spp. Host cells transformed with the Rhobacter spheroid hydrogenase gene and Escherichia spp. Host cells transformed with the Rhodobacter spheroid nitrogenase gene; And (2) co-culturing the host cell to produce hydrogen.
오늘날 우리는 에너지 부족과 환경오염이라는 두 가지 위기에 직면해 있다. 세계의 에너지 수요는 대부분 화석연료에 의존하고 있으며 이로 인한 화석연료의 편재화와 고갈로 인해 여러 가지 정치, 경제, 사회적 문제들을 야기하고 있다. 또한, 화석연료의 사용으로 배출되는 배기가스는 지구 온난화 및 환경오염 문제들을 야기하고 있다. 이런 현실에서 여러 국가는 이 위기를 해결하기 위해 대체에너지를 개발하기 위한 연구에 몰두하고 있다. 이러한 문제점에 대한 해결책의 하나로 서 수소에너지에 대한 관심이 고조되고 있다. 수소에너지는 태양광, 태양열, 석탄, 석유 등과 같은 1차 에너지를 변환시켜 얻을 수 있는 2차 에너지에 해당하며, 단위질량당 에너지 함유량이 매우 높고, 연소부산물로서 주로 물을 발생시키므로 어떤 다른 에너지원 보다 더욱 환경친화적인 청정에너지라고 할 수 있다. 또한, 수소에너지는 연료전지의 개발에 힘입어 더욱 그 필요성이 증대되고 있으며 군사/우주개발용뿐만 아니라 민간/산업용으로 주목받고 있다.Today we are facing two crises: energy shortages and environmental pollution. The world's energy demand is largely dependent on fossil fuels, which are causing a number of political, economic and social problems due to the ubiquity and exhaustion of fossil fuels. In addition, the emissions emitted by the use of fossil fuels cause global warming and environmental pollution problems. In this reality, many countries are engaged in research to develop alternative energy to solve this crisis. As one solution to this problem, interest in hydrogen energy is increasing. Hydrogen energy is a secondary energy that can be obtained by converting primary energy such as sunlight, solar heat, coal, petroleum, etc., and has a very high energy content per unit mass and generates water mainly as a combustion byproduct. It is more environmentally friendly clean energy. In addition, the need for hydrogen energy is further increased due to the development of fuel cells, and is attracting attention not only for military / space development but also for civil / industrial use.
현재 수소는 96% 이상이 화석연료로부터 제조되고 있으나, 이 또한 매장량의 한계와 환경오염 물질 배출로 인해 궁극적인 제조방법이라고 할 수는 없다. 따라서, 더욱더 환경 친화적인 태양광, 수력, 풍력, 미생물과 같은 청정기술을 이용하여 수소를 제조하는 방법이 연구되고 있다. 특히 최근에는 미생물을 이용하여 물이나 유기성 폐자원으로부터 수소를 제조하는 생물학적 수소 생산 방법에 대한 관심이 점점 증가하고 있다. 생물학적인 수소 생산 방법은 화학공학적인 수소생산방법에 비해 상온, 상압 조건에서 조업이 이루어지기 때문에 덜 에너지 집약적이며, 물이나 바이오 매스, 유기성 폐자원 등과 같은 재생 가능한 연료로부터 수소생산이 이루어지기 때문에 이론적으로는 무한정 수소생산이 가능하다. 또한, 생물학적 수소 생산 방법은 유기성 폐자원 처리, 이산화탄소 저감 등 환경처리 기술과 결합하여 환경오염 감소와 대체 에너지 생산이라는 두 가지 장점을 가지고 있는 기술이다.At present, more than 96% of hydrogen is produced from fossil fuels, but this is not the ultimate method due to the limited reserves and the emission of environmental pollutants. Therefore, a method for producing hydrogen using more clean technologies such as solar, hydro, wind and microorganisms that are more environmentally friendly is being studied. In particular, there is an increasing interest in a biological hydrogen production method for producing hydrogen from water or organic waste resources using microorganisms. Biological hydrogen production methods are less energy intensive because they operate at room temperature and atmospheric pressure than chemical engineering methods, and theoretically because hydrogen is produced from renewable fuels such as water, biomass, and organic waste resources. Infinite hydrogen production is possible. In addition, biological hydrogen production method is a technology that has two advantages, combined with environmental treatment technologies such as organic waste resource treatment, carbon dioxide reduction, reduction of environmental pollution and alternative energy production.
미생물에 의한 수소생산 연구는 1800년대부터 시작되었으나 기초 연구에 국한되었고 수소에너지와 관련하여 연구가 시작된 것은 1970년대부터이다. 즉, 에너 지 위기의 시대에 그 대안으로 수소 에너지를 연구하기 시작한 것이다. 생물학적 수소 생산은 주로 미생물을 이용한 방법으로서 미생물의 특성에 따라 크게 두 가지로 분류할 수 있다. 하나는 빛을 이용하는 광합성(photosynthesis) 미생물에 의한 수소 생산 방법이고, 다른 하나는 빛을 이용하지 않는 미생물에 의한 혐기발효 방법이다. 광합성을 이용한 수소생산 방법에 관여하는 미생물은 크게 녹조(green algae), 시아노박테리아(cyanobacteria), 광합성 박테리아(photosynthetic bacteria)로 구분할 수 있으며, 혐기발효에 관여하는 미생물은 발효 박테리아(fermentative bacteria)가 있다. 이들 미생물은 자신이 가지고 있는 효소를 이용하여 수소를 생산하며, 수소 생산에 관여하는 효소로서, 하이드로게나제(hydrogenase), 니트로게나제(nitrogenase), FHL(formate hydrogen-lyase) 등이 알려져 있다.Research into hydrogen production by microorganisms began in the 1800s, but it was limited to basic research, and research into hydrogen energy began in the 1970s. In other words, in the age of energy crisis, he began to study hydrogen energy as an alternative. Biological hydrogen production is mainly a method using a microorganism, and can be classified into two types according to the characteristics of the microorganism. One is hydrogen production by photosynthesis microorganisms using light, and the other is anaerobic fermentation by microorganisms that do not use light. Microorganisms involved in hydrogen production method using photosynthesis can be classified into green algae, cyanobacteria and photosynthetic bacteria, and microorganisms involved in anaerobic fermentation are fermentative bacteria. have. These microorganisms produce hydrogen using their own enzymes, and enzymes involved in hydrogen production, such as hydrogenase, nitrogenase, and formate hydrogen-lyase (FHL) are known.
그러나, 전통적인 수소생산 미생물은 비교적 낮은 에너지 전환 효율 및 낮은 수소 생성율을 보인다. 또한, 여러 저해 인자들 때문에 시간의 경과에 따라 이 개체들로부터의 생산에 내제된 불안정성이 문제시되고 있다.However, traditional hydrogen producing microorganisms exhibit relatively low energy conversion efficiency and low hydrogen production rate. In addition, due to various inhibitors, the instability inherent in production from these individuals over time has been questioned.
상기 문제점을 해결하기 위해, 본 발명자는 로도박터 스페로이드의 하이드로게나제 유전자로 형질전환된 대장균을 개발하였고, 상기 대장균이 로도박터 스페로이드 보다 현저하게 높은 수율로 수소를 생산함을 개시한 바 있다.In order to solve the above problems, the present inventors have developed E. coli transformed with the hydrogenase gene of Rhodobacter spheroid, and have disclosed that E. coli produces hydrogen at a significantly higher yield than Rhodobacter spheroid. .
본 발명자는 수소생산 수율을 더욱 높이기 위해 연구하던 중 로도박터 스페로이드의 하이드로게나제 유전자로 형질전환된 대장균과 로도박터 스페로이드의 니트로게나제 유전자로 형질전환된 대장균을 공동 배양함으로써 하이드로게나제 유전자로 형질전환된 대장균을 단독 배양할 때보다 현저하게 개선된 수율로 수소를 생산할 수 있다는 것을 확인하고, 본 발명을 완성하기에 이르렀다.The present inventors co-cultured the E. coli transformed with the Rhodobacter spheroid hydrogenase gene and the E. coli transformed with the Rhodobacter spheroid nitrogenase gene while studying to further increase the hydrogen production yield. It was confirmed that hydrogen can be produced in a significantly improved yield than when culturing E. coli transformed alone, the present invention was completed.
본 발명의 목적은 (1) 로도박터 스페로이드(Rhodobacter sphaeroide)의 하이드로게나제(hydrogenase) 유전자로 형질전환된 에스케리키아 속 숙주세포 및 로도박터 스페로이드의 니트로게나제(nitrogenase) 유전자로 형질전환된 에스케리키아 속 숙주세포를 제조하는 단계; 및 (2) 상기 숙주세포를 공동 배양하여 수소를 생산하는 단계를 포함하는 수소 생산방법을 제공하는데 있다.An object of the present invention is to (1) transform into a host cell of Escherichia genus transformed with a hydrogenase gene of Rhodobacter sphaeroide and a nitrogenase gene of Rhodobacter spheroid Preparing an isolated Escherichia spp host cell; And (2) co-culturing the host cell to produce hydrogen.
본 발명에서, '로도박터 스페로이드(Rhodobacter sphaeroide)'는 대표적인 수소 생산 광합성 세균으로, 상기 세균이 수소를 생산할 수 있는 것은 하이드로게나제(hydrogenase)와 니트로게나제(nitrogenase) 단백질 등을 발현하기 때문이다. 상기 하이드로게나제 단백질은 hupS와 hupL 유전자에 의해 암호화되어 있고, 상기 니트로게나제 단백질은 nifK와 nifD, nifH 유전자에 의해 암호화되어 있다.In the present invention, 'Rhodobacter sphaeroide' is a representative hydrogen-producing photosynthetic bacterium, which is capable of producing hydrogen because it expresses a hydrogenase and a nitrogenase protein. to be. The hydrogenase protein is encoded by the hupS and hupL genes, and the nitrogenase protein is encoded by the nifK, nifD and nifH genes.
