KR20100137907A - Single nucleotide polymorphism marker for personal identification and its use - Google Patents

Single nucleotide polymorphism marker for personal identification and its use Download PDF

Info

Publication number
KR20100137907A
KR20100137907A KR1020090056168A KR20090056168A KR20100137907A KR 20100137907 A KR20100137907 A KR 20100137907A KR 1020090056168 A KR1020090056168 A KR 1020090056168A KR 20090056168 A KR20090056168 A KR 20090056168A KR 20100137907 A KR20100137907 A KR 20100137907A
Authority
KR
South Korea
Prior art keywords
seq
polynucleotide
dna
snp
marker
Prior art date
Application number
KR1020090056168A
Other languages
Korean (ko)
Other versions
KR101174823B1 (en
Inventor
한면수
이종은
김종진
최동호
조은영
홍승범
유연경
김경숙
박민영
이지연
김숙
Original Assignee
대한민국(관리부서:행정안전부 국립과학수사연구원장)
주식회사디엔에이링크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(관리부서:행정안전부 국립과학수사연구원장), 주식회사디엔에이링크 filed Critical 대한민국(관리부서:행정안전부 국립과학수사연구원장)
Priority to KR1020090056168A priority Critical patent/KR101174823B1/en
Publication of KR20100137907A publication Critical patent/KR20100137907A/en
Application granted granted Critical
Publication of KR101174823B1 publication Critical patent/KR101174823B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A polynucleotide marker containing SNP associated to individual identification is provided. CONSTITUTION: A polynucleotide marker for identifying individual contains polynucleotide consisting of 10 serial nucleotides with 101th base having SNP in a polynucleotide selected from nucleotide sequences of sequence numbers 1-92 or complementary polynucleotide thereof. Each individual is Korean, Japanese in Tokyo, Chinese in Beijing or Utah inhabitant derived from ancestor of North Europe and West Europe. A microarray for identifying individual contains the polynucleotide marker.

Description

개인식별용 단일염기다형성 마커 및 그의 용도{Single nucleotide polymorphism marker for personal identification and its use} Single nucleotide polymorphism marker for personal identification and its use}

본 발명은 개인식별용 단일염기다형성(single nucleotide polymorphism: SNP) 마커 및 그의 용도에 관한 것이다. The present invention relates to a single nucleotide polymorphism (SNP) marker for personal identification and its use.

지난 10여년간 유전자감식기술의 발달과 지속적인 표준설정을 통해 정립된 STR(short tandem repeat) 유전자마커 분석을 이용한 개인식별법이 현재 다수 국가에서 대용량 데이터베이스 업무에 적용되고 있다. 그러나, 높은 식별력과 뛰어난 분석능력에도 불구하고 상대적으로 높은 돌연변이율(-10-3)로 인해 가족관계 확인시 오판 가능성이 존재하며, 특히 미아찾기사업 등 대용량 데이터베이스 검색시 편부/편모 등의 이유로 실종자의 가족 수가 제한되어 있는 경우 충분한 변별력을 보이지 못하는 문제가 확인되고 있다. Personal identification using short tandem repeat (STR) gene marker analysis, which has been established over the last decade through the development of gene recognition techniques and continued standardization, is now being applied to large database operations in many countries. However, despite the high discrimination ability and superior analysis ability, there is a possibility of misjudgment when checking family relations due to the relatively high mutation rate (-10 -3 ), especially when searching for large databases such as MIA business. Problems have been identified that do not show enough discrimination if family numbers are limited.

따라서, STR 마커를 이용한 개인식별법의 변별력을 제고하고 돌연변이에 따른 결과를 보정하기 위해 보다 안정적인 SNP(single nucleotide polymorphism) 마커(돌연변이율 ~10-6)를 이용한 상보적 검사체계의 필요성이 대두되어 현재 많은 연 구 개발이 진행되고 있다.Therefore, the need for complementary testing system using more stable single nucleotide polymorphism (SNP) markers (mutation rate ~ 10 -6 ) has been raised to enhance the discrimination of personal identification using STR markers and to correct the result of mutation. Research development is underway.

Krawczak(Electrophoresis. 1999 Jun;20(8):1676-81)는 하나의 STR 마커의 부권배제력(paternity exclusion power)은 대립인자 발현빈도 0.5의 SNP 4.2개와 유사하다고 보고하였으며 Gill 등(Int. J. Legal Med. 114(2001) 204-210)은 0.2 내지 0.8의 대립인자 발현빈도를 갖는 SNP 50개의 부권배제력은 0.999로 12개의 STR과 유사한 예측력을 나타내는 것으로 보고했다.Krawczak (Electrophoresis. 1999 Jun; 20 (8): 1676-81) reported that the paternity exclusion power of one STR marker was similar to 4.2 SNPs with an allele expression frequency of 0.5. Legal Med. 114 (2001) 204-210) reported that the negative exclusion power of 50 SNPs with an allelic expression frequency of 0.2 to 0.8 was 0.999, indicating a predictive power similar to 12 STRs.

또한 Ayres 등(Forensic Sci. Int. 154 (2005) 167-172)은 3인 가족의 친자지수(paternity index)을 확인하기 위해서는 대립인자 발현빈도 0.3 내지 0.7의 SNP 마커가 50-60개가 필요하고 편모/편부 가계의 경우에는 70-80개의 SNP 마커가 필요하다고 제시하였다.In addition, Ayres et al. (Forensic Sci. Int. 154 (2005) 167-172) require 50-60 SNP markers with allele expression frequencies of 0.3 to 0.7 to determine the paternity index of a three-member family. For single-family households, 70-80 SNP markers were required.

최근에는 이형접합성(heterozygosity)이 높고(>0.45) 많은 인종에서 유사한 발현빈도를 나타내는(Fst<0.01) 유니버설 SNP 패널 키트(universal SNP panel kit)의 개발이 높은 상업적 가능성 때문에 활발히 연구되고 있다. ABI사의 4개 인종에 대한 TaqMan probe DB(90483개 SNP)를 이용하여 40개 개체군에서 비슷한 발현빈도를 보이는 40개 SNP 패널(panel)이 개발되었다. 그러나, 상기 SNP 패널은 유전자 지역(genetic locus)에 분포한 SNP들을 다수 포함하며 광범위한 SNP 탐색이 행해지지 못한 제한점이 있다.Recently, the development of universal SNP panel kits with high heterozygosity (> 0.45) and similar frequency of expression in many races (Fst <0.01) has been actively studied due to the high commercial potential. A panel of 40 SNPs with similar expression frequency in 40 populations was developed using TaqMan probe DB (90483 SNPs) for four races of ABI. However, the SNP panel includes a large number of SNPs distributed in the genetic locus and has a limitation that extensive SNP search cannot be performed.

Vallone 등(Forensic Sci Int. 2005 May 10;149(2-3):279-86)은 코카서스인, 아프리카계 미국인, 라틴 아메리카인을 대상으로 70개의 SNP 마커에 대한 분석을 통해 최종 12개의 신원확인용 SNP 마커를 선정하였으나 SNP를 이용한 개인식별시 35개 이상의 SNP 마커의 선별이 식별력을 높일수 있다는 제안이 있다.Vallone et al. (Forensic Sci Int. 2005 May 10; 149 (2-3): 279-86) confirmed the final 12 identifications by analyzing 70 SNP markers in Caucasian, African-American and Latin Americans. Although SNP markers have been selected for use, there is a suggestion that screening more than 35 SNP markers can enhance discrimination in personal identification using SNPs.

독일 등 유럽 5개국의 SNPforID 프로젝트 수행에서 얻어진 결과로 개인식별용 SNP 마커 52개에 대한 인종별 빈도 정보가 SNPforID DB에 공개되었다. 그러나, 서구인을 위주로 마커가 선정되어 약 30%의 SNP은 Hapmap Asian 인종에서 MAF(Minor Allele Frequency)가 20% 미만으로 상대적으로 식별력이 낮은 SNP가 포함되어 있다. 따라서, 상기 SNP 마커를 한국인에 적용하는 것은 제한이 있다. As a result of the SNPforID project in five European countries, including Germany, racial frequency information for 52 individual SNP markers has been published in the SNPforID DB. However, markers were selected mainly for Westerners, and about 30% of SNPs contained SNPs with relatively low discrimination with a minor allele frequency (MAF) of less than 20% in the Hapmap Asian race. Therefore, there is a limitation in applying the SNP marker to Koreans.

유효한 SNP 마커의 선정을 위해서는 대규모 SNP 데이터를 통한 광범위한 선별과정이 필요하며 특히, 높은 식별력으로 한국인을 구별할 수 있는 SNP 마커를 개발하는 것이 요구된다. 이에, 본 발명자들은 Affymetrix 500K를 이용하여 한국인의 전체 게놈을 분석하여 500,000개 SNP의 발현빈도를 규명하고 HapMap 4개 인종 및 한국인 집단에서 신원확인을 위해 적용하기에 적합한 개인식별용 SNP 마커를 개발하였다.Selecting valid SNP markers requires extensive screening through large-scale SNP data, and in particular, developing SNP markers that can distinguish Koreans with high discrimination power. Therefore, the present inventors analyzed the entire genome of Koreans using Affymetrix 500K to identify the frequency of expression of 500,000 SNPs and developed a personal identification SNP marker suitable for application in identification in 4 HapMap races and Korean populations. .

본 발명의 목적은 개인식별과 관련된 단일염기다형성(SNP)을 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드를 제공하는 것이다. It is an object of the present invention to provide polynucleotides or their complementary polynucleotides comprising a single nucleotide polymorphism (SNP) associated with personal identification.

본 발명의 또 다른 목적은 개인식별과 관련된 단일염기다형성을 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드로 구성된 개인식별을 위한 증폭용 프라이머 또는 개인식별용 프로브를 제공하는 것이다. It is still another object of the present invention to provide amplification primers or personal identification probes for personal identification consisting of polynucleotides or their complementary polynucleotides comprising a single base polymorphism related to personal identification.

본 발명의 또 다른 목적은 상기 프로브를 포함하는 개인식별용 조성물 또는 마이크로어레이를 제공하는 것이다. Still another object of the present invention is to provide a personal identification composition or microarray comprising the probe.

본 발명의 또 다른 목적은 개인식별과 관련된 단일염기다형성을 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드를 이용하여 개인을 식별하는 방법을 제공하는 것이다. It is still another object of the present invention to provide a method of identifying an individual using a polynucleotide comprising a single base polymorphism associated with personal identification or a complementary polynucleotide thereof.

상기와 같은 목적을 달성하기 위해, 본 발명은 서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP(단일염기다형성)가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커를 제공한다. In order to achieve the above object, the present invention provides a polynucleotide selected from the group consisting of nucleotide sequences of SEQ ID NOs: 1 to 92, or a complementary polynucleotide thereof, wherein the SNP (monobasic polymorphism) The present invention provides a personally identifiable polynucleotide marker consisting of a polynucleotide consisting of 10 or more contiguous nucleotides, including the 101 st base.

본 발명의 일 구체예에서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101 번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다.In one embodiment of the invention, the polynucleotide marker is a polynucleotide of SEQ ID NO: 1 to 45 and 48 to 90 or a polynucleotide consisting of 10 or more contiguous nucleotides including the SNP located in the 101th position in the complementary polynucleotide thereof May be a combination.

본 발명은 또한, 서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커를 포함하는, 개인식별용 조성물을 제공한다. The present invention also provides a polynucleotide selected from the group consisting of nucleotide sequences of SEQ ID NOs: 1 to 92, or a complementary polynucleotide thereof, wherein the SNP is present at the 101 st position of the polynucleotide, and includes 10 or more bases including the 101 st base. It provides a personal identification composition comprising a personal identification polynucleotide marker consisting of a polynucleotide consisting of consecutive nucleotides.

본 발명의 일 구체예에서, 상기 개인식별용 조성물은 개인식별용 폴리뉴클레오티드 마커로서 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합을 포함할 수 있다. In one embodiment of the present invention, the personally identifiable composition comprises at least 10 SNPs comprising the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or the complementary polynucleotides thereof at the 101st position as the personally identifiable polynucleotide markers. Combinations of polynucleotides consisting of contiguous nucleotides.

본 발명은 또한, 서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커를 포함하는, 부, 모 및 자로 구성된 3인 이상 가족의 친자 관계를 확인하기 위한 조성물을 제공한다. The present invention also provides a polynucleotide selected from the group consisting of nucleotide sequences of SEQ ID NOs: 1 to 92, or a complementary polynucleotide thereof, wherein the SNP is present at the 101 st position of the polynucleotide, and includes 10 or more bases including the 101 st base. Provided are compositions for identifying paternity of three or more families consisting of parents, parents and children, including a personally identifiable polynucleotide marker consisting of polynucleotides consisting of contiguous nucleotides.

본 발명의 일 구체예에서, 상기 친자 관계를 확인하기 위한 조성물은 개인식별용 폴리뉴클레오티드 마커로서 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10 개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합을 포함할 수 있다. In one embodiment of the present invention, the composition for identifying paternity comprises a polynucleotide marker of SEQ ID NOs: 1 to 45 and 48 to 90 or the SNP located at the 101st position in the complementary polynucleotide thereof as a personal identification polynucleotide marker. Combinations of polynucleotides consisting of ten or more contiguous nucleotides.

본 발명은 또한 서열번호 46, 47, 91 및 92로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 성별확인용 폴리뉴클레오티드 마커를 제공한다.The present invention also provides a polynucleotide selected from the group consisting of SEQ ID NOs: 46, 47, 91 and 92, or a complementary polynucleotide thereof, wherein the SNP is present at the 101 st position of the polynucleotide and includes at least 10 bases including the 101 st base. Provided is a gender-identified polynucleotide marker composed of polynucleotides consisting of contiguous nucleotides.

본 발명의 일 구체예에서, 상기 폴리뉴클레오티드 마커는 서열번호 46, 47, 91 및 92의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다.In one embodiment of the invention, the polynucleotide marker is a polynucleotide of SEQ ID NO: 46, 47, 91 and 92 or a polynucleotide consisting of 10 or more contiguous nucleotides including the SNP located in the 101 position in the complementary polynucleotide thereof May be a combination.

본 발명은 또한, 서열번호 46, 47, 91 및 92로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 성별확인용 폴리뉴클레오티드 마커를 포함하는, 성별확인용 조성물을 제공한다. The present invention also provides a polynucleotide selected from the group consisting of SEQ ID NOs: 46, 47, 91, and 92, or a complementary polynucleotide thereof, wherein the SNP is present at the 101 st position of the polynucleotide, and includes the 10 th base including the 101 st base. It provides a sex confirming composition comprising a sex confirming polynucleotide marker composed of a polynucleotide consisting of the above consecutive nucleotides.

본 발명의 일 구체예에서, 상기 성별확인용 조성물은 성별확인용 폴리뉴클레오티드 마커로서 서열번호 46, 47, 91 및 92의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합을 포함할 수 있다.In one embodiment of the present invention, the sex identification composition is a sex identification polynucleotide marker containing at least 10 polynucleotides of SEQ ID NOs: 46, 47, 91 and 92 or the SNP located in the 101th complementary polynucleotide thereof Combinations of polynucleotides consisting of contiguous nucleotides.

개인을 식별하기 위해 이용되는 단일염기다형성 마커의 유용성은 "개인식별지수" 또는 "짝확률(matching probability: PI)" 및 "부권배제력(power of exclusion)"에 의해 판단될 수 있다. The usefulness of monobasic polymorphic markers used to identify individuals can be determined by "personal identification index" or "matching probability (PI)" and "power of exclusion".

본 명세서에서 사용되는 "개인식별"은 DNA 프로파일링을 통해 동일인으로부터 유래되지 않은 시료를 개별적인 것으로 식별하는 것을 의미하며, 넓게는 친자 확인 및 성별 확인까지 포함한다. As used herein, "personal identification" refers to the identification of individual samples not derived from the same person through DNA profiling, broadly including paternity and gender identification.

본 발명의 일 구체예에서, 상기 개인은 한국인 또는 HapMap 4개 인종일 수 있다. HapMap 4개 인종(www.hapmap.org 참조)은 나이지리아 이바단의 요루바족(YRI), 일본 동경의 일본인(JPT), 중국 베이징의 한족(CHB), 북유럽 및 서유럽의 조상으로부터 유래된 유타 거주민(CEU)를 의미한다. In one embodiment of the invention, the individual may be Korean or HapMap four races. The four HapMap races (see www.hapmap.org) are Utah residents from the Yoruba (YRI) in Ibadan, Japan (JPT) in Tokyo, the Han Chinese (CHB) in Beijing, China, and the ancestors of Northern and Western Europe. (CEU).

"개인식별지수"는 개인식별용 마커로서의 유용성을 판단하는 기준 중 하나로서, 시료 DNA가 동일인으로부터 유래되어 DNA 프로파일이 일치할 확률 대 타인으로부터 유래되었으나 우연히 DNA 프로파일이 일치할 확률의 비를 의미한다. 개인식별지수는 단일 출처로부터의 DNA 분석에서는 짝확률의 역수이다. "Personal Identification Index" is one of the criteria for judging the usefulness as a marker for personal identification, and refers to the ratio of the probability that the DNA of the sample is derived from the same person and that the DNA profile is coincident, but that the DNA profile is coincidentally. . Personal identification is the inverse of the pair probability in DNA analysis from a single source.

"짝확률(matching probability: PI)"은 특정 유전자형이 임의의 집단에서 우연히 발견될 확률을 의미한다. 여러 마커들의 조합에 대해서는 누적 짝확률에 의해 개인식별용 마커로서의 유용성을 판단한다."Matching probability (PI)" refers to the probability that a particular genotype will be found by chance in any population. For a combination of several markers, its usefulness as a marker for personal identification is determined by cumulative pair probability.

본 명세서에서 사용되는 "부권배제력(Power of Exclusion: PE)"은 남자, 특히, 아버지의 친척을 생물학적 아버지(biological father)일 가능성에서 배제할 수 있는 능력을 의미한다. 부권배제력은 어머니와 자녀 모두의 유전자형(genetics) 및 어머니와 추정되는 아버지의 인종적 배경에 의존적이다. As used herein, "Power of Exclusion" (PE) means the ability to exclude relatives of men, especially fathers, from the possibility of being a biological father. Parental exclusion depends on the genetics of both mother and child and the ethnic background of the mother and father.

정확한 개인식별을 위해서는 개인식별지수가 높고, 즉, 짝확률이나 누적짝확률이 낮고, 부권배제력이 높은 마커가 요구된다. For accurate personal identification, markers with high personal identification indexes, ie, low probability of pairing or cumulative pairing, and high derogatory power are required.

본 발명의 일 구체예에 따른 개인식별을 위한 단일염기다형성 마커인 폴리뉴클레오티드는 하기의 표 1에 표시된 바와 같이, 0.345 내지 0.465의 짝확률을 가지며, 부권배제력(Power of Exclusion: PE)을 갖는다. 또한, 상기 서열번호 1 내지 45 및 48 내지 90의 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커의 누적짝확률은 3.61E-37로 현재 국립과학수사연구소에서 이용되고 있는 17개의 STR(short tandem repeat) 마커로 구성된 키트(4.9E-20)에 비해 낮다.Polynucleotide, which is a monobasic polymorphic marker for personal identification according to an embodiment of the present invention, has a pair probability of 0.345 to 0.465, and has a power of exclusion (PE), as shown in Table 1 below. . In addition, the cumulative pair probability of the personal identification polynucleotide marker consisting of 10 or more contiguous nucleotides including the SNPs located at the 101st positions of SEQ ID NOs: 1 to 45 and 48 to 90 is 3.61E-37. Lower than the kit (4.9E-20) consisting of 17 short tandem repeat (STR) markers being used.

본 발명에서 "폴리뉴클레오티드"는 DNA 또는 RNA일 수 있다. 상기 폴리뉴클레오티드는 또한, 단일가닥 또는 이중가닥 형태일 수 있다. 상기 폴리뉴클레오티드는 또한, 상보적 뉴클레오티드에 수소 결합에 의하여 혼성화될 수 있는 성질을 갖는 것이면, 천연 뉴클레오티드로 구성된 것뿐만 아니라, 천연 뉴클레오티드, 천연 뉴클레오티드의 유사체, 천연 뉴클레오티드의 당, 염기 또는 인산 부위가 변형되어 있는 뉴클레오티드 및 이들 조합으로 이루어진 군으로부터 선택되는 뉴클레오티드를 포함하는 것일 수 있다 (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584 (1990)). 또한, 상기 폴리뉴클레오티드는 PNA(peptide nucleic acid)를 포함할 수 있다. 상기 폴리뉴클레오티드는 예를 들면, 분석 반응에서 상기 폴리뉴클레오티드 또는 그가 결합되어 있 는 복합체의 검출의 편이를 위하여, 검출가능한 표지(예를 들면, Cy3, Cy5 형광성 물질)가 예를 들면, 3'말단 또는 5'말단에 부착되어 있는 것일 수 있다.In the present invention, "polynucleotide" may be DNA or RNA. The polynucleotide may also be in single- or double-stranded form. The polynucleotide may also be composed of natural nucleotides, as well as natural nucleotides, analogs of natural nucleotides, sugars, bases or phosphoric acid sites of natural nucleotides, provided that they have the property of hybridizing to complementary nucleotides by hydrogen bonding. Nucleotides selected from the group consisting of nucleotides and combinations thereof (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews , 90: 543-584 (1990)). . In addition, the polynucleotide may comprise a peptide nucleic acid (PNA). The polynucleotide may, for example, have a detectable label (e.g., Cy3, Cy5 fluorescent material), e.g., at the 3 'end, for ease of detection of the polynucleotide or complex to which it is bound in an assay. Or it may be attached to the 5 'end.

본 발명의 일 구체예에서, 폴리뉴클레오티드는 SNP 부위에서 단일염기다형성을 나타내는 것이다. 하나의 단일가닥 폴리뉴클레오티드가 개인식별과 연관되어 있는 경우, 상기 단일가닥 폴리뉴클레오티드에 상보적인 폴리뉴클레오티드도 당연히 개인식별과 연관되어 있는 것으로 판단될 수 있다. 따라서, 본 발명의 일 구체예에 따른 폴리뉴클레오티드는, 하나의 특정한 서열을 가진 개인식별과 연관되어 있는 단일가닥 폴리뉴클레오티드 및 그에 상보적인 서열을 가진 폴리뉴클레오티드를 포함한다. 예를 들면, 서열번호 1의 폴리뉴클레오티드는 101번째(SNP 위치) 뉴클레오티드가 "C 또는 T"이다. 이 경우, 상기 폴리뉴클레오티드는, 101번째 (SNP 위치)의 "C 또는 T" 뉴클레오티드를 포함하고 서열번호 1의 폴리뉴클레오티드로부터 선택된 10개 이상의 연속된 뉴클레오티드 뿐만 아니라, 101번째 (SNP 위치)에 대응되는 위치에 "G 또는 A" 뉴클레오티드를 갖는 상보적인 단일가닥 폴리뉴클레오티드를 포함한다. 이러한 측면에서, 본 명세서의 모든 서열은, 특별한 언급이 없는 한, 게놈 DNA에서 센스 가닥에 있는 서열을 기준으로 표기한다.In one embodiment of the invention, the polynucleotides exhibit monobasic polymorphism at the SNP site. When one single-stranded polynucleotide is associated with a personal identification, it may be determined that the polynucleotide complementary to the single-stranded polynucleotide is also naturally associated with the personal identification. Thus, a polynucleotide according to one embodiment of the present invention includes a single stranded polynucleotide associated with a personal identification having one specific sequence and a polynucleotide having a sequence complementary thereto. For example, the polynucleotide of SEQ ID NO: 1 has the "C or T" nucleotide 101 (SNP position). In this case, the polynucleotide comprises the "C or T" nucleotide of the 101st (SNP position) and corresponds to the 101st (SNP position) as well as 10 or more consecutive nucleotides selected from the polynucleotide of SEQ ID NO: 1. Complementary single-stranded polynucleotides having “G or A” nucleotides in position. In this aspect, all sequences herein are indicated based on the sequences in the sense strand in genomic DNA, unless otherwise noted.

본 발명에서 단일염기 다형성(single nucleotide polymorphism: SNP)은 당업계에 통상적으로 알려진 의미로 사용된다. SNP는 집단 내의 게놈에 존재하는 단일 뉴클레오티드 다형성을 나타낼 수 있다. 상기 SNP는 집단 내의 SNP의 소수 대립인자의 빈도가 1% 이상인 것일 수 있다. In the present invention, single nucleotide polymorphism (SNP) is used in the meaning commonly known in the art. SNPs may represent single nucleotide polymorphisms present in the genome within a population. The SNP may be one or more frequency of the minor allele of the SNP in the population.

본 발명의 일 구체예에서, 폴리뉴클레오티드는 길이가 10 내지 100 뉴클레오 티드인 것일 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 길이가 10 내지 50 뉴클레오티드, 또는 10 내지 30 뉴클레오티드인 것일 수 있다.In one embodiment of the invention, the polynucleotide may be from 10 to 100 nucleotides in length. For example, the polynucleotide may be 10 to 50 nucleotides in length, or 10 to 30 nucleotides in length.

본 발명의 일 구체예에서, 폴리뉴클레오티드는 프라이머 또는 프로브일 수 있다. "프라이머"란 중합효소에 의한 뉴클레오티드의 중합반응에서, 개시점으로 작용할 수 있는 단일가닥의 폴리뉴클레오티드를 말한다. 예를 들면, 상기 프라이머는 적합한 온도 및 적합한 완충액 내에서 적합한 조건, 즉, 4종의 다른 뉴클레오시드 트리포스페이트 및 중합효소의 존재 하에서 주형-지시(template-directed) DNA 합성의 개시점으로 작용할 수 있는 단일가닥의 폴리뉴클레오티드일 수 있다. 프라이머의 적합한 길이는 다양한 인자, 예를 들면, 온도와 프라이머의 용도에 따라 달라질 수 있다. 상기 프라이머는 길이가 15 내지 30 뉴클레오티드인 것일 수 있다. 일반적으로, 프라이머의 길이가 짧을수록, 낮은 어닐링(annealing) 온도에서 주형과 충분히 안정된 하이브리드 복합체를 형성할 수 있다. In one embodiment of the invention, the polynucleotide may be a primer or a probe. "Primer" refers to a single-stranded polynucleotide that can act as a starting point in the polymerization of nucleotides by polymerases. For example, the primers can serve as a starting point for template-directed DNA synthesis in suitable conditions and in suitable buffers, i.e., in the presence of four different nucleoside triphosphates and polymerases. Single-stranded polynucleotides. Suitable length of the primer can vary depending on various factors, such as temperature and the use of the primer. The primer may be 15 to 30 nucleotides in length. In general, the shorter the length of the primer, the more capable of forming a hybrid composite that is sufficiently stable with the template at low annealing temperatures.

프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 기능을 수행할 수 있는 범위 내의 상보성을 가지면 충분하다. 따라서, 프라이머는 상기 폴리뉴클레오티드 자체 뿐만 아니라, 상기 폴리뉴클레오티드에 특이적으로 혼성화하는 서열로서 중합반응에서 개시점으로 작용할 수 있는 것도 포함된다. 예를 들면, 서열번호 1의 폴리뉴클레오티드에 완벽하게 상보적인 서열뿐만 아니라, 이 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 상보성을 갖는 서열일 수 있다. 프라이머의 설계는 주어진 증폭하고자 하는 표적핵산의 서열을 참조하여 당업자에 의해 용이하게 실시할 수 있다. 예를 들면, 상업적으로 구입가능한 프라이머 설계용 프로그램을 사용하여 설계할 수 있다. 상업적으로 구입가능한 프라이머 설계용 프로그램은 예를 들면, PRIMER 3 프로그램을 포함하나, 이에 한정되지 않는다. The sequence of the primer does not need to have a sequence that is completely complementary to some sequences of the template, and it is sufficient to have complementarity within a range capable of hybridizing with the template to perform primer-specific functions. Thus, primers include not only the polynucleotide itself but also those which can act as starting points in a polymerization reaction as sequences that specifically hybridize to the polynucleotide. For example, not only sequences perfectly complementary to the polynucleotide of SEQ ID NO: 1, but also sequences having complementarity within a range capable of hybridizing to the sequence and acting as a primer. The design of the primer can be easily carried out by those skilled in the art with reference to the given sequence of the target nucleic acid to be amplified. For example, it can be designed using a commercially available primer design program. Commercially available primer design programs include, but are not limited to, for example, the PRIMER 3 program.

본 발명의 일 구체예에서, 폴리뉴클레오티드가 PCR 프라이머로서 사용되는 경우, 상기 폴리뉴클레오티드에 더하여, 그의 상보적 가닥에 특이적으로 결합하는 프라이머를 포함할 수 있다. In one embodiment of the invention, when a polynucleotide is used as a PCR primer, in addition to the polynucleotide, it may include a primer that specifically binds to its complementary strand.

"프로브"란 특정 표적 서열에 특이적으로 결합하는 폴리뉴클레오티드를 말한다. 상기 폴리뉴클레오티드는 DNA 또는 RNA일 수 있다. 상기 폴리뉴클레오티드는 단일가닥 형태일 수 있다. 상기 폴리뉴클레오티드는 또한, 상보적 뉴클레오티드에 수소 결합에 의하여 혼성화될 수 있는 성질을 갖는 것이면, 천연 뉴클레오티드로 구성된 것 뿐만 아니라, 천연 뉴클레오티드, 천연 뉴클레오티드의 유사체, 천연 뉴클레오티드의 당, 염기 또는 인산 부위가 변형되어 있는 뉴클레오티드 및 이들 조합으로 이루어진 군으로부터 선택되는 뉴클레오티드를 포함하는 것일 수 있다. 상기 폴리뉴클레오티드는 PNA를 포함한다. 또한, 상기 폴리뉴클레오티드는 예를 들면, 분석 반응에서 상기 폴리뉴클레오티드 또는 그가 결합되어 있는 복합체의 검출의 편이를 위하여, 검출가능한 표지 (예, Cy3, Cy5 형광성 물질)가 예를 들면, 3'말단 또는 5'말단에 부착되어 있는 것일 수 있다."Probe" refers to a polynucleotide that specifically binds to a specific target sequence. The polynucleotide may be DNA or RNA. The polynucleotide may be in the form of a single strand. The polynucleotide may also be composed of natural nucleotides, as well as natural nucleotides, analogues of natural nucleotides, sugars, bases or phosphoric acid sites of natural nucleotides, provided that they have the property of hybridizing to complementary nucleotides by hydrogen bonding. Nucleotides selected from the group consisting of nucleotides and combinations thereof. The polynucleotide includes PNA. In addition, the polynucleotide may have a detectable label (e.g., a Cy3, Cy5 fluorescent substance), e.g., at the 3 'end, for example, for ease of detection of the polynucleotide or complex to which it is bound in an assay. It may be attached to the 5 'end.

상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 완전 상보적인 서열일 수 있다. 또한, 상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대한 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로 상보적인 서 열을 갖는 것일 수 있다. 또한, 상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대한 특이적 혼성화를 손상되지 않는 범위 내에서, 변형된 뉴클레오티드를 갖는 것일 수 있다. 상기 프로브의 예는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 완전 상보적인 서열로 이루어진 완전 매치 프로브 (perfect probe) 및 SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대하여, 상기 SNP 부위를 제외한 모든 서열에 대하여 완전 상보적인 서열을 갖는 미스매치 (mismatch probe)로 이루어진 군으로부터 선택되는 것일 수 있다. The probe may be a sequence that is completely complementary to the polynucleotide comprising a SNP site. In addition, the probe may have a sequence that is substantially complementary within a range that does not prevent specific hybridization to the polynucleotide including the SNP site. In addition, the probe may be one having a modified nucleotide within a range that does not impair specific hybridization to the polynucleotide including the SNP site. Examples of the probes include a perfect match probe consisting of a sequence completely complementary to the polynucleotide comprising a SNP site and a complete match for all sequences except the SNP site, for the polynucleotide comprising a SNP site. It may be selected from the group consisting of mismatch probes having complementary sequences.

상기 프라이머 및 프로브를 사용하여 SNP 부위에 특정한 대립인자를 가진 뉴클레오티드 서열을 증폭하거나 그 존재를 확인할 수 있다.The primers and probes can be used to amplify or confirm the presence of a nucleotide sequence having an allele specific for the SNP site.