본 발명에서 'hupS 유전자'는 한 양태로서, 로도박터 스페로이드의 게놈 DNA를 주형으로 하고, 서열번호: 3에 나타낸 프라이머와 서열번호: 4에 나타낸 프라이머를 이용하여 PCR을 수행함으로써 수득할 수 있다. 본 발명의 hupS 유전자는 서 열번호: 1에 나타낸 염기서열로 이루어진 것이 바람직하다.In the present invention, the 'hupS gene' can be obtained by performing PCR using genomic DNA of Rhodobacter spheroid as a template and primers shown in SEQ ID NO: 3 and primers shown in SEQ ID NO: 4. . The hupS gene of the present invention is preferably composed of the nucleotide sequence shown in SEQ ID NO: 1.
본 발명에서 'hupL 유전자'는 한 양태로서, 로도박터 스페로이드의 게놈 DNA를 주형으로 하고, 서열번호: 5에 나타낸 프라이머와 서열번호: 6에 나타낸 프라이머를 이용하여 PCR을 수행함으로써 수득할 수 있다. 본 발명의 hupL 유전자는 서열번호: 2에 나타낸 염기서열로 이루어진 것이 바람직하다.In the present invention, the 'hupL gene' may be obtained by performing PCR using genomic DNA of Rhodobacter spheroid as a template and primers shown in SEQ ID NO: 5 and primers shown in SEQ ID NO: 6. . The hupL gene of the present invention is preferably composed of the nucleotide sequence shown in SEQ ID NO: 2.
본 발명에서 'nifK(nitrogenase molybdenum-iron protein beta chain) 유전자'는 한 양태로서, 로도박터 스페로이드의 게놈 DNA를 주형으로 하고, 서열번호: 9에 나타낸 프라이머와 서열번호: 10에 나타낸 프라이머를 이용하여 PCR을 수행함으로써 수득할 수 있다. 본 발명의 nifK 유전자는 서열번호: 7에 나타낸 염기서열로 이루어진 것이 바람직하다.In the present invention, the 'nifgen gene (nitrogenase molybdenum-iron protein beta chain) gene' is an embodiment, using the genomic DNA of Rhodobacter spheroid as a template, and using the primer shown in SEQ ID NO: 9 and the primer shown in SEQ ID NO: 10. Can be obtained by performing PCR. The nifK gene of the present invention is preferably composed of the nucleotide sequence shown in SEQ ID NO: 7.
본 발명에서 'nifD 유전자(nitrogenase iron-molybdenum protein, alpha chain)와 nifH 유전자(nitrogenase reductase)'는 한 양태로서, 로도박터 스페로이드의 게놈 DNA를 주형으로 하고, 서열번호: 11에 나타낸 프라이머와 서열번호: 12에 나타낸 프라이머를 이용하여 PCR을 수행함으로써 동시에 두 유전자를 수득할 수 있다. 본 발명의 nifDH 유전자는 서열번호: 8에 나타낸 염기서열로 이루어지는 것이 바람직하다. 본 발명의 nifD 유전자는 서열번호: 8에 나타낸 염기서열 중 1 번째 염기부터 876 번째 염기까지로 이루어지고, nifH 유전자는 서열번호: 8에 나타낸 염기서열 중 938 번째 염기부터 1482번째 염기까지로 이루어지는 것이 바람직하다.In the present invention, the 'nifD gene (nitrogenase iron-molybdenum protein, alpha chain) and nifH gene (nitrogenase reductase)' is an embodiment, and the primer and sequence shown in SEQ ID NO: 11 are based on genomic DNA of Rhodobacter spheroid. Two genes can be obtained simultaneously by performing PCR using the primers shown in No. 12. The nifDH gene of the present invention preferably consists of the nucleotide sequence shown in SEQ ID NO: 8. The nifD gene of the present invention is composed of the first base to the 876th base of the nucleotide sequence shown in SEQ ID NO: 8, the nifH gene is composed of 938 base to the 1482 base of the base sequence shown in SEQ ID NO: 8 desirable.
본 발명에 따른 로도박터 스페로이드의 하이드로게나제 유전자로 형질전환된 에스케리키아 속 숙주세포 및 로도박터 스페로이드의 니트로게나제 유전자로 형질전환된 에스케리키아 속 숙주세포는 각각 해당 유전자를 포함하는 재조합 발현 벡터를 작제한 후 상기 재조합 발현 벡터로 에스케리키아 속 숙주세포를 형질전환함으로써 제조할 수 있다.The Escherichia spp host cell transformed with the hydrogenase gene of Rhodobacter spheroid and the Escherichia spp host cell transformed with the nitrogenase gene of Rhodobacter spheroid according to the present invention each contain a corresponding gene. After constructing a recombinant expression vector, the recombinant expression vector can be prepared by transforming a host cell of the genus Escherichia.
본 발명에서, 용어 '벡터'는 그에 연결된 또 다른 핵산을 수송할 수 있는 핵산 분자를 의미한다. 벡터는 자발적 복제를 수행할 수 있거나, 또는 숙주 DNA로 통합될 수 있다. 벡터는 재조합 DNA의 삽입을 위한 제한효소 인식 부위를 포함하고, 하나 이상의 선택 마커(selectable marker)를 포함할 수 있다. 벡터는 플라스미드, 박테리오파지 또는 코스미드(cosmid) 형태의 핵산일 수 있다.In the present invention, the term 'vector' means a nucleic acid molecule capable of transporting another nucleic acid linked thereto. Vectors can perform spontaneous replication or can be integrated into host DNA. The vector includes a restriction enzyme recognition site for insertion of recombinant DNA and may include one or more selectable markers. The vector may be a nucleic acid in the form of a plasmid, bacteriophage or cosmid.
본 발명의 재조합 발현 벡터는 '조절 서열(regulatory sequence)'을 포함하는 것이 바람직하다. 본 발명에서, 조절 서열은 유전자 발현을 조절할 수 있는 DNA 또는 RNA 요소를 의미한다. 조절 서열의 예에는 프로모터, 인핸서(enhancer), 사일랜서(silancer), 샤인 달가노(Shine-Dalgarno) 서열, TATA-박스, IRES(internal ribosomal entry site), 전사 인자의 부착 부위, 전사 종결자(transcriptional terminator), 폴리아데닐화 부위(polyadenylation site) 등이 있다.The recombinant expression vector of the present invention preferably comprises a 'regulatory sequence'. In the present invention, regulatory sequence means a DNA or RNA element capable of controlling gene expression. Examples of regulatory sequences include promoters, enhancers, silencers, Shine-Dalgarno sequences, TATA-boxes, internal ribosomal entry sites, IRES attachment sites, transcription terminators ( transcriptional terminators, polyadenylation sites, and the like.
본 발명에서 '프로모터'는 RNA 폴리머라제가 전사를 개시하기 위해 결합하는 DNA 또는 RNA의 뉴클레오티드 서열을 의미한다. 프로모터는 유도성이거나 구성성일 수 있다. 바람직하게는, 프로모터는 T7, T3, lac, tac, trc 프로모터이다. 보다 바람직하게는, 프로모터는 세균, 예를 들면 대장균에서 기능하는 것으로 알려진 T7 프로모터 또는 T3 프로모터이다.In the present invention, 'promoter' means a nucleotide sequence of DNA or RNA to which RNA polymerase binds to initiate transcription. Promoters can be inducible or constitutive. Preferably, the promoter is a T7, T3, lac, tac, trc promoter. More preferably, the promoter is a T7 promoter or T3 promoter known to function in bacteria, for example E. coli.
본 발명의 재조합 발현 벡터에서, hupS, hupL, nifK, nifDH 유전자는 조절서열과 작동가능하게 연결되어야 한다. 작동가능하게 연결된(operably linked)이란 상호간에 기능적 관계(functional relationship), 예를 들면 코딩 서열의 발현을 지시할 수 있도록 연결 관계에 있는, 코딩 서열과 조합된 조절 서열 또는 그러한 조합을 의미한다.In the recombinant expression vectors of the invention, the hupS, hupL, nifK, nifDH genes must be operably linked to regulatory sequences. Operationally linked refers to regulatory sequences or combinations thereof in combination with a coding sequence that are in a linking relationship such that they can direct the expression of a functional relationship, for example, the coding sequence.
본 발명에서는, T7 프로모터 시스템을 포함하는 세균 발현 벡터가 바람직하며, pET 발현 벡터를 이용하는 것이 특히 바람직하다.In the present invention, a bacterial expression vector containing a T7 promoter system is preferred, and a pET expression vector is particularly preferred.
본 발명에서는, 상기 재조합 발현 벡터를 에스케리키아(Escherichia) 속 숙주세포로 형질전환시킨다. 상기 숙주세포는 바람직하게는 대장균이며, 보다 바람직하게는 대장균 BL21(DE3)이다.In the present invention, the recombinant expression vector is transformed into a host cell of Escherichia. The host cell is preferably Escherichia coli, more preferably Escherichia coli BL21 (DE3).
본 발명에서 사용된 형질전환 및 형질감염은 본 발명이 속하는 기술분야에서 공지된 외래 핵산을 숙주 세로내로 도입하는 다양한 기법을 의미한다. 본 발명의 재조합 발현 벡터에 의한 적합한 숙주세포의 형질전환은 본 발명이 속하는 기술분야에서 공지된 방법들에 의해 이루어지고 통상적으로 벡터 및 숙주세포의 종류에 의존적이다. 상기 기법은 인산칼슘 또는 염화칼슘 공-침전(채-precipitation), DEAE-덱스트란 매개 형질감염, 리포좀 매개 형질감염(lipofection), 화학천공(chemoporation) 또는 전기천공(electroporation)을 포함하나, 이에 제한되지 않는다.Transformation and transfection as used in the present invention means various techniques for introducing foreign nucleic acids known in the art to the host strain. Transformation of a suitable host cell by the recombinant expression vector of the present invention is accomplished by methods known in the art to which the present invention pertains and is typically dependent on the type of vector and host cell. Such techniques include, but are not limited to, calcium phosphate or calcium chloride co-precipitation, DEAE-dextran mediated transfection, liposome mediated transfection, chemoporation or electroporation. Do not.
본 발명에서는 이렇게 제조된 로도박터 스페로이드(Rhodobacter sphaeroide) 의 하이드로게나제(hydrogenase) 유전자로 형질전환된 에스케리키아 속 숙주세포 및 로도박터 스페로이드의 니트로게나제(nitrogenase) 유전자로 형질전환된 에스케리키아 속 숙주세포를 공동 배양하여 수소를 생산한다.In the present invention, the Escherichia genus host cells transformed with the hydrogenase gene of Rhodobacter sphaeroide thus prepared and the nitrogenase gene of Rhodobacter spheroid Hydrogen is produced by co-culture of host cells of the genus Kerikia.
본 발명의 형질전환된 숙주세포는 숙주 개체에 따라, 당업계에 공지된 방법에 따라 배양한다. 대개, 숙주세포는 통상적으로 당의 형태인 탄소원, 통상적으로 효모 추출물과 같은 유기 질소원 또는 암모늄 설페이트와 같은 염의 형태인 질소원, 철, 망간 및 마그네슘과 같은 미량 원소(trace element) 및 필요에 따라 비타민을 포함하는 배지에서 배양된다.The transformed host cell of the present invention is cultured according to a host individual, according to methods known in the art. Usually, host cells typically contain a carbon source in the form of sugar, an organic nitrogen source, typically a yeast extract, or a nitrogen source, in the form of a salt, such as ammonium sulfate, trace elements, such as iron, manganese and magnesium, and vitamins as needed. Cultured in the medium.
본 발명에서는 공동 배양시에 표 2에 나타낸 수소생산 역가배지를 이용하여 혐기조건에서 배양하는 것이 바람직하다. 또한, 29 내지 31℃의 온도에서 140 내지 150rpm으로 진탕하는 것이 바람직한데, 이는 상기 조건에서 보다 많은 하이드로게나제가 가용성 형태를 유지할 수 있기 때문이다. 아울러, 공동 배양시에는 니트로게나제 유전자로 형질전환된 숙주세포는 고정화시키는 것이 바람직하다. 이는 숙주세포의 생산을 억제하면서 니트로게나제 유전자의 발현은 극대화할 수 있기 때문이다. 니트로게나제는 최대량의 전자를 생산하고 하이드로게나제는 상기 전자를 전달받아 수소로 전환시키므로 수소 생산이 증가하게 된다.In the present invention, it is preferable to culture under anaerobic conditions using the hydrogen production titer medium shown in Table 2 at the time of co-culture. It is also desirable to shake at 140-150 rpm at a temperature of 29-31 ° C., because more hydrogenase can maintain soluble form under these conditions. In addition, during co-culture, host cells transformed with nitrogenase gene are preferably immobilized. This is because the expression of the nitrogenase gene can be maximized while inhibiting the production of the host cell. Nitrogenase produces the largest amount of electrons and hydrogenase receives the electrons and converts them into hydrogen, thus increasing hydrogen production.
본 발명에 따르면, 로도박터 스페로이드의 하이드로게나제 유전자로 형질전환된 숙주세포와 로도박터 스페로이드의 니트로게나제 유전자로 형질전환된 숙주세 포를 공동 배양함으로써 하이드로게나제 유전자로 형질전환된 숙주세포를 단독으로 배양할 때보다 10배 이상 개선된 효율로 수소를 생산할 수 있다.According to the present invention, a host cell transformed with a hydrogenase gene of Rhodobacter spheroids and a host cell transformed with a nitrogenase gene of Rhodobacter spheroids is co-cultured to a host transformed with a hydrogenase gene. Hydrogen can be produced at 10 times improved efficiency than when cells are cultured alone.
이하, 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the examples are only for illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples in accordance with the gist of the present invention, those skilled in the art. Will be self-evident.
실시예 1: 로도박터 스페로이드 하이드로게나제 유전자를 포함하는 재조합 벡터의 제작Example 1 Construction of a Recombinant Vector Comprising a Rhodobacter Spheroid Hydrogenase Gene
본 실시예에서는 통성혐기성 광합성 균주인 로도박터 스페로이드 KCTC 1434 (Rhodobacter sphaeroides KCTC 1434) 균주를 사용하였으며, 단백질 발현벡터로 알려진 pET-21a (Novagen, Madison, WI, USA) 벡터를 사용하여 클로닝하였다. 로도박터 스페로이드의 유전체 데이터로부터 하드로게나제를 코딩하는 유전자인 hupS와 hupL의 DNA 서열을 NCBI의 genebank (www.ncbi.nlm.nih.gov)로부터 확보한 후, 서열번호: 1에 해당하는 DNA 단편 1(F1) 및 서열번호: 2에 해당하는 DNA 단편 2(F2)를 각각 특이적으로 증폭할 수 있는 서열번호: 3, 서열번호: 4, 서열번호: 5 및 서열번호: 6을 갖는 프라이머를 제작하였다. 다음으로, 로도박터 스페로이드 균주로부터 게놈 DNA를 추출하고, 이를 주형으로 하여 서열번호: 3 및 서열번호: 4의 염 기 서열을 갖는 프라이머 쌍을 사용하여 PCR (Polymerase chain reaction)을 수행하여 hupS 유전자의 단편 1(F1)의 염기 서열(서열번호: 1)을 증폭하였다. 또한, 서열번호: 5 및 서열번호: 6의 염기 서열을 갖는 프라이머를 사용한 PCR을 수행하여 hupL 유전자의 단편 2(F2)의 염기 서열(서열번호: 2)을 증폭하였다. PCR 증폭 산물을 아가로즈 겔(agarose gel)에서 전기영동한 결과 hupS는 1.11 kb의 DNA 단편을 얻었고, hupL은 1.79 kb의 단편을 가지는 유전자를 확인하였다. 상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.In this example, the Rhodobacter sphaeroides KCTC 1434 strain, an anaerobic photosynthetic strain, was used and cloned using a pET-21a (Novagen, Madison, WI, USA) vector known as a protein expression vector. The DNA sequences of hupS and hupL , which are genes encoding hardenase from the genome data of Rhodobacter spheroid, were obtained from NCBI's genebank (www.ncbi.nlm.nih.gov), which corresponds to SEQ ID NO: 1. DNA fragment 1 (F1) and DNA fragment 2 (F2) corresponding to SEQ ID NO: 2, respectively having SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5 and SEQ ID NO: 6 Primer was prepared. Next, genomic DNA was extracted from the Rhodobacter spheroid strain, and the hupS gene was subjected to PCR (Polymerase chain reaction) using a primer pair having a base sequence of SEQ ID NO: 3 and SEQ ID NO: 4 as a template. The nucleotide sequence (SEQ ID NO: 1) of fragment 1 (F1) of was amplified. In addition, PCR was performed using primers having the nucleotide sequences of SEQ ID NO: 5 and SEQ ID NO: 6 to amplify the nucleotide sequence (SEQ ID NO: 2) of fragment 2 (F2) of the hupL gene. After electricity from the agarose gel (agarose gel) electrophoretic PCR amplification products hupS got a DNA fragment of 1.11 kb, hupL has identified the gene with a fragment of 1.79 kb. The genes were all purified after GeneAll PCR DNA purification kit.
실시예 2: 재조합 발현 벡터(pEMBTL-HJ2)의 제조Example 2: Preparation of Recombinant Expression Vector (pEMBTL-HJ2)
본 실시예에서는 대장균-단백질 발현벡터인 pET-21a(Novagen, Madison, WI, USA)를 기본 벡터로 사용하여 하이드로게나제 발현용 벡터인 pEMBTL-HJ2(도 1 참조)를 제작하였으며, 제작과정은 다음과 같다.In this example, pEMBTL-HJ2 (see FIG. 1), which is a hydrogenase expression vector, was prepared using E. coli-protein expression vector pET-21a (Novagen, Madison, WI, USA) as a base vector. As follows.
상기 실시예 1에서 증폭한 hupS DNA 절편을 NdeI과 NheI으로 절단하여 동일한 제한 부위를 절단한 pET-21a 벡터에 도입하였으며, 이를 'pEMBTL-HJ1'로 명명하였다(도 2 참조). 여기에 hupL 유전자를 NheI과 HindIII로 절단한 후 동일한 제한부위를 절단한 pET-21a벡터에 도입하여 이를 'pEMBTL-HJ2'로 명명하였다(도 2 참조).The hupS DNA fragments amplified in Example 1 were cut into NdeI and NheI and introduced into the pET-21a vector cut the same restriction site, which was named 'pEMBTL-HJ1' (see FIG. 2). Herein, the hupL gene was cleaved with NheI and HindIII, and then introduced into the pET-21a vector which cut the same restriction site and named it 'pEMBTL-HJ2' (see FIG. 2).
본 실시예에서 제조한 벡터 pEMBTL-HJ2를 대장균인 Escherichia coli BL21(DE3)에 전기천공법(Electroporation)으로 형질전환하였고, 암피실린이 함유된 LB 고체평판배지에서 얻은 콜로니를 새로운 배지에 옮겨 단일콜로니를 얻었다. DNA 시퀀싱(Sequancing) 방법으로 pEMBTL-HJ2에 삽입된 hupS와 hupL의 DNA 염기서열을 정확히 확인하였으며, pEMBTL-HJ2를 포함하는 재조합 미생물을 'MBTL-HJ-001'이라 명명하였다.The vector pEMBTL-HJ2 prepared in this Example was transformed into E. coli Escherichia coli BL21 (DE3) by electroporation, and colonies obtained from LB solid plate medium containing ampicillin were transferred to a new medium to obtain a single colony. Got it. The DNA sequencing method accurately identified the DNA sequences of hupS and hupL inserted into pEMBTL-HJ2. The recombinant microorganism containing pEMBTL-HJ2 was named 'MBTL-HJ-001'.