본 발명의 또 다른 구체예는, 서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커를 포함하는 개인식별을 위한 마이크로어레이를 제공한다. Another embodiment of the present invention, in the polynucleotide selected from the group consisting of the nucleotide sequence of SEQ ID NO: 1 to 92 or a complementary polynucleotide thereof, SNP is present at position 101 of the polynucleotide, and the 101 base It provides a microarray for personal identification comprising a personal identification polynucleotide marker consisting of a polynucleotide consisting of 10 or more consecutive nucleotides.

본 발명의 일 구체예에서, 상기 개인식별용 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다. In one embodiment of the present invention, the personally identifiable polynucleotide marker consists of 10 or more contiguous nucleotides, including the SNP located 101st in the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or complementary polynucleotides thereof. It can be a combination of polynucleotides.

상기 폴리뉴클레오티드는 전술된 바와 같은 특징을 갖는다. The polynucleotide has the characteristics as described above.

본 발명에서 "마이크로어레이"란 기판 표면의 구분된 영역에 상기 폴리뉴클레오티드가 높은 밀도로 고정화되어 있는 것을 의미한다. 상기 마이크로어레이는, 상기 영역이 예를 들면 400/cm2 이상, 103/cm2, 또는 104/cm2의 밀도로 기판 상에 배열되어 있는 것일 수 있다.In the present invention, "microarray" means that the polynucleotide is immobilized to a high density in the separated region of the substrate surface. The microarray may be one in which the region is arranged on a substrate at a density of, for example, 400 / cm 2 or more, 10 3 / cm 2 , or 10 4 / cm 2 .

본 발명의 또 다른 구체예는, 서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커를 포함하는 개인식별을 위한 키트를 제공한다. Another embodiment of the present invention, in the polynucleotide selected from the group consisting of the nucleotide sequence of SEQ ID NO: 1 to 92 or a complementary polynucleotide thereof, SNP is present at position 101 of the polynucleotide, and the 101 base It provides a kit for personal identification comprising a personal identification polynucleotide marker consisting of a polynucleotide consisting of 10 or more consecutive nucleotides.

상기 폴리뉴클레오티드 마커는 전술된 바와 같은 특징을 갖는다. 상기 키트에서 폴리뉴클레오티드 마커는 기판 표면 상의 구분된 영역에 고밀도로 배열되어 있는 마이크로어레이 형태일 수 있다.The polynucleotide marker has the characteristics as described above. The polynucleotide markers in the kit may be in the form of microarrays that are densely arranged in discrete regions on the substrate surface.

본 발명의 일 구체예에서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다. In one embodiment of the invention, the polynucleotide marker is a polynucleotide of SEQ ID NO: 1 to 45 and 48 to 90 or a polynucleotide consisting of 10 or more contiguous nucleotides including the SNP located in the 101 position in the complementary polynucleotide thereof May be a combination.

상기 키트는 상기 폴리뉴클레오티드를 특이적으로 증폭하고, 증폭 산물의 존재 유무를 통하여, 개인을 식별하거나 또는 친자관계를 확인하기 위한 키트일 수 있다. 이 경우, 상기 키트는 상기 폴리뉴클레오티드를 프라이머로서 포함하는 동시에, 증폭에 필요한 시약을 포함할 수 있다. 상기 증폭 시약은 예를 들면, dNTP, 폴리머라제, 및 적절한 버퍼를 포함할 수 있다. 상기 프라이머는 예를 들면, SNP 부위에 해당하는 뉴클레오티드 서열이 프라이머의 3' 말단 뉴클레오티드를 형성하고, 상기 3' 말단 뉴클레오티드는 상기 SNP 부위의 뉴클레오티드에 상보적이거나 (특이적 프라이머) 상보적이지 않은 것 (비특이적 프라이머)으로 이루어진 것일 수 있다. 상기 비특이적 프라이머는 상기 3' 말단 뉴클레오티드뿐만 아니라 다른 부위에도 상보적이지 않은 서열을 포함할 수 있다. 상기 키트는 또한, 사용 설명서를 포함할 수 있다. 상기 사용 설명서는 예를 들면, 상기 특이적 프라이머를 사용한 증폭 반응에서 표적 서열이 증폭되고, 상기 비특이적 프라이머를 사용한 증폭 반응에서 표적 서열이 증폭되지 않는 경우, 증폭에 사용된 시료 중에서 개인식별과 연관된 표적 서열이 존재하는 것으로 결정하고, 그 결과로부터 개인을 식별하는 것에 대한 설명을 포함한, 결과 판정에 대한 설명을 포함할 수 있다.The kit may be a kit for specifically amplifying the polynucleotide and identifying an individual or confirming paternity through the presence or absence of an amplification product. In this case, the kit may include the polynucleotide as a primer, and at the same time, include a reagent required for amplification. The amplification reagent may include, for example, dNTPs, polymerases, and appropriate buffers. The primers are, for example, wherein the nucleotide sequence corresponding to the SNP site forms the 3 'terminal nucleotide of the primer, and the 3' terminal nucleotide is complementary (specific primer) or not complementary to the nucleotide of the SNP site. (Nonspecific primer). The nonspecific primer may include sequences that are not complementary to the 3 ′ terminal nucleotides as well as other sites. The kit may also include instructions for use. The instructions may be used, for example, when a target sequence is amplified in an amplification reaction using the specific primer, and a target sequence is not amplified in the amplification reaction using the non-specific primer, a target associated with personal identification among samples used for amplification. It may include a description of the outcome determination, including a description of determining that the sequence exists and identifying the individual from the results.

상기 키트는, 상기 폴리뉴클레오티드 또는 그로부터 유래된 프로브를 시료 중의 핵산과 혼성화시키고, 그 혼성화 결과로부터 개인을 식별하기 위한 키트일 수 있다. 이 경우, 상기 키트는, 상기 프로브 및 혼성화에 필요한 시약을 포함할 수 있다. 혼성화에 필요한 시약이란 예를 들면, 혼성화 버퍼가 포함될 수 있다. 상기 핵산은 증폭 또는 증폭되지 않은 것일 수 있다. 따라서, 상기 키트는 핵산의 증폭에 필요한 시약을 더 포함할 수 있다. 상기 핵산은 검출가능한 표지로 표지될 수 있다. 상기 키트는, 상기 폴리뉴클레오티드에 완전 상보적인 프로브 (perferct match probe) 또는 상기 폴리뉴클레오티드에 있어서, SNP 부위를 제외한 모든 부위에서 상보적인 미스매치 프로브 (mismatch probe)를 포함할 수 있다. 상기 프로브는 기판 상의 복수 개의 구분된 영역에 고정되어 있는 마이크로어레이의 형태일 수 있다. 상기 키트는 또한, 사용 설명서를 포함할 수 있다. 상기 사용 설명서는 예를 들면, 상기 완전 상보적인 프로브를 사용한 혼성화 반응에서 표적 서열이 검출되고, 상기 미스매치 프로브를 사용한 혼성화 반응에서 표적 서열이 검출되지 않는 경우, 시료별로 각 프로브에 의해 수득된 프로파일을 비교하고, 그 결과로부터 개인을 식별하거나, 친자 여부를 결정하는 것에 대한 설명을 포함한, 결과 판정에 대한 설명을 포함할 수 있다.The kit may be a kit for hybridizing the polynucleotide or a probe derived therefrom with a nucleic acid in a sample, and identifying an individual from the hybridization result. In this case, the kit may include the probe and a reagent required for hybridization. Reagents required for hybridization may include, for example, hybridization buffers. The nucleic acid may be amplified or not amplified. Thus, the kit may further comprise a reagent for amplifying the nucleic acid. The nucleic acid may be labeled with a detectable label. The kit may comprise a perfect match probe to the polynucleotide or a mismatch probe complementary at all sites except the SNP site in the polynucleotide. The probe may be in the form of a microarray fixed to a plurality of divided regions on the substrate. The kit may also include instructions for use. The instructions are for example a profile obtained by each probe for each sample if the target sequence is detected in a hybridization reaction using the fully complementary probe and the target sequence is not detected in the hybridization reaction using the mismatch probe. May include a description of the result determination, including a description of the comparison and the identification of the individual from the results, or the determination of paternity.

본 발명의 또 다른 구체예에서, 상기 키트는 부모와 자로 구성된 3인 이상 가족의 친자 관계를 확인하기 위한 키트일 수 있다. In another embodiment of the present invention, the kit may be a kit for confirming paternity of three or more families consisting of parents and children.

본 발명의 또 다른 구체예는 서열번호 46, 47, 91 및 92로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 성별확인용 폴리뉴클레오티드 마커를 포함하는, 개인의 성별을 확인하기 위한 키트를 제공한다. Another embodiment of the present invention is a polynucleotide selected from the group consisting of SEQ ID NOs: 46, 47, 91, and 92 or a complementary polynucleotide thereof, wherein the SNP is present at position 101 of the polynucleotide, and Provided is a kit for identifying a gender of an individual, comprising a gender-identifying polynucleotide marker consisting of a polynucleotide consisting of 10 or more consecutive nucleotides.

본 발명의 일 구체예에서, 상기 성별확인용 폴리뉴클레오티드 마커는 서열번호 46, 47, 91 및 92의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다. In one embodiment of the present invention, the gender-identifying polynucleotide marker is composed of 10 or more contiguous nucleotides including the SNP located at the 101st position in the polynucleotides of SEQ ID NOs: 46, 47, 91 and 92 or their complementary polynucleotides It can be a combination of polynucleotides.

상기 폴리뉴클레오티드는 전술된 바와 같은 특징을 갖는다. 상기 키트에서 폴리뉴클레오티드는 기판 표면 상의 구분된 영역에 고밀도로 배열되어 있는 마이크로어레이 형태일 수 있다.The polynucleotide has the characteristics as described above. In the kit, the polynucleotides may be in the form of microarrays that are densely arranged in discrete regions on the substrate surface.

본 발명의 또 다른 구체예는, Another embodiment of the present invention,

분리된 핵산 시료를 제공하는 단계; 및 Providing an isolated nucleic acid sample; And

서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함하는 개인을 식별하는 방법을 제공한다.In a polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOs: 1 to 92, or a complementary polynucleotide thereof, SNP is present at position 101 of the polynucleotide, and is composed of 10 or more consecutive nucleotides including the 101st base. Provided is a method of identifying an individual comprising determining the nucleotide of the SNP position of a personally identifiable polynucleotide marker composed of polynucleotides.

본 발명의 일 구체예에서, 상기 개인식별용 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합일 수 있다. In one embodiment of the present invention, the personally identifiable polynucleotide marker consists of 10 or more contiguous nucleotides, including the SNP located 101st in the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or complementary polynucleotides thereof. It can be a combination of polynucleotides.

본 발명의 일 구체예에 따른 개인을 식별하는 방법은, 분리된 핵산 시료를 제공하는 단계를 포함한다. 개체로부터 핵산을 분리하는 방법은 당업계에 알려져 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 분리하거나 PCR과 같은 핵산 증폭 방법에 의하여 특정한 영역을 증폭함으로써 분리될 수 있다. 상기 분리된 핵산 시료에는 순수하게 분리된 핵산뿐만 아니라 조 분리된 핵산, 예를 들면, 핵산을 포함하는 세포 파쇄물도 포함한다. 상기 핵산 증폭 방법에는 PCR, 리가제 연쇄반응 (LCR), 전사증폭 (transcription amplification), 자기 유지 서열 복제 및 핵산에 근거한 서열 증폭 (NASBA)가 포함된다. 상기 분리된 핵산은, DNA 또는 RNA일 수 있다. 상기 DNA에는 게놈 DNA, cDNA 또는 재조합 DNA일 수 있다. 상기 RNA는 mRNA 일 수 있다.According to one embodiment of the present invention, a method for identifying an individual includes providing an isolated nucleic acid sample. Methods of separating nucleic acids from an individual are known in the art. For example, it can be isolated by directly isolating DNA from tissue or cells or by amplifying a specific region by nucleic acid amplification methods such as PCR. The isolated nucleic acid sample includes not only purely isolated nucleic acid but also cell lysates containing crude separated nucleic acid, for example, nucleic acid. Such nucleic acid amplification methods include PCR, ligase chain reaction (LCR), transcription amplification, self-sustained sequence replication, and nucleic acid based sequence amplification (NASBA). The isolated nucleic acid may be DNA or RNA. The DNA may be genomic DNA, cDNA or recombinant DNA. The RNA may be mRNA.

상기 방법은, 또한, 상기 개인식별용 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함한다. The method also includes determining a nucleotide at the SNP position of the personally identifiable polynucleotide marker.

SNP 위치의 뉴클레오티드를 결정하는 방법은 당업계에서 잘 알려져 있다. 예를 들면, 알려진 핵산의 뉴클레오티드 서열 결정 방법 (sequencing method)에 의하여 SNP 위치의 뉴클레오티드를 직접적으로 결정할 수 있다. 뉴클레오티드 서열 결정 방법에는 상거 (또는 디데옥시) 방법 또는 막삼-길버트 (화학 절단) 방법이 포함될 수 있다. 또한, SNP 위치의 서열을 포함하는 프로브를 대상 폴리뉴클레오티드와 혼성화시키고, 혼성화 결과를 분석함으로써, SNP 위치의 뉴클레오티드를 결정할 수 있다. 혼성화 정도는 예를 들면, 검출가능한 표지를 대상 핵산에 표지하고, 혼성화된 대상 핵산을 검출함으로써 확인되거나, 전기적 방법 등에 의하여 확인될 수 있다. 또한, 단일염기 프라이머 연장 (single base primer extension: SBE) 방법이 이용될 수 있다.Methods of determining nucleotides of SNP positions are well known in the art. For example, the nucleotide at the SNP position can be determined directly by known nucleotide sequencing methods. Nucleotide sequencing methods may include a staggered (or dideoxy) method or a Maksam-Gilbert (chemical cleavage) method. In addition, the nucleotide of the SNP position can be determined by hybridizing a probe including the sequence of the SNP position with the polynucleotide of interest and analyzing the hybridization result. The degree of hybridization can be confirmed, for example, by labeling the detectable label to the target nucleic acid, detecting the hybridized target nucleic acid, or by an electrical method or the like. In addition, a single base primer extension (SBE) method may be used.

상기 방법에 있어서, 상기 SNP 부위의 뉴클레오티드를 결정하는 단계는 상기 폴리뉴클레오티드 마커가 고정화되어 있는 마이크로어레이에 상기 핵산 시료를 혼성화시키는 단계; 및 상기 혼성화 결과를 검출하는 단계를 포함하는 것일 수 있다.In the method, the step of determining the nucleotide of the SNP site may include hybridizing the nucleic acid sample to a microarray to which the polynucleotide marker is immobilized; And detecting the hybridization result.

본 발명의 일 구체예에 따른 개인을 식별하는 방법은 결정된 개인식별을 위한 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 대조군 시료의 결과와 비교하는 단계를 더 포함할 수 있다. 대조군 시료는 비교대상인 개인의 DNA이거나 또는 개인의 등록된 DNA 프로파일일 수 있다. The method of identifying an individual according to an embodiment of the present invention may further comprise comparing the nucleotide of the SNP position of the polynucleotide marker for the determined personal identification with the result of the control sample. The control sample may be the DNA of the individual to be compared or the registered DNA profile of the individual.

본 발명의 일 구체예에 따른 개인을 식별하는 방법은 결정된 개인식별을 위한 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 확인하고 개인식별지수를 계산하는 단계를 더 포함할 수 있다.The method of identifying an individual according to an embodiment of the present invention may further include identifying a nucleotide at the SNP position of the polynucleotide marker for the determined personal identification and calculating a personal identification index.

상기 개인을 식별하는 방법에서 사용된 폴리뉴클레오티드 마커 중에 비교대상 시료간의 유전형이 확실히 상이한 경우, 즉, SNP 위치의 뉴클레오티드가 상이한 경우에는 동일인이 아닌 것으로 판정하며, 이 경우 개인식별지수는 0이 된다. 한편, 사용된 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드가 모두 일치하는 경우, 유전형 일치로 판정하고, 개인식별지수를 계산한다. 개인식별지수는 하기와 같이 계산할 수 있다:In the polynucleotide markers used in the method of identifying the individual, it is determined that the genotypes between the samples to be compared are unequal, i.e., when the nucleotides of the SNP positions are different, they are not the same person, in which case the personal identification index is zero. On the other hand, when all of the nucleotides at the SNP positions of the polynucleotide markers used match, it is determined as genotype matching, and the personal identification index is calculated. The personal identification index can be calculated as follows:

동형접합도 =

Figure 112009038103110-PAT00001
Homozygousity =
Figure 112009038103110-PAT00001

이형접합도 =

Figure 112009038103110-PAT00002
Heterojunction =
Figure 112009038103110-PAT00002

개체식별력(power of discrimination, PD) =

Figure 112009038103110-PAT00003
Power of discrimination (PD) =
Figure 112009038103110-PAT00003

개인식별지수(discrimination index, DI) = 1- PDDiscrimination Index (DI) = 1-PD

상기에서, pi는 대립유전자 빈도를 의미한다. In the above, pi means the allele frequency.

식별력은 마커의 수가 많을 수록 높아지며, 특정인과 동일한 유전형을 갖는 사람이 나타날 확률은 1/DI로 나타낼 수 있다. The identification power increases as the number of markers increases, and the probability of appearing a person having the same genotype as a specific person can be expressed as 1 / DI.

본 발명의 또 다른 구체예는 개인의 성별을 확인하는 방법으로서, Another embodiment of the invention is a method of identifying the sex of an individual,

분리된 핵산 시료를 제공하는 단계; 및 Providing an isolated nucleic acid sample; And

서열번호 46, 47, 91 및 92로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 성별확인용 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함하는 방법을 제공한다. In a polynucleotide selected from the group consisting of SEQ ID NOs: 46, 47, 91, and 92, or a complementary polynucleotide thereof, SNP is present at position 101 of the polynucleotide and is selected from the group consisting of 10 or more consecutive nucleotides including the 101st base. It provides a method comprising the step of determining the nucleotide of the SNP position of the sex identification polynucleotide marker consisting of a polynucleotide consisting of.

본 발명의 일 구체예에 따른 개인의 성별을 확인하는 방법은, 분리된 핵산 시료를 제공하는 단계를 포함한다. 개체로부터 핵산을 분리하는 방법은 당업계에 알려져 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 분리하거나 PCR과 같은 핵산 증폭 방법에 의하여 특정한 영역을 증폭함으로써 분리될 수 있다. 상기 분리된 핵산 시료에는 순수하게 분리된 핵산뿐만 아니라 조 분리된 핵산, 예를 들면, 핵산을 포함하는 세포 파쇄물도 포함한다. 상기 핵산 증폭 방법에는 PCR, 리가제 연쇄반응 (LCR), 전사증폭, 자기 유지 서열 복제 및 핵산에 근거한 서열 증폭 (NASBA)가 포함된다. 상기 분리된 핵산은, DNA 또는 RNA일 수 있다. 상기 DNA에는 게놈 DNA, cDNA 또는 재조합 DNA일 수 있다. 상기 RNA는 mRNA 일 수 있다.According to one embodiment of the present invention, a method for identifying a gender of an individual includes providing an isolated nucleic acid sample. Methods of separating nucleic acids from an individual are known in the art. For example, it can be isolated by directly isolating DNA from tissue or cells or by amplifying a specific region by nucleic acid amplification methods such as PCR. The isolated nucleic acid sample includes not only purely isolated nucleic acid but also cell lysates containing crude separated nucleic acid, for example, nucleic acid. Such nucleic acid amplification methods include PCR, ligase chain reaction (LCR), transcriptional amplification, self-retaining sequence replication, and nucleic acid based sequence amplification (NASBA). The isolated nucleic acid may be DNA or RNA. The DNA may be genomic DNA, cDNA or recombinant DNA. The RNA may be mRNA.

상기 방법은, 또한, 상기 성별확인용 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함한다. The method also includes determining a nucleotide at the SNP position of the gender identifying polynucleotide.

SNP 위치의 뉴클레오티드를 결정하는 방법은 당업계에서 잘 알려져 있다. 예를 들면, 알려진 핵산의 뉴클레오티드 서열 결정 방법에 의하여 SNP 위치의 뉴클레오티드를 직접적으로 결정할 수 있다. 뉴클레오티드 서열 결정 방법에는 상거 (또는 디데옥시) 방법 또는 막삼-길버트 (화학 절단) 방법이 포함될 수 있다. 또한, SNP 위치의 서열을 포함하는 프로브를 대상 폴리뉴클레오티드와 혼성화시키고, 혼성화 결과를 분석함으로써, SNP 위치의 뉴클레오티드를 결정할 수 있다. 혼성화 정도는 예를 들면, 검출가능한 표지를 대상 핵산에 표지하고, 혼성화된 대상 핵산을 검출함으로써 확인되거나, 전기적 방법 등에 의하여 확인될 수 있다. 또한, 단일염기 연장 방법이 이용될 수 있다.Methods of determining nucleotides of SNP positions are well known in the art. For example, nucleotide sequencing of known nucleic acids can directly determine the nucleotides of the SNP positions. Nucleotide sequencing methods may include a staggered (or dideoxy) method or a Maksam-Gilbert (chemical cleavage) method. In addition, the nucleotide of the SNP position can be determined by hybridizing a probe including the sequence of the SNP position with the polynucleotide of interest and analyzing the hybridization result. The degree of hybridization can be confirmed, for example, by labeling the detectable label to the target nucleic acid, detecting the hybridized target nucleic acid, or by an electrical method or the like. In addition, a single base extension method may be used.

상기 방법에 있어서, 상기 SNP 부위의 폴리뉴클레오티드를 결정하는 단계는 상기 폴리뉴클레오티드가 고정화되어 있는 마이크로어레이에 상기 핵산 시료를 혼성화시키는 단계; 및 상기 혼성화 결과를 검출하는 단계를 포함하는 것일 수 있다.In the method, determining the polynucleotide of the SNP site may include hybridizing the nucleic acid sample to a microarray in which the polynucleotide is immobilized; And detecting the hybridization result.

본 발명의 일 구체예에 따른 개인의 성별을 확인하는 방법은 결정된 성별확인용 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 대조군 시료와 비교하는 단계를 더 포함할 수 있다. 대조군 시료는 남성 및 여성으로부터 수득된, 상기에서 사용된 성별확인용 폴리뉴클레오티드의 SNP 위치의 유전형일 수 있다. 남성 대조군 시료는 서열번호 46 및 47의 마커에 대해 각각 AG 및 GG의 유전형을 가지며, 서열번호 91 및 92의 마커에 대해서는 AA의 유전형을 갖는다. 반면에, 여성 대조군 시료는 서열번호 46의 마커에 대해서는 GG의 유전형을 가지나, 서열번호 47, 91 및 92의 마커에 대해서는 결과가 검출되지 않는다. 따라서, 상기 성별 확인용 마커에 대한 시료의 분석결과를 남성 및 여성 대조군과 비교하여 성별을 확인할 수 있다. According to one embodiment of the present invention, a method for identifying a gender of an individual may further include comparing a nucleotide at the SNP position of the determined polynucleotide for identification with a control sample. The control sample may be genotype of the SNP position of the sex-identifying polynucleotide used above obtained from male and female. The male control sample has a genotype of AG and GG for the markers of SEQ ID NOs: 46 and 47, respectively, and a genotype of AA for the markers of SEQ ID NOs: 91 and 92, respectively. On the other hand, the female control sample has a genotype of GG for the marker of SEQ ID NO: 46, but no results are detected for the markers of SEQ ID NOs: 47, 91 and 92. Therefore, gender can be confirmed by comparing the analysis result of the sample for the marker for confirming sex with the male and female controls.

이하 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 실시예는 본 발명을 예시하기 위한 것이며 본 발명이 이들에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, an Example is for illustrating this invention and this invention is not limited by these.

본 발명에 따른 개인식별과 관련된 단일염기다형을 포함하는 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드 마커 및 이를 포함하는 조성물은 개인을 식별하기 위해 유용하게 이용될 수 있다. 또한, 본 발명에 따른 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드로 구성된 프라이머 또는 프로브, 및 이를 포함하는 키트는 개인을 식별하기 위해 유용하게 이용될 수 있다. Polynucleotides comprising a monobasic polymorphism or a complementary polynucleotide marker thereof and a composition comprising the same according to the present invention can be usefully used to identify an individual. In addition, primers or probes composed of polynucleotides or complementary polynucleotides thereof, and kits comprising the same may be usefully used to identify individuals.

실시예 1. 개인식별용 SNP 마커의 선정Example 1 Selection of SNP Marker for Personal Identification

(1) 대상자 분류(1) Target classification

한국인 표본 70명을 대상으로 Affymetrix 500K SNP에 대한 유전형 분석(genotyping)을 실시하여 시료별 call rate(전체 SNP에서 유전형 결과가 수득되는 비율)의 최소 수준을 95%로 설정하고, 평균 99.5%의 call rate의 데이터를 확보하였다.Genotyping of Affymetrix 500K SNPs was performed on 70 Korean specimens to set the minimum level of call rate (sample rate at which total genotypes were obtained) to 95%, with an average of 99.5% The data of rate was obtained.

각각의 SNP의 발현빈도를 DB로 구축하고 HWE(Hardy-Weinberg Equilibrium) 테스트를 실시하여 p-값 컷-오프(p-value cut off)(p>0.05)를 기준으로 분석이 완료된 70명이 혈연관계가 없는 독립적인 시료임을 GRR 분석을 통해 재확인 하였다(Graphical Representation of Relationships http://www.sph.umich.edu/csg/abecasis/GRR). 70 people were analyzed based on p-value cut-off (p> 0.05) by constructing DB of frequency of each SNP and performing Hardy-Weinberg Equilibrium (HWE) test. The GRR analysis reconfirmed that the sample was independent of the chromosome (Graphical Representation of Relationships http://www.sph.umich.edu/csg/abecasis/GRR).

(2) SNP 마커 선정(2) SNP marker selection

한국인 및 HapMap 4개 인종(www.hapmap.org 참조), 즉, 나이지리아 이바단의 요루바족(YRI), 일본 동경의 일본인(JPT), 중국 베이징의 한족(CHB), 북유럽 및 서유럽의 조상으로부터 유래된 유타 거주민(CEU)의 Affimetrix 500K SNP chip 분석 결과에서 소수 대립 인자 빈도(minor allele frequency: MAF)가 40-50%이며 유전형(genotype)의 분포가 1:2:1인 SNP 마커를 선정한 후 특정 유전자나 질병과의 관련성이 규명되지 않은(유전자 영역±2kb에 포함되지 않는 비-유전자영역 SNP(intergenic SNP) 선정) 마커를 선정하였다(X 및 Y 염색체 상의 SNP 제외).Korean and HapMap four races (see www.hapmap.org), namely the Yoruba (YRI) in Ibadan, Nigeria (JPT) in Tokyo, the Han Chinese (CHB) in Beijing, China, and the ancestors of Northern and Western Europe In the result of analysis of Affimetrix 500K SNP chip of Utah resident (CEU), we selected SNP markers with 40-50% of minor allele frequency (MAF) and genotype distribution of 1: 2: 1. Markers were selected that were not associated with a specific gene or disease (selection of non-genetic SNPs not included in the gene region ± 2 kb) (except SNPs on X and Y chromosomes).

55℃의 PCR 어닐링 온도 및 SNP 신장 믹스(CA/GT,CT/AG)를 갖는 13,663개의 SNP를 선정한 후(가닥에 따라 대립형질의 혼돈이 초래되는 AT/CG 변이와 삼대립형질 유전자(triallele)는 제외하였음) Sequence blast를 통해 상동성(homology)이 높은 SNP와 설계된 SNP 중 In silico PCR에서 산물이 2개 이상 증폭되는 경우를 제외하였다. 이후 동일 염색체상의 SNP 상호간 LD(linkage disequilibrium)를 분석하여 r2>0.3인 경우는 제외하고 두 SNP간 거리가 500 kb 이상으로 먼 경우는 포함하여 LD 관계가 없는 SNP를 선정하였다. 주변의 플랭킹 서열(flanking sequence)을 양방향으로 250개의 뉴클레오티드까지 확인한 후 multiplex PCR 프라이머의 설계를 위해 Beckman coulter(www.autoprimer.com)에서 제공하는 정보를 이용하여 Assay panel을 디자인 하여 개인식별용 SNP 마커를 135개와 성별확인용 SNP마커 4개를 후보로 선정하였다. 이중 SNPstream® UHT 시스템을 이용한 SNP-IT 분석이 완료된 마커 92개를 표 1에 표시하였다. 13,663 SNPs with PCR annealing temperature of 55 ° C. and SNP kidney mix (CA / GT, CT / AG) were selected (AT / CG mutation and triallele resulting in allele confusion depending on the strand) Except for the case where two or more products were amplified by In silico PCR among the highly homologous SNPs and designed SNPs through the sequence blast. Afterwards, SNPs on the same chromosome were analyzed by linkage disequilibrium (LD) to select SNPs without LD relations, except when the distance between the two SNPs was greater than 500 kb, except when r 2 > 0.3. Identifying flanking sequences up to 250 nucleotides in both directions and designing assay panels using information provided by Beckman coulter (www.autoprimer.com) for the design of multiplex PCR primers 135 markers and 4 gender identification SNP markers were selected as candidates. 92 markers for which SNP-IT analysis was completed using the dual SNPstream® UHT system are shown in Table 1.