실시예 3: 재조합 미생물에서 하이드로게나제 단백질의 과발현 및 가용화Example 3: Overexpression and Solubilization of Hydrogenase Protein in Recombinant Microorganisms
본 실시예에서는 상기 실시예 2에서 제조한 재조합 미생물인 MBTL-HJ-001을 암피실린(Ampicillin) 50 ㎍/mL이 함유된 LB 액체 배지 (10 g/L 트립톤, 5 g/L 효모추출물 및 5 g/L NaCl) 5 mL에 접종하여 37℃, 160 rpm으로 12시간 동안 진탕 배양하였다. 얻어진 배양액 100 ㎕를 암피실린이 함유된 LB 액체 배지 10 mL에 첨가하여 37℃에서 160 rpm으로 2시간 동안 본 배양한 후 단백질 발현 유도물질인 IPTG(Isopropyl β-D-1-thiogalactopyranoside)를 1 mM로 넣은 후, 같은 조건으로 2시간 동안 단백질 과발현을 유도했다. 유도 반응시킨 배양액을 각각 1mL 씩 채취한 뒤 초음파 분쇄기(Sonicator)로 세포를 파쇄하고, 가용성형태(Soluble form)와 불용성형태(Insoluble form)로 나누어 브래드포드법으로 단백질을 정량했다. 정량한 단백질 농도를 20㎍으로 맞추어 SDS-PAGE (SDS-discontinuous polyacrylamide gel electrophoresis) 분석을 통해 100 kDa 위치에서 불용성 형태가 가용성 형태보다 더 발현된 것을 확인하였다.In this example, LTL liquid medium (10 g / L tryptone, 5 g / L yeast extract and 5) containing 50 μg / mL of ampicillin (MBTL-HJ-001), the recombinant microorganism prepared in Example 2, was used. 5 mL of g / L NaCl) was inoculated and shaken at 37 ° C. and 160 rpm for 12 hours. 100 μl of the obtained culture solution was added to 10 mL of LB liquid medium containing ampicillin, followed by main culture at 160 rpm for 2 hours at 37 ° C., and then IPTG (Isopropyl β-D-1-thiogalactopyranoside), a protein expression inducer, was added to 1 mM. After addition, protein overexpression was induced for 2 hours under the same conditions. After 1mL of each induction reaction culture was collected, the cells were crushed by an ultrasonicator, and the protein was quantified by the Bradford method by dividing into soluble form and insoluble form. SDS-PAGE (SDS-discontinuous polyacrylamide gel electrophoresis) analysis confirmed that the insoluble form was expressed more than the soluble form at the 100 kDa position.
단백질을 가용화시키기 위하여 배양 온도와 교반 속도를 30℃, 150 rpm으로 낮추고 본 배양 시간과 단백질 발현 유도 반응시간을 각각 5 시간과 8 시간으로 늘려서 성장시킨 재조합 대장균으로부터 단백질을 추출하여 SDS-PAGE 분석한 결과, 가용성 형태가 40% 이상 증가하였다(도 3 참조).In order to solubilize the protein, SDS-PAGE analysis was performed by extracting the protein from the recombinant E. coli grown by lowering the incubation temperature and stirring speed to 30 ° C and 150 rpm and increasing the incubation time and the protein expression induction reaction time to 5 hours and 8 hours, respectively. As a result, the soluble form increased by more than 40% (see Figure 3).
실시예 4: 재조합 미생물의 수소 생산성 비교Example 4 Comparison of Hydrogen Productivity of Recombinant Microorganisms
본 실시예에서는 상기 실시예 2에서 제조한 재조합 미생물인 MBTL-HJ1을 수소생산 역가배지(이하, 표 2 참조)를 사용하였으며 바이알에서 배양하여 수소생산성 향상을 확인하였다.In this example, the recombinant microorganism MBTL-HJ1 prepared in Example 2 was used a hydrogen production titer (see Table 2 below) and was cultured in a vial to confirm the improvement in hydrogen productivity.
* KOH를 이용하여 pH를 7로 맞춘 후 카사미노산(casamino acid) 2g을 첨가하여 멸균하여 사용한다.* Adjust the pH to 7 using KOH and sterilize by adding 2 g of casamino acid (casamino acid).
상기 실시예 4에서는 재조합 미생물을 암피실린 50 ㎍/ml이 함유된 LB 액체 배지 5 mL에 접종하여 37℃에서 12 시간 진탕배양하였다. 상기에서 얻어진 배양액 400 ㎕와, 암피실린 50 ㎍/mL 및 5 mM IPTG를 포함하는 수소생산 역가배지(표 4) 40 mL를 50 mL 바이알에 넣고, 10 분 동안 질소퍼징하여 혐기조건을 만든 후 30℃에서 150 rpm으로 66시간 동안 본 배양하였다(도 4 참조). 균주의 균체성장 측정은 분광광도계 (Spectrophotometer)를 이용하여 600 nm에서 흡광도를 측정하였다. 수소함량은 바이알 헤드공간의 가스를 시린지로 500㎕ 채취한 후 가스크로마토그래피로 분석하였으며, 그 결과를 도 5 및 이하 표 3에 나타내었다.In Example 4, the recombinant microorganism was inoculated in 5 mL of LB liquid medium containing 50 μg / ml of ampicillin and shaken at 37 ° C. for 12 hours. 400 μl of the culture solution obtained above and 40 mL of hydrogen production
상기 표 3에 나타낸 바와 같이 재조합 미생물 MBTL-HJ-001이 수소를 생산하여, 대조구인 로도박터 스페로이드 KCTC1434에 비해 수율이 현저하게 증가하였음을 확인할 수 있었다.As shown in Table 3, the recombinant microorganism MBTL-HJ-001 produced hydrogen, and it was confirmed that the yield was significantly increased compared to the control Rhodobacter spheroid KCTC1434.
실시예 5: 로도박터 스페로이드 니트로게나제 유전자를 포함하는 재조합 벡터의 제작Example 5: Construction of a Recombinant Vector Comprising a Rhodobacter Spheroid Nitrogenase Gene
본 실시예에서는 통상혐기성 광합성 균주인 로도박터 스페로이드 KCTC 1434 (Rhodobacter sphaeroides KCTC 1434) 균주를 사용하였으며, 단백질 발현벡터로 알려진 pET-28b 벡터를 사용하여 클로닝하였다. 로도박터 스페로이드의 유전체 데이터로부터 니트로게나제를 코딩하는 유전자인 nifK, nifD, nifH의 DNA 서열을 NCBI의 genebank (www.ncbi.nlm.nih.gov)로부터 확보한 후, 서열번호: 7에 해당하는 DNA 단편 7(F7) 및 서열번호: 8(nifD 유전자는 1~876bp이고, nifH 유전자는 938~1482bp임)에 해당하는 DNA 단편 8(F8)을 각각 특이적으로 증폭할 수 있는 서열번호: 9, 서열번호: 10, 서열번호: 11 및 서열번호: 12를 갖는 프라이머를 제작하였다. 다음으로, 로도박터 스페로이드 균주로부터 게놈 DNA를 추출하고, 이를 주형으로 하여 서열번호: 9 및 서열번호: 10의 염기 서열을 갖는 프라이머(primer) 쌍을 사용하여 PCR (Polymerase chain reaction)을 수행하여 nifK 유전자의 단편 7(F7)의 염기 서열(서열번호: 7)을 증폭하였다. 또한, 서열번호: 11 및 서열번호: 12의 염기 서열을 갖는 프라이머를 사용한 PCR을 수행하여 nifD와 nifH 유전자의 단편 8(F8)의 염기 서열(서열번호: 8)을 증폭하였다. PCR 증폭 산물을 아가로즈 겔(agarose gel)에서 전기영동한 결과 nifK 는 1.5 kb의 DNA단편을 얻었고, nifD와 nifH 유전자는 7.8 kb의 단편을 가지는 유전자를 확인하였다. 상기 유전자들은 모두 GeneAll PCR DNA purification kit로 정제한 후 사용하였다.In this example, the Rhodobacter sphaeroides KCTC 1434 strain, which is usually an anaerobic photosynthetic strain, was used and cloned using a pET-28b vector known as a protein expression vector. DNA sequences of nifK, nifD, and nifH, which are genes encoding nitrogenase from the genome data of Rhodobacter spheroid, were obtained from NCBI genebank (www.ncbi.nlm.nih.gov), and corresponded to SEQ ID NO: 7. DNA fragment 7 (F7) and SEQ ID NO: 8 (nifD gene is 1 ~ 876bp, nifH gene is 938 ~ 1482bp) DNA fragment 8 (F8) corresponding to each can be specifically amplified SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12 were prepared. Next, genomic DNA is extracted from the Rhodobacter spheroid strain, and PCR (Polymerase chain reaction) is performed using a primer pair having the nucleotide sequences of SEQ ID NO: 9 and SEQ ID NO: 10 as a template. The base sequence (SEQ ID NO: 7) of fragment 7 (F7) of the nifK gene was amplified. In addition, PCR was performed using primers having the nucleotide sequences of SEQ ID NO: 11 and SEQ ID NO: 12 to amplify the nucleotide sequence (SEQ ID NO: 8) of fragment 8 (F8) of the nifD and nifH genes. After electricity from the agarose gel (agarose gel) electrophoretic PCR amplification products nifK got a 1.5 kb DNA fragment, and nifD nifH gene was confirmed that a gene with a fragment of 7.8 kb. The genes were all purified after GeneAll PCR DNA purification kit.
실시예 6: 재조합 벡터 (pEMBTL-HJ4)의 제조Example 6: Preparation of Recombinant Vector (pEMBTL-HJ4)
본 실시예에서는 대장균-단백질 발현벡터인 pET-28b를 기본 벡터로 사용하여 니트로게나제 발현용 벡터인 pEMBTL-HJ4(도 6 참조)를 제작하였으며, 제작과정은 다음과 같다.In this embodiment, pEMBTL-HJ4 (see FIG. 6), which is a vector for nitrogenase expression, was produced using the E. coli-protein expression vector pET-28b as a base vector.
상기 실시예 5에서 증폭한 nifK DNA 절편을 NheI과 HindIII로 절단하여 동일한 제한 부위를 절단한 pET-28b벡터에 도입하였으며, 이를 'pEMBTL-HJ3'으로 명명하였다. 여기에 nifDH 유전자를 NdeI과 NheI으로 절단한 후 동일한 제한부위를 절단한 벡터에 도입하여 이를 'pEMBTL-HJ4'로 명명하였다.The nifK DNA fragment amplified in Example 5 was cut into NheI and HindIII and introduced into the pET-28b vector which cut the same restriction site, which was named 'pEMBTL-HJ3'. Here, the nifDH gene was cleaved with NdeI and NheI, and the same restriction site was introduced into the cleaved vector, which was named 'pEMBTL-HJ4'.