표 1. 선별된 개인식별용 SNP 마커Table 1. Selected SNP Markers for Personal Identification

NoNo rs_numberrs_number 염색체chromosome allele_Aallele_A allele_Ballele_B Freq_AFreq_A Freq_BFreq_B AAAA ABAB BBBB 1One rs515603rs515603 chr1chr1 AA GG 0.478 0.478 0.522 0.522 1919 4747 2323 22 rs10785736rs10785736 chr1chr1 AA GG 0.593 0.593 0.407 0.407 3030 4242 1414 33 rs10920379rs10920379 chr1chr1 AA GG 0.494 0.494 0.506 0.506 2121 4646 2222 44 rs7527185rs7527185 chr1chr1 AA GG 0.522 0.522 0.478 0.478 2424 4545 2020 55 rs902329rs902329 chr1chr1 AA GG 0.530 0.530 0.470 0.470 2424 4141 1919 66 rs10926595rs10926595 chr1chr1 AA GG 0.562 0.562 0.438 0.438 2828 4444 1717 77 rs10884796rs10884796 chr10chr10 AA GG 0.416 0.416 0.584 0.584 1414 4646 2929 88 rs12286769rs12286769 chr11chr11 AA GG 0.506 0.506 0.494 0.494 2525 4040 2424 99 rs10791403rs10791403 chr11chr11 AA GG 0.506 0.506 0.494 0.494 2222 4545 2121 1010 rs1487602rs1487602 chr12chr12 AA GG 0.427 0.427 0.573 0.573 1414 4848 2727 1111 rs12876644rs12876644 chr13chr13 AA GG 0.483 0.483 0.517 0.517 2323 4040 2626 1212 rs12585235rs12585235 chr13chr13 AA GG 0.489 0.489 0.511 0.511 1717 5353 1919 1313 rs9540071rs9540071 chr13chr13 AA GG 0.382 0.382 0.618 0.618 1616 3636 3737 1414 rs9523953rs9523953 chr13chr13 AA GG 0.567 0.567 0.433 0.433 2727 4747 1515 1515 rs2402341rs2402341 chr14chr14 AA GG 0.438 0.438 0.562 0.562 2020 3838 3131 1616 rs4906699rs4906699 chr15chr15 AA GG 0.545 0.545 0.455 0.455 2323 5050 1515 1717 rs691rs691 chr15chr15 AA GG 0.528 0.528 0.472 0.472 2727 4040 2222 1818 rs424165rs424165 chr16chr16 AA GG 0.612 0.612 0.388 0.388 3535 3939 1515 1919 rs1812521rs1812521 chr16chr16 AA GG 0.433 0.433 0.567 0.567 1616 4545 2828 2020 rs4407150rs4407150 chr18chr18 AA GG 0.483 0.483 0.517 0.517 1717 5050 2020 2121 rs12965342rs12965342 chr18chr18 AA GG 0.511 0.511 0.489 0.489 1919 5353 1717 2222 rs1943338rs1943338 chr18chr18 AA GG 0.584 0.584 0.416 0.416 3131 4242 1616 2323 rs1563172rs1563172 chr2chr2 AA GG 0.559 0.559 0.441 0.441 2929 3737 1919 2424 rs1427446rs1427446 chr2chr2 AA GG 0.449 0.449 0.551 0.551 2121 3838 3030 2525 rs2241225rs2241225 chr2chr2 AA GG 0.403 0.403 0.597 0.597 1212 4747 2929 2626 rs6744937rs6744937 chr2chr2 AA GG 0.580 0.580 0.420 0.420 2626 4949 1212 2727 rs6442180rs6442180 chr3chr3 AA GG 0.466 0.466 0.534 0.534 1818 4747 2424 2828 rs6549566rs6549566 chr3chr3 AA GG 0.539 0.539 0.461 0.461 2525 4646 1818 2929 rs1709915rs1709915 chr3chr3 AA GG 0.461 0.461 0.539 0.539 1717 4848 2424 3030 rs6447614rs6447614 chr4chr4 AA GG 0.539 0.539 0.461 0.461 2929 3838 2222 3131 rs970022rs970022 chr4chr4 AA GG 0.556 0.556 0.444 0.444 3232 3535 2222 3232 rs2613019rs2613019 chr4chr4 AA GG 0.444 0.444 0.556 0.556 1414 5151 2424 3333 rs4501321rs4501321 chr5chr5 AA GG 0.545 0.545 0.455 0.455 2525 4646 1717 3434 rs10075131rs10075131 chr5chr5 AA GG 0.433 0.433 0.567 0.567 1919 3939 3131 3535 rs11952230rs11952230 chr5chr5 AA GG 0.449 0.449 0.551 0.551 1616 4848 2525 3636 rs7707575rs7707575 chr5chr5 AA GG 0.415 0.415 0.585 0.585 1515 4343 3030 3737 rs1883181rs1883181 chr6chr6 AA GG 0.483 0.483 0.517 0.517 1515 5656 1818 3838 rs6900780rs6900780 chr6chr6 AA GG 0.517 0.517 0.483 0.483 2525 4242 2222 3939 rs2736966rs2736966 chr7chr7 AA GG 0.568 0.568 0.432 0.432 2525 5050 1313 4040 rs6947796rs6947796 chr7chr7 AA GG 0.478 0.478 0.522 0.522 2323 3939 2727 4141 rs624667rs624667 chr7chr7 AA GG 0.500 0.500 0.500 0.500 2222 4545 2222 4242 rs12546986rs12546986 chr8chr8 AA GG 0.545 0.545 0.455 0.455 2727 4343 1919 4343 rs1875067rs1875067 chr8chr8 AA GG 0.590 0.590 0.410 0.410 3535 3535 1919 4444 rs4876357rs4876357 chr8chr8 AA GG 0.478 0.478 0.522 0.522 2323 3939 2727 4545 rs10811474rs10811474 chr9chr9 AA GG 0.404 0.404 0.596 0.596 1515 4242 3232 4646 rs2444398rs2444398 chrX,YchrX, Y AA GG     1One 4040 4848 4747 rs2521574rs2521574 chrYchrY AA GG  00  1One  00  00 4141 4848 rs7921967rs7921967 chr10chr10 AA GG 0.472 0.472 0.528 0.528 1717 5050 2222 4949 rs11599718rs11599718 chr10chr10 AA GG 0.489 0.489 0.511 0.511 2424 4040 2626 5050 rs7298551rs7298551 chr12chr12 AA GG 0.483 0.483 0.517 0.517 2121 4545 2424 5151 rs1166235rs1166235 chr12chr12 AA GG 0.517 0.517 0.483 0.483 2626 4040 2323 5252 rs12820285rs12820285 chr12chr12 AA GG 0.550 0.550 0.450 0.450 2626 4747 1717 5353 rs11060771rs11060771 chr12chr12 AA GG 0.517 0.517 0.483 0.483 2525 4242 2222 5454 rs2039623rs2039623 chr13chr13 AA GG 0.483 0.483 0.517 0.517 1818 5050 2121 55 55 rs9523089rs9523089 chr13chr13 AA GG 0.539 0.539 0.461 0.461 2727 4343 2020 5656 rs408283rs408283 chr14chr14 AA GG 0.449 0.449 0.551 0.551 2020 4040 2929 5757 rs7160372rs7160372 chr14chr14 AA GG 0.444 0.444 0.556 0.556 1919 4242 2929 5858 rs11634785rs11634785 chr15chr15 AA GG 0.389 0.389 0.611 0.611 1515 4040 3535 5959 rs31042rs31042 chr16chr16 AA GG 0.461 0.461 0.539 0.539 1919 4444 2626 6060 rs11076262rs11076262 chr16chr16 AA GG 0.556 0.556 0.444 0.444 2424 5252 1414 6161 rs7192715rs7192715 chr16chr16 AA GG 0.511 0.511 0.489 0.489 2222 4848 2020 6262 rs8058011rs8058011 chr16chr16 AA GG 0.417 0.417 0.583 0.583 1414 4747 2929 6363 rs2470209rs2470209 chr17chr17 AA GG 0.411 0.411 0.589 0.589 1313 4848 2929 6464 rs12607426rs12607426 chr18chr18 AA GG 0.517 0.517 0.483 0.483 2626 4141 2323 6565 rs6507244rs6507244 chr18chr18 AA GG 0.635 0.635 0.365 0.365 3535 4343 1111 6666 rs4926111rs4926111 chr19chr19 AA GG 0.640 0.640 0.360 0.360 3232 5050 77 6767 rs8102497rs8102497 chr19chr19 AA GG 0.444 0.444 0.556 0.556 1919 4242 2929 6868 rs4027132rs4027132 chr2chr2 AA GG 0.500 0.500 0.500 0.500 2222 4646 2222 6969 rs330625rs330625 chr2chr2 AA GG 0.456 0.456 0.544 0.544 2020 4242 2828 7070 rs6711114rs6711114 chr2chr2 AA GG 0.428 0.428 0.572 0.572 1818 4141 3131 7171 rs4349283rs4349283 chr2chr2 AA GG 0.428 0.428 0.572 0.572 2020 3737 3333 7272 rs12613725rs12613725 chr2chr2 AA GG 0.511 0.511 0.489 0.489 2020 5151 1818 7373 rs3761161rs3761161 chr20chr20 AA GG 0.399 0.399 0.601 0.601 1717 3737 3535 7474 rs6014763rs6014763 chr20chr20 AA GG 0.411 0.411 0.589 0.589 1515 4444 3131 7575 rs6006426rs6006426 chr22chr22 AA GG 0.572 0.572 0.428 0.428 3232 3939 1919 7676 rs7288176rs7288176 chr22chr22 AA GG 0.439 0.439 0.561 0.561 1515 4949 2626 7777 rs12695977rs12695977 chr3chr3 AA GG 0.477 0.477 0.523 0.523 1717 5050 2121 7878 rs2127657rs2127657 chr4chr4 AA GG 0.589 0.589 0.411 0.411 3131 4444 1515 7979 rs4141387rs4141387 chr4chr4 AA GG 0.410 0.410 0.590 0.590 1515 4343 3131 8080 rs6850503rs6850503 chr4chr4 AA GG 0.389 0.389 0.611 0.611 1212 4646 3232 8181 rs2642781rs2642781 chr5chr5 AA GG 0.539 0.539 0.461 0.461 2222 5353 1515 8282 rs6596805rs6596805 chr6chr6 AA GG 0.466 0.466 0.534 0.534 2020 4343 2626 8383 rs1321167rs1321167 chr6chr6 AA GG 0.500 0.500 0.500 0.500 1919 5252 1919 8484 rs9371835rs9371835 chr6chr6 AA GG 0.494 0.494 0.506 0.506 2020 4949 2121 8585 rs11971741rs11971741 chr7chr7 AA GG 0.517 0.517 0.483 0.483 2222 4949 1919 8686 rs4722616rs4722616 chr7chr7 AA GG 0.600 0.600 0.400 0.400 3333 4242 1515 8787 rs7792547rs7792547 chr7chr7 AA GG 0.506 0.506 0.494 0.494 2222 4747 2121 8888 rs2468177rs2468177 chr8chr8 AA GG 0.456 0.456 0.544 0.544 1919 4444 2727 8989 rs7038176rs7038176 chr9chr9 AA GG 0.461 0.461 0.539 0.539 1919 4545 2626 9090 rs7027501rs7027501 chr9chr9 AA GG 0.494 0.494 0.506 0.506 2020 4949 2121 9191 rs2032654rs2032654 chrYchrY AA GG 1One 00 4141 00 00 9292 rs9341273rs9341273 chrYchrY AA GG 1One 00 4141 00 00

표 1. (계속)Table 1. (continued)

NoNo failfail totaltotal CallCall
raterate
AA_freqAA_freq AB_freqAB_freq BB_freqBB_freq panelpanel PIPI PEPE
1One 1One 8989 98.8998.89 0.213 0.213 0.528 0.528 0.258 0.258 AG1AG1 0.391 0.391 0.213 0.213 22 44 8686 95.5695.56 0.349 0.349 0.488 0.488 0.163 0.163 AG1AG1 0.387 0.387 0.178 0.178 33 1One 8989 98.8998.89 0.236 0.236 0.517 0.517 0.247 0.247 AG1AG1 0.384 0.384 0.203 0.203 44 1One 8989 98.8998.89 0.270 0.270 0.506 0.506 0.225 0.225 AG1AG1 0.379 0.379 0.192 0.192 55 66 8484 93.3393.33 0.286 0.286 0.488 0.488 0.226 0.226 AG1AG1 0.371 0.371 0.177 0.177 66 1One 8989 98.8998.89 0.315 0.315 0.494 0.494 0.191 0.191 AG1AG1 0.380 0.380 0.183 0.183 77 1One 8989 98.8998.89 0.157 0.157 0.517 0.517 0.326 0.326 AG1AG1 0.398 0.398 0.203 0.203 88 1One 8989 98.8998.89 0.281 0.281 0.449 0.449 0.270 0.270 AG1AG1 0.354 0.354 0.147 0.147 99 22 8888 97.7897.78 0.250 0.250 0.511 0.511 0.239 0.239 AG1AG1 0.381 0.381 0.198 0.198 1010 1One 8989 98.8998.89 0.157 0.157 0.539 0.539 0.303 0.303 AG1AG1 0.408 0.408 0.224 0.224 1111 1One 8989 98.8998.89 0.258 0.258 0.449 0.449 0.292 0.292 AG1AG1 0.354 0.354 0.147 0.147 1212 1One 8989 98.8998.89 0.191 0.191 0.596 0.596 0.213 0.213 AG1AG1 0.437 0.437 0.286 0.286 1313 1One 8989 98.8998.89 0.180 0.180 0.404 0.404 0.416 0.416 AG1AG1 0.369 0.369 0.117 0.117 1414 1One 8989 98.8998.89 0.303 0.303 0.528 0.528 0.169 0.169 AG1AG1 0.399 0.399 0.213 0.213 1515 1One 8989 98.8998.89 0.225 0.225 0.427 0.427 0.348 0.348 AG1AG1 0.354 0.354 0.131 0.131 1616 22 8888 97.7897.78 0.261 0.261 0.568 0.568 0.170 0.170 AG1AG1 0.420 0.420 0.254 0.254 1717 1One 8989 98.8998.89 0.303 0.303 0.449 0.449 0.247 0.247 AG1AG1 0.355 0.355 0.147 0.147 1818 1One 8989 98.8998.89 0.393 0.393 0.438 0.438 0.169 0.169 AG1AG1 0.375 0.375 0.139 0.139 1919 1One 8989 98.8998.89 0.180 0.180 0.506 0.506 0.315 0.315 AG1AG1 0.387 0.387 0.192 0.192 2020 33 8787 96.6796.67 0.195 0.195 0.575 0.575 0.230 0.230 AG1AG1 0.421 0.421 0.262 0.262 2121 1One 8989 98.8998.89 0.213 0.213 0.596 0.596 0.191 0.191 AG1AG1 0.437 0.437 0.286 0.286 2222 1One 8989 98.8998.89 0.348 0.348 0.472 0.472 0.180 0.180 AG1AG1 0.376 0.376 0.164 0.164 2323 55 8585 94.4494.44 0.341 0.341 0.435 0.435 0.224 0.224 AG1AG1 0.356 0.356 0.137 0.137 2424 1One 8989 98.8998.89 0.236 0.236 0.427 0.427 0.337 0.337 AG1AG1 0.352 0.352 0.131 0.131 2525 22 8888 97.7897.78 0.136 0.136 0.534 0.534 0.330 0.330 AG1AG1 0.412 0.412 0.219 0.219 2626 33 8787 96.6796.67 0.299 0.299 0.563 0.563 0.138 0.138 AG1AG1 0.426 0.426 0.249 0.249 2727 1One 8989 98.8998.89 0.202 0.202 0.528 0.528 0.270 0.270 AG1AG1 0.393 0.393 0.213 0.213 2828 1One 8989 98.8998.89 0.281 0.281 0.517 0.517 0.202 0.202 AG1AG1 0.387 0.387 0.203 0.203 2929 1One 8989 98.8998.89 0.191 0.191 0.539 0.539 0.270 0.270 AG1AG1 0.400 0.400 0.224 0.224 3030 1One 8989 98.8998.89 0.326 0.326 0.427 0.427 0.247 0.247 AG1AG1 0.350 0.350 0.131 0.131 3131 1One 8989 98.8998.89 0.360 0.360 0.393 0.393 0.247 0.247 AG1AG1 0.345 0.345 0.110 0.110 3232 1One 8989 98.8998.89 0.157 0.157 0.573 0.573 0.270 0.270 AG1AG1 0.426 0.426 0.260 0.260 3333 22 8888 97.7897.78 0.284 0.284 0.523 0.523 0.193 0.193 AG1AG1 0.391 0.391 0.208 0.208 3434 1One 8989 98.8998.89 0.213 0.213 0.438 0.438 0.348 0.348 AG1AG1 0.359 0.359 0.139 0.139 3535 1One 8989 98.8998.89 0.180 0.180 0.539 0.539 0.281 0.281 AG1AG1 0.402 0.402 0.224 0.224 3636 22 8888 97.7897.78 0.170 0.170 0.489 0.489 0.341 0.341 AG1AG1 0.384 0.384 0.178 0.178 3737 1One 8989 98.8998.89 0.169 0.169 0.629 0.629 0.202 0.202 AG1AG1 0.465 0.465 0.327 0.327 3838 1One 8989 98.8998.89 0.281 0.281 0.472 0.472 0.247 0.247 AG1AG1 0.363 0.363 0.164 0.164 3939 22 8888 97.7897.78 0.284 0.284 0.568 0.568 0.148 0.148 AG1AG1 0.425 0.425 0.254 0.254 4040 1One 8989 98.8998.89 0.258 0.258 0.438 0.438 0.303 0.303 AG1AG1 0.351 0.351 0.139 0.139 4141 1One 8989 98.8998.89 0.247 0.247 0.506 0.506 0.247 0.247 AG1AG1 0.378 0.378 0.192 0.192 4242 1One 8989 98.8998.89 0.303 0.303 0.483 0.483 0.213 0.213 AG1AG1 0.371 0.371 0.173 0.173 4343 1One 8989 98.8998.89 0.393 0.393 0.393 0.393 0.213 0.213 AG1AG1 0.355 0.355 0.110 0.110 4444 1One 8989 98.8998.89 0.258 0.258 0.438 0.438 0.303 0.303 AG1AG1 0.351 0.351 0.139 0.139 4545 1One 8989 98.8998.89 0.169 0.169 0.472 0.472 0.360 0.360 AG1AG1 0.380 0.380 0.164 0.164 4646 1One 89 89 98.8998.89 0.01 0.01 0.450.45 0.54 0.54 AG1AG1     4747 4949 4141 45.545.5 00 00 1.001.00 AG1AG1     4848 1One 8989 98.8998.89 0.191 0.191 0.562 0.562 0.247 0.247 AG2AG2 0.413 0.413 0.248 0.248 4949 00 9090 100100 0.267 0.267 0.444 0.444 0.289 0.289 AG2AG2 0.352 0.352 0.143 0.143 5050 00 9090 100100 0.233 0.233 0.500 0.500 0.267 0.267 AG2AG2 0.376 0.376 0.188 0.188 5151 1One 8989 98.8998.89 0.292 0.292 0.449 0.449 0.258 0.258 AG2AG2 0.354 0.354 0.147 0.147 5252 00 9090 100100 0.289 0.289 0.522 0.522 0.189 0.189 AG2AG2 0.392 0.392 0.208 0.208 5353 1One 8989 98.8998.89 0.281 0.281 0.472 0.472 0.247 0.247 AG2AG2 0.363 0.363 0.164 0.164 5454 1One 8989 98.8998.89 0.202 0.202 0.562 0.562 0.236 0.236 AG2AG2 0.412 0.412 0.248 0.248 55 55 00 9090 100100 0.300 0.300 0.478 0.478 0.222 0.222 AG2AG2 0.368 0.368 0.169 0.169 5656 1One 8989 98.8998.89 0.225 0.225 0.449 0.449 0.326 0.326 AG2AG2 0.359 0.359 0.147 0.147 5757 00 9090 100100 0.211 0.211 0.467 0.467 0.322 0.322 AG2AG2 0.366 0.366 0.160 0.160 5858 00 9090 100100 0.167 0.167 0.444 0.444 0.389 0.389 AG2AG2 0.377 0.377 0.143 0.143 5959 1One 8989 98.8998.89 0.213 0.213 0.494 0.494 0.292 0.292 AG2AG2 0.375 0.375 0.183 0.183 6060 00 9090 100100 0.267 0.267 0.578 0.578 0.156 0.156 AG2AG2 0.429 0.429 0.265 0.265 6161 00 9090 100100 0.244 0.244 0.533 0.533 0.222 0.222 AG2AG2 0.394 0.394 0.218 0.218 6262 00 9090 100100 0.156 0.156 0.522 0.522 0.322 0.322 AG2AG2 0.401 0.401 0.208 0.208 6363 00 9090 100100 0.144 0.144 0.533 0.533 0.322 0.322 AG2AG2 0.409 0.409 0.218 0.218 6464 00 9090 100100 0.289 0.289 0.456 0.456 0.256 0.256 AG2AG2 0.356 0.356 0.151 0.151 6565 1One 8989 98.8998.89 0.393 0.393 0.483 0.483 0.124 0.124 AG2AG2 0.403 0.403 0.173 0.173 6666 1One 8989 98.8998.89 0.360 0.360 0.562 0.562 0.079 0.079 AG2AG2 0.451 0.451 0.248 0.248 6767 00 9090 100100 0.211 0.211 0.467 0.467 0.322 0.322 AG2AG2 0.366 0.366 0.160 0.160 6868 00 9090 100100 0.244 0.244 0.511 0.511 0.244 0.244 AG2AG2 0.381 0.381 0.197 0.197 6969 00 9090 100100 0.222 0.222 0.467 0.467 0.311 0.311 AG2AG2 0.364 0.364 0.160 0.160 7070 00 9090 100100 0.200 0.200 0.456 0.456 0.344 0.344 AG2AG2 0.366 0.366 0.151 0.151 7171 00 9090 100100 0.222 0.222 0.411 0.411 0.367 0.367 AG2AG2 0.353 0.353 0.121 0.121 7272 1One 8989 98.8998.89 0.225 0.225 0.573 0.573 0.202 0.202 AG2AG2 0.420 0.420 0.260 0.260 7373 1One 8989 98.8998.89 0.191 0.191 0.416 0.416 0.393 0.393 AG2AG2 0.364 0.364 0.124 0.124 7474 00 9090 100100 0.167 0.167 0.489 0.489 0.344 0.344 AG2AG2 0.385 0.385 0.178 0.178 7575 00 9090 100100 0.356 0.356 0.433 0.433 0.211 0.211 AG2AG2 0.359 0.359 0.136 0.136 7676 00 9090 100100 0.167 0.167 0.544 0.544 0.289 0.289 AG2AG2 0.408 0.408 0.229 0.229 7777 22 8888 97.7897.78 0.193 0.193 0.568 0.568 0.239 0.239 AG2AG2 0.417 0.417 0.254 0.254 7878 00 9090 100100 0.344 0.344 0.489 0.489 0.167 0.167 AG2AG2 0.385 0.385 0.178 0.178 7979 1One 8989 98.8998.89 0.169 0.169 0.483 0.483 0.348 0.348 AG2AG2 0.383 0.383 0.173 0.173 8080 00 9090 100100 0.133 0.133 0.511 0.511 0.356 0.356 AG2AG2 0.405 0.405 0.197 0.197 8181 00 9090 100100 0.244 0.244 0.589 0.589 0.167 0.167 AG2AG2 0.434 0.434 0.278 0.278 8282 1One 8989 98.8998.89 0.225 0.225 0.483 0.483 0.292 0.292 AG2AG2 0.369 0.369 0.173 0.173 8383 00 9090 100100 0.211 0.211 0.578 0.578 0.211 0.211 AG2AG2 0.423 0.423 0.265 0.265 8484 00 9090 100100 0.222 0.222 0.544 0.544 0.233 0.233 AG2AG2 0.400 0.400 0.229 0.229 8585 00 9090 100100 0.244 0.244 0.544 0.544 0.211 0.211 AG2AG2 0.401 0.401 0.229 0.229 8686 00 9090 100100 0.367 0.367 0.467 0.467 0.167 0.167 AG2AG2 0.380 0.380 0.160 0.160 8787 00 9090 100100 0.244 0.244 0.522 0.522 0.233 0.233 AG2AG2 0.387 0.387 0.208 0.208 8888 00 9090 100100 0.211 0.211 0.489 0.489 0.300 0.300 AG2AG2 0.374 0.374 0.178 0.178 8989 00 9090 100100 0.211 0.211 0.500 0.500 0.289 0.289 AG2AG2 0.378 0.378 0.188 0.188 9090 00 9090 100100 0.222 0.222 0.544 0.544 0.233 0.233 AG2AG2 0.400 0.400 0.229 0.229 9191 4949 4141 45.5545.55 1.001.00 00 00 AG2AG2     9292 4949 4141 45.5545.55 1.001.00 00 00 AG2AG2    

상기 표 1에서, 번호는 서열목록 상의 서열 번호를 나타내며, rs_number는 기준 염기서열(reference sequence)를 의미하며, 이는 인간게놈 프로젝트 후, 미국 국립보건원 산하 생물공학정보연구소(NCBI)의 데이터베이스에서 각 단일염기다형성을 구분하기 위해 붙인 이름이다. In Table 1, the number represents the sequence number on the sequence list, and rs_number represents a reference sequence, which is a single sequence in the database of the National Institute of Biotechnology Information (NCBI) under the National Institute of Health, after the Human Genome Project. Name given to distinguish nucleotide polymorphism.

염색체는 상기 단일염기다형성이 위치하고 있는 염색체의 번호를 나타낸다. The chromosome represents the number of the chromosome in which the single nucleotide polymorphism is located.

allele_A 및 allele_B는 유전자형 분석에서 실험의 편의상 임의적으로 대립 형질을 명명한 것이며, Freq_A 및 Freq_B는 각각 대립형질 A와 B의 빈도를 나타낸다. AA, AB 및 BB는 유전형을 갖는 대상자의 수이고, AA_freq, AB_freq, 및 BB_freq는 그 빈도를 나타낸다. allele_A and allele_B arbitrarily named alleles for convenience of experiments in genotyping, and Freq_A and Freq_B represent the frequencies of alleles A and B, respectively. AA, AB and BB are the number of subjects with genotypes, and AA_freq, AB_freq, and BB_freq indicate their frequency.

total은 분석된 대상자의 총 수이고, fail은 각각의 SNP에 대해 분석대상자 중 명확한 유전형 결과를 얻지 못한 대상자의 수이고, call rate는 각각의 SNP에 대해 분석대상자 중 유전형 결과가 검출되는 대상자의 비율을 나타낸다.total is the total number of subjects analyzed, fail is the number of subjects with no clear genotyping results for each SNP, and call rate is the percentage of subjects with genotyping results detected for each SNP. Indicates.

패널(panel)은 46개의 SNP로 구성된 assay 그룹으로, 각각의 SNP에 대한 PCR 프라이머를 이용한 PCR을 수행하여 수득된 산물을 풀링(pooling)하여 동시에 유전형분석용 프라이머(genotyping primer)를 이용한 유전형 확인 실험이 가능한 그룹을 나타낸다. PI 및 PE는 각각의 SNP에 대한 짝확률과 부권배제력을 나타내며, 하기의 공식을 이용하여 계산된다.The panel is an assay group consisting of 46 SNPs, and genotyping primers using a genotyping primer at the same time by pooling the product obtained by performing PCR using PCR primers for each SNP. This represents a possible group. PI and PE represent the pair probability and the negative power for each SNP and are calculated using the following formula.

Figure 112009038103110-PAT00004
Figure 112009038103110-PAT00004

식 중에서, Gi는 유전형 "i"를 갖는 시료의 비율(fraction)이고, n은 마커의 갯수이다. Where Gi is the fraction of the sample having genotype "i" and n is the number of markers.

부권배제력(PE)= h2(1-2*h*H2)Negative exclusion force (PE) = h 2 (1-2 * h * H 2 )

상기에서, H 및 h는 각각 동형접합체 및 이형접합체를 의미한다.In the above, H and h means homozygotes and heterozygotes, respectively.

상기에서 선별된 마커들의 짝확률은 0.345 내지 0.465였으며, 개인식별용 마커 88개(서열번호 1 내지 45 및 서열번호 48 내지 90)의 누적 짝확률은 3.61E-37로 계산되었다. The paired probability of the markers selected above was 0.345 to 0.465, and the cumulative paired probability of 88 personal identification markers (SEQ ID NOs: 1 to 45 and SEQ ID NOs: 48 to 90) was calculated to be 3.61E-37.

하기의 표 2는 현재 국립과학수사연구소에서 사용되고 있는 키트와 본 발명의 일 구체예에 따른 폴리뉴클레오티드 마커를 포함하는 키트를 이용한 개인식별검사의 누적 짝확률과 평균 부권배제력을 보여준다.Table 2 below shows the cumulative pair probability and the average negative exclusion power of the personal identification test using the kit currently used in the National Institute of Forensic Investigation and the kit including the polynucleotide marker according to one embodiment of the present invention.

표 2. 개인식별검사의 짝확률 및 평균부권배제력 비교 Table 2. Comparison of Pair Probability and Average Declining Power of Individual Identification

검사 도구Inspection tool 검사항목Inspection items 누적짝확률(PIT)Cumulative Pair Probability (PI T ) 평균부권배제력(MECT)Mean Booking Exclusion (MEC T ) 국과수 키트Noodles Kit 17개의 STR 마커17 STR markers 4.9E-204.9E-20 99.9998%99.9998% 패널 1*Panel 1 * 45개의 SNP 마커45 SNP Markers 2.04E-192.04E-19 99.9930%99.9930% 패널 2*Panel 2 * 43개의 SNP 마커43 SNP Markers 1.77E-181.77E-18 99.9905%99.9905% DL 키트*DL Kit * 88개의 SNP 마커88 SNP Markers 3.61E-373.61E-37 99.99999933%99.99999933%

* 패널 1 및 2는 각각 표 1에서 AG1 및 AG2로 표시된 SNP 마커로 구성되며, DL 키트는 패널 1(AG1)과 패널 2(AG2)의 88개의 SNP 마커로 구성된다.* Panels 1 and 2 consist of SNP markers labeled AG1 and AG2 in Table 1, respectively, and the DL kit consists of 88 SNP markers of Panel 1 (AG1) and Panel 2 (AG2).

국과수에서 현재 사용되고 있는 키트에서 이용되는 17개 STR 마커는 실종아동등의 보호 및 지원에 관한 법률(법률 제7560호, 2005. 5. 31 공포, 2005. 12. 1 시행)에 따라 국립과학수사연구소에서 유전자검사 및 데이터베이스 업무로 구축 사용하고 있는 국제적 검증이 완료된 조합으로 17개 STR 마커(CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta D, Penta E, TH01, TPOX, VWA, D2SD2S1338, D19S433)로 구성된다. The 17 STR markers used in kits currently used in Korean fruit trees are subject to the National Institute of Scientific Investigations, in accordance with the Act on the Protection and Support of Missing Children, etc. (Law No. 7560, 31 May 2005, 1 December 2005). 17 STR markers (CSF1PO, D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, FGA, Penta D, Penta E, TH01, TPOX, VWA, D2SD2S1338, D19S433).

SNP마커의 분석 목적인 개인식별을 위한 판정기준은 일반적인 국제 가이드라인(SWGDAM, AABB guideline)을 그대로 적용하였다. 상기 표 2에서 알 수 있는 바와 같이, 본 실시예에서 선정된 개인식별용 SNP 마커들, 특히, 88개의 SNP 마커로 구성된 DL 키트의 누적 짝확률 및 평균부권배제력은 현재 사용되고 있는 마커들의 기준보다 우수하다는 것을 확인했다.As a criterion for personal identification, the purpose of SNP marker analysis, the general international guidelines (SWGDAM, AABB guideline) were applied. As can be seen in Table 2, the cumulative pair probability and the average derogatory power of the personal identification SNP markers selected in the present embodiment, in particular, the DL kit composed of 88 SNP markers are higher than those of the markers currently used. Confirmed that it is excellent.

실시예 2. 개인식별용 마커의 식별력 검증Example 2 Verification of Discrimination of Personal Identification Markers

(1) 편광 검출을 통한 유전형 분석(1) genotyping through polarization detection

실시예 1에서 선정된 마커중 개인식별용 SNP 마커 88개(서열번호 1 내지 45 및 서열번호 48 내지 90)와 성별확인용 SNP마커 4개(서열번호 46, 47, 91 및 92)를 이용하여(표 2 참조) 개별시료 90명, 3인가족의 25가계 75명, 총 165명에 대한 유전형 분석을 수행하였다.Of the markers selected in Example 1, 88 individual identification SNP markers (SEQ ID NOs: 1 to 45 and SEQ ID NOs: 48 to 90) and 4 gender identification SNP markers (SEQ ID NOs: 46, 47, 91, and 92) were used. Genotyping was performed on 90 individual samples, 75 families of three families, and 165 people in total.

또한 부모 및 자로 구성된 3인 가계 3명을 대상으로 DNA농도를 달리하여 유전형 분석결과를 재확인하였다.In addition, three households consisting of three parents and children were reconfirmed the genotyping results by varying the DNA concentration.

게놈 DNA는 상업적으로 구입가능한 DNA 분리 키트 (Gentra Genomic DNA purification kit, Minneapolis, MN, USA)를 사용하여 제조사에서 제공한 프로토콜에 따라 5 ㎖의 혈액으로부터 추출하였다. 상기 DNA 중 SNP 부위의 유전형의 확인은 GenomeLabTM SNPstream® system (Ultra-high throughput; UHT system)을 사용하여 수행하였다. 상기 시스템은 멀티플렉스 PCR과 관련한 태그 어레이 단일 염기 확장 유전자 확인 기술 (Beckman Coulter, Fullerton, CA, USA) 및 이에 따른 SNPstream 소프트웨어를 이용한 것이다.Genomic DNA was extracted from 5 ml of blood using a commercially available DNA separation kit (Gentra Genomic DNA purification kit, Minneapolis, MN, USA) following the protocol provided by the manufacturer. The DNA of the confirmation of the genotype of the SNP site is GenomeLab TM SNPstream ® system; was carried out using (Ultra-high throughput UHT system) . The system utilizes tag array single base extension gene identification techniques (Beckman Coulter, Fullerton, CA, USA) and thus SNPstream software in connection with multiplex PCR.

상기 UHT 시스템을 이용한 SNP 부위의 유전형 (genotype) 분석방법을 요약하면, 다음과 같다. 먼저, 게놈 DNA(10ng-48plex 기준)로부터 표 1에 나타낸 92개 SNP 부위를 둘러싸는 서열을 PCR에 의하여 증폭하였다. PCR은 하기 표 3에 나타낸 PCR 프라이머 쌍을 프라이머로 사용하고, 게놈 DNA를 주형으로 하고 Taq Gold 폴리 머라제를 중합효소로 사용하여, 384 웰 프레이트의 각 웰에서 동시에 수행하였다. 열순환은 94℃에서 30초, 55℃에서 1분30초 및 72℃에서 1분30초를 35회 반복하였다. 엑소뉴클레아제를 이용하여 반응되지 않은 PCR 프라이머와 dNTP를 제거하였다.The genotype analysis method of the SNP region using the UHT system is summarized as follows. First, sequences surrounding the 92 SNP sites shown in Table 1 from genomic DNA (10 ng-48plex criteria) were amplified by PCR. PCR was performed simultaneously in each well of 384 well plates using the PCR primer pairs shown in Table 3 as primers, genomic DNA as template and Taq Gold polymerase as polymerase. The thermocycle was repeated 30 times at 94 ° C, 1 minute 30 seconds at 55 ° C, and 1 minute 30 seconds at 72 ° C. Exonucleases were used to remove unreacted PCR primers and dNTPs.

다음으로, 상기 SNP에 대하여 바로 옆까지 어닐링하는 프라이머 (이하 "SNP-IT 프라이머"라고도 함)를 사용하여, 단일 염기 프라이머 연장 반응 (SNP-IT 반응이라고도 함)을 수행하였다. 각 SNP에 대한 SNP-IT 프라이머의 서열은 표 2에 나타낸 바와 같다. SNP-IT 프라이머는 프라이머의 5'말단에 "태그 (tag)" 서열을 포함한다. 이 태그 서열은 다중 (multiplex) SNP-IT 분석의 마지막 단계에서 고상에 고정된 상보적인 프로브 핵산 (이하 "태그 프로브 (tag probe)"라고 함)에 어닐링된다. 다음으로, 각각 달리 형광 표지된 아시클로뉴클레오티드(acyclonucleotide), SNP-IT 프라이머 및 DNA 폴리머라제의 존재하에서 단일 염기 연장 반응을 384 웰 플레이트의 각 웰에서 수행하였다. 열순환은 94℃에서 20초, 및 40℃에서 11초를 45회 반복하였다. Next, a single base primer extension reaction (also called an SNP-IT reaction) was performed using a primer annealing to the SNP to the side (hereinafter also referred to as "SNP-IT primer"). The sequence of the SNP-IT primer for each SNP is shown in Table 2. SNP-IT primers comprise a "tag" sequence at the 5 'end of the primer. This tag sequence is annealed to the complementary probe nucleic acid (hereinafter referred to as the "tag probe") immobilized on the solid phase at the end of the multiplex SNP-IT analysis. Next, a single base extension reaction was performed in each well of a 384 well plate in the presence of the otherwise fluorescently labeled acyclonucleotide, SNP-IT primer and DNA polymerase. The thermocycle was repeated 45 times at 94 ° C. for 20 seconds and at 40 ° C. for 11 seconds.

표 3. SNP 부위의 유전형 확인을 위한 PCR 프라이머 및 SNP-IT 프라이머 Table 3. PCR primers and SNP-IT primers for genotyping of SNP sites

서열order
번호number
rs numberrs number PCR 프라이머PCR primers
(서열번호)(SEQ ID NO)
PCR 프라이머PCR primers
(서열번호)(SEQ ID NO)
SNP-IT 프라이머 SNP-IT Primer
(서열번호)(SEQ ID NO)
1One rs515603rs515603 서열번호 93SEQ ID NO: 93 서열번호 94SEQ ID NO: 94 서열번호 95SEQ ID NO: 95 22 rs10785736rs10785736 서열번호 96SEQ ID NO: 96 서열번호 97SEQ ID NO: 97 서열번호 98SEQ ID NO: 98 33 rs10920379rs10920379 서열번호 99SEQ ID NO: 99 서열번호 100SEQ ID NO: 100 서열번호 101SEQ ID NO: 101 44 rs7527185rs7527185 서열번호 102SEQ ID NO: 102 서열번호 103SEQ ID NO: 103 서열번호 104SEQ ID NO: 104 55 rs902329rs902329 서열번호 105SEQ ID NO: 105 서열번호 106SEQ ID NO: 106 서열번호 107SEQ ID NO: 107 66 rs10926595rs10926595 서열번호 108SEQ ID NO: 108 서열번호 109SEQ ID NO: 109 서열번호 110SEQ ID NO: 110 77 rs10884796rs10884796 서열번호 111SEQ ID NO: 111 서열번호 112SEQ ID NO: 112 서열번호 113SEQ ID NO: 113 88 rs12286769rs12286769 서열번호 114SEQ ID NO: 114 서열번호 115SEQ ID NO: 115 서열번호 116SEQ ID NO: 116 99 rs10791403rs10791403 서열번호 117SEQ ID NO: 117 서열번호 118SEQ ID NO: 118 서열번호 119SEQ ID NO: 119 1010 rs1487602rs1487602 서열번호 120SEQ ID NO: 120 서열번호 121SEQ ID NO: 121 서열번호 122SEQ ID NO: 122 1111 rs12876644rs12876644 서열번호 123SEQ ID NO: 123 서열번호 124SEQ ID NO: 124 서열번호 125SEQ ID NO: 125 1212 rs12585235rs12585235 서열번호 126SEQ ID NO: 126 서열번호 127SEQ ID NO: 127 서열번호 128SEQ ID NO: 128 1313 rs9540071rs9540071 서열번호 129SEQ ID NO: 129 서열번호 130SEQ ID NO: 130 서열번호 131SEQ ID NO: 131 1414 rs9523953rs9523953 서열번호 132SEQ ID NO: 132 서열번호 133SEQ ID NO: 133 서열번호 134SEQ ID NO: 134 1515 rs2402341rs2402341 서열번호 135SEQ ID NO: 135 서열번호 136SEQ ID NO: 136 서열번호 137SEQ ID NO: 137 1616 rs4906699rs4906699 서열번호 138SEQ ID NO: 138 서열번호 139SEQ ID NO: 139 서열번호 140SEQ ID NO: 140 1717 rs691rs691 서열번호 141SEQ ID NO: 141 서열번호 142SEQ ID NO: 142 서열번호 143SEQ ID NO: 143 1818 rs424165rs424165 서열번호 144SEQ ID NO: 144 서열번호 145SEQ ID NO: 145 서열번호 146SEQ ID NO: 146 1919 rs1812521rs1812521 서열번호 147SEQ ID NO: 147 서열번호 148SEQ ID NO: 148 서열번호 149SEQ ID NO: 149 2020 rs4407150rs4407150 서열번호 150SEQ ID NO: 150 서열번호 151SEQ ID NO: 151 서열번호 152SEQ ID NO: 152 2121 rs12965342rs12965342 서열번호 153SEQ ID NO: 153 서열번호 154SEQ ID NO: 154 서열번호 155SEQ ID NO: 155 2222 rs1943338rs1943338 서열번호 156SEQ ID NO: 156 서열번호 157SEQ ID NO: 157 서열번호 158SEQ ID NO: 158 2323 rs1563172rs1563172 서열번호 159SEQ ID NO: 159 서열번호 160SEQ ID NO: 160 서열번호 161SEQ ID NO: 161 2424 rs1427446rs1427446 서열번호 162SEQ ID NO: 162 서열번호 163SEQ ID NO: 163 서열번호 164SEQ ID NO: 164 2525 rs2241225rs2241225 서열번호 165SEQ ID NO: 165 서열번호 166SEQ ID NO: 166 서열번호 167SEQ ID NO: 167 2626 rs6744937rs6744937 서열번호 168SEQ ID NO: 168 서열번호 169SEQ ID NO: 169 서열번호 170SEQ ID NO: 170 2727 rs6442180rs6442180 서열번호 171SEQ ID NO: 171 서열번호 172SEQ ID NO: 172 서열번호 173SEQ ID NO: 173 2828 rs6549566rs6549566 서열번호 174SEQ ID NO: 174 서열번호 175SEQ ID NO: 175 서열번호 176SEQ ID NO: 176 2929 rs1709915rs1709915 서열번호 177SEQ ID NO: 177 서열번호 178SEQ ID NO: 178 서열번호 179SEQ ID NO: 179 3030 rs6447614rs6447614 서열번호 180SEQ ID NO: 180 서열번호 181SEQ ID NO: 181 서열번호 182SEQ ID NO: 182 3131 rs970022rs970022 서열번호 183SEQ ID NO: 183 서열번호 184SEQ ID NO: 184 서열번호 185SEQ ID NO: 185 3232 rs2613019rs2613019 서열번호 186SEQ ID NO: 186 서열번호 187SEQ ID NO: 187 서열번호 188SEQ ID NO: 188 3333 rs4501321rs4501321 서열번호 189SEQ ID NO: 189 서열번호 190SEQ ID NO: 190 서열번호 191SEQ ID NO: 191 3434 rs10075131rs10075131 서열번호 192SEQ ID NO: 192 서열번호 193SEQ ID NO: 193 서열번호 194SEQ ID NO: 194 3535 rs11952230rs11952230 서열번호 195SEQ ID NO: 195 서열번호 196SEQ ID NO: 196 서열번호 197SEQ ID NO: 197 3636 rs7707575rs7707575 서열번호 198SEQ ID NO: 198 서열번호 199SEQ ID NO: 199 서열번호 200SEQ ID NO: 200 3737 rs1883181rs1883181 서열번호 201SEQ ID NO: 201 서열번호 202SEQ ID NO: 202 서열번호 203SEQ ID NO: 203 3838 rs6900780rs6900780 서열번호 204SEQ ID NO: 204 서열번호 205SEQ ID NO: 205 서열번호 206SEQ ID NO: 206 3939 rs2736966rs2736966 서열번호 207SEQ ID NO: 207 서열번호 208SEQ ID NO: 208 서열번호 209SEQ ID NO: 209 4040 rs6947796rs6947796 서열번호 210SEQ ID NO: 210 서열번호 211SEQ ID NO: 211 서열번호 212SEQ ID NO: 212 4141 rs624667rs624667 서열번호 213SEQ ID NO: 213 서열번호 214SEQ ID NO: 214 서열번호 215SEQ ID NO: 215 4242 rs12546986rs12546986 서열번호 216SEQ ID NO: 216 서열번호 217SEQ ID NO: 217 서열번호 218SEQ ID NO: 218 4343 rs1875067rs1875067 서열번호 219SEQ ID NO: 219 서열번호 220SEQ ID NO: 220 서열번호 221SEQ ID NO: 221 4444 rs4876357rs4876357 서열번호 222SEQ ID NO: 222 서열번호 223SEQ ID NO: 223 서열번호 224SEQ ID NO: 224 4545 rs10811474rs10811474 서열번호 225SEQ ID NO: 225 서열번호 226SEQ ID NO: 226 서열번호 227SEQ ID NO: 227 4646 rs2444398rs2444398 서열번호 228SEQ ID NO: 228 서열번호 229SEQ ID NO: 229 서열번호 230SEQ ID NO: 230 4747 rs2521574rs2521574 서열번호 231SEQ ID NO: 231 서열번호 232SEQ ID NO: 232 서열번호 233SEQ ID NO: 233 4848 rs7921967rs7921967 서열번호 234SEQ ID NO: 234 서열번호 235SEQ ID NO: 235 서열번호 236SEQ ID NO: 236 4949 rs11599718rs11599718 서열번호 237SEQ ID NO: 237 서열번호 238SEQ ID NO: 238 서열번호 239SEQ ID NO: 239 5050 rs7298551rs7298551 서열번호 240SEQ ID NO: 240 서열번호 241SEQ ID NO: 241 서열번호 242SEQ ID NO: 242 5151 rs1166235rs1166235 서열번호 243SEQ ID NO: 243 서열번호 244SEQ ID NO: 244 서열번호 245SEQ ID NO: 245 5252 rs12820285rs12820285 서열번호 246SEQ ID NO: 246 서열번호 247SEQ ID NO: 247 서열번호 248SEQ ID NO: 248 5353 rs11060771rs11060771 서열번호 249SEQ ID NO: 249 서열번호 250SEQ ID NO: 250 서열번호 251SEQ ID NO: 251 5454 rs2039623rs2039623 서열번호 252SEQ ID NO: 252 서열번호 253SEQ ID NO: 253 서열번호 254SEQ ID NO: 254 55 55 rs9523089rs9523089 서열번호 255SEQ ID NO: 255 서열번호 256SEQ ID NO: 256 서열번호 257SEQ ID NO: 257 5656 rs408283rs408283 서열번호 258SEQ ID NO: 258 서열번호 259SEQ ID NO: 259 서열번호 260SEQ ID NO: 260 5757 rs7160372rs7160372 서열번호 261SEQ ID NO: 261 서열번호 262SEQ ID NO: 262 서열번호 263SEQ ID NO: 263 5858 rs11634785rs11634785 서열번호 264SEQ ID NO: 264 서열번호 265SEQ ID NO: 265 서열번호 266SEQ ID NO: 266 5959 rs31042rs31042 서열번호 267SEQ ID NO: 267 서열번호 268SEQ ID NO: 268 서열번호 269SEQ ID NO: 269 6060 rs11076262rs11076262 서열번호 270SEQ ID NO: 270 서열번호 271SEQ ID NO: 271 서열번호 272SEQ ID NO: 272 6161 rs7192715rs7192715 서열번호 273SEQ ID NO: 273 서열번호 274SEQ ID NO: 274 서열번호 275SEQ ID NO: 275 6262 rs8058011rs8058011 서열번호 276SEQ ID NO: 276 서열번호 277SEQ ID NO: 277 서열번호 278SEQ ID NO: 278 6363 rs2470209rs2470209 서열번호 279SEQ ID NO: 279 서열번호 280SEQ ID NO: 280 서열번호 281SEQ ID NO: 281 6464 rs12607426rs12607426 서열번호 282SEQ ID NO: 282 서열번호 283SEQ ID NO: 283 서열번호 284SEQ ID NO: 284 6565 rs6507244rs6507244 서열번호 285SEQ ID NO: 285 서열번호 286SEQ ID NO: 286 서열번호 287SEQ ID NO: 287 6666 rs4926111rs4926111 서열번호 288SEQ ID NO: 288 서열번호 289SEQ ID NO: 289 서열번호 290SEQ ID NO: 290 6767 rs8102497rs8102497 서열번호 291SEQ ID NO: 291 서열번호 292SEQ ID NO: 292 서열번호 293SEQ ID NO: 293 6868 rs4027132rs4027132 서열번호 294SEQ ID NO: 294 서열번호 295SEQ ID NO: 295 서열번호 296SEQ ID NO: 296 6969 rs330625rs330625 서열번호 297SEQ ID NO: 297 서열번호 298SEQ ID NO: 298 서열번호 299SEQ ID NO: 299 7070 rs6711114rs6711114 서열번호 300SEQ ID NO: 300 서열번호 301SEQ ID NO: 301 서열번호 302SEQ ID NO: 302 7171 rs4349283rs4349283 서열번호 303SEQ ID NO: 303 서열번호 304SEQ ID NO: 304 서열번호 305SEQ ID NO: 305 7272 rs12613725rs12613725 서열번호 306SEQ ID NO: 306 서열번호 307SEQ ID NO: 307 서열번호 308SEQ ID NO: 308 7373 rs3761161rs3761161 서열번호 309SEQ ID NO: 309 서열번호 310SEQ ID NO: 310 서열번호 311SEQ ID NO: 311 7474 rs6014763rs6014763 서열번호 312SEQ ID NO: 312 서열번호 313SEQ ID NO: 313 서열번호 314SEQ ID NO: 314 7575 rs6006426rs6006426 서열번호 315SEQ ID NO: 315 서열번호 316SEQ ID NO: 316 서열번호 317SEQ ID NO: 317 7676 rs7288176rs7288176 서열번호 318SEQ ID NO: 318 서열번호 319SEQ ID NO: 319 서열번호 320SEQ ID NO: 320 7777 rs12695977rs12695977 서열번호 321SEQ ID NO: 321 서열번호 322SEQ ID NO: 322 서열번호 323SEQ ID NO: 323 7878 rs2127657rs2127657 서열번호 324SEQ ID NO: 324 서열번호 325SEQ ID NO: 325 서열번호 326SEQ ID NO: 326 7979 rs4141387rs4141387 서열번호 327SEQ ID NO: 327 서열번호 328SEQ ID NO: 328 서열번호 329SEQ ID NO: 329 8080 rs6850503rs6850503 서열번호 330SEQ ID NO: 330 서열번호 331SEQ ID NO: 331 서열번호 332SEQ ID NO: 332 8181 rs2642781rs2642781 서열번호 333SEQ ID NO: 333 서열번호 334SEQ ID NO: 334 서열번호 335SEQ ID NO: 335 8282 rs6596805rs6596805 서열번호 336SEQ ID NO: 336 서열번호 337SEQ ID NO: 337 서열번호 338SEQ ID NO: 338 8383 rs1321167rs1321167 서열번호 339SEQ ID NO: 339 서열번호 340SEQ ID NO: 340 서열번호 341SEQ ID NO: 341 8484 rs9371835rs9371835 서열번호 342SEQ ID NO: 342 서열번호 343SEQ ID NO: 343 서열번호 344SEQ ID NO: 344 8585 rs11971741rs11971741 서열번호 345SEQ ID NO: 345 서열번호 346SEQ ID NO: 346 서열번호 347SEQ ID NO: 347 8686 rs4722616rs4722616 서열번호 348SEQ ID NO: 348 서열번호 349SEQ ID NO: 349 서열번호 350SEQ ID NO: 350 8787 rs7792547rs7792547 서열번호 351SEQ ID NO: 351 서열번호 352SEQ ID NO: 352 서열번호 353SEQ ID NO: 353 8888 rs2468177rs2468177 서열번호 354SEQ ID NO: 354 서열번호 355SEQ ID NO: 355 서열번호 356SEQ ID NO: 356 8989 rs7038176rs7038176 서열번호 357SEQ ID NO: 357 서열번호 358SEQ ID NO: 358 서열번호 359SEQ ID NO: 359 9090 rs7027501rs7027501 서열번호 360SEQ ID NO: 360 서열번호 361SEQ ID NO: 361 서열번호 362SEQ ID NO: 362 9191 rs2032654rs2032654 서열번호 363SEQ ID NO: 363 서열번호 364SEQ ID NO: 364 서열번호 365SEQ ID NO: 365 9292 rs9341273rs9341273 서열번호 366SEQ ID NO: 366 서열번호 367SEQ ID NO: 367 서열번호 368SEQ ID NO: 368

다음으로, 384웰을 포함하고 있는 SNPstream® Tag Array plate의 각 웰에 상기 단일 염기 연장 반응의 산물을 첨가하고 혼성화시켰다. 혼성화는 흡한 배양기에서 42℃에서 약 2 시간 동안 배양하여 이루어졌다. 상기 SNPstream® Tag Array plate의 각 웰의 표면에 52개의 구분된 영역이 있으며, 이 구분된 영역에는 태그 서열을 포함하는 태그 프로브가 고정되어 있다. 이 중 4개는 대조군(control) 서열 에 상보적인 태그 서열을 가지고 있으며, 48개는 12개의 단일 염기 연장 반응 산물에 상보적인 태그 서열을 가지고 있다. 각 SNP는 웰 위치에 의하여 구분된다. Next, included a 384-well and added to the product of the single base extension reaction in each well of a plate, which SNPstream ® Tag Array Hybridization. Hybridization was achieved by incubating at 42 ° C. for about 2 hours in a perspiration incubator. The SNPstream ® Array Tag, and the plate surface 52 delimited area in the each well of the segment region has a tag probe is fixed that comprises a tag sequence. Four of these have tag sequences that are complementary to control sequences, and 48 have tag sequences that are complementary to 12 single base extension reaction products. Each SNP is distinguished by well location.

다음으로, 혼성화 결과는 SNPstream® UHT Array ImagerTM를 이용하여 상기 상기 SNPstream® Tag Array plate의 각 웰의 표면에 52개의 구분된 영역에 여기광을 가하고, 그로부터 나오는 방사광을 측정하였다. 측정된 광 강도는 SNPstream® UHT computer에 저장하고, 각 시료의 각각의 SNP에 대한 유전형 결과를 확인하였다. Next, the hybridization results SNPstream ® UHT Array Imager using the TM the SNPstream ® Array Tag plate was added to the excitation light to the segment regions 52 to the surface of each well of a measure the radiation coming out from it. The measured light intensity was stored in SNPstream ® UHT computer, and genotyping results for each SNP of each sample were confirmed.

(2) 가족관계(친부, 친모, 미아 등)여부 판정 (2) Determination of family relations (father, mother, lost child, etc.)

SNP마커는 우선 적용범위를 멘델리안 유전법칙에서 공통 대립인자가 반드시 존재하는 수직 1대간의 가족관계에 한정을 두었다. 판정기준은 사전정보에 의해 가족관계확인이 요구되는 1:1 지정 비교 건에 대해서는 AABB(American Association of Blood Bank)의 가이드라인인 99.9%를 3인 검사시 1차 기준으로 적용한다. 또한 1,000명 이상의 데이터베이스에서 가족관계확인을 요하는 실종자확인, 미아찾기, 대량재해사건 등의 경우에는 99.99%이상을 2차 기준으로 적용한다. The SNP marker first limited its scope to family relationships between vertical generations where common alleles existed in Mendelian genetic law. As for the standard, the 19.9% of the American Association of Blood Bank's guidelines, 99.9%, are used as the primary criteria for the three-person test. In addition, more than 99.99% is applied as a secondary standard in cases of missing persons, missing children, and mass disaster cases that require family relationship verification in a database of more than 1,000 people.

부, 모, 및 자의 3인으로 구성된 35개의 가계 75명을 이용한 3인 이상 가족에 대해 실시예 1에서 선정된 SNP 마커를 이용한 분석결과를 표 4에 나타냈다. POD(Probability of discrimination: 식별률), POE(Probability of Exclusion: 배제율), 및 POP(Probability of Paternity: 친부지수: 친부관계여서 유전자검사결과 배제되지 않을 확률 대 친부관계가 아니나 우연히 일치하여 유전자검사결과 배제되 지 않을 확률로 한국인집단에서 사전확률 50%를 가정함)는 모두 기준을 상회하는 것을 확인하였다. Table 4 shows the analysis results using the SNP markers selected in Example 1 for three or more families using 75 households of 35 households consisting of three parents, parents, and children. Probability of discrimination (POD), Probability of Exclusion (POE), and Probability of Paternity (POP): Probability of not being excluded because of paternity versus genetic testing As a result, the probability of not being excluded is assumed to be 50% prior to the Korean population).

표 4. 3인 가족의 가족관계 판정Table 4. Family Relationship Determination of Three-person Family

Fam IDFam ID No. of Share allele MarkerNo. of Share allele Marker PODPOD POEPOE POPPOP Family-1Family-1 00 1One 0.9999999970.999999997 100100 Family-2Family-2 00 1One 0.9999999930.999999993 100100 Family-3Family-3 00 1One 0.9999999970.999999997 100100 Family-5Family-5 00 1One 0.9999999970.999999997 100100 Family-6Family-6 00 1One 0.9999999960.999999996 100100 Family-7Family-7 00 1One 0.9999999970.999999997 100100 Family-8Family-8 00 1One 0.9999999960.999999996 100100 Family-11Family-11 00 1One 0.9999999950.999999995 100100 Family-12Family-12 00 1One 0.9999999970.999999997 100100 Family-13Family-13 00 1One 0.9999999970.999999997 100100 Family-14Family-14 00 1One 0.9999999970.999999997 100100 Family-15Family-15 00 1One 0.9999999970.999999997 100100 Family-16Family-16 00 1One 0.9999999970.999999997 100100 Family-17Family-17 00 1One 0.9999999970.999999997 99.9999999.99999 Family-20Family-20 00 1One 0.9999999970.999999997 100100 Family-23Family-23 00 1One 0.9999999970.999999997 100100 Family-24Family-24 00 1One 0.9999999970.999999997 100100 Family-25Family-25 00 1One 0.9999999970.999999997 100100 Family-26Family-26 00 1One 0.9999999970.999999997 100100 Family-27Family-27 00 1One 0.9999999970.999999997 100100 Family-28Family-28 00 1One 0.9999999960.999999996 100100 Family-29Family-29 00 1One 0.9999999950.999999995 100100 Family-30Family-30 00 1One 0.9999999940.999999994 99.9998899.99988 Family-31Family-31 00 1One 0.9999999970.999999997 100100 Family-32Family-32 00 1One 0.9999999970.999999997 100100

부, 모, 자 3인으로 구성된 35 가계에서 부-자를 이용한 2인을 대상으로 한 분석결과는 표 5에 나타냈고 예상한 것과 같이 3인을 대상으로 했을 때보다 친부지수(POP)가 다소 감소했지만 모두 기준을 상회하는 정확한 결과를 나타내고 있다. In 35 households consisting of three parents, three parents, two parents using two children were shown in Table 5, and as expected, the number of paternity indexes decreased slightly compared to that of three children. However, all show accurate results exceeding the standard.

표 5. 부-자의 가족관계 판정 Table 5. Determination of Sub-Child Family Relations

Fam IDFam ID No. of Share allele MarkerNo. of Share allele Marker PODPOD POEPOE POPPOP Family-1Family-1 00 1One 0.9999999970.999999997 99.9999899.99998 Family-2Family-2 00 1One 0.9999999950.999999995 99.9997499.99974 Family-3Family-3 00 1One 0.9999999970.999999997 100100 Family-5Family-5 00 1One 0.9999999970.999999997 100100 Family-6Family-6 00 1One 0.9999999970.999999997 100100 Family-7Family-7 00 1One 0.9999999970.999999997 99.9991799.99917 Family-8Family-8 00 1One 0.9999999960.999999996 99.9999799.99997 Family-11Family-11 00 1One 0.9999999960.999999996 99.9999799.99997 Family-12Family-12 00 1One 0.9999999970.999999997 99.9999999.99999 Family-13Family-13 00 1One 0.9999999970.999999997 99.999999.9999 Family-14Family-14 00 1One 0.9999999970.999999997 99.9999899.99998 Family-15Family-15 00 1One 0.9999999970.999999997 100100 Family-16Family-16 00 1One 0.9999999970.999999997 99.9996299.99962 Family-17Family-17 00 1One 0.9999999970.999999997 99.9998999.99989 Family-20Family-20 00 1One 0.9999999970.999999997 99.9999899.99998 Family-23Family-23 00 1One 0.9999999970.999999997 100100 Family-24Family-24 00 1One 0.9999999970.999999997 99.9993599.99935 Family-25Family-25 00 1One 0.9999999970.999999997 99.9999399.99993 Family-26Family-26 00 1One 0.9999999970.999999997 99.9996199.99961 Family-27Family-27 00 1One 0.9999999970.999999997 99.9999699.99996 Family-28Family-28 00 1One 0.9999999970.999999997 100100 Family-29Family-29 00 1One 0.9999999950.999999995 99.9999799.99997 Family-30Family-30 00 1One 0.9999999940.999999994 99.9129399.91293 Family-31Family-31 00 1One 0.9999999970.999999997 99.9972399.99723 Family-32Family-32 00 1One 0.9999999970.999999997 99.9998499.99984

상기 표 4 및 5에서 No. of Share allele Marker는 가족관계에서 유전에 의해 검출될 수 없는 유전형의 갯수를 의미한다. Nos. In Tables 4 and 5 above. of Share allele Marker refers to the number of genotypes that cannot be detected by heredity in family relationships.

(3) 가족관계 배제의 확인(3) Confirmation of family relations exclusion

편부 또는 편모의 관계로 구성된 4가계로부터 수득된 8쌍의 시료를 대상으로 상기 실시예 1에서 수득된 SNP 마커(패널 1(서열번호 1 내지 47), 패널 2(서열번호 48 내지 92)를 이용하여 가족관계가 아닌 경우를 판별할 수 있는지 여부를 조사하였다. Eight pairs of samples obtained from four families composed of single parent or flagella were used for SNP markers obtained in Example 1 (Panel 1 (SEQ ID NOs: 1 to 47) and Panel 2 (SEQ ID NOs: 48 to 92)). This study examined whether it is possible to discriminate non-family relationships.

하기의 표 6에 표시된 바와 같이, 상기 4가계에서 혈연관계가 없는 부-자의 경우, 가족관계에서 유전법칙에 의해 검출될 수 없는 유전형(불일치 마커)이 8개 내지 12개씩 검출되어, 생물학적 가족이 아니라는 것을 확인할 수 있었다. As shown in Table 6 below, in the four families, there are 8 to 12 genotypes (mismatched markers) that cannot be detected by genetic law in the family relationship, and thus the biological family is detected. Could not be confirmed.

표 7. 가족관계 배제Table 7. Family Relationship Exclusion



part


character

일치된
마커의 갯수

Matched
Number of markers
panel 1panel 1 panel 2panel 2 총 불일치
마커의 갯수
Total discrepancy
Number of markers

총 마커의 갯수

Total number of markers
불일치
마커의 갯수
Inconsistency
Number of markers
불일치
마커의 갯수
Inconsistency
Number of markers
1B-171B-17 8191-F8191-F 7676 55 77 1212 8888 1A-M1A-M 5623-F5623-F 8080 33 55 88 8888 1A-M1A-M 1727-M1727-M 7676 88 44 1212 8888 1A-M1A-M 4404-M4404-M 7676 66 66 1212 8888

(4) SNP 마커를 이용한 성별 판정(4) Gender determination using SNP marker

성별의 판정은 염색체 Y의 SNP의 분석결과는 남성을 확인하고 염색체 X 및 Y에 위치한 SNP의 분석결과는 항상 남성에서는 이형접합체(heterozygote)로 나타나고 여성에서는 동형접합체(homozygote)가 나타나는 원리를 이용하여 판정한다.The determination of sex was based on the principle that SNP analysis of chromosome Y confirmed male and SNPs located on chromosomes X and Y always showed heterozygote in male and homozygote in female. Determine.

서열번호 46이 AG, 47이 GG, 91이 AA, 92가 AA의 결과를 나타내면 남성으로, 서열번호 46이 GG 이고 나머지 47,91,92의 결과는 검출되지 않을 때 여성으로 판정할 수 있으며 전체 대상자 남성 77명 여성 88명에 대한 분석결과 모두 정확하게 판정함을 확인할 수 있었다.If SEQID 46 is AG, 47 is GG, 91 is AA, 92 is AA, the result is male. As a result of the analysis of the 77 males and 88 females, it was confirmed that all of them were judged correctly.