본 실시예에서 제조한 벡터 pEMBTL-HJ4를 대장균인 Escherichia coli BL21(DE3)에 전기천공법 (Electroporation)으로 형질전환하였고, 카나마이신이 함유된 LB 고체평판배지에서 얻은 콜로니를 새로운 배지에 옮겨 단일콜로니를 얻었다. DNA 시퀀싱 (Sequancing) 방법으로 pEMBTL-HJ4에 삽입 된 nifK와 nifDH의 DNA 염기서열을 정확히 확인하였으며, pEMBTL-HJ4를 포함하는 재조합 미생물을 'MBTL-HJ-002'라 명명하였다.The vector pEMBTL-HJ4 prepared in this Example was transformed into E. coli Escherichia coli BL21 (DE3) by electroporation, and colonies obtained from LB solid plate medium containing kanamycin were transferred to a new medium to obtain a single colony. Got it. DNA sequencing method accurately identified the DNA sequences of nifK and nifDH inserted into pEMBTL-HJ4, and named the recombinant microorganism containing pEMBTL-HJ4 as 'MBTL-HJ-002'.
실시예 7: 두 재조합 미생물의 공동 배양에 의한 수소 생산Example 7: Hydrogen Production by Co-Cultivation of Two Recombinant Microorganisms
본 실시예에서는 상기 실시예 2에서 제조한 재조합 미생물인 MBTL-HJ-001과 실시예 6에서 제조한 재조합 미생물인 MBTL-HJ-002를 공동배양하여 수소생산성 향상을 확인하였다.In this embodiment, the co-culture of MBTL-HJ-001, a recombinant microorganism prepared in Example 2, and MBTL-HJ-002, a recombinant microorganism prepared in Example 6, was confirmed to improve hydrogen productivity.
상기 실시예 7에서는 바이알 하단에 0.5% 아가가 포함된 수소생산 역가배지(표 2)를 0.5cm 정도 깔고 적당히 식혀 아가가 굳기 전에 MBTL-HJ-002를 섞어 굳히고 나서 수소생산 역가배지(표 2, 액체)를 첨가한 후 MBTL-HJ-001을 넣어 함께 배양하였다. 이때, MBTL-HJ-002는 카나마이신 25 ㎍/ml이 함유된 LB 액체 배지 5 mL에 접종하여 37 ℃에서 160rpm으로 12 시간 진탕한 후 얻어진 배양액을 본배양하여 대수증식기가 끝나기 전에 사용하였다(도 7 참조). 여기서, 대조군으로는 하단 고체배지에 균을 넣지 않은 경우, 즉, 하단 고체배지에 mock vector가 들어간 대장균을 넣어주어 함께 배양하였다. 여기서, 배양조건은 실시예 4와 동일하게 설정하였다. 실험 결과, MBTL-HJ-001과 MBTL-HJ-002를 공동 배양한 경우에 MBTL-HJ-001을 단독 배양한 경우에 비해 수소 생산 수율이 10배 이상 향상됨을 확인할 수 있었다(도 8 참조).In Example 7, the hydrogen production titer containing 0.5% agar at the bottom of the vial (Table 2) was laid down about 0.5 cm and cooled down, and then cooled and mixed with MBTL-HJ-002 before hardening. Liquid) was added and MBTL-HJ-001 was added and incubated together. At this time, MBTL-HJ-002 was inoculated into 5 mL of LB liquid medium containing kanamycin 25 μg / ml, shaken at 160 rpm for 12 hours at 37 ° C., and then cultured to obtain the culture medium, which was used before the logarithmic growth stage (FIG. 7). Reference). Here, as a control, when bacteria were not added to the lower solid medium, that is, the coli enters the mock vector into the lower solid medium and cultured together. Here, the culture conditions were set in the same manner as in Example 4. As a result of the experiment, when the MBTL-HJ-001 and MBTL-HJ-002 were co-cultured, it was confirmed that the hydrogen production yield was improved by 10 times or more compared with the case of MBTL-HJ-001 alone culture (see FIG. 8).
도 1은 로도박터 스페로이드의 하이드로게나제 유전자를 포함하는 재조합 발현 벡터를 나타낸 것이다.Figure 1 shows a recombinant expression vector comprising the hydrogenase gene of Rhodobacter spheroids.
도 2는 pEMBTL-HJ2가 만들어지는 과정을 나타낸 것이다.Figure 2 shows the process of making pEMBTL-HJ2.
도 3은 SDS-PAGE분석 결과로서 30℃와 37℃에서 MBTL-HJ-001의 과발현을 나타낸 것이다.Figure 3 shows the overexpression of MBTL-HJ-001 at 30 ℃ and 37 ℃ as a result of SDS-PAGE analysis.
도 4는 수소생산 역가배지에 MBTL-HJ-001을 넣고 배양하는 과정을 나타낸 것이다. Figure 4 shows the process of culturing MBTL-HJ-001 in hydrogen production titer medium.
도 5는 시간경과에 따른 로도박터 스페로이드와 MBTL-HJ-001의 수소생산량을 나타낸 것이다.Figure 5 shows the hydrogen production of Rhodobacter spheroids and MBTL-HJ-001 over time.
도 6은 로도박터 스페로이드의 니트로게나제 유전자를 포함하는 재조합 발현 벡터를 나타낸 것이다.Figure 6 shows a recombinant expression vector comprising the nitrogenase gene of Rhodobacter spheroids.
도 7은 본 발명에 따른 MBTL-HJ-001과 MBTL-HJ-002를 공동 배양하는 방법을 나타내는 도면이다.7 is a view showing a method of co-culturing MBTL-HJ-001 and MBTL-HJ-002 according to the present invention.
도 8은 본 발명에 따른 MBTL-HJ-001과 MBTL-HJ-002를 공동 배양하면서 수득된 수소 생산량을 시간 경과에 따라 나타낸 도면이다.8 is a diagram showing the hydrogen yield obtained over time co-culturing MBTL-HJ-001 and MBTL-HJ-002 according to the present invention.
<110> INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY <120> Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same <160> 12 <170> KopatentIn 1.71 <210> 1 <211> 1107 <212> DNA <213> Rhodobacter sphaeroides <400> 1 atgccccaga tcgaaacctt ctacgatgtg atgcgccgcc aggggatcac ccggcgcagc 60 ttcatgaaat actgctcgct cacggcggcg gcgctggggc tcggcccctc cttcgtgccg 120 aagatcgcgc acgcgatgga gacgaagccg cgcacaccgg tgatctgggt ccatgggctc 180 gaatgcacct gctgctcgga gagcttcatc cgcgcggccc atccgctggc caaggacgtc 240 gtcctgtcga tgatctcgct cgactatgac gacacgctga tggcggcggc gggccatcag 300 gccgaagccg cgctgatgga cacgatcgag aaatacaagg gcaactacat ccttgccgtc 360 gagggcaacc cgccgctgaa cgaggacggg atgtattgca tcatcggcgg caagcccttc 420 gtcgagcagc tgaagatggc ggccgaacat gccaaggcga tcatcagctg gggggcctgc 480 gcctcctacg gctgcgtgca ggcggccgcc cccaacccca cgcgggccac gcccgtgcac 540 aaggtcatcc tcgacaagcc gatcgtcaag gtgccgggct gcccgcccat cgccgaagtc 600 atgaccggcg tcatcaccta catgctgacc ttcgaccggc tgcccgagct cgaccgtcag 660 ggccgcccgg cgatgttcta cagccagcgc atccacgaca aatgctaccg ccgcccgcat 720 ttcgacgcgg gccagttcgt cgaggcctgg gacgacgact acgccaagaa gggctactgc 780 ctctacaaga tgggctgcaa ggggccgacc acctacaacg cctgctcgac cgtgcgctgg 840 aacgagggcg tgagcttccc gatccagtcc ggccacggct gcatcggctg ctcggaggac 900 ggcttctggg atcagggatc cttctacgac cggctgacca ccatcaagca gttcggcgtc 960 gaggccaatg ccgacacgat cggcctcacg gccgtgggcg cgctcggcgc gggcgtggcg 1020 gcccatatcg cggccaccgc cctcaagagc gcgcagaaga aatcgcaggc ggccaatacc 1080 gcgaagacag acgaaaagac ggaggcc 1107 <210> 2 <211> 1788 <212> DNA <213> Rhodobacter sphaeroides <400> 2 atggtcgcga caccgaacgg tttcaacctg gacaacaccg gccgccgtat cgtggtggac 60 ccggtgaccc gcatcgaggg tcacatgcgc tgcgaagtga acgtggacga tcagggcatc 120 atccgcaatg ccgtctcgac ggggacgatg tggcgcgggc tcgaggtcat cctcaagggc 180 cgcgacccac gcgacgcctg ggccttcacc gagcggatct gcggggtctg caccggcacc 240 catgcgctca cctccgtccg cgccgtcgag gatgcgctgg ggatctcgat ccccgacaat 300 gcgaactcga tccgcaacat gatgcagctg aacctgcaga tccacgacca catcgtccat 360 ttctaccatc tgcacgcgct ggactgggtg aacccggtca atgcgctgcg cgccgatccg 420 aaggccacgt ccgagctgca gcagaaggtc tcgccttcgc acccgctctc gtcgccgggc 480 tatttccgcg acgtgcagaa ccggctgaag aagttcgtgg aatcggggca gctgggcctg 540 ttcaagaacg gctactggga caatccggcc tatctgctgc cgcccgaggc ggacctgatg 600 gccaccaccc actatctcga ggcgctcgac ctgcagaagg agatcgtgaa ggtccacacg 660 atcttcggcg gcaagaaccc gcatccgaac tggctggtgg ggggcgtgcc ctgcccgatc 720 aacatcgacg gcgtgggcgc ggtcggcgcg atcaacatgg agcggctgaa tctcgtctcc 780 tcgatcatcg accagtgcat ccagttcacc aacaacgtct atctgcccga cgtggtggcc 840 atcggcggct tctaccgcaa ctggctctat ggcggcgggc tctcgtcgaa gtcggtgatg 900 gcctatggcg acatccccga gcatccgaac gatttctcgc ccgaacagct ccatctgccg 960 cggggcgcga tcatcaacgg caatctcgag gaagtgcatg acgtcgaccc gcgcgacccc 1020 gagcaggtgc aggaattcgt cgatcactcc tggtatgcct atggcgagcc ggggcgcggg 1080 ctgcacccct gggacggcgt gaccgagccg cgctacgaac tcggccccaa tgccaagggc 1140 acgcggacga acatcctcga gctcgacgag gcggcgaaat attcctggat caaggcgccg 1200 cgctggaagg gtcacgcgat ggaggtgggc ccgctcgccc gctacatcgt gggctatgcc 1260 aagggccacg aggacatcaa gaaccaggtc gagggtctct tgcgcaccat ggacctgccg 1320 gtctcggcac tgttctcgac gctgggccgc acggccgccc gcgcgctcga ggcggaatat 1380 tgctgccgcc tgcagaagca cttcttcgac aagctcatca ccaacgtgaa gaacggcgac 1440 agcagcaccg ccaatgtcga gaagtgggag ccgcgcacct ggccgaagga ggccaagggc 1500 gtcggcatga ccgaggcccc gcgcggcgcg ctcggccact ggatccgcat caaggatggc 1560 cggatcgaga actaccagtg cgtggtgccc accacctgga acggcagccc gcgcgacgcg 1620 gccggcaaca tcggcgcctt cgaggcgagc ctgctcgaca ccaagatgga gcgccccgag 1680 gagccggtcg agatcctgcg caccctgcac tcgttcgacc cctgcctcgc ctgctccacc 1740 catgtcctgt cgccggacgg ccaggaactc accaccgtca aggtccgc 1788 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 acccatatgc cccagatcga aaccttc 27 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tgtgctagcg gcctccgtct tttcgtc 27 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 acagctagca tggtcgcgac accgaac 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgtaagcttg cggaccttga cggtggtga 29 <210> 7 <211> 1521 <212> DNA <213> Rhodobacter sphaeroides <400> 7 atgccgcagt cggccgaaaa ggttctggat cacaaggatc tgttcaagga acccgaatat 60 caggcgatgc tcgagaagaa gcgcgccacc tacgagaatg cgacgcccgc cgagacggtg 120 gccgaaaccg cggactggac gaagtcctgg gactatcgcg agaagaacct cgcccgctcc 180 tgcgtgacca tcaacccggc caaggcctgc cagccgctcg gcgcggtctt cgccgccgcc 240 ggctatgaca gcaccatgag cttcgtgcac ggctcgcagg gctgcgtggc ctactatcgc 300 tcgcacctcg cccgccactt caaggagccg tcctcggcgg tgtcctcctc gatgaccgag 360 gatgcggcgg tgttcggcgg cctgaacaac atggtggaag gcctcgccaa cacctatgcg 420 ctctattcgc cgaagatgat cgccgtttcc accacctgca tggcggaagt catcggcgac 480 gacctcaact cgttcatcat caagtcgaag gagaaggaaa gcgtcccggc cgattttccg 540 gtgcccttcg cccatacgcc ggccttcgtg ggcagccacg tcgacggcta cgacaacatg 600 cagaagggca tcctgtcgaa cttctggaag gacgcgccgc gcaccgcggg cgaaggcctg 660 aacatcatcc cgggctttga cggctactgc gtgggcaacg tccgcgagat gaagcgcatg 720 ctcggcctga tgggcgtcga ggcgaccgtt ctgggcgatg cctcggacgt ctacgacacc 780 ccctcggacg gcgagtaccg catgtatgcg ggcggcacca cgcaggagga gatcaaggag 840 gccctgaacg cgaaggccac cctctcgctg caggaatatt gcacccgcag gacgctcgcc 900 ttctgcgagg aagtgggcca ggagaccgcg tcgttccact atccgatggg cgtcaaggcc 960 accgacgagt tcctgatgaa ggtctcggac ctgaccggca aggagatccc ggaagcgctc 1020 cgcctcgagc gcggccgcct gatcgacgcc atggccgaca gccaggccta cctgcacggc 1080 aagacctacg ccatcttcgg cgacccggac ttcgtctatg ccatggcccg cttcgtcatg 1140 gagatgggcg gcgagccgaa gcactgcctc gccaccaacg gcggcaagga ctgggaagtg 1200 cagatgaagg agctgctggc ctcctcgccc ttcggcgaag gctgccaggt ctgggcgggc 1260 aaggacctct ggcacctgcg ctcgatcctc gccacggaac cggcggacct gctgatcggc 1320 agcagctatg gcaagtatct cgagcgcgac tgcaacgtgc cgctgatccg cctgaccttc 1380 ccgatcttcg accgccacca ccaccaccgc ttcccgacct tcggctatca gggcgcgatc 1440 caggtgctgg tgaagatcct cgacaagatc ttcgacaagc tcgacgacga gtccgacatc 1500 tcgttcgacc tgacccgctg a 1521 <210> 8 <211> 2543 <212> DNA <213> Rhodobacter sphaeroides <400> 8 atgggaaaac tccggcagat cgctttctac ggcaagggcg ggatcggcaa gtcgacgacc 60 tcgcagaaca ccctcgcggc actggtcgag atgggtcaga agatcctcat cgtcggctgc 120 gatcccaagg ccgactcgac ccgcctgatc ctgaacacca agctgcagga caccgtgctt 180 cacctcgccg ccgaagcggg ctccgtcgag gatctcgaac tcgaggatgt ggtcaagatc 240 ggctacaagg gcatcaaatg caccgaagcc ggcgggccgg agccgggcgt gggctgcgcg 300 ggccgcggcg tcatcaccgc catcaacttc ctggaagaga acggcgccta tgacgacgtc 360 gactacgtct cctacgacgt gctgggcgac gtggtctgcg gcggcttcgc catgccgatc 420 cgcgagaaca aggcgcagga aatctacatc gtcatgtcgg gcgagatgat ggcgctctat 480 gcggccaaca acatcgccaa gggcatcctg aaatacgcga actcgggcgg cgtgcgcctc 540 ggcggcctga tctgcaacga gcgcaagacc gaccgcgagc tggaactggc cgaggccctc 600 gccgcgcgtc tgggctgcaa gatgatccac ttcgttccgc gcgacaatat cgtgcagcac 660 gccgagctcc gccgcgagac ggtcatccag tatgcgcccg agagcaagca ggcgcaggaa 720 tatcgcgaac tggcccgcaa gatccacgag aactcgggca agggcgtgat cccgaccccg 780 atcaccatgg aagagctgga agagatgctg atggatttcg gcatcatgca gtccgaggaa 840 gaccggctcg ccgccatcgc cgccgccgag gcctgatccg agcgggggcc gggcgccgcc 900 cggtcccttt ccctccctgc cgaatggagc ccgccccatg gcgaaagata tcgctgactc 960 tgccgagacc aacatgaagc tgatcgagga ggtgctggcc gcctaccccg acaaggccag 1020 gaagaagcgc gccaagcacc tgaatgtcgc agcgcccgtc gccgaggccg aacccggcct 1080 ccagtcgaaa tgcgacaatg tgaaatcgaa catcaagtcg gtccccggcg tgatgaccat 1140 ccgcggctgc gcctatgccg gctcgaaggg cgtggtctgg ggcccggtca aggacatgct 1200 gcacatcagc cacggcccgg tcggctgcgg ccactacagc tggtcccagc gccgcaacta 1260 ctacaccggc acgacgggcg tggattcgtt cgtgaccatg caggtcacca ccgacttcca 1320 ggaaaacgac atcgtcttcg gcggtgacaa gaagctggaa aagaccatcg acgagctgaa 1380 catgctcttc ccgctgaaca aggggatctc gatccagtcg gaatgcccga tcggcctgat 1440 cggcgacgac atcgaggcgg tgtcgaagaa gaaggccaag gacatcggca agcgcgtcgt 1500 tccggtgcgc tgcgagggct tccgcggcgt gtcgcagtcg ctcggccacc atatcgcgaa 1560 cgacatgatc cgcgactggg tgctggaagc gggcgagggc gcgcgcgcgg gctacgagcc 1620 cggcccctat gacgtgaaca tcatcggcga ctacaacatc ggcggcgacg cctggtcgag 1680 ccggatcctg ctggaagaga tcggcctcaa cgtcatcgcg caatggtcgg gcgacgccac 1740 catcgccgag atggagcgcg ctccggcggc gaagctgaac ctcatccact gctaccgttc 1800 gatgagctac atctgccggc acatggaaga gaaccacggc gtgccgtgga tggagtacaa 1860 cttcttcggc ccctcgcaga tcgcggcctc gctgcgcgcc atcgccgcga agttcgacga 1920 caggatccag gccaatgccg aagcggtcat cgcgaaatac cagccgctcg tcgatgcggt 1980 gaacgcgaaa tacaagccgc gcctcgaagg caagaaggtg atgctctatg tgggcggcct 2040 gcgtccgcgc cacgtcgtcg acgcctacca tgacctgggc atggagatcg tgggcaccgg 2100 ctacgaattc gcccacaacg acgactacaa gcgcaccggc cattacatca aggaaggcac 2160 gctgatcttc gacgacgtct cgggctacga gctggagaaa ttcgtcgagg cgatccgtcc 2220 cgatctcgtg ggctcgggca tcaaggagaa atacaacacg cagaagatgg gcatcccgtt 2280 ccgtcagatg cactcctggg attattccgg cccctaccac ggctacgacg gctacgcgat 2340 cttcgcgcgc gacatggatc tcgcgatcaa caaccccgtc tggggcatgt tcgatgcgcc 2400 ctggaagaag acggcctgag gccagcccca aggggggcct gctcccgccc cccgaccctc 2460 ccctccaccc atgcaaggtg cgtcccggaa tgaggacggc cagcagaagg atcatgctca 2520 tgccgcagtc ggccgaaaag gtt 2543 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atagctagca tgccgcagtc ggc 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 actaagcttt cagcgggtca ggt 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ttccatatgg gaaaactccg gca 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 taagctagca accttttcgg ccg 23 <110> INDUSTRIAL COOPERATION FOUNDATION CHONBUK NATIONAL UNIVERSITY <120> Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same <160> 12 <170> KopatentIn 1.71 <210> 1 <211> 1107 <212> DNA <213> Rhodobacter sphaeroides <400> 1 atgccccaga tcgaaacctt ctacgatgtg atgcgccgcc aggggatcac ccggcgcagc 60 ttcatgaaat actgctcgct cacggcggcg gcgctggggc tcggcccctc cttcgtgccg 120 aagatcgcgc acgcgatgga gacgaagccg cgcacaccgg tgatctgggt ccatgggctc 180 gaatgcacct gctgctcgga gagcttcatc cgcgcggccc atccgctggc caaggacgtc 240 gtcctgtcga tgatctcgct cgactatgac gacacgctga tggcggcggc gggccatcag 300 gccgaagccg cgctgatgga cacgatcgag aaatacaagg gcaactacat ccttgccgtc 360 gagggcaacc cgccgctgaa cgaggacggg atgtattgca tcatcggcgg caagcccttc 420 gtcgagcagc tgaagatggc ggccgaacat gccaaggcga tcatcagctg gggggcctgc 480 gcctcctacg gctgcgtgca ggcggccgcc cccaacccca cgcgggccac gcccgtgcac 540 aaggtcatcc tcgacaagcc gatcgtcaag gtgccgggct gcccgcccat cgccgaagtc 600 atgaccggcg tcatcaccta catgctgacc ttcgaccggc tgcccgagct cgaccgtcag 660 ggccgcccgg cgatgttcta