<110> DNA LINK, INC. NISI <120> Single nucleotide polymorphism marker for personal identification and its use <160> 368 <170> KopatentIn 1.71 <210> 1 <211> 200 <212> DNA <213> Homo sapiens <400> 1 tttcctccac ctctttccaa ctccaactca aagtttctct ctcacacaag aaagcacatg 60 aggtgtttat cagttgatat tagtagttgc aaatctgcag gagctgttaa tgcacccagc 120 actctaattc cagagcatcg gacagtccct gtgtctccaa tgacatagct gactggcact 180 gggccctggc tgccccggag 200 <210> 2 <211> 200 <212> DNA <213> Homo sapiens <400> 2 tacttcaaat aacatctaca ctttttaaag aagaagattc aatctcagag aaactggttt 60 ggtttctcag ctgggaatat ttatttggtc atactaaaca ttgagccagt ggatcagcag 120 tagctgattg caagattctt aagtagacac acattacatt tcgtagggga tcaaaatatg 180 tcattctcaa gtatgctaat 200 <210> 3 <211> 200 <212> DNA <213> Homo sapiens <400> 3 aatgcttaat tgactaacag aattacaact ctaaaataat tgtagaaatt gtgttttctc 60 ggccatctgc tctctttaca ttaccacagt taggcatctt ctgtctgcac ctcacactcc 120 acacagcatt tagggcatgc actgcatcta aattatcacc taattagaga attagcctga 180 ggttacatag tatgaatcaa 200 <210> 4 <211> 200 <212> DNA <213> Homo sapiens <400> 4 tcaaaataag actgtgtcca cagattatcc ctgctcctat tttaagattg gaatctaata 60 aacagcacag gctgctctac catcatttgc tgccttacca ttgtttgtat ctatttttct 120 gttactattt ttggctatgc ttttagccac aggattgagt ctgaaagcag gcagatatgg 180 actcaagaaa gataaatcat 200 <210> 5 <211> 190 <212> DNA <213> Homo sapiens <400> 5 gttatttaga aaactgaaag gtgttctaat atcaattgaa attatcattt gttctcttac 60 aaatacattt taagaaatga ttttgatcaa tatagactga ttggttattc tgccccaatt 120 catattggga ttatattttc taatttggat atttacagta atcacagtag tgatgaggta 180 ggtcaaggca 190 <210> 6 <211> 200 <212> DNA <213> Homo sapiens <400> 6 gggaaggcat ctcctctggg aatccagaga aggcagagaa ggtagaggaa ggctgtaatt 60 ttgagcactg gggcaggacc aggagtgact tggcttctta cacacttttc taaaagttta 120 atattatttc caaattaaaa tttttttaat tatgaagcat tcagaggtaa tcacatccat 180 cactaattat tattattttt 200 <210> 7 <211> 190 <212> DNA <213> Homo sapiens <400> 7 ttaccttcag ttgtactcac tcaaatcttt cctaagttac cctgatcaga cagcttgcag 60 ccagatcatg aggtacatgt aggacatggc atgaagtttt gtttcattct gaaccaagga 120 aagccactga ggaattctga gctgcagaaa gtcactttga ctgatttatg gaaagtggat 180 tgaaggggaa 190 <210> 8 <211> 200 <212> DNA <213> Homo sapiens <400> 8 cagggagagg ggagccctgt ttggaactga agcatatcca cttaggataa gggtgacaac 60 atgtataaga ggacattctt ttgtgtattc aagaaatagt agcaagtgcc tatatgggat 120 atagttgtgg tgaagacaca aaagagtcct ttcatcatgg agcttccacg cgtccatccc 180 aaagctaagt cctggagaaa 200 <210> 9 <211> 200 <212> DNA <213> Homo sapiens <400> 9 gctgcgctct ccacaatgag gccttttcga ctgactcctg cagggtgcat gtggaccttt 60 ccctttggtt tgcatagccc tgggaggcta tttattttca tctcgaagcc attttctgta 120 ccttcaccac cagtttacac ttcaggaaac taagacattg aaagctaagt gagctgacca 180 aggctgcatt ttgagaaatg 200 <210> 10 <211> 200 <212> DNA <213> Homo sapiens <400> 10 gaaagtgcct agacggaaac atctttatag ctctgtaatg taaataatct taaagtcaaa 60 atttcaacaa cataaagcaa tgtaaatggg agactgtgca gaacgggatg gagaagagat 120 tttagctgca cccagttgta caaggatctg gctaatagtg caagcctcag cccacctaga 180 aagagaggac cgaagaaggg 200 <210> 11 <211> 200 <212> DNA <213> Homo sapiens <400> 11 tcgctaggtc ttatcttctc tggttttagc ttttctaggt aatacccaaa tgcatttgac 60 ttatggaccg tgccccacca cccttctagg gaatctccga gtaaattgtg tctgcagctt 120 aacaacgatt aatgactttc cacttataag taacagtttt attttgattc attttaacaa 180 atatatattg gcacttaaca 200 <210> 12 <211> 200 <212> DNA <213> Homo sapiens <400> 12 aagaaacagt gctcaagtaa aattgcagag aaatggtgta atttattata ttcctgccgg 60 acgttaatga tgtgctagca agtaatagca cttttactca ggcagatgaa gataccagtc 120 taagattacc ggtgggaaga aaacatgatg aaaaggtcta tttcaaaata acatatccaa 180 attagaaatc ctttcagtga 200 <210> 13 <211> 200 <212> DNA <213> Homo sapiens <400> 13 atacaaatat tttatttggt cttaccttcc tcttaaactt ttacaaactt ctttgctaaa 60 atgccagtag caacacttaa ctaaaatctc agatattttg gctagtcact tttattgata 120 ccactgcaaa gattaaagag gactttattg agattagtac tttgggaact gacttctatt 180 tatttattgc tttctagagt 200 <210> 14 <211> 200 <212> DNA <213> Homo sapiens <400> 14 aaagaaagag acagacaggg agggagaatg aatgattggt cttctgattt atctctttct 60 ctcttttatt gctggtttat gagttgaagt ctggctggga atatctgatt agtggtgttc 120 tggctacatg cctatgcctt agctaggaga aagaccggaa ctacaagtac ctaccatttt 180 cagccacaac aggtaaggaa 200 <210> 15 <211> 200 <212> DNA <213> Homo sapiens <400> 15 ataggcgtga gccaccgcgc ccagcctagc ccttgcttta aaggattgtt ctaatgactg 60 aaagacataa ttcagaaccc ctttcacaca gtacccgtca ataataggct ccataaatgt 120 tagctttctc tcttaatggt gaattgaggt aacttttcga ggcatgtaga tagtgagttg 180 ctttaaccag agcagttttt 200 <210> 16 <211> 200 <212> DNA <213> Homo sapiens <400> 16 gatcttggga gatttttgga gatggcaaag tgcttctaaa catgtttggc atggtctcct 60 tcaggctggt ggatacctca ggatggtaag tattggtttt caaaggcacc taatgttcca 120 tgtttgcagg tatgaggact gtgcatggat caatgatgac ttccatacgt gggttccttg 180 gaaagttgaa caaaatgagt 200 <210> 17 <211> 200 <212> DNA <213> Homo sapiens <400> 17 tacatgcatt cttttagtgg atagatgcac acaaacacac aagccattat ggggaaggat 60 ccacgtgtgt ggccatattg taacacattt ttctgcaaat acctctttca tttaacagcc 120 cttattcaat ggcctttttc tttttcagta gtacatacac atctgtgtca tttgttgaat 180 gacgacatga atgttttgta 200 <210> 18 <211> 200 <212> DNA <213> Homo sapiens <400> 18 aagggcttat tactgggcta catagatttc gaatccttta aaaaattaca taggcatatt 60 tttaaaagac atttaagaaa agaaatgaag atctatgaca aaaaggcttc gtcttcctca 120 cctgggacta tggagcataa acgctgcttg ccgcagcctc tctggctggc aagtgtagcc 180 tcgggctggc cctaagggcc 200 <210> 19 <211> 200 <212> DNA <213> Homo sapiens <400> 19 tgataagttc cccccattac catgcttcta attgggatga gagggggagc catttgtgca 60 aacccccaga aagctggagt ggggttggga tccaggaaag gtcaaatcca actattgacc 120 actctctgaa atgggtggga tccttagtaa tggtgttttt aactccaaag caacagggaa 180 actctccctt acagactcct 200 <210> 20 <211> 200 <212> DNA <213> Homo sapiens <400> 20 gtgaagggtt gagcacgttc catcttttca gagaacaaag ctagaaaaca tgtattttaa 60 taaaataata ttcatcatga attcatgatg tttcctattc aattcaagta gaggactttt 120 ttcacagtgt ccttttccct gtcaaatttc aaattttatt gacatgaata taattattca 180 tttgctgtat tcataataca 200 <210> 21 <211> 200 <212> DNA <213> Homo sapiens <400> 21 aagaccaaaa tgcagctgcc ttcatcaggc cctacttcca gagatgcacg ggtggatgga 60 gcttttccct ctgacccagt ccttcaactg catgtgatgc tttgggaccc acgcattcca 120 tcctttctgc cctgtccttc tcctggatgt catacattgg gatccaggtg ttcagttttc 180 tctgccttgt tcttgctctg 200 <210> 22 <211> 200 <212> DNA <213> Homo sapiens <400> 22 cctaggaggt tctccagtca actttgccat ttgaaatcat actccttaca ggcaaccaat 60 ggtgctcaaa gcatctcttt cagcatcaat cttcctactt gtgatatttg ggggatgtct 120 taattagatc agttactttg ccattccttt aagtattata tctcaagtta cctgttggct 180 tcttacaggt ctcatgaaga 200 <210> 23 <211> 150 <212> DNA <213> Homo sapiens <400> 23 tgcaccacac tgcagtacta ggcatcattt tacacctaag caaaagatca cagaacatca 60 ctaatggatg aacaaaaaaa aaaacctcca ataaaagcac tcttatttcc aggatcacaa 120 gaaataccaa gtggctaggt tgtcacctac 150 <210> 24 <211> 200 <212> DNA <213> Homo sapiens <400> 24 cactcagaaa tggtttagat ttctaaaggg aagaatagag aatcacctgg agagtaacag 60 gcagttaatc tggaataaat gaagaagact atctgataca tggctgtagg gatgtggaga 120 tttttttcta tacgtagact gtaagagtac ttggctgttt caccagtctt gcctctctac 180 ctgcattaac tctcatcctt 200 <210> 25 <211> 200 <212> DNA <213> Homo sapiens <400> 25 attttcccat ctcttttagc ttacatctgc actgtgtgat ttgataggga agcaccagag 60 aagcagcaat gggatttggg atatttgctt atgtagctta ttctagcttt gctcatgcct 120 cattctggat gttccacttc catcttaaaa tgaattgctt ctggacctcc ctttttgtat 180 gatttaactc aaaatcagta 200 <210> 26 <211> 200 <212> DNA <213> Homo sapiens <400> 26 gattgttcca gtaattaatc taagtaaaaa cgtgtccagg cctgcaatca ctcaaacatt 60 ccactccaag atattctatg ctggacagga gtcaaactca tttggaataa tgcagtcagt 120 ttcagaagtt ttaaacgtgc aaaagtccac agcctacaaa agctaattta aatccagatg 180 ccttatgtaa ataatttatt 200 <210> 27 <211> 200 <212> DNA <213> Homo sapiens <400> 27 ggagctggga ttctgcgcaa taagacccca tctgcctgac tccagcagga ggcaagacag 60 ggaggtagca cgctgagaac cctctcccca tatccacttc ttaccacctt cagcctcccc 120 tacaaatgat gcctgtgtgt ccccctcacc caccttagcc ggacacctcc ttcccttggg 180 cccaccctgc ccagcccctc 200 <210> 28 <211> 200 <212> DNA <213> Homo sapiens <400> 28 tgtctgggac tctgaaaacc tgatcattct tcttttacta atcactccat tctcaaaaat 60 caacattgtt tttggttagg tccttgtatg acagctggat gtgcattctc ttatcattag 120 ctttaagact tatccctgtt ctttgcacac atgataaaca acatttttaa taacaatttc 180 cagtgaacga atgtgaccaa 200 <210> 29 <211> 200 <212> DNA <213> Homo sapiens <400> 29 agtatgtaca gaaagtagag ggctgtgatt aacatgttaa gtcccataag aatgatggtg 60 agattggatc aagagaataa ggctatggat atgaagagtt cgctactaaa ttaatggtag 120 ggggtagggc aaggttggtg aggctagcta aaagtcatca catggccatt agtgggagta 180 gtgtctgaag gccttgagta 200 <210> 30 <211> 200 <212> DNA <213> Homo sapiens <400> 30 tatgtcataa tattaacctc ccttccatct gcttttgctg tttagtagtc tcatgtcttc 60 ttgagctaga ctatcttatg taaattcatg ttatgtgaat gaggtctcag taataacagc 120 cttctgtctt tcctcaccgt aacaggagtc ataggaaagg gggtgtgata gtctcagaaa 180 cagcctagca tctcatacaa 200 <210> 31 <211> 200 <212> DNA <213> Homo sapiens <400> 31 ttactcaagg caaaagaaag cattagagtc agaaataagg ctggactcca gtggaatgcc 60 ttgttctgca atcaggccca gcttatgaac tgcctactga ttaggaagat gaagagagtc 120 cagacaatca ctattattct ccccatatca ttaactggaa gtaaattagg tcagctcttg 180 caggaagtat tcattttttc 200 <210> 32 <211> 200 <212> DNA <213> Homo sapiens <400> 32 ttgagtgtct tttcctgatc tataaagtag tctctctctg tctctgtgga tatttcttgc 60 acaacctttc tcccttggtc ctatatgtgt atatatgatg gggagttttg acagagcatg 120 ttaggggaca acatcaagtc agggtatttc ttaaatgtct ggtctgactg ataaaaatat 180 tgtgatatta tcctataact 200 <210> 33 <211> 200 <212> DNA <213> Homo sapiens <400> 33 gtacatgtgc aggttttgtt atataggtaa actcatgtca tgggggtttg ttaattaaag 60 aagagtgtgc acatgatcca tctctagttg cttttcaaca agattcagga taaagatcaa 120 gtttccagga ctgactacat atgtgcttat cctttgggaa catgggaaag gaactctaat 180 gatgccaaat attcatagag 200 <210> 34 <211> 200 <212> DNA <213> Homo sapiens <400> 34 gaggagtggg aaggaaaatt aaaaaaaaaa aatgatactg cctagctaca agctgcagag 60 ggaaattaat attcaaaagg ttaaggtgtc tgtgaaatgt tgtaatgagt aacactcata 120 gtttgttact ataggttcat tgcctctaat gttgaggacg gcacatggat aatttacgat 180 tcccattgtc ccctctgcag 200 <210> 35 <211> 200 <212> DNA <213> Homo sapiens <400> 35 aattcctgct tcatttcatc atgttttttg cctcacaaac tacaattctt attcccaaat 60 tcaaattttt tcttgagtga tagttgtctt tctcttcttt tgcacaccca aagatctcaa 120 gtaggatatt tggggactga tgaaggggag aactcaagga aatgattggg gcctcaaaga 180 agcttctagg ccaggtgtgg 200 <210> 36 <211> 200 <212> DNA <213> Homo sapiens <400> 36 tgcacttttc aaagattttc agaccttgat acttccaagg cttattctat agggtttttg 60 tacttaatat aatacaattt tacaaggctt agaggcaaac gttagaaaca tatattaagc 120 agaaaatagg aatacttgta tcttttttct atgtgttagt tttaccctct aactagatag 180 ctccttggca tcttgaagtt 200 <210> 37 <211> 200 <212> DNA <213> Homo sapiens <400> 37 atgtctgttg ggacaaaaca tggccagttg agtgcactgt tctagattgc caactcctta 60 agagacaagg tatcttttca cccttgcttt tcctatagtg cttgcacagt atttctgaac 120 caatcagatg ttgcttaaag gaaaataaat aaataaatgg caatagcatt tataagcagg 180 tattcctaca gctttatgcc 200 <210> 38 <211> 200 <212> DNA <213> Homo sapiens <400> 38 ttttagagta ggatatagaa ccactaatac attaatcttg actttaacat ttcctcaaac 60 tctcgaaaag tatttatcct gtgtgtttga ttttagagcg ttcacctgat tctcctttag 120 gagttgataa tgcaaaacag tgaaatttat gtaattgtaa aggtagaaaa cactccttca 180 tattccatat catttctaga 200 <210> 39 <211> 200 <212> DNA <213> Homo sapiens <400> 39 gaagggaact ttgcacccca agggcatggt gtggagtcaa tagtggcaag ttcagtctgg 60 ttttttacat cagccggttc agaggaagag tgaaatcccc agatcagcag ggcaaaatgc 120 tggaagttgt cgaggatgca gagagtagca ggaagacacc tctgagaact cactcacaca 180 ccctgcccct gtgtagagat 200 <210> 40 <211> 200 <212> DNA <213> Homo sapiens <400> 40 tcagaatccc aggattaaaa agaaagagag gaaggaagga aggaaggaaa gaagaaaagg 60 aaggagggag gaaagaaggg agaatggtca aaatatatga agatgaggtc cagaatatgc 120 aaatttgttg cacgttttca gccactggta gaatatgaga aaagagaatc tgtatgtgag 180 catttaaaat atacatttga 200 <210> 41 <211> 193 <212> DNA <213> Homo sapiens <400> 41 aaattagcac caagaacaag aaatacagtc tttgaaaatt agaaattgga acttactaga 60 gcataagtgg ctgttttaaa atgtttctgg tggcacttgt tattgttacc atgtttttaa 120 cctacatcat tggggtttga tcactttcta acatcatcat ctctgaaaca cacattttct 180 agtaattata aaa 193 <210> 42 <211> 200 <212> DNA <213> Homo sapiens <400> 42 tgtcatagaa ctttagatgt catttgtcat ttatttaaag gacaaaactg aaggaagtta 60 ggttaggttt aggaatcatc aaaagaaaag aaagtgtcag ataaggagca tcacaggttc 120 ctatatccta taagttataa tatacattgg agatcagaac tttttctttt ctatttctaa 180 tatttagatt acagatgagc 200 <210> 43 <211> 200 <212> DNA <213> Homo sapiens <400> 43 taatggcgag ggtccagcta tgcctctctt tggtttgttg acagtggttc acgttcctaa 60 gcatctttct ggatgggtca tctccatttg tgtccttttg gcatcttgtt ggcttctgct 120 ccttttctac gctgtgctcc ttcctgtgga gccacaggaa ctgctgaagt tccctcccac 180 acctttgaag gctacaagga 200 <210> 44 <211> 200 <212> DNA <213> Homo sapiens <400> 44 ttcttaattt aaggtgtgaa tataaaataa aaaggcagag cttcttagaa aagagtttca 60 aaggcaattc cctaaacatc ttgaaaaata gcagcagaat gacctcagtt caggatttta 120 aagaataaca ttcattgaga catagacata attgttcagg tgattatttt tcattagtta 180 aaaaaaatgg caaatccatc 200 <210> 45 <211> 200 <212> DNA <213> Homo sapiens <400> 45 tatagcactt attagactta attctctctg tcctaacaca cacgtgagca cgcatgcaca 60 catgcacaca cacacacaca cacacacaca tgctttttac aaatatgaca acctgtatca 120 atacaggctg caaggtaatt attgcgtcaa tactattata tctcacaaag tacaagtaaa 180 gattaaacaa tcaggcctca 200 <210> 46 <211> 200 <212> DNA <213> Homo sapiens <400> 46 tttctaaagt ggctctccca aacctacctt tgtcctaact cagttgtctg tgattctcaa 60 tatagtaacg ataagcctct ttgaatatgg aggccgctgc gacggcccgg ctgagaccca 120 aagcccggtg gaaaaagaca gcccggcgaa gacccaaagc ccagcccaag acacctcaat 180 catgtcgaga aataacgcag 200 <210> 47 <211> 200 <212> DNA <213> Homo sapiens <400> 47 gaaactacaa cggcaagatt aaagatcaga ttcctttaaa aaaagtgtgc ctcccaatct 60 tacctccagt tcatttagcc tttggacgcg aggagtaaat tgaaattgtc aacttctact 120 gcaaaaggag gctgccaatc ctagaagaaa gtgtaaggac ctggtaacta tggcacagta 180 aaggatgaag atagtgaaaa 200 <210> 48 <211> 199 <212> DNA <213> Homo sapiens <400> 48 agtgtgattg caatcaagaa agttacaaaa ctttattggc atataaaatg tacacaaaaa 60 ataacataca catttgaaca atatcatatt cctgaatata aaatgactgt tgtgagaata 120 tcagttgttc ctagattaat gcacacattt ggtgtaggtc atttcaatat cctcctggct 180 attttagaaa cagaacaaa 199 <210> 49 <211> 200 <212> DNA <213> Homo sapiens <400> 49 ctttatcaca gaaaaccagt tgttccagtc agacccatac ctggaatttt taccaaagcc 60 tctctgttaa tggcatccac cagggaggac gctggtgtcc gtttaagcaa gcacttagct 120 ttgcttccac gtggcagtac ctgtatataa gaattcactg aagtgtcaaa caaatgctcc 180 caagtctaca gttcacatat 200 <210> 50 <211> 200 <212> DNA <213> Homo sapiens <400> 50 ctcttggctg gatgcatttg tgaaaagtac aatctgcaaa atcatacaat tgattttgga 60 gagttcatcg gatttttctg aatcttgaat acagtattac ctggactctt tttttggtgt 120 tggagggcag tatctgccag gctcacaatg aagtcattaa ttttgttatt acatctcttc 180 caccaccact tcccacccct 200 <210> 51 <211> 200 <212> DNA <213> Homo sapiens <400> 51 aacgtgaaat acattatgct tccattacac tagttatcat gggaaaacac ctcaaaaaaa 60 taaaaacaga ccaacaaaag acaataaaga cctttgtgcc tccattattt ttctgtccta 120 gtatttgtgg ccgggtcaaa aacaaactag acagggaccc tgagggaggg agatttcgct 180 gacatctgta ggtaggatca 200 <210> 52 <211> 200 <212> DNA <213> Homo sapiens <400> 52 gtttcctttc ttcctagtta aaaatgcacc atctctctaa ggaggtgcct gttcattggg 60 tgttcttccc caggaatgac gtttcctgtt ttatgatggg aaacaagacg ttcacactcc 120 tgagattctg ggcatcaggt ctacatctct gtcatcatcc tggccagcgt ctaccttgcg 180 aaatgatcaa aatgatgacc 200 <210> 53 <211> 200 <212> DNA <213> Homo sapiens <400> 53 ctatccaacc tgcctcgcca agataaaggc cagtgagacg tgatactggc acacttgctg 60 ctgtagcaat gtttttctgt tttgctctcc tcattgaggc aaagttttaa aattatcctt 120 actgtttttg ttgttggcct gaaaggttaa aattcatttg ggtgagcttc caacaatgac 180 tggtttctct gcagccaata 200 <210> 54 <211> 193 <212> DNA <213> Homo sapiens <400> 54 ggtccttcag gctaacattt ctttagttta cagttctacc aattagcatc attaaattac 60 catttatgtt tccttaaaaa gtggagattg catctttttt ggagatttgg ttctaaagtc 120 agtatgtgag gcaaagagtg aaagcctctt atcttatcct aaagtagaca gcagtatatg 180 tggtttgtgt aca 193 <210> 55 <211> 200 <212> DNA <213> Homo sapiens <400> 55 ttcacatggt ttaaaaagtg gaaactctga aagtgtttat aatttaaata aaatgtttat 60 ttctgtagtc aaaaggctag tgaaatttgg agacagattt ttaagcaata ttctaaattt 120 aatgttactg taaagagcaa tctgggaata tttacttctt tccagctatt gatagaaata 180 ggccacaaag agaaatatat 200 <210> 56 <211> 200 <212> DNA <213> Homo sapiens <400> 56 ctcagtatct gttctgttcc caatggtctt tagcaagagt tgcaaagcgc cctcctgtta 60 cagtaaagaa ttctccttta tatcaaatct aaattacttc gtattaggca gaaccctttt 120 aattgcaagt aacagaaact atacaaatta gcttaagcat aaagggactt tattggcttg 180 tgttcctgga tagagctggc 200 <210> 57 <211> 200 <212> DNA <213> Homo sapiens <400> 57 caggcttaca ttcagtaaga ttcatcaggc ttactattct ctctgccacc tcacactcct 60 tttcttgggt acctgttcct gtgggagaca agtattcttt agtgagtgat actggagcgt 120 tcttttcttc ctctactccc ttgctgccac ccaccaacct gccccaactt ctgaaattcc 180 catcctgggg gaggttccca 200 <210> 58 <211> 200 <212> DNA <213> Homo sapiens <400> 58 gtggaaataa cagagattag tacatggaga actatggcca aaaaaaaaaa aaaaaaaaat 60 cctgccagaa tgtattctta acttcgaaca aatgccagaa tattggtacc tttggcttcc 120 tcctcagtgc ttgtgcctat cagaacagat aaaacatgct gttttggtta gttccctacg 180 ggtctctctg tccctccggg 200 <210> 59 <211> 196 <212> DNA <213> Homo sapiens <400> 59 actgttacct caacaaataa ctaatgtaaa aagcaaagga cgtcatttga gttattgaag 60 ttcagaagta tttcaggaca catttaccag tgagttaggc tccgcactct tgggaaacaa 120 tgcccaggta attattttaa atgagcatta attatgtcat tattagaaat ggggagaaaa 180 tgcaatttcc ttctgt 196 <210> 60 <211> 200 <212> DNA <213> Homo sapiens <400> 60 agcatgcagg gcctctgctg ggtttcttaa aggagaagac cagaaatagc atccattctg 60 ctgcatttta ttggtcaagg aaagtcacgg tgccagtctc agtcaagaga aaaggtaatg 120 aacttaatgg gtgaagtggc acacacttat aggcaaggag gggattgaca gcaacccttt 180 ttggaaagta tctcccacag 200 <210> 61 <211> 200 <212> DNA <213> Homo sapiens <400> 61 taagtcttta atcaatttgg ggttgtgttt tgcattgtat atagtgtgaa gggtcctcca 60 tggtgaaggc ttctggggtc ttcctgctct cctcttaccc gcacaaagaa gtcacagttg 120 tgatgtgtct tcttggcacc cagaagatga tgcagactaa atgctttcta catttttctg 180 tgtggcttct ttggtctttg 200 <210> 62 <211> 200 <212> DNA <213> Homo sapiens <400> 62 tagatatttt tacaagtata ttacctccta tttgcataat gccttctagt tctcaaagac 60 tttttacaca cttcatcggt ttgatcttta ccatgacacc taatggaaat attatcacca 120 tcttgatttt acagatcagg aaaccaaggc tgaggaaagg gaatgacttc ctcaggaccg 180 caagatgttc agtttctcag 200 <210> 63 <211> 200 <212> DNA <213> Homo sapiens <400> 63 ctcaattgcc agatgcatat gccctgtgca catgcctttt cctctaggga aaccctgttc 60 agggtctcaa tgtcccctgg cccagctgcc ttaacttagc caaatgcaaa cttgccctgt 120 atctccagtg gctcagaact gccctgctag ctctcaaccc tcctccacgc tttttctttt 180 tccttgcttc ctggtcctgc 200 <210> 64 <211> 200 <212> DNA <213> Homo sapiens <400> 64 aaactcaatt ttcatttcaa tatccttgaa gtagaaaagt agtctttgaa caaatcactg 60 tatcttagag gcatgtgttt aaaatactgg cctagctacc agaactttta aagattgaca 120 tttccatgat gtgcctgaca atttaatcga ccttataaag tgcttctcag gcttcctggg 180 acaatgtttc ccaaagtgta 200 <210> 65 <211> 200 <212> DNA <213> Homo sapiens <400> 65 ctggtaaaac cccgagaaaa attaagaaaa agatggagag atgtagcatc aagtattctg 60 tagggatgaa ccaaggtcat tttttgaggt cttttggtct ttggtctatt tattggggat 120 tcctaacttg caagtttctt aagtgtagca tttaacacat tccataattt aactctttca 180 taaatttcca tgctacttac 200 <210> 66 <211> 200 <212> DNA <213> Homo sapiens <400> 66 ctcactctgg acaaaaccac tattatgacc agaatgcagc atcactgggc agctatgacc 60 tatatttgaa atacattctt agaaaggttc catttggaag gagtgcaacg tgcacagcac 120 ttttggggag caacttggca gagtgcatta aaacatgaag tgcaggccga gtgcaatggc 180 tcatgtctgt aatcccagca 200 <210> 67 <211> 200 <212> DNA <213> Homo sapiens <400> 67 aaggtgttga acagtaaaca cagtatactt catttattaa ataaaaagag aaacacactg 60 tatacatatt tgcttctata tgcatggaat aacactggaa gatattcaca aaactattga 120 cattggttat cttttttttt ttctttttct gactcaaaca catcttctga gacactggtt 180 atctatagag agggaaagat 200 <210> 68 <211> 200 <212> DNA <213> Homo sapiens <400> 68 cctttaattg taatgtaagt ctatcaccat ctggctgcct ctccttccat tctttatggt 60 tagctgttta tgctctggct atgacaaatt caaagttcaa tcgtatttct ggctaattct 120 tttttttttt ttttaaacat ttatttagga ggacttgaga agaaagagtg ggtactttta 180 aagtctagag tggtcagaac 200 <210> 69 <211> 200 <212> DNA <213> Homo sapiens <400> 69 tacaagtatg aagcaccaat tctcttagaa agaataatct ggctgcatgg tatcaatgac 60 acctctttta taattaaatc tataattttt tttgaatacc tctaggtccc atccttcacc 120 accatggatg catttgtgtc taatattagt gattgtttca acagaatttc aggccttttt 180 tcctgatctc tcttcctccc 200 <210> 70 <211> 200 <212> DNA <213> Homo sapiens <400> 70 tggaaataaa cagttttggg gaagatttaa tccctcactg gggaaaaaac aagcagataa 60 aatcagggtc ctctaactgt ccataatctg caacaagtac attttaattc tctgcataaa 120 atttttttat ttttaaaaaa gtaggacttc aagtgtggag atatggaatt cctcaatccc 180 tgcagcccgc cttaaagaca 200 <210> 71 <211> 200 <212> DNA <213> Homo sapiens <400> 71 tagaggatac cttgtgccat cctggttcct tcatacactg gaggtggcac cgcagtctaa 60 agagctatta tgccagctca cgtgtgtggc ttaagcccag aatcggcaga gtcctgaatt 120 gttctgtgtc cctccaaagt cagggtcact gtcaccctaa gacagcatgt cagcaccatt 180 ccagaggccc aattttatcc 200 <210> 72 <211> 200 <212> DNA <213> Homo sapiens <400> 72 tgccccattg tttgtctggt atagagctct cagcaaatgt gttttcctca gaaattgcca 60 actttgctcc acactgcatt tggaatttgg tattggagac agaattccga tgtcagtcca 120 cttctttttc ccttgtaggc aaacggttta ttgtgtttgt cagtttggaa aacacatttt 180 atcctgagaa atcaaatgta 200 <210> 73 <211> 200 <212> DNA <213> Homo sapiens <400> 73 ggcaccccaa aagtcagtgt cttcaaatag cagccattat tagttctcaa ggttacaggt 60 cagtgtgtga cccttttgcc ctgggccctt ctctgttgtt tcagctgggc tcatatggga 120 gtcattggtc aactagagga gtgctgctcc aggatggtct tgcccacatg tatggtggtc 180 agctggctgt tttggggggg 200 <210> 74 <211> 200 <212> DNA <213> Homo sapiens <400> 74 aggcactgca ccaggatttg actattgatg catctccaag ctgagcctcg gtaggcctgt 60 ggtcccatgc tagagagcag ctgccagtgc ctccatctgc gcaaagcttg gctgtgtgtg 120 gatgggtggg acaagtcact ccagaagctt ctccccttaa gacatcctga cattaaggga 180 tcttcttcct ttgctcctct 200 <210> 75 <211> 200 <212> DNA <213> Homo sapiens <400> 75 ggcagagccc cttagcggct ctaagcacta aaatactatg ctaactaaaa actaccctca 60 gcatcaaaca aagataagga agtctagtct gacttttctc tgatgacaac ataccatgcc 120 tattttgaaa cgtcagagtc tggccaaaaa tgtttgggtg aatggggtac cagtcatcat 180 tatcgggaat atttctggag 200 <210> 76 <211> 200 <212> DNA <213> Homo sapiens <400> 76 tattagatgc tgtcaaagtc taagcgaccc ttcacatttc gcattccccc gagtagtgtt 60 cagggtttac ttggtgcaca cttggccaac acgggatgtc ttctatttct agccactctg 120 gtgagtcatc agtggtgcac accatggttt caagttcatt tgcactttct cagtgtctat 180 aaaaattgag caactagcag 200 <210> 77 <211> 200 <212> DNA <213> Homo sapiens <400> 77 gaaaactgac aaggacacat tagagctgca cttcactagc agcatgaatg tggtaatggt 60 gaaaggagaa caatatctga aaggaaatga aggtcttatc taggagccac agagatttca 120 tttttgtttt tctgaaaatt atcattatca gctgtgactg ctgatgaagg accacttagc 180 attcccccca aggaataatt 200 <210> 78 <211> 199 <212> DNA <213> Homo sapiens <400> 78 taaacagact cagcctcata gggcctttcc tgagctcagg ccattcaaac ctgagcaagg 60 cgttttctca tgagcattgc cagctgagtt tcacaaaaat tattacactc tgttcttccc 120 accatgagaa catattcagt tattggattg gaaataaaga ctccagctcc ctcagctgag 180 ctgctgatgt ttgaatgtg 199 <210> 79 <211> 200 <212> DNA <213> Homo sapiens <400> 79 gcaatgcact ccaggcctta ttcaatcagg ctgtgtctca tttccttttg cacaaacctt 60 tggggaaatg tgctcgttct gaatctggtc tctataaccc ttaatgtccc tcaagggaat 120 agggatgtta ggtctctata ctgcagcgtg cacgagcaac actagcttct gctctctaag 180 cccagctctt tgccaacatg 200 <210> 80 <211> 200 <212> DNA <213> Homo sapiens <400> 80 cttttgaggt ataaataaaa tattttaaat taagcaaaca ttttaaactt tagattaaac 60 ctcattgagc atggagtaac atacatgtca gtttcaggct ataagaggca gaggcatttg 120 gaaaaacagc aaattagcat ttgtttaacc accacttttg gcacctactt tattttggtc 180 aaggtgcaaa aagttaagac 200 <210> 81 <211> 200 <212> DNA <213> Homo sapiens <400> 81 cacctgaata ttttagttaa aaagtaaaag agtagttgtc ttttaatatt agtgcttatt 60 tgagtttaga tattatttta taacttacat tgtacctctc tcagcgaaat agtttgaaac 120 tgtctcactg taagtgtata tattcttttt tcaaaatatg tacatgtagt attgtcattc 180 tgtatattaa gtattaagaa 200 <210> 82 <211> 200 <212> DNA <213> Homo sapiens <400> 82 ggcttttaaa aatagtaaaa gataaagaga acatcgaaaa ggacctacaa tttgctataa 60 ttgacatcag catcagggta aaccctgcag ccctcaaacc gttactgctg aattgtgcat 120 tccccatggg atcccacact gcttccagtg ccacagccag atccacacta aacccttaac 180 acatggaaat ggaatgccag 200 <210> 83 <211> 198 <212> DNA <213> Homo sapiens <400> 83 ataacactaa ttttagtcct gtgtgaaatt cctcaaaatt tgtgattaaa taacatgcag 60 tacaacccat ttgttcttca gccaacatat accaagtgta attgtgtgct aggcattgtg 120 caatgtgcgc tcttgccctc atggatctga cagtcaagtg ggcatgacag tcgaatcagg 180 gaactgccca ggagagaa 198 <210> 84 <211> 200 <212> DNA <213> Homo sapiens <400> 84 atgtggtttc tttccctgag acaattgagt tgttcatcta tttctagctt gttggaaaga 60 atgataccac ctcatactca gagataaggc tattgtgttc tctgtttttc cagggtgcgg 120 tgggtctgcc cagggctttg tgaacaggat ctgcctggca gataaatccg aggagtattg 180 ggaagtggac tctttgacaa 200 <210> 85 <211> 200 <212> DNA <213> Homo sapiens <400> 85 aaaaacaaag ggaaaaaaaa aaagacccaa atacttggag actgaattta attaaaatgg 60 gattgtaatg gccttaaaca tgcatgctca tgacctcatg tgaatcttcc acctctctag 120 attgtcacca tgcgtaggtt cctgagctgg tgttgctgca attttggggc atctctaggg 180 gccatgaggg ccccatgagt 200 <210> 86 <211> 200 <212> DNA <213> Homo sapiens <400> 86 ttcctggcag tgaaggtgtt ggggttaatg atgaagacca gggaaaaggg gttcacagaa 60 ttggctgagg gcttatgtgt gcagaggtct tctggaaggc tccatcagta atggatgaaa 120 gagcttatca gatcattagc agcgccccat actaatgaga tgttgcattc ctgctcagta 180 gagaccccct ccattggaaa 200 <210> 87 <211> 200 <212> DNA <213> Homo sapiens <400> 87 tatacccacc ttgttatatg taaaaaatgg gttagcacac agtttgtgtc atagtaatta 60 cccaagaaaa tgctgttggt attggtatct actgataacc gtcattgcca ggtcccgctt 120 tcatgaccca attaggttca cttaaaagta gcaatatact catacgtaaa ccagaaatgt 180 taaaatctcc tcccccacaa 200 <210> 88 <211> 200 <212> DNA <213> Homo sapiens <400> 88 tgcatattta taaataagca cagggtacta cagaagtaca tggtgaggaa ggcacttggg 60 tcagccatag gagattcagc agagacttcc tggaagaagc acttccaaac ttggatgtaa 120 aatagaagta ggagtttgag ggtaaatagg gtgcatagag aaaaacattg cagataggat 180 gcatgccatt tacaaagatc 200 <210> 89 <211> 200 <212> DNA <213> Homo sapiens <400> 89 tataccaaaa tcagttgtga aaaaaactca taaattttca aaaaaagtta gatactcaaa 60 acttatcaca taatatctaa acttctcttt cacattaatc tataaaattc aagtgaatgc 120 gtgtcagttg cattatgcca aaatgacttt tagcatgcaa ggatttttga accatttgcc 180 gttttctgga catggactta 200 <210> 90 <211> 199 <212> DNA <213> Homo sapiens <400> 90 gaaagtgaaa ttgctcatag gaaatcaaag caaatggcct taagagtggc tccagtggac 60 cgtcctctga aaagtgaccc acaattctgc atgaatcttc caggacactg aattggagcc 120 agctgatgta aggagcttac cttggttgcc accttctggt ctctgtttga ggaacaactg 180 catgtgatta agggtaaca 199 <210> 91 <211> 198 <212> DNA <213> Homo sapiens <400> 91 tctaaaatga tactgtagta aagaaatatt ctcaaactgt tggtaaattt tagagaaaat 60 aaaaatatta tacatacttg ctgcattaag acaaactgct ttctaactgt tccagctgat 120 gcttctgtgc tggatttaaa ttatctctat ttgctcgcag ttgttccaag tgctagaaga 180 aaagagatta atataatc 198 <210> 92 <211> 200 <212> DNA <213> Homo sapiens <400> 92 ttcccggaga gtatcgccag ccaaccaggc gggtgatgga ggtgcgtacc tgtccatgcc 60 accaagcgcc tccctttcct cgactgtcag gctaacagac sytcttcact ctcgcggctc 120 gcttttcctt ccgccatttt ctttgcctca tcaccgaagg caacagcggc ggtagtgagc 180 gacactgcgc aggatttcat 200 <210> 93 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 tcaaagtttc tctctcacac aaga 24 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 tatgtcattg gagacacagg g 21 <210> 95 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 95 aataagctca ccaccgtcaa agagtgctgg gtgcattaac agctc 45 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggtttggtt tctcagctg 19 <210> 97 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 cttaagaatc ttgcaatcag ctact 25 <210> 98 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 acagatcact caccgactaa aatatttatt tggtcatact aaaca 45 <210> 99 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 tttctcggcc atctgctc 18 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 agtgcatgcc ctaaatgct 19 <210> 101 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 101 ctcagactac gaatccacgt tgtgtggagt gtgaggtgca gacag 45 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tgtccacaga ttatccctgc 20 <210> 103 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 taaaagcata gccaaaaata gtaaca 26 <210> 104 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 104 agaccgacaa gcaatctaca gtaacagaaa aatagataca aacaa 45 <210> 105 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 ttgttattta gaaaactgaa aggtgtt 27 <210> 106 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 ccaaattaga aaatataatc ccaatatg 28 <210> 107 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 107 cagaatagcc acgcctagat atatgaattg gggcagaata accaa 45 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 taattttgag cactggggc 19 <210> 109 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 atgtgattac ctctgaatgc ttc 23 <210> 110 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 110 cagccatcca ttcactatct aatattaaac ttttagaaaa gtgtg 45 <210> 111 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 ttaccttcag ttgtactcac tcaaat 26 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 agctcagaat tcctcagtgg 20 <210> 113 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 113 cgatcacctc actagaacaa catgtaggac atggcatgaa gtttt 45 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 tgtttggaac tgaagcatat cc 22 <210> 115 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 atgatgaaag gactcttttg tgtc 24 <210> 116 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 116 caacaagtaa tccgcagact actatatccc atataggcac ttgct 45 <210> 117 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 acctttccct ttggtttgc 19 <210> 118 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 taaagaaaag ccatttctca aaat 24 <210> 119 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 119 cagcactatt accatcacgt gaaggtacag aaaatggctt cgaga 45 <210> 120 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 atagctctgt aatgtaaata atcttaaagt ca 32 <210> 121 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 ttgtacaact gggtgcagc 19 <210> 122 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 122 agcaagacca cctagaccag ctaaaatctc ttctccatcc cgttc 45 <210> 123 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 tttgacttat ggaccgtgc 19 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 124 gtggaaagtc attaatcgtt gttaa 25 <210> 125 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 125 agacttctac gcaagcactg ttgttaagct gcagacacaa tttac 45 <210> 126 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tgccggacgt taatgatg 18 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 ttttcttccc accggtaatc 20 <210> 128 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 128 tacaagcacg cactagacat tcttagactg gtatcttcat ctgcc 45 <210> 129 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 129 tttgctaaaa tgccagtagc a 21 <210> 130 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 aataaagtcc tctttaatct ttgcag 26 <210> 131 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 131 agccgaacta ccactgagta agtggtatca ataaaagtga ctagc 45 <210> 132 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 atttatctct ttctctcttt tattgctg 28 <210> 133 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 133 aaaatggtag gtacttgtag ttccg 25 <210> 134 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 134 ctcactatct gacaagccac agccagaaca ccactaatca gatat 45 <210> 135 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 attgttctaa tgactgaaag acataattc 29 <210> 136 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 136 aattcaccat taagagagaa agctaa 26 <210> 137 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 137 gatccatcaa cagacatcac agctaacatt tatggagcct attat 45 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 aacatgtttg gcatggtctc 20 <210> 139 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 139 tcatcattga tccatgcaca 20 <210> 140 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 140 cactacatac gaccgcagaa aaacatggaa cattaggtgc ctttg 45 <210> 141 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 141 aaggatccac gtgtgtgg 18 <210> 142 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 aaagaaaaag gccattgaat aag 23 <210> 143 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 143 acgtaagacc actcaagacc ataagggctg ttaaatgaaa gaggt 45 <210> 144 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 agcgtttatg ctccatagt 19 <210> 145 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 gaatccttta aaaaattaca taggca 26 <210> 146 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 146 caacaagaca taacaacgca agaaaagaaa tgaagatcta tgaca 45 <210> 147 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 tgtgcaaacc cccagaaa 18 <210> 148 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 ggatcccacc catttcag 18 <210> 149 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 149 ctaactaagc tacgccgaca agagtggtca atagttggat ttgac 45 <210> 150 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 150 ttttcagaga acaaagctag aaaac 25 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 aaatttgaca gggaaaagga c 21 <210> 152 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 152 tacctatgac cagcaagcac catgaattca tgatgtttcc tattc 45 <210> 153 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 tggatggagc ttttccct 18 <210> 154 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 atcccaatgt atgacatcca g 21 <210> 155 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 155 ccgccagtaa gacctagacg aaggatggaa tgcgtgggtc ccaaa 45 <210> 156 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 accaatggtg ctcaaagc 18 <210> 157 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 tggcaaagta actgatctaa ttaaga 26 <210> 158 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 158 aacatccacg caactcatac aattaagaca tcccccaaat atcac 45 <210> 159 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 ttacatatca atcagcttac ctaaatg 27 <210> 160 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 aacatcacta atggatgaac aaaa 24 <210> 161 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 161 caacaatacg agccagcaag aaaaaaacct ccaataaaag cactc 45 <210> 162 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 tgaaacagcc aagtactctt acag 24 <210> 163 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 agtaacaggc agttaatctg gaata 25 <210> 164 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 164 tccagaatag acaacagacg taaatgaaga agactatctg ataca 45 <210> 165 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 cagagaagca gcaatggg 18 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 atggaagtgg aacatccaga 20 <210> 167 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 167 acaactaccg acgacaagac gaatgaggca tgagcaaagc tagaa 45 <210> 168 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 aatcactcaa acattccact cc 22 <210> 169 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 acttttgcac gtttaaaact tctg 24 <210> 170 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 170 caccgctatc aacagacttg ctgaaactga ctgcattatt ccaaa 45 <210> 171 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 aagacaggga ggtagcacg 19 <210> 172 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 gggacacaca ggcatcat 18 <210> 173 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 173 cagaacatcc tcagaagcaa ttgtagggga ggctgaaggt ggtaa 45 <210> 174 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 taatcactcc attctcaaaa atca 24 <210> 175 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 175 aaagaacagg gataagtctt aaagc 25 <210> 176 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 176 cgcagaagca actcacttct taaagctaat gataagagaa tgcac 45 <210> 177 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 attagtatgt acagaaagta gagggctg 28 <210> 178 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 cctcaccaac cttgcccta 19 <210> 179 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 179 aacatacaga cgcactcctc accccctacc attaatttag tagcg 45 <210> 180 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 tatgtcataa tattaacctc ccttcc 26 <210> 181 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 tgttacggtg aggaaagaca g 21 <210> 182 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 182 caagcaacga cctactacaa agaaggctgt tattactgag acctc 45 <210> 183 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 183 aatgccttgt tctgcaatca 20 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 184 gggagaataa tagtgattgt ctgg 24 <210> 185 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 185 cactagtcat aacgcagcct gtctggactc tcttcatctt cctaa 45 <210> 186 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 186 tcttgcacaa cctttctcc 19 <210> 187 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 187 cctgacttga tgttgtccc 19 <210> 188 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 188 gcaacataag accgctcaac cctaacatgc tctgtcaaaa ctccc 45 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 189 tgctctctat gaatatttgg cat 23 <210> 190 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 190 attaaagaag agtgtgcaca tg 22 <210> 191 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 191 ccataacaac ttaccagcca atccatctct agttgctttt caaca 45 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 192 aagctgcaga gggaaattaa tat 23 <210> 193 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 193 gcaatgaacc tatagtaaca aactatga 28 <210> 194 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 194 caagaccgca actagataca aaaggttaag gtgtctgtga aatgt 45 <210> 195 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 195 acaattctta ttcccaaatt caaa 24 <210> 196 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 196 ttcatcagtc cccaaatatc c 21 <210> 197 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 197 atctaacgca cctacgacct cctacttgag atctttgggt gtgca 45 <210> 198 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 198 aaggcttatt ctatagggtt tttgtac 27 <210> 199 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 199 aaagatacaa gtattcctat tttctgct 28 <210> 200 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 200 ccagatcctc accatgtaag tttctgctta atatatgttt ctaac 45 <210> 201 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 201 ttctagattg ccaactcctt aaga 24 <210> 202 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 202 tatttatttt cctttaagca acatctg 27 <210> 203 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 203 atacctacca cgctacagcc gattggttca gaaatactgt gcaag 45 <210> 204 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 204 atttcctcaa actctcgaaa agtat 25 <210> 205 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 205 aatttcactg ttttgcatta tcaa 24 <210> 206 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 206 accgcactaa gcaatgtatc aactcctaaa ggagaatcag gtgaa 45 <210> 207 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 207 tgtgtgagtg agttctcaga gg 22 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 208 tgtggagtca atagtggcaa 20 <210> 209 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 209 agtagcctaa cagcactcga ggttcagagg aagagtgaaa tcccc 45 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 210 attcagaatc ccaggattaa 20 <210> 211 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 211 tggctgaaaa cgtgcaac 18 <210> 212 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 212 cacgacaaga caacagatac aatttgcata ttctggacct catct 45 <210> 213 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 213 agtgatcaaa ccccaatgat 20 <210> 214 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 214 tagagcataa gtggctgttt taaa 24 <210> 215 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 215 cagtcaacaa tccagatcaa tttaaaatgt ttctggtggc acttg 45 <210> 216 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 216 aaaactgaag gaagttaggt taggtt 26 <210> 217 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 217 atattataac ttataggata taggaacctg tga 33 <210> 218 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 218 acaactcacg caagtaccat tataggaacc tgtgatgctc cttat 45 <210> 219 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 219 tttggtttgt tgacagtggt t 21 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 220 aacttcagca gttcctgtgg 20 <210> 221 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 221 acaatcaaca tacgaacagc aaaggagcag aagccaacaa gatgc 45 <210> 222 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 222 aaaagagttt caaaggcaat tc 22 <210> 223 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 223 gtctatgtct caatgaatgt tattcttta 29 <210> 224 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 224 gcaagccatc agctaataca ttctttaaaa tcctgaactg aggtc 45 <210> 225 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 225 ttaattctct ctgtcctaac acacac 26 <210> 226 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 226 aataattacc ttgcagcctg tatt 24 <210> 227 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 227 acaagaactc catgactcaa acacacacac acacatgctt tttac 45 <210> 228 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 228 tttgtcctaa ctcagttgtc tgtg 24 <210> 229 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 229 ggctgtcttt ttccaccg 18 <210> 230 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 230 aagtaccacg tcaacgtcac cctcttkgaa tatggaggcc gctgc 45 <210> 231 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 231 ccaatyttac ctccagttca t 21 <210> 232 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 232 taggattggc agcctcct 18 <210> 233 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 233 gcagacaacg aacaactacc tttgcagtag aagttgacaa tttca 45 <210> 234 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 234 ggcatataaa atgtacacaa aaaataac 28 <210> 235 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 235 tgcattaatc taggaacaac tgatat 26 <210> 236 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 236 caagaccgca actagataca tgaacaatat catattcctg aatat 45 <210> 237 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 237 aatttttacc aaagcctctc tgt 23 <210> 238 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 238 aatatgtgaa ctgtagactt gggag 25 <210> 239 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 239 cagccatcca ttcactatct tccaccaggg aggacrctgg tgtcc 45 <210> 240 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 240 aattgatttt ggagagttca tcg 23 <210> 241 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 241 tgagcctggc agatactgc 19 <210> 242 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 242 ctcactatct gacaagccac ttctgaatct tgaatacagt attac 45 <210> 243 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 243 acgtgaaata cattatgctt cca 23 <210> 244 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 244 tctagtttgt ttttgacccg g 21 <210> 245 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 245 caacaagtaa tccgcagact aaaagacaat aaagaccttt gtgcc 45 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 246 tttcttccta gttaaaaatg cacc 24 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 247 atgtagacct gatgcccaga 20 <210> 248 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 248 tccagaatag acaacagacg atgacgtttc ctgttttatg atggg 45 <210> 249 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 249 tgatactggc acacttgctg 20 <210> 250 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 250 agagaaacca gtcattgttg ga 22 <210> 251 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 251 cagcactatt accatcacgt tctgttttgc tctcctcatt gaggc 45 <210> 252 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 252 gctttcactc tttgcctca 19 <210> 253 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 253 ttaccattta tgtttcctta aaaagtg 27 <210> 254 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 254 caacaatacg agccagcaag atactgactt tagaaccaaa tctcc 45 <210> 255 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 255 tttaaaaagt ggaaactctg aaagt 25 <210> 256 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 256 cagattgctc tttacagtaa cattaaat 28 <210> 257 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 257 cgatcacctc actagaacaa gctagtgaaa tttggagaca gattt 45 <210> 258 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 258 gaggccagct ctatccagg 19 <210> 259 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 259 gttacagtaa agaattctcc tttatatcaa a 31 <210> 260 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 260 agaccgacaa gcaatctaca caattaaaag ggttctgcct aatac 45 <210> 261 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 261 atgaaaacca ggcttacatt ca 22 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 262 caagggagta gaggaagaaa aga 23 <210> 263 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 263 ccagatcctc accatgtaag aaagaacgct ccagtatcac tcact 45 <210> 264 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 264 aaataacaga gattagtaca tggagaacta t 31 <210> 265 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 265 ttttatctgt tctgataggc acaa 24 <210> 266 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 266 atctaacgca cctacgacct tcttaacttc gaacaaatgc cagaa 45 <210> 267 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 267 gtcatttgag ttattgaagt tcagaa 26 <210> 268 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 268 ttaatgctca tttaaaataa ttacctgg 28 <210> 269 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 269 gatccatcaa cagacatcac ggacacattt accagtgagt taggc 45 <210> 270 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 270 tgctgggttt cttaaaggag 20 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 271 ttgcctataa gtgtgtgcca 20 <210> 272 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 272 ctcagactac gaatccacgt caaggaaagt cacggtgcca gtctc 45 <210> 273 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 273 aaaatgtaga aagcatttag tctgc 25 <210> 274 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 274 ccatggtgaa ggcttctg 18 <210> 275 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 275 aagtaccacg tcaacgtcac catcacaact gtgacttctt tgtgc 45 <210> 276 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 276 ttctcaaaga ctttttacac acttc 25 <210> 277 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 277 tctgcgaatg gaaagagc 18 <210> 278 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 278 ctaactaagc tacgccgaca tcggtttgat ctttaccatg acacc 45 <210> 279 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 279 ttttcctcta gggaaaccct 20 <210> 280 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 280 ttgagagcta gcagggca 18 <210> 281 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 281 gcagacaacg aacaactacc cctggcccag ctgccttaac ttagc 45 <210> 282 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 282 ttgaagtaga aaagtagtct ttgaacaa 28 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 283 attaaattgt caggcacatc atg 23 <210> 284 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 284 tacaagcacg cactagacat tgtttaaaat actggcctag ctacc 45 <210> 285 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 285 tattctgtag ggatgaacca a 21 <210> 286 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 286 aatgctacac ttaagaaact tgca 24 <210> 287 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 287 cgcagaagca actcacttct gtcatttttt gaggtctttt ggtct 45 <210> 288 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 288 ggcagctatg acctatattt gaa 23 <210> 289 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 289 ttttaatgca ctctgccaag t 21 <210> 290 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 290 cagaacatcc tcagaagcaa ttcttagaaa ggttccatty ggaag 45 <210> 291 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 291 tgttgaacag taaacacagt atacttca 28 <210> 292 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 292 tgtttgagtc agaaaaagaa aaaa 24 <210> 293 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 293 acagatcact caccgactaa ctatatgcat ggaataacac tggaa 45 <210> 294 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 294 tctccttcca ttctttatgg ttag 24 <210> 295 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 295 tctagacttt aaaagtaccc actctttc 28 <210> 296 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 296 ccataacaac ttaccagcca tggctatgac aaattcaaag ttcaa 45 <210> 297 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 297 aatcactaat attagacaca aatgcatc 28 <210> 298 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 298 gctgcatggt atcaatgaca 20 <210> 299 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 299 gcaacataag accgctcaac atggtggtga aggatgggac ctaga 45 <210> 300 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 300 aagatttaat ccctcactgg g 21 <210> 301 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 301 atatctccac acttgaagtc ctactt 26 <210> 302 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 302 cagaatagcc acgcctagat actgtccata atctgcaaca agtac 45 <210> 303 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 303 cagtctaaag agctattatg cc 22 <210> 304 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 304 gtttttatat gagaccgtga aagatt 26 <210> 305 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 305 cactacatac gaccgcagaa gctcacgtgt gtggcttaag cccag 45 <210> 306 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 306 ttgccaactt tgctccac 18 <210> 307 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 307 tttgcctaca agggaaaaag a 21 <210> 308 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 308 agacttctac gcaagcactg gcatttggaa tttggtattg gagac 45 <210> 309 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 309 cagcactcct ctagttgacc 20 <210> 310 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 310 ggtcagtgtg tgaccctttt 20 <210> 311 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 311 agtagcctaa cagcactcga atgactccca tatgagccca gctga 45 <210> 312 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 312 cctgtggtcc catgctag 18 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 313 ttctggagtg acttgtccca 20 <210> 314 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 314 acaatcaaca tacgaacagc ccatccacac acagccaagc tttgc 45 <210> 315 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 315 taaaatacta tgctaactaa aaactaccct c 31 <210> 316 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 316 ataatgatga ctggtacccc att 23 <210> 317 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 317 caagcaacga cctactacaa aaggaagtct agtctgactt ttctc 45 <210> 318 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 318 atttttatag acactgagaa agtgca 26 <210> 319 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 319 gttcagggtt tacttggtgc 20 <210> 320 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 320 tacctatgac cagcaagcac ctcaccagag tggctagaaa tagaa 45 <210> 321 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 321 agcatgaatg tggtaatggt g 21 <210> 322 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 322 cagtcacagc tgataatgat aatttt 26 <210> 323 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 323 ccgccagtaa gacctagacg tctgaaagga aatgaaggtc ttatc 45 <210> 324 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 324 attcaaacct gagcaaggc 19 <210> 325 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 325 attcaaacat cagcagctca g 21 <210> 326 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 326 aacatacaga cgcactcctc cattgccagc tgagtttcac aaaaa 45 <210> 327 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 327 atttcctttt gcacaaacct t 21 <210> 328 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 328 ttagagagca gaagctagtg ttgc 24 <210> 329 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 329 gcaagccatc agctaataca gttctgaatc tggtctctat aaccc 45 <210> 330 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 330 ttaaacttta gattaaacct cattgagc 28 <210> 331 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 331 ttgaccaaaa taaagtaggt gcc 23 <210> 332 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 332 caccgctatc aacagacttg gtaacataca tgtcagtttc aggct 45 <210> 333 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 333 atttaaagtt cgatttaaga atcacct 27 <210> 334 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 334 aaaaaagaat atatacactt acagtgagac a 31 <210> 335 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 335 aacatccacg caactcatac ttttataact tacattgtac ctctc 45 <210> 336 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 336 aaaaggacct acaatttgct ataatt 26 <210> 337 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 337 tggaagcagt gtgggatc 18 <210> 338 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 338 cactagtcat aacgcagcct gggtaaaccc tgcagccctc aaacc 45 <210> 339 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 339 tgggcagttc cctgattc 18 <210> 340 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 340 aacatgcagt acaacccatt t 21 <210> 341 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 341 agcaagacca cctagaccag ttgcacaatg cctagcacac aatta 45 <210> 342 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 342 tttctttccc tgagacaatt ga 22 <210> 343 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 343 tgttcacaaa gccctggg 18 <210> 344 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 344 acaagaactc catgactcaa actcagagat aaggctattg tgttc 45 <210> 345 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 345 aaatgggatt gtaatggcct 20 <210> 346 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 346 aggaacctac gcatggtg 18 <210> 347 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 347 acaactcacg caagtaccat aaacatgcat gctcatgacc tcatg 45 <210> 348 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 348 ttggggttaa tgatgaagac c 21 <210> 349 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 349 aatgcaacat ctcattagta tggg 24 <210> 350 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 350 aataagctca ccaccgtcaa tgtgtgcaga ggtcttctgg aaggc 45 <210> 351 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 351 tcatagtaat tacccaagaa aatgc 25 <210> 352 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 352 tatattgcta cttttaagtg aacctaattg 30 <210> 353 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotying primer <400> 353 agccgaacta ccactgagta ttggtattgg tatctactga taacc 45 <210> 354 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 354 acagtgtaat tttttgctgc atatt 25 <210> 355 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 355 tatttaccct caaactccta cttctatt 28 <210> 356 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 356 atacctacca cgctacagcc tcagcagaga cttcctggaa gaagc 45 <210> 357 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 357 gatatcatat accaaaatca gttgtga 27 <210> 358 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 358 ttttggcata atgcaactga 20 <210> 359 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 359 accgcactaa gcaatgtatc tctaaacttc tctttcacat taatc 45 <210> 360 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 360 aaatcaaagc aaatggcctt 20 <210> 361 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 361 aaggtaagct ccttacatca gct 23 <210> 362 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 362 caacaagaca taacaacgca agctggctcc aattcagtgt cctgg 45 <210> 363 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 363 caaactgttg gtaaatttta gagaaaa 27 <210> 364 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 364 atttaaatcc agcacagaag ca 22 <210> 365 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 365 acgtaagacc actcaagacc atacttgctg cattaagaca aactg 45 <210> 366 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 366 atgccaccaa gcgcctcc 18 <210> 367 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 367 aaagaaaatg gcggaagg 18 <210> 368 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 368 cagtcaacaa tccagatcaa aaagcgagcc gcgagagtga agars 45 <110> DNA LINK, INC.          NISI <120> Single nucleotide polymorphism marker for personal identification          and its use <160> 368 <170> KopatentIn 1.71 <210> 1 <211> 200 <212> DNA <213> Homo sapiens <400> 1 tttcctccac ctctttccaa ctccaactca aagtttctct ctcacacaag aaagcacatg 60 aggtgtttat cagttgatat tagtagttgc aaatctgcag gagctgttaa tgcacccagc 120 actctaattc cagagcatcg gacagtccct gtgtctccaa tgacatagct gactggcact 180 gggccctggc tgccccggag 200 <210> 2 <211> 200 <212> DNA <213> Homo sapiens <400> 2 tacttcaaat aacatctaca ctttttaaag aagaagattc aatctcagag aaactggttt 60 ggtttctcag ctgggaatat ttatttggtc atactaaaca ttgagccagt ggatcagcag 120 tagctgattg caagattctt aagtagacac acattacatt tcgtagggga tcaaaatatg 180 tcattctcaa gtatgctaat 200 <210> 3 <211> 200 <212> DNA <213> Homo sapiens <400> 3 aatgcttaat tgactaacag aattacaact ctaaaataat tgtagaaatt gtgttttctc 60 ggccatctgc tctctttaca ttaccacagt taggcatctt ctgtctgcac ctcacactcc 120 acacagcatt tagggcatgc actgcatcta aattatcacc taattagaga attagcctga 180 ggttacatag tatgaatcaa 200 <210> 4 <211> 200 <212> DNA <213> Homo sapiens <400> 4 tcaaaataag actgtgtcca cagattatcc ctgctcctat tttaagattg gaatctaata 60 aacagcacag gctgctctac catcatttgc tgccttacca ttgtttgtat ctatttttct 120 gttactattt ttggctatgc ttttagccac aggattgagt ctgaaagcag gcagatatgg 180 actcaagaaa gataaatcat 200 <210> 5 <211> 190 <212> DNA <213> Homo sapiens <400> 5 gttatttaga aaactgaaag gtgttctaat atcaattgaa attatcattt gttctcttac 60 aaatacattt taagaaatga ttttgatcaa tatagactga ttggttattc tgccccaatt 120 catattggga ttatattttc taatttggat atttacagta atcacagtag tgatgaggta 180 ggtcaaggca 190 <210> 6 <211> 200 <212> DNA <213> Homo sapiens <400> 6 gggaaggcat ctcctctggg aatccagaga aggcagagaa ggtagaggaa ggctgtaatt 60 ttgagcactg gggcaggacc aggagtgact tggcttctta cacacttttc taaaagttta 120 atattatttc caaattaaaa tttttttaat tatgaagcat tcagaggtaa tcacatccat 180 cactaattat tattattttt 200 <210> 7 <211> 190 <212> DNA <213> Homo sapiens <400> 7 ttaccttcag ttgtactcac tcaaatcttt cctaagttac cctgatcaga cagcttgcag 60 ccagatcatg aggtacatgt aggacatggc atgaagtttt gtttcattct gaaccaagga 120 aagccactga ggaattctga gctgcagaaa gtcactttga ctgatttatg gaaagtggat 180 tgaaggggaa 190 <210> 8 <211> 200 <212> DNA <213> Homo sapiens <400> 8 cagggagagg ggagccctgt ttggaactga agcatatcca cttaggataa gggtgacaac 60 atgtataaga ggacattctt ttgtgtattc aagaaatagt agcaagtgcc tatatgggat 120 atagttgtgg tgaagacaca aaagagtcct ttcatcatgg agcttccacg cgtccatccc 180 aaagctaagt cctggagaaa 200 <210> 9 <211> 200 <212> DNA <213> Homo sapiens <400> 9 gctgcgctct ccacaatgag gccttttcga ctgactcctg cagggtgcat gtggaccttt 60 ccctttggtt tgcatagccc tgggaggcta tttattttca tctcgaagcc attttctgta 120 ccttcaccac cagtttacac ttcaggaaac taagacattg aaagctaagt gagctgacca 180 aggctgcatt ttgagaaatg 200 <210> 10 <211> 200 <212> DNA <213> Homo sapiens <400> 10 gaaagtgcct agacggaaac atctttatag ctctgtaatg taaataatct taaagtcaaa 60 atttcaacaa cataaagcaa tgtaaatggg agactgtgca gaacgggatg gagaagagat 120 tttagctgca cccagttgta caaggatctg gctaatagtg caagcctcag cccacctaga 180 aagagaggac cgaagaaggg 200 <210> 11 <211> 200 <212> DNA <213> Homo sapiens <400> 11 tcgctaggtc ttatcttctc tggttttagc ttttctaggt aatacccaaa tgcatttgac 60 ttatggaccg tgccccacca cccttctagg gaatctccga gtaaattgtg tctgcagctt 120 aacaacgatt aatgactttc cacttataag taacagtttt attttgattc attttaacaa 180 atatatattg gcacttaaca 200 <210> 12 <211> 200 <212> DNA <213> Homo sapiens <400> 12 aagaaacagt gctcaagtaa aattgcagag aaatggtgta atttattata ttcctgccgg 60 acgttaatga tgtgctagca agtaatagca cttttactca ggcagatgaa gataccagtc 120 taagattacc ggtgggaaga aaacatgatg aaaaggtcta tttcaaaata acatatccaa 180 attagaaatc ctttcagtga 200 <210> 13 <211> 200 <212> DNA <213> Homo sapiens <400> 13 atacaaatat tttatttggt cttaccttcc tcttaaactt ttacaaactt ctttgctaaa 60 atgccagtag caacacttaa ctaaaatctc agatattttg gctagtcact tttattgata 120 ccactgcaaa gattaaagag gactttattg agattagtac tttgggaact gacttctatt 180 tatttattgc tttctagagt 200 <210> 14 <211> 200 <212> DNA <213> Homo sapiens <400> 14 aaagaaagag acagacaggg agggagaatg aatgattggt cttctgattt atctctttct 60 ctcttttatt gctggtttat gagttgaagt ctggctggga atatctgatt agtggtgttc 120 tggctacatg cctatgcctt agctaggaga aagaccggaa ctacaagtac ctaccatttt 180 cagccacaac aggtaaggaa 200 <210> 15 <211> 200 <212> DNA <213> Homo sapiens <400> 15 ataggcgtga gccaccgcgc ccagcctagc ccttgcttta aaggattgtt ctaatgactg 60 aaagacataa ttcagaaccc ctttcacaca gtacccgtca ataataggct ccataaatgt 120 tagctttctc tcttaatggt gaattgaggt aacttttcga ggcatgtaga tagtgagttg 180 ctttaaccag agcagttttt 200 <210> 16 <211> 200 <212> DNA <213> Homo sapiens <400> 16 gatcttggga gatttttgga gatggcaaag tgcttctaaa catgtttggc atggtctcct 60 tcaggctggt ggatacctca ggatggtaag tattggtttt caaaggcacc taatgttcca 120 tgtttgcagg tatgaggact gtgcatggat caatgatgac ttccatacgt gggttccttg 180 gaaagttgaa caaaatgagt 200 <210> 17 <211> 200 <212> DNA <213> Homo sapiens <400> 17 tacatgcatt cttttagtgg atagatgcac acaaacacac aagccattat ggggaaggat 60 ccacgtgtgt ggccatattg taacacattt ttctgcaaat acctctttca tttaacagcc 120 cttattcaat ggcctttttc tttttcagta gtacatacac atctgtgtca tttgttgaat 180 gacgacatga atgttttgta 200 <210> 18 <211> 200 <212> DNA <213> Homo sapiens <400> 18 aagggcttat tactgggcta catagatttc gaatccttta aaaaattaca taggcatatt 60 tttaaaagac atttaagaaa agaaatgaag atctatgaca aaaaggcttc gtcttcctca 120 cctgggacta tggagcataa acgctgcttg ccgcagcctc tctggctggc aagtgtagcc 180 tcgggctggc cctaagggcc 200 <210> 19 <211> 200 <212> DNA <213> Homo sapiens <400> 19 tgataagttc cccccattac catgcttcta attgggatga gagggggagc catttgtgca 60 aacccccaga aagctggagt ggggttggga tccaggaaag gtcaaatcca actattgacc 120 actctctgaa atgggtggga tccttagtaa tggtgttttt aactccaaag caacagggaa 180 actctccctt acagactcct 200 <210> 20 <211> 200 <212> DNA <213> Homo sapiens <400> 20 gtgaagggtt gagcacgttc catcttttca gagaacaaag ctagaaaaca tgtattttaa 60 taaaataata ttcatcatga attcatgatg tttcctattc aattcaagta gaggactttt 120 ttcacagtgt ccttttccct gtcaaatttc aaattttatt gacatgaata taattattca 180 tttgctgtat tcataataca 200 <210> 21 <211> 200 <212> DNA <213> Homo sapiens <400> 21 aagaccaaaa tgcagctgcc ttcatcaggc cctacttcca gagatgcacg ggtggatgga 60 gcttttccct ctgacccagt ccttcaactg catgtgatgc tttgggaccc acgcattcca 120 tcctttctgc cctgtccttc tcctggatgt catacattgg gatccaggtg ttcagttttc 180 tctgccttgt tcttgctctg 200 <210> 22 <211> 200 <212> DNA <213> Homo sapiens <400> 22 cctaggaggt tctccagtca actttgccat ttgaaatcat actccttaca ggcaaccaat 60 ggtgctcaaa gcatctcttt cagcatcaat cttcctactt gtgatatttg ggggatgtct 120 taattagatc agttactttg ccattccttt aagtattata tctcaagtta cctgttggct 180 tcttacaggt ctcatgaaga 200 <210> 23 <211> 150 <212> DNA <213> Homo sapiens <400> 23 tgcaccacac tgcagtacta ggcatcattt tacacctaag caaaagatca cagaacatca 60 ctaatggatg aacaaaaaaa aaaacctcca ataaaagcac tcttatttcc aggatcacaa 120 gaaataccaa gtggctaggt tgtcacctac 150 <210> 24 <211> 200 <212> DNA <213> Homo sapiens <400> 24 cactcagaaa tggtttagat ttctaaaggg aagaatagag aatcacctgg agagtaacag 60 gcagttaatc tggaataaat gaagaagact atctgataca tggctgtagg gatgtggaga 120 tttttttcta tacgtagact gtaagagtac ttggctgttt caccagtctt gcctctctac 180 ctgcattaac tctcatcctt 200 <210> 25 <211> 200 <212> DNA <213> Homo sapiens <400> 25 attttcccat ctcttttagc ttacatctgc actgtgtgat ttgataggga agcaccagag 60 aagcagcaat gggatttggg atatttgctt atgtagctta ttctagcttt gctcatgcct 120 cattctggat gttccacttc catcttaaaa tgaattgctt ctggacctcc ctttttgtat 180 gatttaactc aaaatcagta 200 <210> 26 <211> 200 <212> DNA <213> Homo sapiens <400> 26 gattgttcca gtaattaatc taagtaaaaa cgtgtccagg cctgcaatca ctcaaacatt 60 ccactccaag atattctatg ctggacagga gtcaaactca tttggaataa tgcagtcagt 120 ttcagaagtt ttaaacgtgc aaaagtccac agcctacaaa agctaattta aatccagatg 180 ccttatgtaa ataatttatt 200 <210> 27 <211> 200 <212> DNA <213> Homo sapiens <400> 27 ggagctggga ttctgcgcaa taagacccca tctgcctgac tccagcagga ggcaagacag 60 ggaggtagca cgctgagaac cctctcccca tatccacttc ttaccacctt cagcctcccc 120 tacaaatgat gcctgtgtgt ccccctcacc caccttagcc ggacacctcc ttcccttggg 180 cccaccctgc ccagcccctc 200 <210> 28 <211> 200 <212> DNA <213> Homo sapiens <400> 28 tgtctgggac tctgaaaacc tgatcattct tcttttacta atcactccat tctcaaaaat 60 caacattgtt tttggttagg tccttgtatg acagctggat gtgcattctc ttatcattag 120 ctttaagact tatccctgtt ctttgcacac atgataaaca acatttttaa taacaatttc 180 cagtgaacga atgtgaccaa 200 <210> 29 <211> 200 <212> DNA <213> Homo sapiens <400> 29 agtatgtaca gaaagtagag ggctgtgatt aacatgttaa gtcccataag aatgatggtg 60 agattggatc aagagaataa ggctatggat atgaagagtt cgctactaaa ttaatggtag 120 ggggtagggc aaggttggtg aggctagcta aaagtcatca catggccatt agtgggagta 180 gtgtctgaag gccttgagta 200 <210> 30 <211> 200 <212> DNA <213> Homo sapiens <400> 30 tatgtcataa tattaacctc ccttccatct gcttttgctg tttagtagtc tcatgtcttc 60 ttgagctaga ctatcttatg taaattcatg ttatgtgaat gaggtctcag taataacagc 120 cttctgtctt tcctcaccgt aacaggagtc ataggaaagg gggtgtgata gtctcagaaa 180 cagcctagca tctcatacaa 200 <210> 31 <211> 200 <212> DNA <213> Homo sapiens <400> 31 ttactcaagg caaaagaaag cattagagtc agaaataagg ctggactcca gtggaatgcc 60 ttgttctgca atcaggccca gcttatgaac tgcctactga ttaggaagat gaagagagtc 120 cagacaatca ctattattct ccccatatca ttaactggaa gtaaattagg tcagctcttg 180 caggaagtat tcattttttc 200 <210> 32 <211> 200 <212> DNA <213> Homo sapiens <400> 32 ttgagtgtct tttcctgatc tataaagtag tctctctctg tctctgtgga tatttcttgc 60 acaacctttc tcccttggtc ctatatgtgt atatatgatg gggagttttg acagagcatg 120 ttaggggaca acatcaagtc agggtatttc ttaaatgtct ggtctgactg ataaaaatat 180 tgtgatatta tcctataact 200 <210> 33 <211> 200 <212> DNA <213> Homo sapiens <400> 33 gtacatgtgc aggttttgtt atataggtaa actcatgtca tgggggtttg ttaattaaag 60 aagagtgtgc acatgatcca tctctagttg cttttcaaca agattcagga taaagatcaa 120 gtttccagga ctgactacat atgtgcttat cctttgggaa catgggaaag gaactctaat 180 gatgccaaat attcatagag 200 <210> 34 <211> 200 <212> DNA <213> Homo sapiens <400> 34 gaggagtggg aaggaaaatt aaaaaaaaaa aatgatactg cctagctaca agctgcagag 60 ggaaattaat attcaaaagg ttaaggtgtc tgtgaaatgt tgtaatgagt aacactcata 120 gtttgttact ataggttcat tgcctctaat gttgaggacg gcacatggat aatttacgat 180 tcccattgtc ccctctgcag 200 <210> 35 <211> 200 <212> DNA <213> Homo sapiens <400> 35 aattcctgct tcatttcatc atgttttttg cctcacaaac tacaattctt attcccaaat 60 tcaaattttt tcttgagtga tagttgtctt tctcttcttt tgcacaccca aagatctcaa 120 gtaggatatt tggggactga tgaaggggag aactcaagga aatgattggg gcctcaaaga 180 agcttctagg ccaggtgtgg 200 <210> 36 <211> 200 <212> DNA <213> Homo sapiens <400> 36 tgcacttttc aaagattttc agaccttgat acttccaagg cttattctat agggtttttg 60 tacttaatat aatacaattt tacaaggctt agaggcaaac gttagaaaca tatattaagc 120 agaaaatagg aatacttgta tcttttttct atgtgttagt tttaccctct aactagatag 180 ctccttggca tcttgaagtt 200 <210> 37 <211> 200 <212> DNA <213> Homo sapiens <400> 37 atgtctgttg ggacaaaaca tggccagttg agtgcactgt tctagattgc caactcctta 60 agagacaagg tatcttttca cccttgcttt tcctatagtg cttgcacagt atttctgaac 120 caatcagatg ttgcttaaag gaaaataaat aaataaatgg caatagcatt tataagcagg 180 tattcctaca gctttatgcc 200 <210> 38 <211> 200 <212> DNA <213> Homo sapiens <400> 38 ttttagagta ggatatagaa ccactaatac attaatcttg actttaacat ttcctcaaac 60 tctcgaaaag tatttatcct gtgtgtttga ttttagagcg ttcacctgat tctcctttag 120 gagttgataa tgcaaaacag tgaaatttat gtaattgtaa aggtagaaaa cactccttca 180 tattccatat catttctaga 200 <210> 39 <211> 200 <212> DNA <213> Homo sapiens <400> 39 gaagggaact ttgcacccca agggcatggt gtggagtcaa tagtggcaag ttcagtctgg 60 ttttttacat cagccggttc agaggaagag tgaaatcccc agatcagcag ggcaaaatgc 120 tggaagttgt cgaggatgca gagagtagca ggaagacacc tctgagaact cactcacaca 180 ccctgcccct gtgtagagat 200 <210> 40 <211> 200 <212> DNA <213> Homo sapiens <400> 40 tcagaatccc aggattaaaa agaaagagag gaaggaagga aggaaggaaa gaagaaaagg 60 aaggagggag gaaagaaggg agaatggtca aaatatatga agatgaggtc cagaatatgc 120 aaatttgttg cacgttttca gccactggta gaatatgaga aaagagaatc tgtatgtgag 180 catttaaaat atacatttga 200 <210> 41 <211> 193 <212> DNA <213> Homo sapiens <400> 41 aaattagcac caagaacaag aaatacagtc tttgaaaatt agaaattgga acttactaga 60 gcataagtgg ctgttttaaa atgtttctgg tggcacttgt tattgttacc atgtttttaa 120 cctacatcat tggggtttga tcactttcta acatcatcat ctctgaaaca cacattttct 180 agtaattata aaa 193 <210> 42 <211> 200 <212> DNA <213> Homo sapiens <400> 42 tgtcatagaa ctttagatgt catttgtcat ttatttaaag gacaaaactg aaggaagtta 60 ggttaggttt aggaatcatc aaaagaaaag aaagtgtcag ataaggagca tcacaggttc 120 ctatatccta taagttataa tatacattgg agatcagaac tttttctttt ctatttctaa 180 tatttagatt acagatgagc 200 <210> 43 <211> 200 <212> DNA <213> Homo sapiens <400> 43 taatggcgag ggtccagcta tgcctctctt tggtttgttg acagtggttc acgttcctaa 60 gcatctttct ggatgggtca tctccatttg tgtccttttg gcatcttgtt ggcttctgct 120 ccttttctac gctgtgctcc ttcctgtgga gccacaggaa ctgctgaagt tccctcccac 180 acctttgaag gctacaagga 200 <210> 44 <211> 200 <212> DNA <213> Homo sapiens <400> 44 ttcttaattt aaggtgtgaa tataaaataa aaaggcagag cttcttagaa aagagtttca 60 aaggcaattc cctaaacatc ttgaaaaata gcagcagaat gacctcagtt caggatttta 120 aagaataaca ttcattgaga catagacata attgttcagg tgattatttt tcattagtta 180 aaaaaaatgg caaatccatc 200 <210> 45 <211> 200 <212> DNA <213> Homo sapiens <400> 45 tatagcactt attagactta attctctctg tcctaacaca cacgtgagca cgcatgcaca 60 catgcacaca cacacacaca cacacacaca tgctttttac aaatatgaca acctgtatca 120 atacaggctg caaggtaatt attgcgtcaa tactattata tctcacaaag tacaagtaaa 180 gattaaacaa tcaggcctca 200 <210> 46 <211> 200 <212> DNA <213> Homo sapiens <400> 46 tttctaaagt ggctctccca aacctacctt tgtcctaact cagttgtctg tgattctcaa 60 tatagtaacg ataagcctct ttgaatatgg aggccgctgc gacggcccgg ctgagaccca 120 aagcccggtg gaaaaagaca gcccggcgaa gacccaaagc ccagcccaag acacctcaat 180 catgtcgaga aataacgcag 200 <210> 47 <211> 200 <212> DNA <213> Homo sapiens <400> 47 gaaactacaa cggcaagatt aaagatcaga ttcctttaaa aaaagtgtgc ctcccaatct 60 tacctccagt tcatttagcc tttggacgcg aggagtaaat tgaaattgtc aacttctact 120 gcaaaaggag gctgccaatc ctagaagaaa gtgtaaggac ctggtaacta tggcacagta 180 aaggatgaag atagtgaaaa 200 <210> 48 <211> 199 <212> DNA <213> Homo sapiens <400> 48 agtgtgattg caatcaagaa agttacaaaa ctttattggc atataaaatg tacacaaaaa 60 ataacataca catttgaaca atatcatatt cctgaatata aaatgactgt tgtgagaata 120 tcagttgttc ctagattaat gcacacattt ggtgtaggtc atttcaatat cctcctggct 180 attttagaaa cagaacaaa 199 <210> 49 <211> 200 <212> DNA <213> Homo sapiens <400> 49 ctttatcaca gaaaaccagt tgttccagtc agacccatac ctggaatttt taccaaagcc 60 tctctgttaa tggcatccac cagggaggac gctggtgtcc gtttaagcaa gcacttagct 120 ttgcttccac gtggcagtac ctgtatataa gaattcactg aagtgtcaaa caaatgctcc 180 caagtctaca gttcacatat 200 <210> 50 <211> 200 <212> DNA <213> Homo sapiens <400> 50 ctcttggctg gatgcatttg tgaaaagtac aatctgcaaa atcatacaat tgattttgga 60 gagttcatcg gatttttctg aatcttgaat acagtattac ctggactctt tttttggtgt 120 tggagggcag tatctgccag gctcacaatg aagtcattaa ttttgttatt acatctcttc 180 caccaccact tcccacccct 200 <210> 51 <211> 200 <212> DNA <213> Homo sapiens <400> 51 aacgtgaaat acattatgct tccattacac tagttatcat gggaaaacac ctcaaaaaaa 60 taaaaacaga ccaacaaaag acaataaaga cctttgtgcc tccattattt ttctgtccta 120 gtatttgtgg ccgggtcaaa aacaaactag acagggaccc tgagggaggg agatttcgct 180 gacatctgta ggtaggatca 200 <210> 52 <211> 200 <212> DNA <213> Homo sapiens <400> 52 gtttcctttc ttcctagtta aaaatgcacc atctctctaa ggaggtgcct gttcattggg 60 tgttcttccc caggaatgac gtttcctgtt ttatgatggg aaacaagacg ttcacactcc 120 tgagattctg ggcatcaggt ctacatctct gtcatcatcc tggccagcgt ctaccttgcg 180 aaatgatcaa aatgatgacc 200 <210> 53 <211> 200 <212> DNA <213> Homo sapiens <400> 53 ctatccaacc tgcctcgcca agataaaggc cagtgagacg tgatactggc acacttgctg 60 ctgtagcaat gtttttctgt tttgctctcc tcattgaggc aaagttttaa aattatcctt 120 actgtttttg ttgttggcct gaaaggttaa aattcatttg ggtgagcttc caacaatgac 180 tggtttctct gcagccaata 200 <210> 54 <211> 193 <212> DNA <213> Homo sapiens <400> 54 ggtccttcag gctaacattt ctttagttta cagttctacc aattagcatc attaaattac 60 catttatgtt tccttaaaaa gtggagattg catctttttt ggagatttgg ttctaaagtc 120 agtatgtgag gcaaagagtg aaagcctctt atcttatcct aaagtagaca gcagtatatg 180 tggtttgtgt aca 193 <210> 55 <211> 200 <212> DNA <213> Homo sapiens <400> 55 ttcacatggt ttaaaaagtg gaaactctga aagtgtttat aatttaaata aaatgtttat 60 ttctgtagtc aaaaggctag tgaaatttgg agacagattt ttaagcaata ttctaaattt 120 aatgttactg taaagagcaa tctgggaata tttacttctt tccagctatt gatagaaata 180 ggccacaaag agaaatatat 200 <210> 56 <211> 200 <212> DNA <213> Homo sapiens <400> 56 ctcagtatct gttctgttcc caatggtctt tagcaagagt tgcaaagcgc cctcctgtta 60 cagtaaagaa ttctccttta tatcaaatct aaattacttc gtattaggca gaaccctttt 120 aattgcaagt aacagaaact atacaaatta gcttaagcat aaagggactt tattggcttg 180 tgttcctgga tagagctggc 200 <210> 57 <211> 200 <212> DNA <213> Homo sapiens <400> 57 caggcttaca ttcagtaaga ttcatcaggc ttactattct ctctgccacc tcacactcct 60 tttcttgggt acctgttcct gtgggagaca agtattcttt agtgagtgat actggagcgt 120 tcttttcttc ctctactccc ttgctgccac ccaccaacct gccccaactt ctgaaattcc 180 catcctgggg gaggttccca 200 <210> 58 <211> 200 <212> DNA <213> Homo sapiens <400> 58 gtggaaataa cagagattag tacatggaga actatggcca aaaaaaaaaa aaaaaaaaat 60 cctgccagaa tgtattctta acttcgaaca aatgccagaa tattggtacc tttggcttcc 120 tcctcagtgc ttgtgcctat cagaacagat aaaacatgct gttttggtta gttccctacg 180 ggtctctctg tccctccggg 200 <210> 59 <211> 196 <212> DNA <213> Homo sapiens <400> 59 actgttacct caacaaataa ctaatgtaaa aagcaaagga cgtcatttga gttattgaag 60 ttcagaagta tttcaggaca catttaccag tgagttaggc tccgcactct tgggaaacaa 120 tgcccaggta attattttaa atgagcatta attatgtcat tattagaaat ggggagaaaa 180 tgcaatttcc ttctgt 196 <210> 60 <211> 200 <212> DNA <213> Homo sapiens <400> 60 agcatgcagg gcctctgctg ggtttcttaa aggagaagac cagaaatagc atccattctg 60 ctgcatttta ttggtcaagg aaagtcacgg tgccagtctc agtcaagaga aaaggtaatg 120 aacttaatgg gtgaagtggc acacacttat aggcaaggag gggattgaca gcaacccttt 180 ttggaaagta tctcccacag 200 <210> 61 <211> 200 <212> DNA <213> Homo sapiens <400> 61 taagtcttta atcaatttgg ggttgtgttt tgcattgtat atagtgtgaa gggtcctcca 60 tggtgaaggc ttctggggtc ttcctgctct cctcttaccc gcacaaagaa gtcacagttg 120 tgatgtgtct tcttggcacc cagaagatga tgcagactaa atgctttcta catttttctg 180 tgtggcttct ttggtctttg 200 <210> 62 <211> 200 <212> DNA <213> Homo sapiens <400> 62 tagatatttt tacaagtata ttacctccta tttgcataat gccttctagt tctcaaagac 60 tttttacaca cttcatcggt ttgatcttta ccatgacacc taatggaaat attatcacca 120 tcttgatttt acagatcagg aaaccaaggc tgaggaaagg gaatgacttc ctcaggaccg 180 caagatgttc agtttctcag 200 <210> 63 <211> 200 <212> DNA <213> Homo sapiens <400> 63 ctcaattgcc agatgcatat gccctgtgca catgcctttt cctctaggga aaccctgttc 60 agggtctcaa tgtcccctgg cccagctgcc ttaacttagc caaatgcaaa cttgccctgt 120 atctccagtg gctcagaact gccctgctag ctctcaaccc tcctccacgc tttttctttt 180 tccttgcttc ctggtcctgc 200 <210> 64 <211> 200 <212> DNA <213> Homo sapiens <400> 64 aaactcaatt ttcatttcaa tatccttgaa gtagaaaagt agtctttgaa caaatcactg 60 tatcttagag gcatgtgttt aaaatactgg cctagctacc agaactttta aagattgaca 120 tttccatgat gtgcctgaca atttaatcga ccttataaag tgcttctcag gcttcctggg 180 acaatgtttc ccaaagtgta 200 <210> 65 <211> 200 <212> DNA <213> Homo sapiens <400> 65 ctggtaaaac cccgagaaaa attaagaaaa agatggagag atgtagcatc aagtattctg 60 tagggatgaa ccaaggtcat tttttgaggt cttttggtct ttggtctatt tattggggat 120 tcctaacttg caagtttctt aagtgtagca tttaacacat tccataattt aactctttca 180 taaatttcca tgctacttac 200 <210> 66 <211> 200 <212> DNA <213> Homo sapiens <400> 66 ctcactctgg acaaaaccac tattatgacc agaatgcagc atcactgggc agctatgacc 60 tatatttgaa atacattctt agaaaggttc catttggaag gagtgcaacg tgcacagcac 120 ttttggggag caacttggca gagtgcatta aaacatgaag tgcaggccga gtgcaatggc 180 tcatgtctgt aatcccagca 200 <210> 67 <211> 200 <212> DNA <213> Homo sapiens <400> 67 aaggtgttga acagtaaaca cagtatactt catttattaa ataaaaagag aaacacactg 60 tatacatatt tgcttctata tgcatggaat aacactggaa gatattcaca aaactattga 120 cattggttat cttttttttt ttctttttct gactcaaaca catcttctga gacactggtt 180 atctatagag agggaaagat 200 <210> 68 <211> 200 <212> DNA <213> Homo sapiens <400> 68 cctttaattg taatgtaagt ctatcaccat ctggctgcct ctccttccat tctttatggt 60 tagctgttta tgctctggct atgacaaatt caaagttcaa tcgtatttct ggctaattct 120 tttttttttt ttttaaacat ttatttagga ggacttgaga agaaagagtg ggtactttta 180 aagtctagag tggtcagaac 200 <210> 69 <211> 200 <212> DNA <213> Homo sapiens <400> 69 tacaagtatg aagcaccaat tctcttagaa agaataatct ggctgcatgg tatcaatgac 60 acctctttta taattaaatc tataattttt tttgaatacc tctaggtccc atccttcacc 120 accatggatg catttgtgtc taatattagt gattgtttca acagaatttc aggccttttt 180 tcctgatctc tcttcctccc 200 <210> 70 <211> 200 <212> DNA <213> Homo sapiens <400> 70 tggaaataaa cagttttggg gaagatttaa tccctcactg gggaaaaaac aagcagataa 60 aatcagggtc ctctaactgt ccataatctg caacaagtac attttaattc tctgcataaa 120 atttttttat ttttaaaaaa gtaggacttc aagtgtggag atatggaatt cctcaatccc 180 tgcagcccgc cttaaagaca 200 <210> 71 <211> 200 <212> DNA <213> Homo sapiens <400> 71 tagaggatac cttgtgccat cctggttcct tcatacactg gaggtggcac cgcagtctaa 60 agagctatta tgccagctca cgtgtgtggc ttaagcccag aatcggcaga gtcctgaatt 120 gttctgtgtc cctccaaagt cagggtcact gtcaccctaa gacagcatgt cagcaccatt 180 ccagaggccc aattttatcc 200 <210> 72 <211> 200 <212> DNA <213> Homo sapiens <400> 72 tgccccattg tttgtctggt atagagctct cagcaaatgt gttttcctca gaaattgcca 60 actttgctcc acactgcatt tggaatttgg tattggagac agaattccga tgtcagtcca 120 cttctttttc ccttgtaggc aaacggttta ttgtgtttgt cagtttggaa aacacatttt 180 atcctgagaa atcaaatgta 200 <210> 73 <211> 200 <212> DNA <213> Homo sapiens <400> 73 ggcaccccaa aagtcagtgt cttcaaatag cagccattat tagttctcaa ggttacaggt 60 cagtgtgtga cccttttgcc ctgggccctt ctctgttgtt tcagctgggc tcatatggga 120 gtcattggtc aactagagga gtgctgctcc aggatggtct tgcccacatg tatggtggtc 180 agctggctgt tttggggggg 200 <210> 74 <211> 200 <212> DNA <213> Homo sapiens <400> 74 aggcactgca ccaggatttg actattgatg catctccaag ctgagcctcg gtaggcctgt 60 ggtcccatgc tagagagcag ctgccagtgc ctccatctgc gcaaagcttg gctgtgtgtg 120 gatgggtggg acaagtcact ccagaagctt ctccccttaa gacatcctga cattaaggga 180 tcttcttcct ttgctcctct 200 <210> 75 <211> 200 <212> DNA <213> Homo sapiens <400> 75 ggcagagccc cttagcggct ctaagcacta aaatactatg ctaactaaaa actaccctca 60 gcatcaaaca aagataagga agtctagtct gacttttctc tgatgacaac ataccatgcc 120 tattttgaaa cgtcagagtc tggccaaaaa tgtttgggtg aatggggtac cagtcatcat 180 tatcgggaat atttctggag 200 <210> 76 <211> 200 <212> DNA <213> Homo sapiens <400> 76 tattagatgc tgtcaaagtc taagcgaccc ttcacatttc gcattccccc gagtagtgtt 60 cagggtttac ttggtgcaca cttggccaac acgggatgtc ttctatttct agccactctg 120 gtgagtcatc agtggtgcac accatggttt caagttcatt tgcactttct cagtgtctat 180 aaaaattgag caactagcag 200 <210> 77 <211> 200 <212> DNA <213> Homo sapiens <400> 77 gaaaactgac aaggacacat tagagctgca cttcactagc agcatgaatg tggtaatggt 60 gaaaggagaa caatatctga aaggaaatga aggtcttatc taggagccac agagatttca 120 tttttgtttt tctgaaaatt atcattatca gctgtgactg ctgatgaagg accacttagc 180 attcccccca aggaataatt 200 <210> 78 <211> 199 <212> DNA <213> Homo sapiens <400> 78 taaacagact cagcctcata gggcctttcc tgagctcagg ccattcaaac ctgagcaagg 60 cgttttctca tgagcattgc cagctgagtt tcacaaaaat tattacactc tgttcttccc 120 accatgagaa catattcagt tattggattg gaaataaaga ctccagctcc ctcagctgag 180 ctgctgatgt ttgaatgtg 199 <210> 79 <211> 200 <212> DNA <213> Homo sapiens <400> 79 gcaatgcact ccaggcctta ttcaatcagg ctgtgtctca tttccttttg cacaaacctt 60 tggggaaatg tgctcgttct gaatctggtc tctataaccc ttaatgtccc tcaagggaat 120 agggatgtta ggtctctata ctgcagcgtg cacgagcaac actagcttct gctctctaag 180 cccagctctt tgccaacatg 200 <210> 80 <211> 200 <212> DNA <213> Homo sapiens <400> 80 cttttgaggt ataaataaaa tattttaaat taagcaaaca ttttaaactt tagattaaac 60 ctcattgagc atggagtaac atacatgtca gtttcaggct ataagaggca gaggcatttg 120 gaaaaacagc aaattagcat ttgtttaacc accacttttg gcacctactt tattttggtc 180 aaggtgcaaa aagttaagac 200 <210> 81 <211> 200 <212> DNA <213> Homo sapiens <400> 81 cacctgaata ttttagttaa aaagtaaaag agtagttgtc ttttaatatt agtgcttatt 60 tgagtttaga tattatttta taacttacat tgtacctctc tcagcgaaat agtttgaaac 120 tgtctcactg taagtgtata tattcttttt tcaaaatatg tacatgtagt attgtcattc 180 tgtatattaa gtattaagaa 200 <210> 82 <211> 200 <212> DNA <213> Homo sapiens <400> 82 ggcttttaaa aatagtaaaa gataaagaga acatcgaaaa ggacctacaa tttgctataa 60 ttgacatcag catcagggta aaccctgcag ccctcaaacc gttactgctg aattgtgcat 120 tccccatggg atcccacact gcttccagtg ccacagccag atccacacta aacccttaac 180 acatggaaat ggaatgccag 200 <210> 83 <211> 198 <212> DNA <213> Homo sapiens <400> 83 ataacactaa ttttagtcct gtgtgaaatt cctcaaaatt tgtgattaaa taacatgcag 60 tacaacccat ttgttcttca gccaacatat accaagtgta attgtgtgct aggcattgtg 120 caatgtgcgc tcttgccctc atggatctga cagtcaagtg ggcatgacag tcgaatcagg 180 gaactgccca ggagagaa 198 <210> 84 <211> 200 <212> DNA <213> Homo sapiens <400> 84 atgtggtttc tttccctgag acaattgagt tgttcatcta tttctagctt gttggaaaga 60 atgataccac ctcatactca gagataaggc tattgtgttc tctgtttttc cagggtgcgg 120 tgggtctgcc cagggctttg tgaacaggat ctgcctggca gataaatccg aggagtattg 180 ggaagtggac tctttgacaa 200 <210> 85 <211> 200 <212> DNA <213> Homo sapiens <400> 85 aaaaacaaag ggaaaaaaaa aaagacccaa atacttggag actgaattta attaaaatgg 60 gattgtaatg gccttaaaca tgcatgctca tgacctcatg tgaatcttcc acctctctag 120 attgtcacca tgcgtaggtt cctgagctgg tgttgctgca attttggggc atctctaggg 180 gccatgaggg ccccatgagt 200 <210> 86 <211> 200 <212> DNA <213> Homo sapiens <400> 86 ttcctggcag tgaaggtgtt ggggttaatg atgaagacca gggaaaaggg gttcacagaa 60 ttggctgagg gcttatgtgt gcagaggtct tctggaaggc tccatcagta atggatgaaa 120 gagcttatca gatcattagc agcgccccat actaatgaga tgttgcattc ctgctcagta 180 gagaccccct ccattggaaa 200 <210> 87 <211> 200 <212> DNA <213> Homo sapiens <400> 87 tatacccacc ttgttatatg taaaaaatgg gttagcacac agtttgtgtc atagtaatta 60 cccaagaaaa tgctgttggt attggtatct actgataacc gtcattgcca ggtcccgctt 120 tcatgaccca attaggttca cttaaaagta gcaatatact catacgtaaa ccagaaatgt 180 taaaatctcc tcccccacaa 200 <210> 88 <211> 200 <212> DNA <213> Homo sapiens <400> 88 tgcatattta taaataagca cagggtacta cagaagtaca tggtgaggaa ggcacttggg 60 tcagccatag gagattcagc agagacttcc tggaagaagc acttccaaac ttggatgtaa 120 aatagaagta ggagtttgag ggtaaatagg gtgcatagag aaaaacattg cagataggat 180 gcatgccatt tacaaagatc 200 <210> 89 <211> 200 <212> DNA <213> Homo sapiens <400> 89 tataccaaaa tcagttgtga aaaaaactca taaattttca aaaaaagtta gatactcaaa 60 acttatcaca taatatctaa acttctcttt cacattaatc tataaaattc aagtgaatgc 120 gtgtcagttg cattatgcca aaatgacttt tagcatgcaa ggatttttga accatttgcc 180 gttttctgga catggactta 200 <210> 90 <211> 199 <212> DNA <213> Homo sapiens <400> 90 gaaagtgaaa ttgctcatag gaaatcaaag caaatggcct taagagtggc tccagtggac 60 cgtcctctga aaagtgaccc acaattctgc atgaatcttc caggacactg aattggagcc 120 agctgatgta aggagcttac cttggttgcc accttctggt ctctgtttga ggaacaactg 180 catgtgatta agggtaaca 199 <210> 91 <211> 198 <212> DNA <213> Homo sapiens <400> 91 tctaaaatga tactgtagta aagaaatatt ctcaaactgt tggtaaattt tagagaaaat 60 aaaaatatta tacatacttg ctgcattaag acaaactgct ttctaactgt tccagctgat 120 gcttctgtgc tggatttaaa ttatctctat ttgctcgcag ttgttccaag tgctagaaga 180 aaagagatta atataatc 198 <210> 92 <211> 200 <212> DNA <213> Homo sapiens <400> 92 ttcccggaga gtatcgccag ccaaccaggc gggtgatgga ggtgcgtacc tgtccatgcc 60 accaagcgcc tccctttcct cgactgtcag gctaacagac sytcttcact ctcgcggctc 120 gcttttcctt ccgccatttt ctttgcctca tcaccgaagg caacagcggc ggtagtgagc 180 gacactgcgc aggatttcat 200 <210> 93 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 93 tcaaagtttc tctctcacac aaga 24 <210> 94 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 94 tatgtcattg gagacacagg g 21 <210> 95 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 95 aataagctca ccaccgtcaa agagtgctgg gtgcattaac agctc 45 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 96 tggtttggtt tctcagctg 19 <210> 97 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 97 cttaagaatc ttgcaatcag ctact 25 <210> 98 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 98 acagatcact caccgactaa aatatttatt tggtcatact aaaca 45 <210> 99 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 99 tttctcggcc atctgctc 18 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 100 agtgcatgcc ctaaatgct 19 <210> 101 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 101 ctcagactac gaatccacgt tgtgtggagt gtgaggtgca gacag 45 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 102 tgtccacaga ttatccctgc 20 <210> 103 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 103 taaaagcata gccaaaaata gtaaca 26 <210> 104 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 104 agaccgacaa gcaatctaca gtaacagaaa aatagataca aacaa 45 <210> 105 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 105 ttgttattta gaaaactgaa aggtgtt 27 <210> 106 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 106 ccaaattaga aaatataatc ccaatatg 28 <210> 107 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 107 cagaatagcc acgcctagat atatgaattg gggcagaata accaa 45 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 108 taattttgag cactggggc 19 <210> 109 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 109 atgtgattac ctctgaatgc ttc 23 <210> 110 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 110 cagccatcca ttcactatct aatattaaac ttttagaaaa gtgtg 45 <210> 111 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 111 ttaccttcag ttgtactcac tcaaat 26 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 112 agctcagaat tcctcagtgg 20 <210> 113 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 113 cgatcacctc actagaacaa catgtaggac atggcatgaa gtttt 45 <210> 114 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 114 tgtttggaac tgaagcatat cc 22 <210> 115 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 115 atgatgaaag gactcttttg tgtc 24 <210> 116 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 116 caacaagtaa tccgcagact actatatccc atataggcac ttgct 45 <210> 117 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 117 acctttccct ttggtttgc 19 <210> 118 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 118 taaagaaaag ccatttctca aaat 24 <210> 119 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 119 cagcactatt accatcacgt gaaggtacag aaaatggctt cgaga 45 <210> 120 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 120 atagctctgt aatgtaaata atcttaaagt ca 32 <210> 121 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 121 ttgtacaact gggtgcagc 19 <210> 122 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 122 agcaagacca cctagaccag ctaaaatctc ttctccatcc cgttc 45 <210> 123 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 123 tttgacttat ggaccgtgc 19 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 124 gtggaaagtc attaatcgtt gttaa 25 <210> 125 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 125 agacttctac gcaagcactg ttgttaagct gcagacacaa tttac 45 <210> 126 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 126 tgccggacgt taatgatg 18 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 127 ttttcttccc accggtaatc 20 <210> 128 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 128 tacaagcacg cactagacat tcttagactg gtatcttcat ctgcc 45 <210> 129 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 129 tttgctaaaa tgccagtagc a 21 <210> 130 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 130 aataaagtcc tctttaatct ttgcag 26 <210> 131 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 131 agccgaacta ccactgagta agtggtatca ataaaagtga ctagc 45 <210> 132 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 132 atttatctct ttctctcttt tattgctg 28 <210> 133 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <133> 133 aaaatggtag gtacttgtag ttccg 25 <210> 134 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 134 ctcactatct gacaagccac agccagaaca ccactaatca gatat 45 <210> 135 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 135 attgttctaa tgactgaaag acataattc 29 <210> 136 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 136 aattcaccat taagagagaa agctaa 26 <210> 137 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 137 gatccatcaa cagacatcac agctaacatt tatggagcct attat 45 <210> 138 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 138 aacatgtttg gcatggtctc 20 <139> <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 139 tcatcattga tccatgcaca 20 <210> 140 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 140 cactacatac gaccgcagaa aaacatggaa cattaggtgc ctttg 45 <210> 141 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 141 aaggatccac gtgtgtgg 18 <210> 142 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 142 aaagaaaaag gccattgaat aag 23 <210> 143 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 143 acgtaagacc actcaagacc ataagggctg ttaaatgaaa gaggt 45 <210> 144 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 144 agcgtttatg ctccatagt 19 <210> 145 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 145 gaatccttta aaaaattaca taggca 26 <210> 146 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 146 caacaagaca taacaacgca agaaaagaaa tgaagatcta tgaca 45 <210> 147 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 147 tgtgcaaacc cccagaaa 18 <210> 148 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 148 ggatcccacc catttcag 18 <210> 149 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 149 ctaactaagc tacgccgaca agagtggtca atagttggat ttgac 45 <210> 150 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 150 ttttcagaga acaaagctag aaaac 25 <210> 151 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 151 aaatttgaca gggaaaagga c 21 <210> 152 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 152 tacctatgac cagcaagcac catgaattca tgatgtttcc tattc 45 <210> 153 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 153 tggatggagc ttttccct 18 <210> 154 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 154 atcccaatgt atgacatcca g 21 <210> 155 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 155 ccgccagtaa gacctagacg aaggatggaa tgcgtgggtc ccaaa 45 <210> 156 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 156 accaatggtg ctcaaagc 18 <210> 157 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 157 tggcaaagta actgatctaa ttaaga 26 <210> 158 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 158 aacatccacg caactcatac aattaagaca tcccccaaat atcac 45 <210> 159 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 159 ttacatatca atcagcttac ctaaatg 27 <210> 160 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 160 aacatcacta atggatgaac aaaa 24 <210> 161 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 161 caacaatacg agccagcaag aaaaaaacct ccaataaaag cactc 45 <210> 162 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 162 tgaaacagcc aagtactctt acag 24 <210> 163 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 163 agtaacaggc agttaatctg gaata 25 <210> 164 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 164 tccagaatag acaacagacg taaatgaaga agactatctg ataca 45 <210> 165 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 165 cagagaagca gcaatggg 18 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 166 atggaagtgg aacatccaga 20 <210> 167 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 167 acaactaccg acgacaagac gaatgaggca tgagcaaagc tagaa 45 <210> 168 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 168 aatcactcaa acattccact cc 22 <210> 169 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 169 acttttgcac gtttaaaact tctg 24 <210> 170 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 170 caccgctatc aacagacttg ctgaaactga ctgcattatt ccaaa 45 <210> 171 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 171 aagacaggga ggtagcacg 19 <210> 172 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 172 gggacacaca ggcatcat 18 <210> 173 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 173 cagaacatcc tcagaagcaa ttgtagggga ggctgaaggt ggtaa 45 <210> 174 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 174 taatcactcc attctcaaaa atca 24 <175> 175 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 175 aaagaacagg gataagtctt aaagc 25 <210> 176 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 176 cgcagaagca actcacttct taaagctaat gataagagaa tgcac 45 <210> 177 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 177 attagtatgt acagaaagta gagggctg 28 <210> 178 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 178 cctcaccaac cttgcccta 19 <210> 179 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 179 aacatacaga cgcactcctc accccctacc attaatttag tagcg 45 <210> 180 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 180 tatgtcataa tattaacctc ccttcc 26 <210> 181 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 181 tgttacggtg aggaaagaca g 21 <210> 182 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 182 caagcaacga cctactacaa agaaggctgt tattactgag acctc 45 <210> 183 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 183 aatgccttgt tctgcaatca 20 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 184 gggagaataa tagtgattgt ctgg 24 <210> 185 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 185 cactagtcat aacgcagcct gtctggactc tcttcatctt cctaa 45 <210> 186 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 186 tcttgcacaa cctttctcc 19 <210> 187 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 187 cctgacttga tgttgtccc 19 <210> 188 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 188 gcaacataag accgctcaac cctaacatgc tctgtcaaaa ctccc 45 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 189 tgctctctat gaatatttgg cat 23 <210> 190 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 190 attaaagaag agtgtgcaca tg 22 <210> 191 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 191 ccataacaac ttaccagcca atccatctct agttgctttt caaca 45 <210> 192 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 192 aagctgcaga gggaaattaa tat 23 <210> 193 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 193 gcaatgaacc tatagtaaca aactatga 28 <210> 194 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 194 caagaccgca actagataca aaaggttaag gtgtctgtga aatgt 45 <210> 195 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 195 acaattctta ttcccaaatt caaa 24 <210> 196 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 196 ttcatcagtc cccaaatatc c 21 <210> 197 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 197 atctaacgca cctacgacct cctacttgag atctttgggt gtgca 45 <210> 198 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 198 aaggcttatt ctatagggtt tttgtac 27 <210> 199 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 199 aaagatacaa gtattcctat tttctgct 28 <210> 200 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 200 ccagatcctc accatgtaag tttctgctta atatatgttt ctaac 45 <210> 201 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 201 ttctagattg ccaactcctt aaga 24 <210> 202 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 202 tatttatttt cctttaagca acatctg 27 <210> 203 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 203 atacctacca cgctacagcc gattggttca gaaatactgt gcaag 45 <210> 204 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 204 atttcctcaa actctcgaaa agtat 25 <210> 205 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 205 aatttcactg ttttgcatta tcaa 24 <206> 206 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 206 accgcactaa gcaatgtatc aactcctaaa ggagaatcag gtgaa 45 <210> 207 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 207 tgtgtgagtg agttctcaga gg 22 <210> 208 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 208 tgtggagtca atagtggcaa 20 <210> 209 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 209 agtagcctaa cagcactcga ggttcagagg aagagtgaaa tcccc 45 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 210 attcagaatc ccaggattaa 20 <210> 211 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 211 tggctgaaaa cgtgcaac 18 <210> 212 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 212 cacgacaaga caacagatac aatttgcata ttctggacct catct 45 <210> 213 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 213 agtgatcaaa ccccaatgat 20 <210> 214 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 214 tagagcataa gtggctgttt taaa 24 <210> 215 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 215 cagtcaacaa tccagatcaa tttaaaatgt ttctggtggc acttg 45 <210> 216 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 216 aaaactgaag gaagttaggt taggtt 26 <210> 217 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 217 atattataac ttataggata taggaacctg tga 33 <210> 218 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 218 acaactcacg caagtaccat tataggaacc tgtgatgctc cttat 45 <210> 219 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 219 tttggtttgt tgacagtggt t 21 <210> 220 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 220 aacttcagca gttcctgtgg 20 <210> 221 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 221 acaatcaaca tacgaacagc aaaggagcag aagccaacaa gatgc 45 <210> 222 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 222 aaaagagttt caaaggcaat tc 22 <210> 223 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 223 gtctatgtct caatgaatgt tattcttta 29 <210> 224 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 224 gcaagccatc agctaataca ttctttaaaa tcctgaactg aggtc 45 <210> 225 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 225 ttaattctct ctgtcctaac acacac 26 <210> 226 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 226 aataattacc ttgcagcctg tatt 24 <210> 227 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 227 acaagaactc catgactcaa acacacacac acacatgctt tttac 45 <210> 228 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 228 tttgtcctaa ctcagttgtc tgtg 24 <210> 229 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 229 ggctgtcttt ttccaccg 18 <210> 230 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 230 aagtaccacg tcaacgtcac cctcttkgaa tatggaggcc gctgc 45 <210> 231 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 231 ccaatyttac ctccagttca t 21 <210> 232 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 232 taggattggc agcctcct 18 <210> 233 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 233 gcagacaacg aacaactacc tttgcagtag aagttgacaa tttca 45 <210> 234 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 234 ggcatataaa atgtacacaa aaaataac 28 <210> 235 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 235 tgcattaatc taggaacaac tgatat 26 <210> 236 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 236 caagaccgca actagataca tgaacaatat catattcctg aatat 45 <210> 237 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 237 aatttttacc aaagcctctc tgt 23 <210> 238 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 238 aatatgtgaa ctgtagactt gggag 25 <210> 239 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 239 cagccatcca ttcactatct tccaccaggg aggacrctgg tgtcc 45 <210> 240 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 240 aattgatttt ggagagttca tcg 23 <210> 241 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 241 tgagcctggc agatactgc 19 <210> 242 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 242 ctcactatct gacaagccac ttctgaatct tgaatacagt attac 45 <210> 243 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 243 acgtgaaata cattatgctt cca 23 <210> 244 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 244 tctagtttgt ttttgacccg g 21 <210> 245 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 245 caacaagtaa tccgcagact aaaagacaat aaagaccttt gtgcc 45 <210> 246 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 246 tttcttccta gttaaaaatg cacc 24 <210> 247 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 247 atgtagacct gatgcccaga 20 <210> 248 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 248 tccagaatag acaacagacg atgacgtttc ctgttttatg atggg 45 <210> 249 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 249 tgatactggc acacttgctg 20 <210> 250 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 250 agagaaacca gtcattgttg ga 22 <210> 251 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 251 cagcactatt accatcacgt tctgttttgc tctcctcatt gaggc 45 <210> 252 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 252 gctttcactc tttgcctca 19 <210> 253 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 253 ttaccattta tgtttcctta aaaagtg 27 <210> 254 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 254 caacaatacg agccagcaag atactgactt tagaaccaaa tctcc 45 <210> 255 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 255 tttaaaaagt ggaaactctg aaagt 25 <210> 256 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 256 cagattgctc tttacagtaa cattaaat 28 <210> 257 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 257 cgatcacctc actagaacaa gctagtgaaa tttggagaca gattt 45 <210> 258 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 258 gaggccagct ctatccagg 19 <210> 259 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 259 gttacagtaa agaattctcc tttatatcaa a 31 <210> 260 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 260 agaccgacaa gcaatctaca caattaaaag ggttctgcct aatac 45 <210> 261 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 261 atgaaaacca ggcttacatt ca 22 <210> 262 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 262 caagggagta gaggaagaaa aga 23 <210> 263 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 263 ccagatcctc accatgtaag aaagaacgct ccagtatcac tcact 45 <210> 264 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 264 aaataacaga gattagtaca tggagaacta t 31 <210> 265 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 265 ttttatctgt tctgataggc acaa 24 <210> 266 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 266 atctaacgca cctacgacct tcttaacttc gaacaaatgc cagaa 45 <210> 267 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 267 gtcatttgag ttattgaagt tcagaa 26 <210> 268 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 268 ttaatgctca tttaaaataa ttacctgg 28 <210> 269 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 269 gatccatcaa cagacatcac ggacacattt accagtgagt taggc 45 <210> 270 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 270 tgctgggttt cttaaaggag 20 <210> 271 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 271 ttgcctataa gtgtgtgcca 20 <210> 272 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 272 ctcagactac gaatccacgt caaggaaagt cacggtgcca gtctc 45 <210> 273 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 273 aaaatgtaga aagcatttag tctgc 25 <210> 274 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 274 ccatggtgaa ggcttctg 18 <210> 275 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 275 aagtaccacg tcaacgtcac catcacaact gtgacttctt tgtgc 45 <210> 276 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 276 ttctcaaaga ctttttacac acttc 25 <210> 277 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 277 tctgcgaatg gaaagagc 18 <210> 278 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 278 ctaactaagc tacgccgaca tcggtttgat ctttaccatg acacc 45 <210> 279 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 279 ttttcctcta gggaaaccct 20 <210> 280 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 280 ttgagagcta gcagggca 18 <210> 281 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 281 gcagacaacg aacaactacc cctggcccag ctgccttaac ttagc 45 <210> 282 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 282 ttgaagtaga aaagtagtct ttgaacaa 28 <210> 283 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 283 attaaattgt caggcacatc atg 23 <210> 284 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 284 tacaagcacg cactagacat tgtttaaaat actggcctag ctacc 45 <210> 285 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 285 tattctgtag ggatgaacca a 21 <210> 286 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 286 aatgctacac ttaagaaact tgca 24 <210> 287 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 287 cgcagaagca actcacttct gtcatttttt gaggtctttt ggtct 45 <210> 288 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 288 ggcagctatg acctatattt gaa 23 <210> 289 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 289 ttttaatgca ctctgccaag t 21 <210> 290 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 290 cagaacatcc tcagaagcaa ttcttagaaa ggttccatty ggaag 45 <210> 291 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 291 tgttgaacag taaacacagt atacttca 28 <210> 292 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 292 tgtttgagtc agaaaaagaa aaaa 24 <210> 293 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 293 acagatcact caccgactaa ctatatgcat ggaataacac tggaa 45 <210> 294 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 294 tctccttcca ttctttatgg ttag 24 <210> 295 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 295 tctagacttt aaaagtaccc actctttc 28 <210> 296 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 296 ccataacaac ttaccagcca tggctatgac aaattcaaag ttcaa 45 <210> 297 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 297 aatcactaat attagacaca aatgcatc 28 <210> 298 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 298 gctgcatggt atcaatgaca 20 <210> 299 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 299 gcaacataag accgctcaac atggtggtga aggatgggac ctaga 45 <210> 300 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 300 aagatttaat ccctcactgg g 21 <210> 301 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 301 atatctccac acttgaagtc ctactt 26 <210> 302 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 302 cagaatagcc acgcctagat actgtccata atctgcaaca agtac 45 <210> 303 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 303 cagtctaaag agctattatg cc 22 <210> 304 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 304 gtttttatat gagaccgtga aagatt 26 <210> 305 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 305 cactacatac gaccgcagaa gctcacgtgt gtggcttaag cccag 45 <210> 306 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 306 ttgccaactt tgctccac 18 <210> 307 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 307 tttgcctaca agggaaaaag a 21 <210> 308 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 308 agacttctac gcaagcactg gcatttggaa tttggtattg gagac 45 <210> 309 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 309 cagcactcct ctagttgacc 20 <210> 310 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 310 ggtcagtgtg tgaccctttt 20 <210> 311 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 311 agtagcctaa cagcactcga atgactccca tatgagccca gctga 45 <210> 312 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 312 cctgtggtcc catgctag 18 <210> 313 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 313 ttctggagtg acttgtccca 20 <210> 314 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 314 acaatcaaca tacgaacagc ccatccacac acagccaagc tttgc 45 <210> 315 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 315 taaaatacta tgctaactaa aaactaccct c 31 <210> 316 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 316 ataatgatga ctggtacccc att 23 <210> 317 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 317 caagcaacga cctactacaa aaggaagtct agtctgactt ttctc 45 <210> 318 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 318 atttttatag acactgagaa agtgca 26 <210> 319 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 319 gttcagggtt tacttggtgc 20 <210> 320 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 320 tacctatgac cagcaagcac ctcaccagag tggctagaaa tagaa 45 <210> 321 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 321 agcatgaatg tggtaatggt g 21 <210> 322 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 322 cagtcacagc tgataatgat aatttt 26 <210> 323 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 323 ccgccagtaa gacctagacg tctgaaagga aatgaaggtc ttatc 45 <210> 324 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 324 attcaaacct gagcaaggc 19 <210> 325 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 325 attcaaacat cagcagctca g 21 <210> 326 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 326 aacatacaga cgcactcctc cattgccagc tgagtttcac aaaaa 45 <210> 327 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 327 atttcctttt gcacaaacct t 21 <210> 328 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 328 ttagagagca gaagctagtg ttgc 24 <210> 329 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 329 gcaagccatc agctaataca gttctgaatc tggtctctat aaccc 45 <210> 330 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 330 ttaaacttta gattaaacct cattgagc 28 <210> 331 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 331 ttgaccaaaa taaagtaggt gcc 23 <210> 332 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 332 caccgctatc aacagacttg gtaacataca tgtcagtttc aggct 45 <210> 333 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 333 atttaaagtt cgatttaaga atcacct 27 <210> 334 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 334 aaaaaagaat atatacactt acagtgagac a 31 <210> 335 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 335 aacatccacg caactcatac ttttataact tacattgtac ctctc 45 <210> 336 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 336 aaaaggacct acaatttgct ataatt 26 <210> 337 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 337 tggaagcagt gtgggatc 18 <210> 338 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 338 cactagtcat aacgcagcct gggtaaaccc tgcagccctc aaacc 45 <210> 339 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 339 tgggcagttc cctgattc 18 <210> 340 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 340 aacatgcagt acaacccatt t 21 <210> 341 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 341 agcaagacca cctagaccag ttgcacaatg cctagcacac aatta 45 <210> 342 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 342 tttctttccc tgagacaatt ga 22 <210> 343 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 343 tgttcacaaa gccctggg 18 <210> 344 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 344 acaagaactc catgactcaa actcagagat aaggctattg tgttc 45 <210> 345 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 345 aaatgggatt gtaatggcct 20 <210> 346 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 346 aggaacctac gcatggtg 18 <210> 347 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 347 acaactcacg caagtaccat aaacatgcat gctcatgacc tcatg 45 <210> 348 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 348 ttggggttaa tgatgaagac c 21 <210> 349 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 349 aatgcaacat ctcattagta tggg 24 <210> 350 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 350 aataagctca ccaccgtcaa tgtgtgcaga ggtcttctgg aaggc 45 <210> 351 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 351 tcatagtaat tacccaagaa aatgc 25 <210> 352 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer <352> 352 tatattgcta cttttaagtg aacctaattg 30 <210> 353 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotying primer <400> 353 agccgaacta ccactgagta ttggtattgg tatctactga taacc 45 <210> 354 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 354 acagtgtaat tttttgctgc atatt 25 <210> 355 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 355 tatttaccct caaactccta cttctatt 28 <210> 356 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 356 atacctacca cgctacagcc tcagcagaga cttcctggaa gaagc 45 <210> 357 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 357 gatatcatat accaaaatca gttgtga 27 <210> 358 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 358 ttttggcata atgcaactga 20 <210> 359 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 359 accgcactaa gcaatgtatc tctaaacttc tctttcacat taatc 45 <210> 360 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 360 aaatcaaagc aaatggcctt 20 <210> 361 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 361 aaggtaagct ccttacatca gct 23 <210> 362 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 362 caacaagaca taacaacgca agctggctcc aattcagtgt cctgg 45 <210> 363 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 363 caaactgttg gtaaatttta gagaaaa 27 <210> 364 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 364 atttaaatcc agcacagaag ca 22 <210> 365 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 365 acgtaagacc actcaagacc atacttgctg cattaagaca aactg 45 <210> 366 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 366 atgccaccaa gcgcctcc 18 <210> 367 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 367 aaagaaaatg gcggaagg 18 <210> 368 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> genotyping primer <400> 368 cagtcaacaa tccagatcaa aaagcgagcc gcgagagtga agars 45  