cagccagcgc atccacgaca aatgctaccg ccgcccgcat 720 ttcgacgcgg gccagttcgt cgaggcctgg gacgacgact acgccaagaa gggctactgc 780 ctctacaaga tgggctgcaa ggggccgacc acctacaacg cctgctcgac cgtgcgctgg 840 aacgagggcg tgagcttccc gatccagtcc ggccacggct gcatcggctg ctcggaggac 900 ggcttctggg atcagggatc cttctacgac cggctgacca ccatcaagca gttcggcgtc 960 gaggccaatg ccgacacgat cggcctcacg gccgtgggcg cgctcggcgc gggcgtggcg 1020 gcccatatcg cggccaccgc cctcaagagc gcgcagaaga aatcgcaggc ggccaatacc 1080 gcgaagacag acgaaaagac ggaggcc 1107 <210> 2 <211> 1788 <212> DNA <213> Rhodobacter sphaeroides <400> 2 atggtcgcga caccgaacgg tttcaacctg gacaacaccg gccgccgtat cgtggtggac 60 ccggtgaccc gcatcgaggg tcacatgcgc tgcgaagtga acgtggacga tcagggcatc 120 atccgcaatg ccgtctcgac ggggacgatg tggcgcgggc tcgaggtcat cctcaagggc 180 cgcgacccac gcgacgcctg ggccttcacc gagcggatct gcggggtctg caccggcacc 240 catgcgctca cctccgtccg cgccgtcgag gatgcgctgg ggatctcgat ccccgacaat 300 gcgaactcga tccgcaacat gatgcagctg aacctgcaga tccacgacca catcgtccat 360 ttctaccatc tgcacgcgct ggactgggtg aacccggtca atgcgctgcg cgccgatccg 420 aaggccacgt ccgagctgca gcagaaggtc tcgccttcgc acccgctctc gtcgccgggc 480 tatttccgcg acgtgcagaa ccggctgaag aagttcgtgg aatcggggca gctgggcctg 540 ttcaagaacg gctactggga caatccggcc tatctgctgc cgcccgaggc ggacctgatg 600 gccaccaccc actatctcga ggcgctcgac ctgcagaagg agatcgtgaa ggtccacacg 660 atcttcggcg gcaagaaccc gcatccgaac tggctggtgg ggggcgtgcc ctgcccgatc 720 aacatcgacg gcgtgggcgc ggtcggcgcg atcaacatgg agcggctgaa tctcgtctcc 780 tcgatcatcg accagtgcat ccagttcacc aacaacgtct atctgcccga cgtggtggcc 840 atcggcggct tctaccgcaa ctggctctat ggcggcgggc tctcgtcgaa gtcggtgatg 900 gcctatggcg acatccccga gcatccgaac gatttctcgc ccgaacagct ccatctgccg 960 cggggcgcga tcatcaacgg caatctcgag gaagtgcatg acgtcgaccc gcgcgacccc 1020 gagcaggtgc aggaattcgt cgatcactcc tggtatgcct atggcgagcc ggggcgcggg 1080 ctgcacccct gggacggcgt gaccgagccg cgctacgaac tcggccccaa tgccaagggc 1140 acgcggacga acatcctcga gctcgacgag gcggcgaaat attcctggat caaggcgccg 1200 cgctggaagg gtcacgcgat ggaggtgggc ccgctcgccc gctacatcgt gggctatgcc 1260 aagggccacg aggacatcaa gaaccaggtc gagggtctct tgcgcaccat ggacctgccg 1320 gtctcggcac tgttctcgac gctgggccgc acggccgccc gcgcgctcga ggcggaatat 1380 tgctgccgcc tgcagaagca cttcttcgac aagctcatca ccaacgtgaa gaacggcgac 1440 agcagcaccg ccaatgtcga gaagtgggag ccgcgcacct ggccgaagga ggccaagggc 1500 gtcggcatga ccgaggcccc gcgcggcgcg ctcggccact ggatccgcat caaggatggc 1560 cggatcgaga actaccagtg cgtggtgccc accacctgga acggcagccc gcgcgacgcg 1620 gccggcaaca tcggcgcctt cgaggcgagc ctgctcgaca ccaagatgga gcgccccgag 1680 gagccggtcg agatcctgcg caccctgcac tcgttcgacc cctgcctcgc ctgctccacc 1740 catgtcctgt cgccggacgg ccaggaactc accaccgtca aggtccgc 1788 <210> 3 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 acccatatgc cccagatcga aaccttc 27 <210> 4 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tgtgctagcg gcctccgtct tttcgtc 27 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 acagctagca tggtcgcgac accgaac 27 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgtaagcttg cggaccttga cggtggtga 29 <210> 7 <211> 1521 <212> DNA <213> Rhodobacter sphaeroides <400> 7 atgccgcagt cggccgaaaa ggttctggat cacaaggatc tgttcaagga acccgaatat 60 caggcgatgc tcgagaagaa gcgcgccacc tacgagaatg cgacgcccgc cgagacggtg 120 gccgaaaccg cggactggac gaagtcctgg gactatcgcg agaagaacct cgcccgctcc 180 tgcgtgacca tcaacccggc caaggcctgc cagccgctcg gcgcggtctt cgccgccgcc 240 ggctatgaca gcaccatgag cttcgtgcac ggctcgcagg gctgcgtggc ctactatcgc 300 tcgcacctcg cccgccactt caaggagccg tcctcggcgg tgtcctcctc gatgaccgag 360 gatgcggcgg tgttcggcgg cctgaacaac atggtggaag gcctcgccaa cacctatgcg 420 ctctattcgc cgaagatgat cgccgtttcc accacctgca tggcggaagt catcggcgac 480 gacctcaact cgttcatcat caagtcgaag gagaaggaaa gcgtcccggc cgattttccg 540 gtgcccttcg cccatacgcc ggccttcgtg ggcagccacg tcgacggcta cgacaacatg 600 cagaagggca tcctgtcgaa cttctggaag gacgcgccgc gcaccgcggg cgaaggcctg 660 aacatcatcc cgggctttga cggctactgc gtgggcaacg tccgcgagat gaagcgcatg 720 ctcggcctga tgggcgtcga ggcgaccgtt ctgggcgatg cctcggacgt ctacgacacc 780 ccctcggacg gcgagtaccg catgtatgcg ggcggcacca cgcaggagga gatcaaggag 840 gccctgaacg cgaaggccac cctctcgctg caggaatatt gcacccgcag gacgctcgcc 900 ttctgcgagg aagtgggcca ggagaccgcg tcgttccact atccgatggg cgtcaaggcc 960 accgacgagt tcctgatgaa ggtctcggac ctgaccggca aggagatccc ggaagcgctc 1020 cgcctcgagc gcggccgcct gatcgacgcc atggccgaca gccaggccta cctgcacggc 1080 aagacctacg ccatcttcgg cgacccggac ttcgtctatg ccatggcccg cttcgtcatg 1140 gagatgggcg gcgagccgaa gcactgcctc gccaccaacg gcggcaagga ctgggaagtg 1200 cagatgaagg agctgctggc ctcctcgccc ttcggcgaag gctgccaggt ctgggcgggc 1260 aaggacctct ggcacctgcg ctcgatcctc gccacggaac cggcggacct gctgatcggc 1320 agcagctatg gcaagtatct cgagcgcgac tgcaacgtgc cgctgatccg cctgaccttc 1380 ccgatcttcg accgccacca ccaccaccgc ttcccgacct tcggctatca gggcgcgatc 1440 caggtgctgg tgaagatcct cgacaagatc ttcgacaagc tcgacgacga gtccgacatc 1500 tcgttcgacc tgacccgctg a 1521 <210> 8 <211> 2543 <212> DNA <213> Rhodobacter sphaeroides <400> 8 atgggaaaac tccggcagat cgctttctac ggcaagggcg ggatcggcaa gtcgacgacc 60 tcgcagaaca ccctcgcggc actggtcgag atgggtcaga agatcctcat cgtcggctgc 120 gatcccaagg ccgactcgac ccgcctgatc ctgaacacca agctgcagga caccgtgctt 180 cacctcgccg ccgaagcggg ctccgtcgag gatctcgaac tcgaggatgt ggtcaagatc 240 ggctacaagg gcatcaaatg caccgaagcc ggcgggccgg agccgggcgt gggctgcgcg 300 ggccgcggcg tcatcaccgc catcaacttc ctggaagaga acggcgccta tgacgacgtc 360 gactacgtct cctacgacgt gctgggcgac gtggtctgcg gcggcttcgc catgccgatc 420 cgcgagaaca aggcgcagga aatctacatc gtcatgtcgg gcgagatgat ggcgctctat 480 gcggccaaca acatcgccaa gggcatcctg aaatacgcga actcgggcgg cgtgcgcctc 540 ggcggcctga tctgcaacga gcgcaagacc gaccgcgagc tggaactggc cgaggccctc 600 gccgcgcgtc tgggctgcaa gatgatccac ttcgttccgc gcgacaatat cgtgcagcac 660 gccgagctcc gccgcgagac ggtcatccag tatgcgcccg agagcaagca ggcgcaggaa 720 tatcgcgaac tggcccgcaa gatccacgag aactcgggca agggcgtgat cccgaccccg 780 atcaccatgg aagagctgga agagatgctg atggatttcg gcatcatgca gtccgaggaa 840 gaccggctcg ccgccatcgc cgccgccgag gcctgatccg agcgggggcc gggcgccgcc 900 cggtcccttt ccctccctgc cgaatggagc ccgccccatg gcgaaagata tcgctgactc 960 tgccgagacc aacatgaagc tgatcgagga ggtgctggcc gcctaccccg acaaggccag 1020 gaagaagcgc gccaagcacc tgaatgtcgc agcgcccgtc gccgaggccg aacccggcct 1080 ccagtcgaaa tgcgacaatg tgaaatcgaa catcaagtcg gtccccggcg tgatgaccat 1140 ccgcggctgc gcctatgccg gctcgaaggg cgtggtctgg ggcccggtca aggacatgct 1200 gcacatcagc cacggcccgg tcggctgcgg ccactacagc tggtcccagc gccgcaacta 1260 ctacaccggc acgacgggcg tggattcgtt cgtgaccatg caggtcacca ccgacttcca 1320 ggaaaacgac atcgtcttcg gcggtgacaa gaagctggaa aagaccatcg acgagctgaa 1380 catgctcttc ccgctgaaca aggggatctc gatccagtcg gaatgcccga tcggcctgat 1440 cggcgacgac atcgaggcgg tgtcgaagaa gaaggccaag gacatcggca agcgcgtcgt 1500 tccggtgcgc tgcgagggct tccgcggcgt gtcgcagtcg ctcggccacc atatcgcgaa 1560 cgacatgatc cgcgactggg tgctggaagc gggcgagggc gcgcgcgcgg gctacgagcc 1620 cggcccctat gacgtgaaca tcatcggcga ctacaacatc ggcggcgacg cctggtcgag 1680 ccggatcctg ctggaagaga tcggcctcaa cgtcatcgcg caatggtcgg gcgacgccac 1740 catcgccgag atggagcgcg ctccggcggc gaagctgaac ctcatccact gctaccgttc 1800 gatgagctac atctgccggc acatggaaga gaaccacggc