Claims (15)

서열번호 1 내지 92의 뉴클레오티드 서열로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP(단일염기다형성)가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 개인식별용 폴리뉴클레오티드 마커.In a polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NOs: 1 to 92, or a complementary polynucleotide thereof, SNP (single nucleotide polymorphism) is present at the 101 st position of the polynucleotide, and 10 or more including the 101 st base. A personal identification polynucleotide marker consisting of polynucleotides consisting of contiguous nucleotides. 서열번호 46, 47, 91 및 92로 구성된 군으로부터 선택된 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 SNP가 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드로 구성된 성별확인용 폴리뉴클레오티드 마커. In a polynucleotide selected from the group consisting of SEQ ID NOs: 46, 47, 91, and 92, or a complementary polynucleotide thereof, SNP is present at position 101 of the polynucleotide and is selected from the group consisting of 10 or more consecutive nucleotides including the 101st base. Gender identification polynucleotide marker consisting of a polynucleotide consisting of. 제1항 또는 제2항에 있어서, 상기 개인은 한국인, 나이지리아 이바단의 요루바족(YRI), 일본 동경의 일본인(JPT), 중국 베이징의 한족(CHB), 또는 북유럽 및 서유럽의 조상으로부터 유래된 유타 거주민(CEU)인 것인 폴리뉴클레오티드 마커.The method of claim 1 or 2, wherein the individual is derived from a Korean, Yorba (YRI) of Ibadan, Nigeria (JPT) of Tokyo, Han Chinese (CHB) of Beijing, China, or ancestors of Northern and Western Europe. Polynucleotide marker that is a Utah resident (CEU). 제1항의 폴리뉴클레오티드 마커를 포함하는 개인식별용 마이크로어레이.Personal identification microarray comprising the polynucleotide marker of claim 1. 제1항의 폴리뉴클레오티드 마커를 포함하는 개인식별용 조성물.Personal identification composition comprising the polynucleotide marker of claim 1. 제5항에 있어서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합인 것인 조성물. The polynucleotide marker according to claim 5, wherein the polynucleotide marker is a combination of polynucleotides consisting of 10 or more contiguous nucleotides, including the SNP located at 101st in the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or complementary polynucleotides thereof. Composition. 제2항의 폴리뉴클레오티드 마커를 포함하는 성별확인용 조성물.Gender identification composition comprising the polynucleotide marker of claim 2. 제7항에 있어서, 상기 폴리뉴클레오티드 마커는 서열번호 46, 47, 91 및 92의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합인 것인 조성물.8. The polynucleotide marker of claim 7 wherein the polynucleotide marker is a combination of polynucleotides consisting of 10 or more contiguous nucleotides including the SNP located at 101st in the polynucleotide of SEQ ID NOs: 46, 47, 91 and 92 or its complementary polynucleotide Composition. 제1항의 폴리뉴클레오티드 마커를 포함하는 부, 모 및 자로 구성된 3인 이상 가족의 친자 관계를 확인하기 위한 조성물. Composition for confirming paternity of three or more families consisting of parents, parents and children comprising the polynucleotide marker of claim 1. 제9항에 있어서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합인 것인 조성물. The polynucleotide marker according to claim 9, wherein the polynucleotide marker is a combination of polynucleotides consisting of 10 or more contiguous nucleotides including the SNP located at 101st in the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or complementary polynucleotides thereof. Composition. 분리된 핵산 시료를 제공하는 단계; 및 Providing an isolated nucleic acid sample; And 제1항에 정의된 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함하는 개인을 식별하는 방법. A method of identifying an individual comprising determining the nucleotide of the SNP position of the polynucleotide marker as defined in claim 1. 제11항에 있어서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 45 및 48 내지 90의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드의 조합인 것인 것인 방법.12. The polynucleotide marker according to claim 11, wherein the polynucleotide marker is a combination of polynucleotides consisting of 10 or more contiguous nucleotides, including the SNP located 101st in the polynucleotides of SEQ ID NOs: 1 to 45 and 48 to 90 or complementary polynucleotides thereof. That is. 제11항에 있어서, 상기 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계는 서열결정(sequencing), 프로브에 의한 혼성화 또는 단일염기 프라이머 연장(single base primer extension)에 의해 수행되는 것인 방법.The method of claim 11, wherein determining the nucleotide at the SNP position of the polynucleotide marker is performed by sequencing, hybridization with a probe, or single base primer extension. 제11항에 있어서, 상기 방법은 결정된 개인식별용 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 대조군 시료의 결과와 비교하는 단계를 더 포함할 수 있는 것인 방법.The method of claim 11, wherein the method may further comprise comparing the nucleotides of the determined SNP positions of the polynucleotide markers with the results of the control sample. 제14항에 있어서, 상기 대조군 시료는 비교대상인 개인의 DNA이거나 또는 등록된 개인의 DNA 프로파일인 것인 방법.The method of claim 14, wherein the control sample is DNA of a comparison individual or DNA profile of a registered individual.
KR1020090056168A 2009-06-23 2009-06-23 Single nucleotide polymorphism marker for personal identification and its use KR101174823B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090056168A KR101174823B1 (en) 2009-06-23 2009-06-23 Single nucleotide polymorphism marker for personal identification and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090056168A KR101174823B1 (en) 2009-06-23 2009-06-23 Single nucleotide polymorphism marker for personal identification and its use

Publications (2)

Publication Number Publication Date
KR20100137907A true KR20100137907A (en) 2010-12-31
KR101174823B1 KR101174823B1 (en) 2012-08-21

Family

ID=43511436

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090056168A KR101174823B1 (en) 2009-06-23 2009-06-23 Single nucleotide polymorphism marker for personal identification and its use

Country Status (1)

Country Link
KR (1) KR101174823B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013347A1 (en) * 2018-07-09 2020-01-16 주식회사 디엔에이링크 Composition, kit and microarray for personal identification, comprising at least 22 marker polynucleotides, and method for obtaining information required for personal identification using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761801B1 (en) 2015-07-08 2017-07-27 한국 한의학 연구원 Composition for determining nose phenotype

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005073408A2 (en) 2004-01-23 2005-08-11 Pyxis Genomics, Inc. Small segments of dna determine animal identity and source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013347A1 (en) * 2018-07-09 2020-01-16 주식회사 디엔에이링크 Composition, kit and microarray for personal identification, comprising at least 22 marker polynucleotides, and method for obtaining information required for personal identification using same

Also Published As

Publication number Publication date
KR101174823B1 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
DK3260555T3 (en) Hitherto UNKNOWN PROTOCOL FOR PREPARING SEQUENCE LIBRARIES
KR101157526B1 (en) Snp for diagnosing adhd, microarray and kit comprising the same, and method of diagnosing adhd using thereof
AU2016286088A1 (en) Single nucleotide polymorphism in HLA-B*15:02 and use thereof
EP1856279B1 (en) Method of diagnosing breast cancer and compositions therefor
KR101174823B1 (en) Single nucleotide polymorphism marker for personal identification and its use
EP3679155B1 (en) Method to confirm variants in ngs panel testing by snp genotyping
KR101646189B1 (en) Marker for diagnosing intrinsic atopic dermatitis and use thereof
US20100093549A1 (en) Polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
KR101023194B1 (en) Marker for diagnosing atopic dermatitis and use thereof
KR101731619B1 (en) Polynucleotide marker composition for identifying father and daughter and its use
KR20060091161A (en) A polynucleotide associated with a breast cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a breast cancer using the same
KR101992952B1 (en) Composition, kit for predicting the risk of developing cardiovascular disease related to Cholesterol efflux capacity, and method using the same
JP6245796B2 (en) Markers, probes, primers and kits for predicting the risk of developing primary biliary cirrhosis and methods for predicting the risk of developing primary biliary cirrhosis
KR102511160B1 (en) Methods for predicting the high risk group of hypercholesterolemia by using total cholesterol associated genetic variants
KR102511161B1 (en) HLA-A genotype analysis method using Korean-specific SNPs and optimized pipeline
KR102511162B1 (en) HLA-DRB1 genotype analysis method using Korean-specific SNPs and optimized pipeline
KR101141546B1 (en) Polynucleotides derived from ANKRD15, HPD, PSMD9, WDR66, GPC6, PAX9, LRRC28, TNS4, AXL, and HNRPUL1 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR20130099455A (en) Single nucleotide polymorphism marker composition for identification of paternity and its use
KR101139360B1 (en) Polynucleotides derived from PRKCI, MAPK10, SPP1, IQGAP2, FGFR4, NOTCH4, HLA-DRA, HLA-DOA, THBS2, DFNA5, TBXAS1, TNKS, CDH17, UBR5, KIAA0196, and NSMCE2 genes comprising single nucleotide polymorphisms, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR101168737B1 (en) Polynucleotides derived from FANCA gene comprising single nucleotide polymorphism, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR20220113305A (en) A single nucleotide polymorphism marker composition for diagnosing an adverse reactions with angiotensin converting enzyme inhibitor and a method using the same
KR20150092937A (en) SNP Markers for hypertension in Korean
KR101168735B1 (en) Polynucleotides derived from CYP19A1 gene comprising single nucleotide polymorphism, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR101168734B1 (en) Polynucleotides derived from LAMC1 gene comprising single nucleotide polymorphism, microarrays and diagnostic kits comprising the same, and analytic methods using the same
KR100909372B1 (en) Methods for diagnosing premature ovarian failure using polynucleotides comprising single nucleotide polymorphism

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150810

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160808

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190801

Year of fee payment: 8