gtgccgtgga tggagtacaa 1860 cttcttcggc ccctcgcaga tcgcggcctc gctgcgcgcc atcgccgcga agttcgacga 1920 caggatccag gccaatgccg aagcggtcat cgcgaaatac cagccgctcg tcgatgcggt 1980 gaacgcgaaa tacaagccgc gcctcgaagg caagaaggtg atgctctatg tgggcggcct 2040 gcgtccgcgc cacgtcgtcg acgcctacca tgacctgggc atggagatcg tgggcaccgg 2100 ctacgaattc gcccacaacg acgactacaa gcgcaccggc cattacatca aggaaggcac 2160 gctgatcttc gacgacgtct cgggctacga gctggagaaa ttcgtcgagg cgatccgtcc 2220 cgatctcgtg ggctcgggca tcaaggagaa atacaacacg cagaagatgg gcatcccgtt 2280 ccgtcagatg cactcctggg attattccgg cccctaccac ggctacgacg gctacgcgat 2340 cttcgcgcgc gacatggatc tcgcgatcaa caaccccgtc tggggcatgt tcgatgcgcc 2400 ctggaagaag acggcctgag gccagcccca aggggggcct gctcccgccc cccgaccctc 2460 ccctccaccc atgcaaggtg cgtcccggaa tgaggacggc cagcagaagg atcatgctca 2520 tgccgcagtc ggccgaaaag gtt 2543 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 atagctagca tgccgcagtc ggc 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 actaagcttt cagcgggtca ggt 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ttccatatgg gaaaactccg gca 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 taagctagca accttttcgg ccg 23
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090069770A KR101132839B1 (en) | 2009-07-30 | 2009-07-30 | Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090069770A KR101132839B1 (en) | 2009-07-30 | 2009-07-30 | Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110012170A true KR20110012170A (en) | 2011-02-09 |
KR101132839B1 KR101132839B1 (en) | 2012-04-02 |
Family
ID=43772132
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090069770A KR101132839B1 (en) | 2009-07-30 | 2009-07-30 | Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101132839B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101230796B1 (en) * | 2010-08-23 | 2013-02-06 | 전북대학교산학협력단 | Rhodobacter sphaeroides Mutant Strain |
KR101322973B1 (en) * | 2011-10-24 | 2013-10-29 | 전북대학교산학협력단 | Medium Composition for Accelerating Growth Including Extracts of Mutant typed Rhodobacter sphaeroids and the Manufacturing Method |
EP2925870A4 (en) * | 2012-12-03 | 2016-07-13 | Adi Zaltsman | Plant self nitrogen fixation by mimicking prokaryotic pathways |
WO2023181068A1 (en) * | 2022-03-20 | 2023-09-28 | Fertis India Pvt. Ltd. | Genetic modification of nitrogen fixing microbes for production of nitrogen containing compounds |
WO2023181067A1 (en) * | 2022-03-20 | 2023-09-28 | Fertis India Pvt. Ltd. | A process for improving biological nitrogen fixation by microbes beneficial to crops |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI981224A1 (en) | 1998-06-03 | 1999-12-03 | Res Inst Of Innovative Te Chno | RHODOBACTER SPHAEROIDES RV MUTANT AND ITS USE IN HYDROGEN PRODUCTION |
US20030162273A1 (en) | 2002-02-04 | 2003-08-28 | Anastasios Melis | Modulation of sulfate permease for photosynthetic hydrogen production |
-
2009
- 2009-07-30 KR KR1020090069770A patent/KR101132839B1/en not_active IP Right Cessation
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101230796B1 (en) * | 2010-08-23 | 2013-02-06 | 전북대학교산학협력단 | Rhodobacter sphaeroides Mutant Strain |
KR101322973B1 (en) * | 2011-10-24 | 2013-10-29 | 전북대학교산학협력단 | Medium Composition for Accelerating Growth Including Extracts of Mutant typed Rhodobacter sphaeroids and the Manufacturing Method |
EP2925870A4 (en) * | 2012-12-03 | 2016-07-13 | Adi Zaltsman | Plant self nitrogen fixation by mimicking prokaryotic pathways |
WO2023181068A1 (en) * | 2022-03-20 | 2023-09-28 | Fertis India Pvt. Ltd. | Genetic modification of nitrogen fixing microbes for production of nitrogen containing compounds |
WO2023181067A1 (en) * | 2022-03-20 | 2023-09-28 | Fertis India Pvt. Ltd. | A process for improving biological nitrogen fixation by microbes beneficial to crops |
Also Published As
Publication number | Publication date |
---|---|
KR101132839B1 (en) | 2012-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kotay et al. | Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge | |
Rosa et al. | Biological hydrogen production from palm oil mill effluent (POME) by anaerobic consortia and Clostridium beijerinckii | |
Liu et al. | Recent advances in fermentative biohydrogen production | |
US20190271019A1 (en) | Carbohydrate-enriched recombinant microorganisms | |
KR101132839B1 (en) | Host cells transformed with hydrogenase or nitrogenase of Rhodobacter sphaeroide and method for preparing hydrogen using the same | |
CN107815446B (en) | A kind of fermentation process in high density of recombination nitrile hydratase Recombinant organism | |
Singh et al. | Dark fermentative biohydrogen production by mesophilic bacterial consortia isolated from riverbed sediments | |
Hu et al. | Efficient production of d-1, 2, 4-butanetriol from d-xylose by engineered Escherichia coli whole-cell biocatalysts | |
CN103865944A (en) | Escherichia coli for producing riboflavin and constructing method and use of Escherichia coli | |
Hniman et al. | Community analysis of thermophilic hydrogen-producing consortia enriched from Thailand hot spring with mixed xylose and glucose | |
CN102864116B (en) | Gene engineering bacterium for producing succinic acid and construction and application thereof | |
Subudhi et al. | Fermentative hydrogen production in recombinant Escherichia coli harboring a [FeFe]-hydrogenase gene isolated from Clostridium butyricum | |
US7816109B2 (en) | Microorganism having the improved gene for hydrogen-generating capability, and process for producing hydrogen using the same | |
CN104651388A (en) | Construction body for efficiently synthesizing ethylene, and construction method and application thereof | |
CN101633928B (en) | Recombinant expression of aldehyde reductase and application thereof in bioconversion of glycerol into 1,3-propylene glycol | |
CN113061563B (en) | Method for synthesizing L-malic acid by utilizing recombinant escherichia coli whole cell catalysis | |
CN103194419B (en) | Microorganism and uses thereof | |
CN114085820A (en) | Ketopantolactone reductase derived from Candida viswanathii | |
CN109929853B (en) | Application of thermophilic bacteria source heat shock protein gene | |
CN108728389A (en) | One plant of colibacillus engineering and its application for producing 2,3,5,6- Tetramethylpyrazines | |
Sekoai et al. | Elucidating the role of biofilm-forming microbial communities in fermentative biohydrogen process: An overview. Microorganisms. 2022 | |
KR20160138897A (en) | High growth Escherichia coli using glycerol as carbon source | |
CN107400673B (en) | Synechocystis PCC6803 mutant strain and application thereof | |
RU2375451C1 (en) | RECOMBINANT PLASMID DNA, CONTAINING GENES OF BUTANOL SYNTHESIS FROM Clostridium acetobutylicum (VERSIONS), RECOMBINANT STRAIN Lactobacillus brevis - PRODUCER OF N-BUTANOL (VERSIONS) AND METHOD FOR MICROBIOLOGICAL SYNTHESIS OF N-BUTANOL | |
KR101517976B1 (en) | Microorganism Producing Mixed Orginic Acids from Red Algae and Method for Preparing Mixed Orginic Acids Using the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160317 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |