KR101731619B1 - Polynucleotide marker composition for identifying father and daughter and its use - Google Patents

Polynucleotide marker composition for identifying father and daughter and its use Download PDF

Info

Publication number
KR101731619B1
KR101731619B1 KR1020120020983A KR20120020983A KR101731619B1 KR 101731619 B1 KR101731619 B1 KR 101731619B1 KR 1020120020983 A KR1020120020983 A KR 1020120020983A KR 20120020983 A KR20120020983 A KR 20120020983A KR 101731619 B1 KR101731619 B1 KR 101731619B1
Authority
KR
South Korea
Prior art keywords
polynucleotide
female
dna
nucleotide
snp
Prior art date
Application number
KR1020120020983A
Other languages
Korean (ko)
Other versions
KR20130099456A (en
Inventor
이종은
한면수
최동호
김종진
유형진
이한나
신은순
장혜윤
홍승범
곽경돈
김경숙
Original Assignee
주식회사디엔에이링크
대한민국(관리부서: 행정자치부 국립과학수사연구원장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사디엔에이링크, 대한민국(관리부서: 행정자치부 국립과학수사연구원장) filed Critical 주식회사디엔에이링크
Priority to KR1020120020983A priority Critical patent/KR101731619B1/en
Publication of KR20130099456A publication Critical patent/KR20130099456A/en
Application granted granted Critical
Publication of KR101731619B1 publication Critical patent/KR101731619B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

부녀 관계 확인용 마커 조성물 및 이를 포함하는 마이크로어레이, 부녀 관계 확인용 마커 조성물을 이용하여 부녀 관계를 확인하는 방법에 관한 것이다. 일 구체예에 따른 부녀 관계 확인용 마커 조성물에 따르면, 부녀 관계를 효과적으로 확인할 수 있다.The present invention relates to a marker composition for identifying female and female relationships, a microarray containing the same, and a method for identifying a female-female relationship using a marker composition for identifying female and female relationships. According to the marker composition for confirming the female-female relationship according to one embodiment, the female-female relationship can be effectively confirmed.

Description

부녀 관계 확인용 마커 조성물 및 그의 용도{Polynucleotide marker composition for identifying father and daughter and its use}[0001] The present invention relates to a marker composition for identifying female and female relationships, and a polynucleotide marker composition for identifying father and daughter,

부녀 관계 확인용 마커 조성물 및 이를 포함하는 마이크로어레이, 부녀 관계 확인용 마커 조성물을 이용하여 부녀 관계를 확인하는 방법에 관한 것이다.The present invention relates to a marker composition for identifying female and female relationships, a microarray containing the same, and a method for identifying a female-female relationship using a marker composition for identifying female and female relationships.

1985년 영국의 제프리스가 개인 식별을 위한 DNA 프로파일링(DNA profiling), DNA 지문(DNA fingerprinting)을 개발한 이후, 점차 발전을 하여, 지난 10여 년의 전부터 표준화 과정을 통하여 현재 STR 유전자 마커 분석을 통한 개인식별법이 정착되어 사용되어 왔으며, 뛰어난 분석능력과 변별력으로 인해 현재 다수 국가에서 널리 사용되고 있다. 그러나, 높은 식별력과 뛰어난 분석 능력에도 불구하고 상대적으로 높은 돌연변이율(~10-3)로 인해 가족관계 확인 시의 오판가능성이 존재하며, 특히 미아찾기사업 등 대용량 데이터베이스 검색 시 실종자 가족 수가 편부/편모 등의 이유로 제한되어 있는 경우 그 변별력에서 일부 문제가 존재함이 확인되고 있다. Since the development of DNA profiling and DNA fingerprinting for personal identification in 1985 by JEFFREIS in the UK, progress has been made, and through the standardization process over the last decade, the current STR gene marker analysis Has been established and used, and is now widely used in many countries due to its excellent analytical ability and discrimination. However, despite the high discriminatory power and excellent analytical ability, there is a possibility of misidentification due to the relatively high mutation rate (~ 10 -3 ), and in particular, the number of missing persons It is confirmed that there are some problems in the discrimination power.

이러한 문제점을 해결하기 위한 노력의 일환으로 낮은 돌연변이율 (2~2.5 X 10-8)을 가지고 개인 식별 뿐만 아니라 인종의 추정, 혈액형, 눈 색깔 등 신체적인 특성의 추정이 가능하며, 동시에 여러 개의 마커를 판독할 수 있는 시스템이 가능한 SNP 마커에 대한 연구 개발이 꾸준히 진행되고 있다. As a part of efforts to solve these problems, it is possible to estimate physical characteristics such as race estimation, blood type, eye color as well as individual identification with a low mutation rate (2 to 2.5 X 10 -8 ) Research and development on SNP markers capable of system that can read out is progressing steadily.

Krawczak는 하나의 STR 마커의 부권 배제력(paternity exclusion power)은 대립인자 발현빈도 0.5의 SNP 4.2개와 유사하다고 보고하였으며 Gill 등은 0.2-0.8사이의 대립인자 발현빈도를 가지는 SNP 50개의 부권배재력은 0.999로 12개의 STR과 유사한 예측력을 나타내는 것으로 보고했다.Krawczak reported that the paternity exclusion power of one STR marker is similar to that of SNPs with a frequency of allelic expression of 0.5 and that of Gill et al. Indicates that 50 SNPs with allelic frequencies between 0.2 and 0.8 0.999, which is similar to 12 STRs.

또한 Ayres 등은 대립인자 발현빈도 0.3-0.7 사이의 SNP 마커가 3인 가족의 친자지수(paternity index)을 확인하기 위해서는 50-60개가 필요하고 편모편부가계에서는 70-80개가 필요하다고 제시하였다. In addition, Ayres et al. Suggested that 50-60 paternity indexes for family members with three SNP markers between 0.3-0.7 were needed, and 70-80 for single parent family members.

여자의 X 염색체는 부녀 관계에서 하나 모계에서 하나 유전되어 구성되기 때문에, 정상적인 유전자형을 지닌 여자 본인의 한 개의 X 염색체는 아버지의 X 염색체와 동일한 것이다. 그러므로 X 염색체 유전자 검사를 통하여 여자와 남자의 결과를 비교하면 친부녀 지간인지 확인이 가능하다Since the female X chromosome is constituted by one female in the female relationship, one X chromosome of the female with the normal genotype is the same as the father X chromosome. Therefore, by comparing the results of X chromosome genetic tests with those of men and women,

X 염색체는 22개의 상염체에 비하여 크기가 작기 때문에 상대적으로 유전적 변이가 적다. 이를 바탕으로 X 염색체의 변이는 인류 통계학적 연구에 주로 이용되어 왔다. Amanda M Casto 등은 CEPH (Centre D'etude du Polymorphism Humaine) human genome diversity projects 에서 보고된 X 염색체 SNP 16,297개의 결과를 토대로 14개의 인종 그룹간의 차이를 밝혀내었다.The X chromosome is relatively small in size compared to the 22 trichomes, and therefore has relatively low genetic variation. Based on this, mutation of X chromosome has been mainly used for statistical study of human. Amanda M Casto et al. Identified the differences among the 14 ethnic groups based on the results of the 16,297 X chromosome SNPs reported in the CEPH (human genome diversity projects in the Center D'etude du Polymorphism).

현재까지 X 염색체를 이용한 개인 식별이나 부녀 판별에 관한 연구는 많지 않다. 한국인에게서 유효한 X염색체 SNP 마커의 선정을 위해서는 대규모 SNP 데이터를 통한 광범위한 선별과정이 필요하며, 이에 따라 부녀 판별을 위한 한국인 집단에 적합한 부녀 판별용 단일염기다형성 유전자 마커의 개발이 요구된다.To date, there have been few studies on the identification of individuals using the X chromosome or the identification of women. In order to select a valid X chromosome SNP marker in Korean, a large screening process using large-scale SNP data is required. Therefore, it is required to develop a single nucleotide polymorphic genetic marker for discriminating female females for a Korean population.

일 양상은 부녀 관계 확인용 마커 조성물을 제공하는 것이다.One aspect is to provide a marker composition for identifying female and female relationships.

다른 양상은 부녀 관계 확인용 마커 조성물을 포함하는 마이크로어레이를 제공하는 것이다.Another aspect is to provide a microarray comprising a marker composition for identifying female and female relationships.

또 다른 양상은 부녀 관계 확인용 마커 조성물을 이용하여 부녀 관계를 확인하는 방법을 제공하는 것이다.Another aspect is to provide a method for identifying a female-female relationship using a marker composition for identifying a female-female relationship.

일 양상은 서열번호 1 내지 서열번호 54의 뉴클레오티드 서열로 이루어진 군으로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 단일염기다형성(SNP)이 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드를 포함하는 부녀 관계 확인용 마커 조성물을 제공한다.In one aspect, at least one polynucleotide or a complementary polynucleotide thereof selected from the group consisting of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 54 has a single nucleotide polymorphism (SNP) at the 101st position of the polynucleotide, And a polynucleotide consisting of at least 10 consecutive nucleotides including a base sequence.

일 구체예에 따르면, 상기 마커 조성물은 아버지와 딸 사이의 친족 관계를 확인하기 위한 것일 수 있다.According to one embodiment, the marker composition may be for identifying a kinship between a father and a daughter.

일 구체예에 따른 부녀 관계 확인을 위해 이용되는 단일염기다형성 마커 조성물의 유용성은 "짝확률(matching probability: PI)" 및 "부권배제력(power of exclusion)"에 의해 판단될 수 있다.The utility of a single nucleotide polymorphic marker composition used for identification of female relationships according to one embodiment can be judged by the "matching probability (PI)" and "power of exclusion".

상기 용어, "짝확률(matching probability: PI)"은 특정 유전자형이 임의의 집단에서 우연히 발견될 확률을 의미한다. 여러 마커들의 조합에 대해서는 누적 짝확률에 의해 부녀 관계 확인용 마커로서의 유용성을 판단한다. 정확한 부녀 관계 판별을 위해서는 짝확률이나 누적짝확률이 낮은 마커가 요구된다.The term "matching probability (PI)" means the probability that a particular genotype will be found by chance in any population. For a combination of several markers, the cumulative match probability is used to determine the usefulness of the marker as a marker for confirming the female relationship. A marker with a lower probability of success or a lower probability of cumulative probability is required for accurate determination of female and female relationships.

상기 용어, "부권배제력(Power of Exclusion: PE)"은 남자, 특히, 아버지의 친척을 생물학적 아버지(biological father)일 가능성에서 배제할 수 있는 능력을 의미한다. 부권배제력은 어머니와 자녀 모두의 유전자형(genetics) 및 어머니와 추정되는 아버지의 인종적 배경에 의존적이다. The term "Power of Exclusion (PE)" means the ability to exclude the possibility that a relative, especially a father, of a man is a biological father. Paternity exclusion depends on the genetics of both mother and child, and on the ethnic background of the mother and the presumed father.

상기 서열번호 1 내지 서열번호 54의 101번째에 위치한 SNP를 포함한 10개 이상의 연속된 뉴클레오티드로 구성된 부녀 관계 확인용 폴리뉴클레오티드 마커는 54개의 마커가 모두 사용될 경우 최소 99.9999349%에서 최대 99.9999589%의 부권배제력(Overall EP : overall exclusion probability)을 갖는다. The polynucleotide marker for identifying female partnership consisting of 10 or more consecutive nucleotides including the SNP located at position 101 of SEQ ID NO: 1 to SEQ ID NO: 54 has a minimum exclusion rate of 99.9999349% to 99.9999589% when all 54 markers are used, (Overall EP: overall exclusion probability) .

한편, 본 발명에서 "폴리뉴클레오티드"는 DNA 또는 RNA일 수 있다. 상기 폴리뉴클레오티드는 또한, 단일가닥 또는 이중가닥 형태일 수 있다. 상기 폴리뉴클레오티드는 또한, 상보적 뉴클레오티드에 수소 결합에 의하여 혼성화될 수 있는 성질을 갖는 것이면, 천연 뉴클레오티드로 구성된 것뿐만 아니라, 천연 뉴클레오티드, 천연 뉴클레오티드의 유사체, 천연 뉴클레오티드의 당, 염기 또는 인산 부위가 변형되어 있는 뉴클레오티드 및 이들 조합으로 이루어진 군으로부터 선택되는 뉴클레오티드를 포함하는 것일 수 있다 (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman 및 Peyman, Chemical Reviews, 90:543-584 (1990)). 또한, 상기 폴리뉴클레오티드는 PNA(peptide nucleic acid)를 포함할 수 있다. 상기 폴리뉴클레오티드는 예를 들면, 분석 반응에서 상기 폴리뉴클레오티드 또는 그가 결합되어 있는 복합체의 검출의 편이를 위하여, 검출가능한 표지(예를 들면, Cy3, Cy5 등의 형광성 물질)가 예를 들면, 3'말단 또는 5'말단에 부착되어 있는 것일 수 있다. In the present invention, "polynucleotide" may be DNA or RNA. The polynucleotide may also be in single stranded or double stranded form. The polynucleotide may also be modified so that the sugar, base or phosphate site of a natural nucleotide, an analogue of a natural nucleotide, or a natural nucleotide is modified, as long as it has a property of hybridizing to a complementary nucleotide by hydrogen bonding, (Scheit, Nucleotide Analogs, John Wiley, New York (1980); Uhlman and Peyman, Chemical Reviews, 90: 543-584 (1990)), and nucleotides selected from the group consisting of . In addition, the polynucleotide may comprise a peptide nucleic acid (PNA). The polynucleotide can be detected, for example, in a manner such that a detectable label (for example, a fluorescent substance such as Cy3 or Cy5) is changed to a 3 'position in order to facilitate detection of the polynucleotide or a complex to which the polynucleotide is bound, Terminal or 5 ' end.

일 구체예에 따르면, 상기 폴리뉴클레오티드는 SNP 부위에서 단일염기다형성을 나타내는 것이다. 하나의 단일가닥 폴리뉴클레오티드가 부녀 관계의 판별과 연관되어 있는 경우, 상기 단일가닥 폴리뉴클레오티드에 상보적인 폴리뉴클레오티드도 당연히 부녀 관계의 판별과 연관되어 있는 것으로 판단될 수 있다. 따라서, 본 발명의 일 구체예에 따른 폴리뉴클레오티드는, 하나의 특정한 서열을 가진 부녀 관계의 판별과 연관되어 있는 단일가닥 폴리뉴클레오티드 및 그 상보적인 서열을 가진 폴리뉴클레오티드를 포함할 수 있다. 예를 들면, 서열번호 1의 폴리뉴클레오티드는 101번째(SNP 위치) 뉴클레오티드가 "A 또는 C"이다. 이 경우, 상기 폴리뉴클레오티드는, 101번째 (SNP 위치)의 "A 또는 C" 뉴클레오티드를 포함하고 서열번호 1의 폴리뉴클레오티드로부터 선택된 10개 이상의 연속된 뉴클레오티드 뿐만 아니라, 101번째 (SNP 위치)에 대응되는 위치에 "T 또는 G" 뉴클레오티드를 갖는 상보적인 단일가닥 폴리뉴클레오티드를 포함할 수 있다. 이러한 측면에서, 본 명세서의 모든 서열은, 특별한 언급이 없는 한, 게놈 DNA에서 센스 가닥에 있는 서열을 기준으로 표기한다. 본 발명에서 단일염기 다형성(single nucleotide polymorphism: SNP)은 당업계에 통상적으로 알려진 의미로 사용된다. SNP는 집단 내의 게놈에 존재하는 단일 뉴클레오티드 다형성을 나타낼 수 있다. 상기 SNP는 집단 내의 SNP의 소수 대립인자의 빈도가 1% 이상인 것일 수 있다.According to one embodiment, the polynucleotide exhibits a single base polymorphism at the SNP site. If one single-stranded polynucleotide is associated with the discrimination of the female relationship, it can be judged that the polynucleotide complementary to the single-stranded polynucleotide is naturally associated with the discrimination of the female-female relationship. Thus, a polynucleotide according to one embodiment of the invention may comprise a single-stranded polynucleotide and a polynucleotide having a complementary sequence thereof, which are associated with the discrimination of a female-female relationship with one particular sequence. For example, the polynucleotide of SEQ ID NO: 1 is the 101st (SNP position) nucleotide is "A or C ". In this case, the polynucleotide includes not only 10 or more consecutive nucleotides selected from the polynucleotide of SEQ ID NO: 1 but also the 101st (SNP position) nucleotide corresponding to the 101st (SNP position) Quot; T < / RTI > or G "nucleotides at a single site. In this regard, all sequences herein are referred to by reference to sequences on the sense strand in the genomic DNA, unless otherwise noted. In the present invention, single nucleotide polymorphism (SNP) is used as is commonly known in the art. SNPs can represent a single nucleotide polymorphism present in the genome within a population. The SNP may have a frequency of a minor allele of the SNP in the population of 1% or more.

본 발명의 일 구체예에서, 폴리뉴클레오티드는 길이가 10 내지 100 뉴클레오티드인 것일 수 있다. 예를 들면, 상기 폴리뉴클레오티드는 길이가 10 내지 50 뉴클레오티드, 또는 10 내지 30 뉴클레오티드인 것일 수 있다.In one embodiment of the invention, the polynucleotide may be 10-100 nucleotides in length. For example, the polynucleotide may be 10 to 50 nucleotides in length, or 10 to 30 nucleotides in length.

일 구체예에 따르면, 상기 폴리뉴클레오티드는 프라이머 또는 프로브일 수 있다. According to one embodiment, the polynucleotide may be a primer or a probe.

용어, "프라이머"란 중합효소에 의한 뉴클레오티드의 중합반응에서, 개시점으로 작용할 수 있는 단일가닥의 폴리뉴클레오티드를 말한다. 예를 들면, 상기 프라이머는 적합한 온도 및 적합한 완충액 내에서 적합한 조건, 즉, 4종의 다른 뉴클레오시드 트리포스페이트 및 중합효소의 존재 하에서 주형-지시(template-directed) DNA 합성의 개시점으로 작용할 수 있는 단일가닥의 폴리뉴클레오티드일 수 있다. 프라이머의 적합한 길이는 다양한 인자, 예를 들면, 온도와 프라이머의 용도에 따라 달라질 수 있다. 상기 프라이머는 길이가 10 내지 50 뉴클레오티드인 것일 수 있다. 일반적으로, 프라이머의 길이가 짧을수록, 낮은 어닐링(annealing) 온도에서 주형과 충분히 안정된 하이브리드 복합체를 형성할 수 있다.The term "primer " refers to a single-stranded polynucleotide capable of acting as a starting point in the polymerization of a nucleotide by a polymerase. For example, the primer can serve as a starting point for template-directed DNA synthesis in the presence of suitable conditions, i.e., four different nucleoside triphosphates and polymerases, at the appropriate temperature and in the appropriate buffer Lt; RTI ID = 0.0 > polynucleotides < / RTI > The appropriate length of the primer may vary depending on various factors, for example, temperature and use of the primer. The primer may be 10 to 50 nucleotides in length. In general, the shorter the length of the primer, the more stable hybrid complex can be formed with the template at lower annealing temperatures.

프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화되어 프라이머 고유의 기능을 수행할 수 있는 범위 내의 상보성을 가지면 충분하다. 따라서, 프라이머는 상기 폴리뉴클레오티드 자체 뿐만 아니라, 상기 폴리뉴클레오티드에 특이적으로 혼성화하는 서열로서 중합반응에서 개시점으로작용할 수 있는 것도 포함된다. 예를 들면, 서열번호 1의 폴리뉴클레오티드에 완벽하게 상보적인 서열뿐만 아니라, 이 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 상보성을 갖는 서열일 수 있다. 프라이머의설계는 주어진 증폭하고자 하는 표적핵산의 서열을 참조하여 당업자에 의해 용이하게 실시할 수 있다. 예를 들면, 상업적으로 구입가능한 프라이머 설계용 프로그램을 사용하여 설계할 수 있다. 상업적으로 구입가능한 프라이머 설계용 프로그램은 예를 들면, PRIMER 3 프로그램을 포함하나, 이에 한정되지 않는다.The sequence of the primer does not need to have a sequence completely complementary to a partial sequence of the template, and it is sufficient if the primer has complementarity within a range capable of hybridizing with the template to perform the primer-specific function. Therefore, the primer includes not only the polynucleotide itself but also a sequence that specifically hybridizes to the polynucleotide, and can act as a starting point in the polymerization reaction. For example, it may be a sequence completely complementary to the polynucleotide of SEQ ID NO: 1, or a sequence complementary to such a sequence that hybridizes to this sequence and can perform a primer action. The design of the primer can be readily carried out by those skilled in the art by reference to the sequence of the target nucleic acid to be amplified. For example, it can be designed using a commercially available program for primer design. Commercially available primer design programs include, but are not limited to, the PRIMER 3 program, for example.

일 구체예에 따르면, 상기 폴리뉴클레오티드가 PCR 프라이머로서 사용되는 경우, 상기 폴리뉴클레오티드에 더하여, 그의 상보적 가닥에 특이적으로 결합하는 프라이머를 포함할 수 있다.According to one embodiment, when the polynucleotide is used as a PCR primer, in addition to the polynucleotide, it may include a primer that specifically binds to its complementary strand.

용어, "프로브"란 특정 표적 서열에 특이적으로 결합하는 폴리뉴클레오티드를 말한다. 상기 폴리뉴클레오티드는 DNA 또는 RNA일 수 있다. 상기 폴리뉴클레오티드는 단일가닥 형태일 수 있다. 상기 폴리뉴클레오티드는 또한, 상보적 뉴클레오티드에 수소 결합에 의하여 혼성화될 수 있는 성질을 갖는 것이면, 천연 뉴클레오티드로 구성된 것 뿐만 아니라, 천연 뉴클레오티드, 천연 뉴클레오티드의 유사체, 천연 뉴클레오티드의 당, 염기 또는 인산 부위가 변형되어 있는 뉴클레오티드 및 이들 조합으로 이루어진 군으로부터 선택되는 뉴클레오티드를 포함하는 것일 수 있다. 상기 폴리뉴클레오티드는 PNA를 포함한다. 또한, 상기 폴리뉴클레오티드는 예를 들면, 분석 반응에서 상기 폴리뉴클레오티드 또는 그가 결합되어 있는 복합체의 검출의 편이를 위하여, 검출가능한 표지 (예, Cy3, Cy5 등의 형광성 물질)가 예를 들면, 3'말단 또는 5'말단에 부착되어 있는 것일 수 있다. The term "probe" refers to a polynucleotide that specifically binds to a specific target sequence. The polynucleotide may be DNA or RNA. The polynucleotide may be in single stranded form. The polynucleotide may also be a polynucleotide which is not only composed of a natural nucleotide but also a natural nucleotide, an analogue of a natural nucleotide, a sugar, a base or a phosphate site of a natural nucleotide, which is capable of being hybridized to a complementary nucleotide by hydrogen bonding And nucleotides selected from the group consisting of combinations thereof. The polynucleotide includes PNA. The polynucleotide may be a detectable label (for example, a fluorescent substance such as Cy3 or Cy5), for example, in order to detect the polynucleotide or a complex to which the polynucleotide is bound in the assay reaction, Terminal or 5 ' end.

상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 완전 상보적인 서열일 수 있다. 또한, 상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대한 특이적 혼성화를 방해하지 않는 범위 내에서 실질적으로 상보적인 서열을 갖는 것일 수 있다. 또한, 상기 프로브는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대한 특이적 혼성화를 손상되지 않는 범위 내에서, 변형된 뉴클레오티드를 갖는 것일 수 있다. 상기 프로브의 예는, SNP 부위를 포함하는 상기 폴리뉴클레오티드에 완전 상보적인 서열로 이루어진 완전 매치 프로브 (perfect probe) 및 SNP 부위를 포함하는 상기 폴리뉴클레오티드에 대하여, 상기 SNP 부위를 제외한 모든 서열에 대하여 완전 상보적인 서열을 갖는 미스매치 (mismatch probe)로 이루어진 군으로부터 선택되는 것일 수 있다.The probe may be an entirely complementary sequence to the polynucleotide comprising the SNP site. In addition, the probe may have a substantially complementary sequence within a range that does not interfere with specific hybridization to the polynucleotide including the SNP site. In addition, the probe may have a modified nucleotide within a range that does not impair the specific hybridization to the polynucleotide including the SNP site. Examples of such probes include a perfect probe consisting of a sequence complementary to the polynucleotide including a SNP site, and a polynucleotide comprising a SNP site, And a mismatch probe having a complementary sequence.

상기 프라이머 및 프로브를 사용하여 SNP 부위에 특정한 대립인자를 가진 뉴클레오티드 서열을 증폭하거나 그 존재를 확인할 수 있다.
The primers and probes can be used to amplify or confirm the presence of nucleotide sequences with specific alleles at the SNP site.

다른 양상은 상기 부녀 관계 확인용 마커 조성물을 포함하는 부녀 관계 확인용 마이크로어레이를 제공한다.Another aspect provides a microarray for identifying a female relationship comprising the marker composition for identifying the female relationship.

본 발명에서 "마이크로어레이"란 기판 표면의 구분된 영역에 상기 폴리뉴클레오티드가 높은 밀도로 고정화되어 있는 것을 의미한다. 상기 마이크로어레이는, 상기 영역이 예를 들면 400/cm2 이상, 103/cm2, 또는 104/cm2의 밀도로 기판 상에 배열되어 있는 것일 수 있다.The term "microarray" in the present invention means that the polynucleotide is immobilized at a high density in the divided region of the substrate surface. The microarray may be such that the region is arranged on the substrate at a density of, for example, 400 / cm 2 or more, 10 3 / cm 2 , or 10 4 / cm 2 .

본 발명의 또 다른 구체예는, 상기 부녀 관계 확인용 마커 조성물을 포함하는 부녀 관계 확인을 위한 키트를 제공한다. Another embodiment of the present invention provides a kit for confirming a female relationship comprising a marker composition for identifying the female relationship.

상기 키트에서 폴리뉴클레오티드 마커는 기판 표면 상의 구분된 영역에 고밀도로 배열되어 있는 마이크로어레이 형태일 수 있다. 본 발명의 일 구체예에서, 상기 폴리뉴클레오티드 마커는 서열번호 1 내지 서열번호 54의 뉴클레오티드 서열로 이루어진 군으로부터 선택된 하나 이상의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 단일염기다형성(SNP)이 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드의 조합일 수 있다. The polynucleotide markers in the kit may be in the form of microarrays that are arranged at high density in distinct regions on the substrate surface. In one embodiment of the present invention, the polynucleotide marker comprises at least one polynucleotide selected from the group consisting of the nucleotide sequences of SEQ ID NO: 1 to SEQ ID NO: 54 or a complementary polynucleotide thereof, wherein a polynucleotide having a single base Polymorphism (SNP) exists and may be a combination of polynucleotides consisting of 10 or more consecutive nucleotides, including the 101st nucleotide.

상기 키트는 상기 폴리뉴클레오티드를 특이적으로 증폭하고, 증폭 산물의 존재 유무를 통하여, 부녀 관계를 확인하기 위한 키트일 수 있다. 이 경우, 상기 키트는 상기 폴리뉴클레오티드를 프라이머로서 포함하는 동시에, 증폭에 필요한 시약을 포함할 수 있다. 상기 증폭 시약은 예를 들면, dNTP, 폴리머라제, 및 적절한 버퍼를 포함할 수 있다. 상기 프라이머는 예를 들면, SNP 부위에 해당하는 뉴클레오티드 서열이 프라이머의 3' 말단 뉴클레오티드를 형성하고, 상기 3' 말단 뉴클레오티드는 상기 SNP 부위의 뉴클레오티드에 상보적이거나 (특이적 프라이머) 상보적이지 않은 것 (비특이적 프라이머)으로 이루어진 것일 수 있다. 상기 비특이적 프라이머는 상기 3' 말단 뉴클레오티드뿐만 아니라 다른 부위에도 상보적이지 않은 서열을 포함할 수 있다. 상기 키트는 또한, 사용 설명서를 포함할 수 있다. 상기 사용 설명서는 예를 들면, 상기 특이적 프라이머를 사용한 증폭 반응에서 표적 서열이 증폭되고, 상기 비특이적 프라이머를 사용한 증폭 반응에서 표적 서열이 증폭되지 않는 경우, 증폭에 사용된 시료 중에서 개인식별과 연관된 표적 서열이 존재하는 것으로 결정하고, 그 결과로부터 개인을 식별하는 것에 대한 설명을 포함한, 결과 판정에 대한 설명을 포함할 수 있다.The kit may be a kit for specifically amplifying the polynucleotide and confirming the female-female relationship through the presence or absence of the amplification product. In this case, the kit may include the polynucleotide as a primer and the reagent necessary for amplification. The amplification reagent may comprise, for example, dNTPs, polymerases, and suitable buffers. For example, the primer may be one in which the nucleotide sequence corresponding to the SNP site forms the 3'-terminal nucleotide of the primer, the 3'-terminal nucleotide is complementary to the nucleotide at the SNP site (specific primer) (Non-specific primers). The non-specific primer may include a sequence that is not complementary to the 3 'terminal nucleotide as well as other sites. The kit may also include instructions for use. For example, in the case where the target sequence is amplified in the amplification reaction using the specific primer and the target sequence is not amplified in the amplification reaction using the non-specific primer, May include an explanation of the result determination, including determining that the sequence is present and identifying individuals from the results.

상기 키트는, 상기 폴리뉴클레오티드 또는 그로부터 유래된 프로브를 시료 중의 핵산과 혼성화시키고, 그 혼성화 결과로부터 개인을 식별하기 위한 키트일 수 있다. 이 경우, 상기 키트는, 상기 프로브 및 혼성화에 필요한 시약을 포함할 수 있다. 혼성화에 필요한 시약이란 예를 들면, 혼성화 버퍼가 포함될 수 있다. 상기 핵산은 증폭 또는 증폭되지 않은 것일 수 있다. 따라서, 상기 키트는 핵산의 증폭에 필요한 시약을 더 포함할 수 있다. 상기 핵산은 검출가능한 표지로 표지될 수 있다. 상기 키트는, 상기 폴리뉴클레오티드에 완전 상보적인 프로브 (perferct match probe) 또는 상기 폴리뉴클레오티드에 있어서, SNP 부위를 제외한 모든 부위에서 상보적인 미스매치 프로브 (mismatch probe)를 포함할 수 있다. 상기 프로브는 기판 상의 복수 개의 구분된 영역에 고정되어 있는 마이크로어레이의 형태일 수 있다. 상기 키트는 또한, 사용 설명서를 포함할 수 있다. 상기 사용 설명서는 예를 들면, 상기 완전 상보적인 프로브를 사용한 혼성화 반응에서 표적 서열이 검출되고, 상기 미스매치 프로브를 사용한 혼성화 반응에서 표적 서열이 검출되지 않는 경우, 시료별로 각 프로브에 의해 수득된 프로파일을 비교하고, 그 결과로부터 부녀 관계임을 결정하는 것에 대한 설명을 포함한, 결과 판정에 대한 설명을 포함할 수 있다.The kit may be a kit for hybridizing the polynucleotide or a probe derived therefrom with a nucleic acid in a sample and identifying an individual from the hybridization result. In this case, the kit may include the probe and a reagent necessary for hybridization. Reagents necessary for hybridization include, for example, a hybridization buffer. The nucleic acid may not be amplified or amplified. Thus, the kit may further comprise reagents necessary for amplification of the nucleic acid. The nucleic acid may be labeled with a detectable label. The kit may comprise a perferct match probe that is completely complementary to the polynucleotide or a mismatch probe that is complementary at all sites except for the SNP site in the polynucleotide. The probes may be in the form of microarrays fixed to a plurality of discrete regions on the substrate. The kit may also include instructions for use. For example, when the target sequence is detected in the hybridization reaction using the fully complementary probe and the target sequence is not detected in the hybridization reaction using the mismatch probe, the user's manual may include a profile obtained by each probe , And a description of the result determination, including an explanation of determining that the result is a female-female relationship.

일 구체예에 따르면, 상기 키트는 아버지와 딸 사이의 친족 관계를 확인하기 위한 키트일 수 있다.
According to one embodiment, the kit may be a kit for confirming a kinship relationship between a father and a daughter.

또 다른 양상은 분리된 핵산 시료를 제공하는 단계; 및 Yet another aspect provides a method for detecting nucleic acid, comprising: providing an isolated nucleic acid sample; And

상기 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함하는 부녀 관계의 확인 방법을 제공한다.And determining a nucleotide at a SNP position of the polynucleotide contained in the marker composition for identifying female and female relationships.

일 구체예에 따른 부녀 관계를 확인하는 방법은, 분리된 핵산 시료를 제공하는 단계를 포함할 수 있다. 개체로부터 핵산을 분리하는 방법은 당업계에 알려져 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 분리하거나 PCR과 같은 핵산 증폭 방법에 의하여 특정한 영역을 증폭함으로써 분리될 수 있다. 상기 분리된 핵산 시료에는 순수하게 분리된 핵산뿐만 아니라 조 분리된 핵산, 예를 들면, 핵산을 포함하는 세포 파쇄물도 포함한다. 상기 핵산 증폭 방법에는 PCR, 리가제 연쇄반응(LCR), 전사증폭(transcription amplification), 자기 유지 서열 복제 및 핵산에 근거한 서열 증폭(NASBA)가 포함될 수 있다. 상기 분리된 핵산은, DNA 또는 RNA일 수 있다. 상기 DNA에는 게놈 DNA, cDNA 또는 재조합 DNA일 수 있다. 상기 RNA는 mRNA 일 수 있다.A method for identifying a female-female relationship according to one embodiment may include providing a separate nucleic acid sample. Methods for separating nucleic acids from an individual are known in the art. For example, DNA can be isolated directly from tissues or cells by amplifying specific regions by nucleic acid amplification methods such as PCR. The separated nucleic acid sample includes not only the purely isolated nucleic acid but also a cell lysate containing a crude nucleic acid, for example, a nucleic acid. The nucleic acid amplification method may include PCR, ligase chain reaction (LCR), transcription amplification, self-sustained sequence replication, and nucleic acid-based sequence amplification (NASBA). The separated nucleic acid may be DNA or RNA. The DNA may be a genomic DNA, a cDNA, or a recombinant DNA. The RNA may be mRNA.

상기 방법은, 또한, 상기 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함할 수 있다. The method may further include the step of determining the nucleotide at the SNP position of the polynucleotide contained in the marker-identifying marker composition.

일 구체예에 따르면, 상기 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계는 서열결정(sequencing), 프로브에 의한 혼성화 또는 단일염기 프라이머 연장(single base primer extension)에 의해 수행될 수 있다. According to one embodiment, the step of determining the nucleotide at the SNP position of the polynucleotide marker can be performed by sequencing, hybridization with a probe, or single base primer extension.

SNP 위치의 뉴클레오티드를 결정하는 방법은 당업계에서 잘 알려져 있다. 예를 들면, 알려진 핵산의 뉴클레오티드 서열 결정 방법(sequencing method)에 의하여 SNP 위치의 뉴클레오티드를 직접적으로 결정할 수 있다. 뉴클레오티드 서열 결정 방법에는 상거(또는 디데옥시) 방법 또는 막삼-길버트(화학 절단) 방법이 포함될 수 있다. 또한, SNP 위치의 서열을 포함하는 프로브를 대상 폴리뉴클레오티드와 혼성화시키고, 혼성화 결과를 분석함으로써, SNP 위치의 뉴클레오티드를 결정할 수 있다. 혼성화 정도는 예를 들면, 검출가능한 표지를 대상 핵산에 표지하고, 혼성화된 대상 핵산을 검출함으로써 확인되거나, 전기적 방법 등에 의하여 확인될 수 있다. 또한, 단일염기 프라이머 연장 (single base primer extension: SBE) 방법이 이용될 수 있다.Methods for determining the nucleotides at SNP positions are well known in the art. For example, the nucleotide at the SNP position can be determined directly by a nucleotide sequencing method of known nucleic acids. The nucleotide sequence determination method may include a sanguine (or dideoxy) method or a curd-gilbert (chemical cleavage) method. In addition, the nucleotide at the SNP position can be determined by hybridizing a probe containing the sequence of the SNP position with the polynucleotide of interest, and analyzing the hybridization result. The degree of hybridization can be confirmed, for example, by marking a detectable label on the target nucleic acid, detecting the hybridized target nucleic acid, or confirming it by an electrical method or the like. In addition, a single base primer extension (SBE) method can be used.

상기 방법에 있어서, 상기 SNP 부위의 뉴클레오티드를 결정하는 단계는 상기 폴리뉴클레오티드 마커가 고정화되어 있는 마이크로어레이에 상기 핵산 시료를 혼성화시키는 단계; 및 상기 혼성화 결과를 검출하는 단계를 포함할 수 있다.In the above method, the step of determining the nucleotide at the SNP site comprises: hybridizing the nucleic acid sample to a microarray in which the polynucleotide marker is immobilized; And detecting the hybridization result.

일 구체예에 따르면, 상기 부녀 관계를 확인하는 방법은 결정된 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 대조군 시료의 결과와 비교하는 단계를 더 포함할 수 있다. 일 구체예에 따르면, 상기 대조군 시료는 비교대상인 개인의 DNA이거나 또는 등록된 개인의 DNA 프로파일일 수 있다.According to one embodiment, the method for confirming the female relationship may further include comparing the nucleotide at the SNP position of the polynucleotide included in the determined female relationship confirmation marker composition with the result of the control sample. According to one embodiment, the control sample may be a DNA of an individual to be compared or a DNA profile of a registered individual.

일 구체예에 따르면, 상기 부녀 관계를 확인하는 방법은 결정된 상기 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 확인하고 부녀 관계 판별 지수를 계산하는 단계를 더 포함할 수 있다.According to one embodiment, the method for confirming the female-female relationship may further include identifying a nucleotide at a SNP position of the polynucleotide included in the determined female-female relationship-identifying marker composition and calculating a female-female relationship determination index.

상기 부녀 관계를 확인하는 방법에서 판정 가능한 폴리뉴클레오티드 마커 중에 비교대상 시료간의 유전형이 1개라도 확실히 상이한 경우, 즉, SNP 위치의 뉴클레오티드가 상이한 경우에는 부녀관계가 아닌 것으로 판정하며, 이 경우 부녀관계판별지수는 0이 된다. 한편, 사용된 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드가 모두 일치하는 경우, 유전형 일치로 판정하고, 부권배제력(Overall EP)를 계산한다. 부권배제력의 계산 방법은 다음과 같다:It is judged that the polynucleotide marker is not a female-female relation when the polynucleotide marker which can be determined in the method of confirming the female-female relationship is definitely different even if at least one genotype exists among the samples to be compared, that is, when the nucleotide at the SNP position is different. In this case, The exponent is zero. On the other hand, when all the nucleotides at the SNP positions of the polynucleotide markers used coincide with each other, the genotyping is determined and the total EP is calculated. The calculation method of the exclusion power is as follows:

추정부의 X 염색체 특정 locus에서 allele ai를 갖는다고 할 때, 추정녀의 가능한 유전자형은 aiai과 aiaj(i≠j)이다. 이 경우 각각의 Exclusion probability(EP)는 (1-pi)2과 (1-pj)2이다. 여기서 pi는 ai의 allele 빈도(frqeuency)이다. Locus l 에서 exclusion probability를 EP l 라고 할 때, K개의 SNP 정보를 결합한 overall exclusion probability은 다음과 같다.If we assume that allele a i is located in the locus of the X chromosome in the presumptive part, the probable genotypes of the progeny are a i a i and a i a j (i ≠ j). In this case, each Exclusion probability (EP) is (1-p i ) 2 and (1-p j ) 2 . Where p i is the allele frequency of a i (frqeuency). The exclusion probability from Locus l is EP l , The overall exclusion probability of combining K SNP information is as follows.

Overall EP =

Figure 112012016814311-pat00001
Overall EP =
Figure 112012016814311-pat00001

일 구체예에 따른 부녀 관계 확인용 마커 조성물에 따르면, 부녀 관계를 효과적으로 확인할 수 있다.According to the marker composition for confirming the female-female relationship according to one embodiment, the female-female relationship can be effectively confirmed.

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, one or more embodiments will be described in more detail by way of examples. However, these embodiments are intended to illustrate one or more embodiments, and the scope of the invention is not limited to these embodiments.

실시예Example 1: 부녀 관계 확인용  1: For checking the relationship between women and women SNPSNP 마커의Marker 선정 selection

(1) 대상자 분류(1) Subject classification

X 염색체 상에 있는 SNP의 선정은 KAREI 컨소시움으로 부터 한국인 8842명의 affymetrix 5.0 array chip 결과를 사용하였다. X 염색체에 있는 전체 10,249 마커 중에서 Minor allele frequency 40~50%이고, LD r2>0.3 인 것을 대상으로 하여 검증을 실시하였다.
Selection of SNPs on the X chromosome was performed using the results of 8842 affymetrix 5.0 array chips from KAREI consortium. Among the 10,249 markers on the X chromosome, the Minor allele frequency was 40-50% and LD r 2 > 0.3.

(2) (2) SNPSNP 마커Marker 선정 selection

X 염색체 중 한국인에서 Minor allele frequency가 40~50%이며 인 SNP 마커를 우선 선정하였으며, PCR annealing 55도 및 SNP extension mix (CA/GT, CT/AG)를 갖는 SNP 를 선정한 후(strand에 따라 allele의 혼돈이 초래되는 AT/CG 변이와 triallele은 제외하였음) Sequence blast를 통해 Homology가 높은 SNP과 design된 SNP 중 In silico PCR에서 product가 2개 이상 증폭되는 경우를 제외하였다. 이후 동일 염색체상의 SNP 상호간 LD를 분석하여 r2>0.3인 경우는 제외하고 두 SNP간 거리가 500KB 이상으로 먼 경우는 포함하여 LD 관계가 없는 SNP 54개를 선정하였다.The SNP markers with the Minor allele frequency of 40 to 50% were selected first in Korea, and the SNPs with PCR annealing 55 ° and SNP extension mix (CA / GT, CT / AG) Except for the AT / CG mutation and triallele resulting in chaos.) Sequence blast was used to exclude more than two products in the homology-high SNP and the designed SNP by In silico PCR. Thereafter, except for the case of r 2 > 0.3, 54 SNPs without LD relation were selected including the case where the distance between two SNPs was 500 KB or more, by analyzing LDs between SNPs on the same chromosome.

상기와 같은 기준으로 X 염색체에서 총 54개의 SNP를 선별하였으며, 선정된 SNP의 리스트를 하기 표 1에 나타내었다 A total of 54 SNPs were selected from the X chromosome based on the above criteria, and a list of selected SNPs is shown in Table 1 below

번호number rs_numberrs_number 염색체chromosome positionposition allele_Aallele_A allele_Ballele_B Freq_AFreq_A Freq_BFreq_B AA_freqAA_freq AB_freqAB_freq BB_freqBB_freq 1One RS11091032RS11091032 XX 114935973114935973 CC AA 0.50 0.50 0.50 0.50 0.25 0.25 0.51 0.51 0.24 0.24 22 RS11091235RS11091235 XX 4824957948249579 GG AA 0.50 0.50 0.50 0.50 0.25 0.25 0.50 0.50 0.26 0.26 33 RS11094826RS11094826 XX 2222368822223688 AA GG 0.50 0.50 0.50 0.50 0.25 0.25 0.50 0.50 0.25 0.25 44 RS1151983RS1151983 XX 144426841144426841 AA GG 0.53 0.53 0.47 0.47 0.27 0.27 0.50 0.50 0.22 0.22 55 RS1157461RS1157461 XX 142449461142449461 CC TT 0.47 0.47 0.53 0.53 0.23 0.23 0.49 0.49 0.29 0.29 66 RS1194563RS1194563 XX 31525153152515 GG AA 0.47 0.47 0.53 0.53 0.22 0.22 0.50 0.50 0.28 0.28 77 RS12398872RS12398872 XX 8757028687570286 CC AA 0.49 0.49 0.51 0.51 0.24 0.24 0.51 0.51 0.25 0.25 88 RS12556842RS12556842 XX 117589676117589676 TT CC 0.53 0.53 0.47 0.47 0.28 0.28 0.50 0.50 0.22 0.22 99 RS12558151RS12558151 XX 152255911152255911 TT CC 0.43 0.43 0.57 0.57 0.19 0.19 0.49 0.49 0.32 0.32 1010 RS12689108RS12689108 XX 103798511103798511 TT AA 0.44 0.44 0.56 0.56 0.19 0.19 0.50 0.50 0.31 0.31 1111 RS12862958RS12862958 XX 4328888843288888 TT CC 0.51 0.51 0.49 0.49 0.25 0.25 0.52 0.52 0.23 0.23 1212 RS1353456RS1353456 XX 7882937778829377 AA CC 0.55 0.55 0.45 0.45 0.30 0.30 0.50 0.50 0.21 0.21 1313 RS1409993RS1409993 XX 6918293769182937 GG AA 0.60 0.60 0.40 0.40 0.36 0.36 0.47 0.47 0.16 0.16 1414 RS1417426RS1417426 XX 139748649139748649 TT CC 0.60 0.60 0.40 0.40 0.36 0.36 0.48 0.48 0.16 0.16 1515 RS1417427RS1417427 XX 139764074139764074 CC GG 0.53 0.53 0.47 0.47 0.27 0.27 0.51 0.51 0.22 0.22 1616 RS1455393RS1455393 XX 108002021108002021 CC TT 0.59 0.59 0.41 0.41 0.36 0.36 0.47 0.47 0.17 0.17 1717 RS1538568RS1538568 XX 145195174145195174 CC TT 0.55 0.55 0.45 0.45 0.30 0.30 0.50 0.50 0.20 0.20 1818 RS1602407RS1602407 XX 75625297562529 AA GG 0.59 0.59 0.41 0.41 0.35 0.35 0.48 0.48 0.17 0.17 1919 RS1716765RS1716765 XX 117329584117329584 TT CC 0.58 0.58 0.42 0.42 0.34 0.34 0.49 0.49 0.18 0.18 2020 RS17222293RS17222293 XX 90646399064639 AA GG 0.40 0.40 0.60 0.60 0.16 0.16 0.48 0.48 0.36 0.36 2121 RS17280844RS17280844 XX 98079169807916 AA GG 0.48 0.48 0.52 0.52 0.23 0.23 0.50 0.50 0.27 0.27 2222 RS17319502RS17319502 XX 144835250144835250 AA TT 0.53 0.53 0.47 0.47 0.28 0.28 0.49 0.49 0.23 0.23 2323 RS17332568RS17332568 XX 152720304152720304 AA GG 0.59 0.59 0.41 0.41 0.35 0.35 0.48 0.48 0.16 0.16 2424 RS17337757RS17337757 XX 9571346095713460 AA GG 0.54 0.54 0.46 0.46 0.29 0.29 0.50 0.50 0.21 0.21 2525 RS180497RS180497 XX 150081028150081028 CC GG 0.51 0.51 0.49 0.49 0.26 0.26 0.49 0.49 0.25 0.25 2626 RS1918560RS1918560 XX 2328372623283726 TT GG 0.52 0.52 0.48 0.48 0.27 0.27 0.51 0.51 0.23 0.23 2727 RS198781RS198781 XX 3854603338546033 CC GG 0.45 0.45 0.55 0.55 0.20 0.20 0.50 0.50 0.30 0.30 2828 RS209766RS209766 XX 4370786843707868 TT CC 0.42 0.42 0.58 0.58 0.18 0.18 0.49 0.49 0.33 0.33 2929 RS2107528RS2107528 XX 2314128023141280 TT GG 0.44 0.44 0.56 0.56 0.20 0.20 0.49 0.49 0.31 0.31 3030 RS217989RS217989 XX 118436563118436563 GG CC 0.59 0.59 0.41 0.41 0.35 0.35 0.47 0.47 0.17 0.17 3131 RS2238926RS2238926 XX 2413217624132176 TT AA 0.47 0.47 0.53 0.53 0.22 0.22 0.50 0.50 0.27 0.27 3232 RS2239425RS2239425 XX 98499799849979 AA GG 0.46 0.46 0.54 0.54 0.22 0.22 0.48 0.48 0.30 0.30 3333 RS225049RS225049 XX 2907800329078003 CC TT 0.50 0.50 0.50 0.50 0.25 0.25 0.51 0.51 0.25 0.25 3434 RS2285633RS2285633 XX 1364446013644460 TT CC 0.40 0.40 0.60 0.60 0.17 0.17 0.47 0.47 0.37 0.37 3535 RS2428676RS2428676 XX 2305118323051183 CC TT 0.44 0.44 0.56 0.56 0.19 0.19 0.49 0.49 0.31 0.31 3636 RS2522942RS2522942 XX 1647467316474673 CC TT 0.59 0.59 0.41 0.41 0.35 0.35 0.48 0.48 0.17 0.17 3737 RS261713RS261713 XX 117873108117873108 TT CC 0.55 0.55 0.45 0.45 0.30 0.30 0.50 0.50 0.20 0.20 3838 RS2858769RS2858769 XX 4731510947315109 CC TT 0.55 0.55 0.45 0.45 0.29 0.29 0.51 0.51 0.19 0.19 3939 RS2980062RS2980062 XX 152434081152434081 TT CC 0.46 0.46 0.54 0.54 0.22 0.22 0.49 0.49 0.29 0.29 4040 RS3125986RS3125986 XX 112142357112142357 AA GG 0.48 0.48 0.52 0.52 0.22 0.22 0.51 0.51 0.27 0.27 4141 RS3131264RS3131264 XX 128605307128605307 GG TT 0.50 0.50 0.50 0.50 0.25 0.25 0.50 0.50 0.25 0.25 4242 RS3813932RS3813932 XX 118104748118104748 AA GG 0.54 0.54 0.46 0.46 0.29 0.29 0.50 0.50 0.21 0.21 4343 RS3827416RS3827416 XX 151753107151753107 CC TT 0.56 0.56 0.44 0.44 0.32 0.32 0.49 0.49 0.19 0.19 4444 RS3915920RS3915920 XX 6835406568354065 GG AA 0.51 0.51 0.49 0.49 0.27 0.27 0.50 0.50 0.24 0.24 4545 RS41537844RS41537844 XX 6853086368530863 TT CC 0.54 0.54 0.46 0.46 0.30 0.30 0.49 0.49 0.21 0.21 4646 RS42897RS42897 XX 119476138119476138 TT CC 0.60 0.60 0.40 0.40 0.36 0.36 0.48 0.48 0.16 0.16 4747 RS4460557RS4460557 XX 2952977529529775 AA GG 0.56 0.56 0.44 0.44 0.31 0.31 0.50 0.50 0.19 0.19 4848 RS4474149RS4474149 XX 122458057122458057 TT CC 0.43 0.43 0.57 0.57 0.18 0.18 0.49 0.49 0.33 0.33 4949 RS4481738RS4481738 XX 4716267547162675 TT CC 0.41 0.41 0.59 0.59 0.17 0.17 0.48 0.48 0.35 0.35 5050 RS4825476RS4825476 XX 122269160122269160 GG AA 0.41 0.41 0.59 0.59 0.16 0.16 0.49 0.49 0.35 0.35 5151 RS4827139RS4827139 XX 3907058039070580 TT GG 0.47 0.47 0.53 0.53 0.21 0.21 0.51 0.51 0.28 0.28 5252 RS4829851RS4829851 XX 135767761135767761 TT CC 0.46 0.46 0.54 0.54 0.22 0.22 0.49 0.49 0.29 0.29 5353 RS4969678RS4969678 XX 9570257495702574 AA GG 0.44 0.44 0.56 0.56 0.19 0.19 0.50 0.50 0.31 0.31 5454 RS500294RS500294 XX 149415656149415656 CC TT 0.45 0.45 0.55 0.55 0.21 0.21 0.49 0.49 0.30 0.30

상기 표 1에서, 번호는 서열목록 상의 서열 번호를 나타내고, rs_number는 기준 염기서열(reference sequence)을 의미하며, 이는 인간게놈 프로젝트 후, 미국 국립보건원 산하 생물공학정보연구소(NCBI)의 데이터베이스에서 각 단일염기다형성을 구분하기 위해 붙인 이름이다. 염색체는 상기 단일염기다형성이 위치하고 있는 염색체의 번호를 나타낸다. Position은 각 염색체에서 각 서열번호가 존재하는 위치를 나타낸다.In Table 1, the numbers indicate the sequence numbers on the sequence listing, and rs_number means the reference sequence. After the human genome project, the single nucleotide sequence (SEQ ID NO: 1) in the database of the National Institute of Biotechnology Information (NCBI) This is the name given to distinguish the base polymorphism. The chromosome represents the number of the chromosome in which the single nucleotide polymorphism is located. Position indicates the position where each sequence number exists on each chromosome.

allele_A 및 allele_B는 유전자형 분석에서 실험의 편의상 임의적으로 대립형질을 명명한 것이며, Freq_A 및 Freq_B는 각각 대립형질 A와 B의 빈도를 나타낸다. AA, AB 및 BB는 유전형을 갖는 대상자의 수이고, AA_freq, AB_freq 및 BB_freq는 그 빈도를 나타낸다.
Allele_A and allele_B are randomly named alleles for ease of experiment in genotyping, and Freq_A and Freq_B represent frequencies of alleles A and B, respectively. AA, AB and BB are the number of subjects with a genotype, and AA_freq, AB_freq and BB_freq represent the frequency.

(3) 부녀 관계 판정기준 (3) Criteria for determining the relationship between women and women

전체 마커 중 비교대상 시료, 딸의 대립유전자(allele) 두 개 중 아버지의 대립유전자(allele)가 하나라도 포함되어 있지 않은 경우에는 부녀관계가 아닌 것으로 판정하는 것이 원칙이며, 이 경우 개인식별지수는 0로 표시하고, 부권배제률은 다음과 같이 추정되며, 99.99% 이상인 경우에 “부녀관계인 가능성을 배제 할수 없다” 라고 판정 한다. If all of the alleles of the sample and the daughter of all the markers do not contain any of the father's alleles, it is a principle to judge that it is not a female-female relationship. In this case, 0, and the exclusion rate of the pseudonym is estimated as follows. If it is more than 99.99%, it is judged that the possibility of "female relationship" can not be excluded.

추정부의 X 염색체 특정 locus에서 allele ai를 갖는다고 할 때, 추정녀의 가능한 genotype은 aiai과 aiaj(i≠j)이다. 이 경우 각각의 Exclusion probability(EP)는 (1-pi)2과 (1-pj)2이다. 여기서 pi는 ai의 allele 빈도(frqeuency)이다. Locus에서 exclusion probability를 EP l 라고 할 때, K개의 SNP 정보를 결합한 overall exclusion probability은 다음과 같다.When we assume that allele a i is located in the locus of the X chromosome of the presumptive part, the probable genotypes of the presumptive woman are a i a i and a i a j (i ≠ j). In this case, each Exclusion probability (EP) is (1-p i ) 2 and (1-p j ) 2 . Where p i is the allele frequency of a i (frqeuency). The exclusion probability of locus in EP l , The overall exclusion probability of combining K SNP information is as follows.

Overall EP =

Figure 112012016814311-pat00002

Overall EP =
Figure 112012016814311-pat00002

실시예Example 2: 부녀 관계 판별 예시 및 결과 2: Example and Results of Determining Female-Female Relationship

부녀 관계의 3쌍을 대상으로 선정된 마커를 대상으로 분석한 결과를 하기 표 2에 나타내었다.Table 3 shows the results of analyzing the selected markers for three pairs of female and female relationships.

번호number rs_numberrs_number 부녀관계1 유전자형Female-female relationship 1 genotype 부녀관계2 유전자형Female relationship 2 genotype 부녀관계3 유전자형Female-female relationship 3 genotype 부1Part 1 녀1Girl 1 배제율Exclusion rate 1-배제율1-exclusion rate 부2Part 2 녀2Girl 2 배제율Exclusion rate 1-배제율1-exclusion rate 부3Part 3 녀3Woman 3 배제율Exclusion rate 1-배제율1-exclusion rate 1One RS11091032RS11091032 AA AA CC 0.250 0.250 0.750 0.750 AA CC AA 0.250 0.250 0.750 0.750 CC CC AA 0.250 0.250 0.750 0.750 22 RS11091235RS11091235 AA AA AA 0.250 0.250 0.750 0.750 AA AA AA 0.250 0.250 0.750 0.750 GG GG AA 0.250 0.250 0.750 0.750 33 RS11094826RS11094826 GG GG GG 0.250 0.250 0.750 0.750 AA AA GG 0.250 0.250 0.750 0.750 AA AA GG 0.250 0.250 0.750 0.750 44 RS1151983RS1151983 GG AA GG 0.221 0.221 0.779 0.779 AA AA GG 0.281 0.281 0.719 0.719 AA AA AA 0.221 0.221 0.779 0.779 55 RS1157461RS1157461 CC CC CC 0.281 0.281 0.719 0.719 CC CC TT 0.221 0.221 0.779 0.779 TT TT TT 0.221 0.221 0.779 0.779 66 RS1194563RS1194563 GG GG AA 0.221 0.221 0.779 0.779 GG GG GG 0.281 0.281 0.719 0.719 AA GG AA 0.281 0.281 0.719 0.719 77 RS12398872RS12398872 -- --       AA AA AA 0.240 0.240 0.760 0.760 AA CC AA 0.240 0.240 0.760 0.760 88 RS12556842RS12556842 TT TT TT 0.221 0.221 0.779 0.779 TT TT CC 0.281 0.281 0.719 0.719 TT TT CC 0.281 0.281 0.719 0.719 99 RS12558151RS12558151 CC TT CC 0.325 0.325 0.675 0.675 TT TT CC 0.185 0.185 0.815 0.815 TT TT CC 0.185 0.185 0.815 0.815 1010 RS12689108RS12689108 AA AA AA 0.194 0.194 0.806 0.806 TT TT TT 0.314 0.314 0.686 0.686 TT TT TT 0.314 0.314 0.686 0.686 1111 RS12862958RS12862958 TT TT TT 0.240 0.240 0.760 0.760 CC CC CC 0.260 0.260 0.740 0.740 CC CC CC 0.260 0.260 0.740 0.740 1212 RS1353456RS1353456 AA AA CC 0.303 0.303 0.698 0.698 CC AA CC 0.203 0.203 0.798 0.798 AA AA CC 0.303 0.303 0.698 0.698 1313 RS1409993RS1409993 AA GG AA 0.160 0.160 0.840 0.840 GG GG AA 0.360 0.360 0.640 0.640 AA GG AA 0.160 0.160 0.840 0.840 1414 RS1417426RS1417426 TT TT TT 0.160 0.160 0.840 0.840 CC TT CC 0.160 0.160 0.840 0.840 TT TT CC 0.360 0.360 0.640 0.640 1515 RS1417427RS1417427 GG GG GG 0.281 0.281 0.719 0.719 CC CC CC 0.221 0.221 0.779 0.779 CC CC CC 0.221 0.221 0.779 0.779 1616 RS1455393RS1455393 TT CC TT 0.168 0.168 0.832 0.832 TT TT TT 0.348 0.348 0.652 0.652 TT TT TT 0.348 0.348 0.652 0.652 1717 RS1538568RS1538568 TT CC TT 0.203 0.203 0.798 0.798 TT CC TT 0.203 0.203 0.798 0.798 CC CC TT 0.303 0.303 0.698 0.698 1818 RS1602407RS1602407 AA AA GG 0.348 0.348 0.652 0.652 GG AA GG 0.168 0.168 0.832 0.832 GG AA GG 0.168 0.168 0.832 0.832 1919 RS1716765RS1716765 TT TT TT 0.176 0.176 0.824 0.824 -- --       TT TT TT 0.176 0.176 0.824 0.824 2020 RS17222293RS17222293 GG GG GG 0.160 0.160 0.840 0.840 AA AA AA 0.360 0.360 0.640 0.640 AA AA AA 0.360 0.360 0.640 0.640 2121 RS17280844RS17280844 GG AA GG 0.270 0.270 0.730 0.730 GG GG GG 0.230 0.230 0.770 0.770 GG GG GG 0.230 0.230 0.770 0.770 2222 RS17319502RS17319502 AA AA TT 0.281 0.281 0.719 0.719 AA AA TT 0.281 0.281 0.719 0.719 AA AA TT 0.281 0.281 0.719 0.719 2323 RS17332568RS17332568 GG GG GG 0.348 0.348 0.652 0.652 AA AA GG 0.348 0.348 0.652 0.652 AA AA AA 0.168 0.168 0.832 0.832 2424 RS17337757RS17337757 AA AA GG 0.292 0.292 0.708 0.708 GG AA GG 0.212 0.212 0.788 0.788 AA AA AA 0.212 0.212 0.788 0.788 2525 RS180497RS180497 CC CC GG 0.260 0.260 0.740 0.740 GG CC GG 0.240 0.240 0.760 0.760 GG GG GG 0.260 0.260 0.740 0.740 2626 RS1918560RS1918560 TT TT GG 0.270 0.270 0.730 0.730 GG TT GG 0.230 0.230 0.770 0.770 TT TT GG 0.270 0.270 0.730 0.730 2727 RS198781RS198781 CC CC CC 0.303 0.303 0.698 0.698 CC CC CC 0.303 0.303 0.698 0.698 GG CC GG 0.303 0.303 0.698 0.698 2828 RS209766RS209766 CC CC CC 0.176 0.176 0.824 0.824 CC CC CC 0.176 0.176 0.824 0.824 TT TT CC 0.176 0.176 0.824 0.824 2929 RS2107528RS2107528 GG TT GG 0.314 0.314 0.686 0.686 TT TT GG 0.194 0.194 0.806 0.806 TT TT GG 0.194 0.194 0.806 0.806 3030 RS217989RS217989 GG GG CC 0.348 0.348 0.652 0.652 GG GG CC 0.348 0.348 0.652 0.652 CC GG CC 0.168 0.168 0.832 0.832 3131 RS2238926RS2238926 TT TT AA 0.221 0.221 0.779 0.779 TT TT TT 0.281 0.281 0.719 0.719 TT TT TT 0.281 0.281 0.719 0.719 3232 RS2239425RS2239425 AA AA GG 0.212 0.212 0.788 0.788 GG GG GG 0.212 0.212 0.788 0.788 AA AA GG 0.212 0.212 0.788 0.788 3333 RS225049RS225049 CC CC CC 0.250 0.250 0.750 0.750 CC CC TT 0.250 0.250 0.750 0.750 CC CC TT 0.250 0.250 0.750 0.750 3434 RS2285633RS2285633 CC CC CC 0.160 0.160 0.840 0.840 TT TT CC 0.160 0.160 0.840 0.840 -- --       3535 RS2428676RS2428676 CC CC TT 0.194 0.194 0.806 0.806 TT CC TT 0.314 0.314 0.686 0.686 CC CC TT 0.194 0.194 0.806 0.806 3636 RS2522942RS2522942 CC CC TT 0.348 0.348 0.652 0.652 CC CC CC 0.168 0.168 0.832 0.832 CC CC CC 0.168 0.168 0.832 0.832 3737 RS261713RS261713 CC CC CC 0.303 0.303 0.698 0.698 CC TT CC 0.203 0.203 0.798 0.798 CC CC CC 0.303 0.303 0.698 0.698 3838 RS2858769RS2858769 TT CC TT 0.203 0.203 0.798 0.798 TT CC TT 0.203 0.203 0.798 0.798 CC CC TT 0.303 0.303 0.698 0.698 3939 RS2980062RS2980062 TT TT CC 0.212 0.212 0.788 0.788 TT TT CC 0.212 0.212 0.788 0.788 TT TT TT 0.292 0.292 0.708 0.708 4040 RS3125986RS3125986 AA AA AA 0.270 0.270 0.730 0.730 AA AA AA 0.270 0.270 0.730 0.730 AA AA AA 0.270 0.270 0.730 0.730 4141 RS3131264RS3131264 TT TT TT 0.250 0.250 0.750 0.750 TT TT TT 0.250 0.250 0.750 0.750 TT TT TT 0.250 0.250 0.750 0.750 4242 RS3813932RS3813932 AA AA GG 0.292 0.292 0.708 0.708 AA AA GG 0.292 0.292 0.708 0.708 GG AA GG 0.212 0.212 0.788 0.788 4343 RS3827416RS3827416 TT CC TT 0.194 0.194 0.806 0.806 CC CC TT 0.314 0.314 0.686 0.686 CC CC TT 0.314 0.314 0.686 0.686 4444 RS3915920RS3915920 GG GG AA 0.260 0.260 0.740 0.740 GG GG GG 0.240 0.240 0.760 0.760 GG GG AA 0.260 0.260 0.740 0.740 4545 RS41537844RS41537844 TT TT CC 0.292 0.292 0.708 0.708 CC CC CC 0.292 0.292 0.708 0.708 TT TT CC 0.292 0.292 0.708 0.708 4646 RS42897RS42897 TT TT TT 0.160 0.160 0.840 0.840 TT TT CC 0.360 0.360 0.640 0.640 TT TT CC 0.360 0.360 0.640 0.640 4747 RS4460557RS4460557 AA AA AA 0.194 0.194 0.806 0.806 AA AA GG 0.314 0.314 0.686 0.686 GG AA GG 0.194 0.194 0.806 0.806 4848 RS4474149RS4474149 CC CC CC 0.185 0.185 0.815 0.815 TT TT CC 0.185 0.185 0.815 0.815 CC CC CC 0.185 0.185 0.815 0.815 4949 RS4481738RS4481738 TT TT CC 0.168 0.168 0.832 0.832 TT TT TT 0.348 0.348 0.652 0.652 CC TT CC 0.348 0.348 0.652 0.652 5050 RS4825476RS4825476 GG GG AA 0.168 0.168 0.832 0.832 AA AA AA 0.168 0.168 0.832 0.832 AA AA AA 0.168 0.168 0.832 0.832 5151 RS4827139RS4827139 TT TT GG 0.221 0.221 0.779 0.779 TT TT GG 0.221 0.221 0.779 0.779 TT TT GG 0.221 0.221 0.779 0.779 5252 RS4829851RS4829851 CC TT CC 0.292 0.292 0.708 0.708 TT TT CC 0.212 0.212 0.788 0.788 CC TT CC 0.292 0.292 0.708 0.708 부권배제력
(Overall EP )
Exclusionary power
(Overall EP)
      99.9999349%99.9999349%       99.9999688%99.9999688%       99.9999648%99.9999648%

상기 표의 “-“ 는 분석 결과가 도출되지 않은 경우로 이런 경우 계산에서 제외한다."-" in the above table is the case where the analysis result is not derived and is excluded from the calculation in this case.

각 쌍의 부녀관계의 경우 분석된 결과 가족내에서는 부의 allele 모두 녀에게서도 관찰되었으며, 이 경우 부권배제력은 최소 99.9999349%로 생물학적 가족이라는 것을 확인할 수 있었으며 (“부녀관계의 가능성을 배제 할 수 없음”) 타가족의 부녀 사이에서는 일치 하지 않은 allele 들이 많아 부녀관계가 아님을 확인할 수 있었다.In the case of each pair of female partnership, the analysis showed that all negative alleles were observed in the family. In this case, it was confirmed that the exclusion power for paternity was at least 99.9999349% (" ) There were many unmatched alleles among the women of other families, and it was confirmed that they were not female - female relations.

<110> DNA LINK, INC. <120> Single nucleotide polymorphism marker composition for identification of father and daughter and its use <130> PN096235 <160> 54 <170> KopatentIn 1.71 <210> 1 <211> 201 <212> DNA <213> Homo sapiens <400> 1 catgccatgt tggatctggc ctaattccac ctccaataca gaggaggcat ggagatgtct 60 gggttaatgt gccaggtcat agcaccattt acagcgtttt atgagtgtac cccagcagtc 120 ctttctggca tgtagcaggc tctctccaca agaagcccaa ttggttcttc cttctgcatg 180 ctcttggctt cctggacttc a 201 <210> 2 <211> 201 <212> DNA <213> Homo sapiens <400> 2 ttttcctata caaggacact attgacatgc ccaccagggt ggctagaacc aaaaagtcag 60 ataacaagta tttgtgagga tgtggagcaa tggaaacctc atactatgct ggtagcaatg 120 taaaaaaaga aaaaaaagtc cttgctctta ggatattcat actgaagtat ttagttaaaa 180 gggtgtcata tccgcaacca c 201 <210> 3 <211> 201 <212> DNA <213> Homo sapiens <400> 3 atgtgtatat atatcaggat ttgttgagct tcctggccct ggtggcacaa aagaagcacc 60 atattactta gtgcttcatg gctagcttga aatgcaacga agatttgtcc agccaggctc 120 cacaccccca aaaagctcct ggctgtgtca tttgctcgtt tgcctttaaa ggtactaata 180 taacagcaag taccttacat g 201 <210> 4 <211> 201 <212> DNA <213> Homo sapiens <400> 4 agaacaagat gcacagaaag agcttcagag atctgcagtg tccctcttaa atattcagca 60 gagtattttg aatgcatgtg aggaaactcg cctaggtaaa agaaaggact actcaagaag 120 attaagaaca atcccaagtt tcaaacaggg ctgggtgtag tggacaaagt attctatagc 180 acacaaggta gagggttttg c 201 <210> 5 <211> 201 <212> DNA <213> Homo sapiens <400> 5 aagtgttcac atccacccgt atctgtgctg cacggttcaa atggagcaat tgcctgggtt 60 aaggcgcata atacctataa caaaggggaa gtcaggatga cgcattgaag tccacagagg 120 taggctcgag tcccagcaag gccacttgct acctatgtga cttggggcac attcactaac 180 tctcagcctg tttcctcagg a 201 <210> 6 <211> 201 <212> DNA <213> Homo sapiens <400> 6 aagacgtgtg cccactgagc ctttccaagt gctttactct gagatggtcc aagaggtgtt 60 tctgagaagg ctatttttat tgtctttggt gacacattat atgatgcaga tgtggtttcc 120 atcaatccat ctagaaagtc tatgcatagg gttatgtctc actttcccta ttagtgacct 180 ggaggaagca ctgcattttt g 201 <210> 7 <211> 201 <212> DNA <213> Homo sapiens <400> 7 acaaaaaagt aacaaaaaag taacttcttt tgatttcata ggctcacaac tggagggaca 60 tttgcttcag gatgaattat gtcttgagtc tcactgatat atgatttgga taagaccctg 120 gactttagag ttgatgctga aatgagttaa gacttctgag gctattggac tggaatggat 180 gcattttgca tgtaaggagg a 201 <210> 8 <211> 201 <212> DNA <213> Homo sapiens <400> 8 agcgaaattc cctcctcggt ctacatatta gttttgatgc ttcccatacc cattcctgtc 60 aattttgcat cctgcacagc tcaaaaacga aaccaaattt cgactgtcct ggaacatata 120 ttgtgtgggg aagacaaaga ataaacacat ataaaaagta atattagaaa gataaatgag 180 agaaagggag tatagactgt c 201 <210> 9 <211> 201 <212> DNA <213> Homo sapiens <400> 9 accccttgga agcttctgga accttccaga ggagccttat ttgggtggtc ttgctgcctt 60 tcccctgccc agggaaggac agcgcacctg ttagagaatg ctgcttggct atttgtgcga 120 taaaatcagt tgaacgctgg tctttaggct cagaagctac cgttagccag tagccaaaca 180 tccagcagtg aggcagggat g 201 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <400> 10 tctctgtggg tgtgagttat gagagctgta ttgtaagtgt gctctcccta aatggttaca 60 gacaagaaac acatggtttt aagaggcacc cattaaaccc ataagatgaa tggcatgtat 120 ttggcatctc tactttgtgg agaaacaaga cagtggtttc ctgaaatcaa attctgccaa 180 ggattgtctt agaaataggg c 201 <210> 11 <211> 201 <212> DNA <213> Homo sapiens <400> 11 gagaatggca gaaggggaga gatagacagt tagaaaatat ccaagatata gaattatcca 60 gtcctcacaa ttctagctgt aggttactct tatgcagagt catgcttctt gaggatgata 120 cccagaaatg tggtcacagc tcatctagcc ctgccttctg gagaggactt catcttattt 180 taaccctcta ctaccaccat g 201 <210> 12 <211> 201 <212> DNA <213> Homo sapiens <400> 12 gttatctttg tcctgttgga aatatatata aaacaggtct agggaaacgc agctggttag 60 aatgcaaaac ccttttacaa cagagaaacg tcgctataga actgcatttt gtgagcacac 120 ggccttcatg ctaaatcctg cacttttttc ttagttaatt tcacttgtac cttggcgact 180 attatgcaga atgatccata c 201 <210> 13 <211> 201 <212> DNA <213> Homo sapiens <400> 13 tgagtaaggc tacaactaga ctttctgaat gaaatgaatg atttttctaa tactttgtgg 60 taagaaaccc accccctata tggctttagg atgcttcact atgaaatgtt aaatttgtgt 120 gtctgtttca agaccactgt actcaatttt tttttttttt ttggacaggg tctcactctg 180 tcacctaggt tggagtgcag t 201 <210> 14 <211> 201 <212> DNA <213> Homo sapiens <400> 14 ctccatctgg cccactaggc ccaaggctgc tggcttgctg ggatttgaac tcttctcttg 60 ctaatgcata taaaaacaat ttcctgctta tatcccattt cgttactttc tgaagcaagc 120 ttctgctgtg gcttataaga agttgtttta cattttgtca tacaggtata catgttgaga 180 gtggggatgg agtgatattt t 201 <210> 15 <211> 201 <212> DNA <213> Homo sapiens <400> 15 gcagaaatct aatggctgag aaagagccag ccattgaagg caggaggaat gtgggcaagc 60 taaacaggat tccaggcttt gggaacacca tagcgagaga ctcaaaggca ggaaagagcg 120 tggtgttttc caggaaatga aaggaggcaa aatgtggaag atatgaatga gggagaggga 180 caatttatta caaaacagta g 201 <210> 16 <211> 201 <212> DNA <213> Homo sapiens <400> 16 aaatggttgt gagaatctcc ttaagtccta ctcctctact aatgcagatc ctttgagctc 60 tcttttacta tttctccttt attttcctct cgatgattaa ctcaaatgcc attctgaagt 120 gtgctcaaca cataactaga tgctgaagag caggtggggg gaacttgcag aaaaagccct 180 gtaagtgtga cagtaagtga g 201 <210> 17 <211> 201 <212> DNA <213> Homo sapiens <400> 17 gccaagtctg tgaggactgg gcttgtccaa gtgtaacatt acatgtcgta ttgcattgat 60 gtcatgcagc actacaatat ggcagtttca gttatagttg caagagcata ggaatgtctt 120 ctgaagctaa tgaagtggta tttatattac ttcatgggaa cggccattaa aataattgct 180 cactatatct taaaaaatat c 201 <210> 18 <211> 201 <212> DNA <213> Homo sapiens <400> 18 ggccacatgc tcagtcataa agcaagtgtt aatgattttt aaaaaaatca aaatcatacc 60 aagcacactc ttgaaccaca gtgcaataaa accagaagtc aatatcaaga aggtctctca 120 aaactatgca aatacatgga aattaaacaa cttgttcctg aatgactcct gggtgaacat 180 caaaattaag gcagaaatca a 201 <210> 19 <211> 201 <212> DNA <213> Homo sapiens <400> 19 tatattacct tactctttca cctactttct taaggaatct ggctttggtt gaagttaagt 60 acatactgtc ttccaggtag agatatacta ctttaaagtc ctcaagtcct tgtgattcta 120 aggtcagaca ccattgacta agtaactagg caaatccaaa gactcagttt ttgacaaaca 180 gagtagtatt tgtagagatg t 201 <210> 20 <211> 201 <212> DNA <213> Homo sapiens <400> 20 tccacattgc ctgagcaaac tataagggga aattggtgtt tatttacatc ccatttctct 60 tcccaaggga tttgaaagac caggaggaag ctattaagga aacagtcgta ttttttccat 120 tgttatcctc atttatgata tagccattgc cccgtcacta aaatagctgc tgagccactt 180 ggtaaggcaa aagggaattc t 201 <210> 21 <211> 201 <212> DNA <213> Homo sapiens <400> 21 tctctggagg acctgtatgt gctatgcagt gggatccaca ctgtacaggt taagtttatt 60 ttgaggttca aggaattgag aagttagcat tagccttaac aatgaagttt aaatgacttt 120 tattttttta tcggttccac aaatgatgta gacttttatt ttttaaaaca gagcagctgt 180 aatgagatcc accaaattga a 201 <210> 22 <211> 201 <212> DNA <213> Homo sapiens <400> 22 ttaattttaa ataagtattc aaaaaattca cacacaaatt atattttttc ccaggaaaag 60 ataaatattg ccaatgtact gctatttgac ctcaaacaag acagattagg agtctcctca 120 aacaaggaag cttttgactt ggagaagtta actgttgttt ttagtttatg attgattgag 180 acaaatatat gaagatacct t 201 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <400> 23 gaggccctga ccctgcccag cattgagcat ggctcctagg acttgataga gcccgaaggt 60 ttgctgagag ctcccaggat ggaagggccc tggcaacgac acggttattc atctatctgg 120 ccaagacatc cactaggtgc cttctgcaaa ctgagcacct tgctaggcac tgtgggatca 180 ccaaatgggg agggcagctt c 201 <210> 24 <211> 201 <212> DNA <213> Homo sapiens <400> 24 tctgacctca aatatgctta tatagcactg tgtgaactat gtgagtgtgt acattctcct 60 tttctcctcc ctttctctct gaaaagtgga ccagtagaac aaacagatgt ttcagagtta 120 cacagatgtg ggtttgaatc tcaattccac cacttctcag tttcttattt tctctttgtc 180 tctaaaatgg agataataac a 201 <210> 25 <211> 201 <212> DNA <213> Homo sapiens <400> 25 aaactgcact tagcacttgg caggagtggc ccttgccctg gaacctgccc tttaaggggt 60 ggcaaggctg gaggagggcc agagcaatat ctgttaaagt caatgactca tggcagggtc 120 aacgagtcca aaggatcaag aggttgcact agaccagagc tgatacctct ccccgcactt 180 ctagaccatg ctttagttgc c 201 <210> 26 <211> 201 <212> DNA <213> Homo sapiens <400> 26 gctactgcta tgttccaggt tcttctatta cattatgtct cagctttcta tgagctatgt 60 tatttacaag gtaaaagaat aacacctaag ttcatccatt gcttaagtga acccaaacgt 120 agtttgagat ctgtaggccg gtttaaattg agtctggtaa agctacttca gcctggaaaa 180 ggagagaaga aatgatagac t 201 <210> 27 <211> 201 <212> DNA <213> Homo sapiens <400> 27 atccttttgc tagatccctt ggatttccgt tttccgtgtg ttatcacact gttggaactg 60 ggaagaagag aaaaagaggc aagattttgg catttagtaa cttaagtctg aataccgagt 120 tttcatccgg gtgcatacgt acttaaaata ccaaatgggt ccaggaaggg ggacaaagta 180 cgctttaatt tatgagaaga t 201 <210> 28 <211> 201 <212> DNA <213> Homo sapiens <400> 28 acatcaaaga tttataagtg gaagaaagct tgctagataa ccctagataa aacttcatac 60 agtactagga tcagaaaagc aagaaactct aggtctaatt cagaaagtgt gaagtgttaa 120 gtagcccctt cccaggaact caaaggattc caattggatc tagtcaacta gatgccttgg 180 agaataagtc aaatgcctct t 201 <210> 29 <211> 201 <212> DNA <213> Homo sapiens <400> 29 attcatttat ggttttgctt ttcctaaata aaagcatgta tgcagagcag gcacatgtgg 60 gtagcttgtt tttactaatc tttatttaac actaaatatc ggatctgacg ttctcatata 120 ctatcaaatg tggtaaccat atcattcagc caacatagtg tcccttttcc ccaggaactg 180 ccacagaata gtattcttct t 201 <210> 30 <211> 201 <212> DNA <213> Homo sapiens <400> 30 tccctgcact gactggcccc tttgtctgga tgtttctttc tcttaatatg cttttctcta 60 gacacacaca gcccatttaa tggcacatca ggttggaact cttttgaaca taatgacagt 120 aatcagaagt cttgtttaac cagctgagcc cttccttcac catgcttaca ctcattttat 180 ccctttttcc ttttcttgcc t 201 <210> 31 <211> 201 <212> DNA <213> Homo sapiens <400> 31 tggttttgaa actgaaggta tattaaaatg tagtttgttg attagtgata tcaaaaatag 60 accaaaacaa caactgcttt cagtgaccca gagtttggga atcttgaact ttgcatttga 120 aacaagctga ttaaatttta taatttttat gtttgtaaat gacaaaggtt tggggctgcc 180 attttcaagc ttttctttgc a 201 <210> 32 <211> 201 <212> DNA <213> Homo sapiens <400> 32 actcatctgt caatgtctgc ttaggtggct tccatgcctt ggcattcaca atataaatag 60 ttcacacaag tgaactattc acaatagttc atgtcgtagt aaacatgtga gttctgccat 120 attttgcttg ttcaaaagga gtcagagtcc ggcctacttc taacaagctc cacttgtttg 180 aaggaaggag tttcaaagga a 201 <210> 33 <211> 201 <212> DNA <213> Homo sapiens <400> 33 atggcttggc atcagaagtg gaaaggaaag tagagtgttg tagaatgagt gctggatttg 60 aggtcagaag acctctttta attcccggta ctgtcaccga ctagatgtga cctatggcat 120 aacccttaaa tatccttgac ctcctctgtt tccttttatg ttaaaatggg aataataatg 180 catgctttga ccatcattta g 201 <210> 34 <211> 201 <212> DNA <213> Homo sapiens <400> 34 actctttttg tgtatgagac ttagttttaa aattagctat taaacaaaat gtttttcccc 60 cctaaaaaaa gaaaagtagc cccataaatg gaaacttaca ctttcacctg actgtgaagt 120 ctacagactc agagcctggc atctatgttc catgttcttc tggtttgtga gcccaaactt 180 tagttagtta cctttactaa g 201 <210> 35 <211> 201 <212> DNA <213> Homo sapiens <400> 35 atttcacttt cttcgtcctc tcgtcacagg tcttaacttt ctttctttgt tttcacatga 60 accctagcaa tgtcctcccc tatcctttat gttttataag caacgaatca cacagcactc 120 aattaagcat gtaagtctgt ctccctgtat tgtggtcagt ttgttacttg ttagaatcca 180 ggtatcattt cctgatttcc t 201 <210> 36 <211> 201 <212> DNA <213> Homo sapiens <400> 36 attgcataag gatccctgta acctagtgaa cacaagcaga gaaggcaaag aacatgcaag 60 tcaatgaaat atatgtgata tgcatcactg tttgctgaca cggtagatga catttaattc 120 caatgctctt cccgccattt tgacaacttg cttatcccaa tgaactttat cactgtcatt 180 ctggatttac aagaaaattc c 201 <210> 37 <211> 201 <212> DNA <213> Homo sapiens <400> 37 ttgtgtccag tgccatcagt aaaatgggaa gtagcagaag gagatgatag gtacctagga 60 agagatttca tgagctattc aataaatttt ggatgctttt cgatatttgg aagatgtgtg 120 tccttaggag agatggcctc tacacttgaa gttactaatt catggcaaac cattctcctt 180 caaagacaaa gttttgctga a 201 <210> 38 <211> 201 <212> DNA <213> Homo sapiens <400> 38 tacaatcctt gacaacccca aatttaaatc cctctgttct gaaagcagag aatcctccca 60 agtcctcaag gacagagaat cctctgggcc ttgatactga cagtacccca gctcgctaaa 120 aatgaacctt ccaagtccct caatacaaaa ttccttgggc ctcccagccc ctgaccccag 180 atcacccctt tcctgccccc g 201 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <400> 39 tgtcagctct cacagccact cctaagcctt taagtgtggg tctccccagc cccacacctg 60 ccctcccaga gctgcccaca catgtctgct aagaggtgct cgtcttcagc cgggacccaa 120 cccttgccca agggatgctc ctgctggggg ccacgaaagg aggccagctc agcagcctgc 180 ttctgccttt gctcactcca g 201 <210> 40 <211> 201 <212> DNA <213> Homo sapiens <400> 40 ttggcctccc aaagtgctgg tattataggc atgagccacc acacccaacc caatactcta 60 cattcactat tagatcctct tagtagaaac cagtatccta aaacagatgc agagtgagat 120 ttacctaaca atttagtaaa aaatatagag ctgatgtatt atggagctga tttctttatc 180 tacactggta aaaatagtga a 201 <210> 41 <211> 201 <212> DNA <213> Homo sapiens <400> 41 tctaattatc tttacagaag ccaccaactt tcttttcctt atcccctgcc ccaaggaggt 60 cacacttgga tccacccaat agtatccagt tgactacgta ggttccatag accctggtgg 120 ctgctccccc ttccttgtcc ccgccgtctc tgcccatcat cctttcacca acttaaccaa 180 atgctattgt gccttctagg g 201 <210> 42 <211> 201 <212> DNA <213> Homo sapiens <400> 42 gcccctggga agtgcttctg attttatgtc ccctgcctac agaggatgaa attgggcccg 60 agggcactga agcaagctgg gtgaagttat cttgtttctc actcttatac ttctgcgagg 120 gaggggctct tttcagtcga actccaaaaa gcttttcaac atcatcctga ttggataggt 180 ttgcatgctg gttattatta c 201 <210> 43 <211> 201 <212> DNA <213> Homo sapiens <400> 43 ctcccaccct agatggcggg ctccttgaag gttggcagtg tgtctttgtc agcttctgcc 60 tggtagtggc tggcatttga taacttgtga atgaggaaat caatgcatga ggtgacacct 120 gggggttctt ttacaagtta cagctcccgc tttaaccctg ggggtttgtt tgagcctcac 180 agtagctctg aggtagggaa g 201 <210> 44 <211> 201 <212> DNA <213> Homo sapiens <400> 44 ctcaggctgg gccagtttcc attcccccac cttatctcag actgaggtga ggtgggacat 60 gacctggtgg gacatcattt ctgaccagta gcccttccct agaatatttc tgatgctcct 120 gccaactccc tccccaattt ggtttaggat agggatgccc tctcccagga tgcagcacaa 180 ctacaatggg ttggagggcc t 201 <210> 45 <211> 201 <212> DNA <213> Homo sapiens <400> 45 gactcttggc tctgctgtag ccatcacaga taatctcttg cactggggtg ggagcatctg 60 attggctgta tttaggtcat gtgaatgtgt ctgtaactgt cagggagctg aaagaactac 120 ctgtctccct ttggcttctg tactgcttcc cacttatctt gagagtgccc ctaaacaggc 180 aaggtgttca ggtactagtc a 201 <210> 46 <211> 201 <212> DNA <213> Homo sapiens <400> 46 agctccaact tacaatttta atgaactgga ggtttgcttt ttatatgcag tcttttctcg 60 gtcttgttta aggtctctag ctttagtata ttattctcct cgtattcaaa acattcaaaa 120 gtattgaaaa ttaccaagaa aagcctcaca tgtattaatc attttctttc caaatatatt 180 agaataacag gaagaagacc a 201 <210> 47 <211> 201 <212> DNA <213> Homo sapiens <400> 47 taattaataa tatctgaatg agactctgct aggagtctta aaaaaatgag acatgctttg 60 attaaagtaa aagaatatag aatgcttctg tctataagtg aaatgacttt tgttccagaa 120 taagaaagag gatggtgaag ggcaacacaa catatagaga tctgtttgag gttcacagaa 180 agtgaatctg aaagggacca c 201 <210> 48 <211> 201 <212> DNA <213> Homo sapiens <400> 48 tttggcctct caaattgtta ggattacagg catgagccac cagctcttta ttttaccata 60 aaagttgctt ataatctgcc acctgccaat ttcttcaccc ctgttgctat tcactaagac 120 ctagtcatat gcaacttttt atttttattt tttgtttcaa actcatttta ggttcaggga 180 gtacatgtgc ggtttttcta t 201 <210> 49 <211> 201 <212> DNA <213> Homo sapiens <400> 49 atgcaatagt catcaagtgg gtaaacttaa ggtttatttg ttttattgta tataaattat 60 atctcaattg aaatgtgaaa acaaagcaat aaaacatccc ctgttcccat ttcaggagtc 120 atgtctgggc tgcctgggag gacaacagga atactgatcg ctagagcaaa taaaagactc 180 ttggcagtgg gcaacttggt c 201 <210> 50 <211> 201 <212> DNA <213> Homo sapiens <400> 50 acttcaagca gggcagagac acaactaagg ggaagcaatt ctacagttct tcctctgatg 60 actttaactg tcctttcccc acctctgagc aggttttaga atttcatatc agatgcccag 120 gcagatagga ctgatgactg tcctctggat ctcttgcccc tccctactct aggattcagt 180 ccagcatctt cactacatgc a 201 <210> 51 <211> 201 <212> DNA <213> Homo sapiens <400> 51 ttatgccctg agccccatgc tgtgggttct tgctaggaga catactctgg ggaccactcc 60 tgggccaata gttagaagtg gttgggaagc aggtcaaata gttaataggc cagacaatgg 120 cccagattgc tagtgactcc cagacagcca aagatagaaa aattttcaaa taaaaaaatt 180 acataagtag ttgggatttt g 201 <210> 52 <211> 201 <212> DNA <213> Homo sapiens <400> 52 tacttctgct cttaacgtcc cgtgactttt tggattccat tctccctcat cctaagactt 60 cagtaatcca gtcatcccct cattctcgtg tcaatttctg cccctttact ggaacagtcc 120 caaaaaccta tattctagta tctcccattt attaaaaata cctcccttaa ccccacatcc 180 tcctgctttt ctctgtcctt c 201 <210> 53 <211> 201 <212> DNA <213> Homo sapiens <400> 53 ttattaaaat gtaactttcc agagatattg acacaagtaa atatacttgt tttgaattga 60 attttccatt caaacagtta cagccagatt acttccctga aaggcggtgg caattcaaaa 120 tcctacttgc gatacatcat agtgcccttt ttctagctaa gtggtcagta ctgttagcac 180 acttaaattt tctctgtgta g 201 <210> 54 <211> 201 <212> DNA <213> Homo sapiens <400> 54 aaactctaga ctctggagag ccttgatgcc cttcctcttt taccccgtcc ctgatgctcc 60 cccaagtagc atgatgccca gtggcccacc aacctcatta cccagcattg ctgacaacag 120 gcacagcctt ggtcactgtg aaaatgcccc acagcctcaa cctcagaagt gggaagtata 180 ctgcagattc actctatgcc a 201 &Lt; 110 > DNA LINK, INC. <120> Single nucleotide polymorphism marker composition for          identification of father and daughter and its use <130> PN096235 <160> 54 <170> Kopatentin 1.71 <210> 1 <211> 201 <212> DNA <213> Homo sapiens <400> 1 catgccatgt tggatctggc ctaattccac ctccaataca gaggaggcat ggagatgtct 60 gggttaatgt gccaggtcat agcaccattt acagcgtttt atgagtgtac cccagcagtc 120 ctttctggca tgtagcaggc tctctccaca agaagcccaa ttggttcttc cttctgcatg 180 ctcttggctt cctggacttc a 201 <210> 2 <211> 201 <212> DNA <213> Homo sapiens <400> 2 ttttcctata caaggacact attgacatgc ccaccagggt ggctagaacc aaaaagtcag 60 ataacaagta tttgtgagga tgtggagcaa tggaaacctc atactatgct ggtagcaatg 120 taaaaaaaga aaaaaaagtc cttgctctta ggatattcat actgaagtat ttagttaaaa 180 gggtgtcata tccgcaacca c 201 <210> 3 <211> 201 <212> DNA <213> Homo sapiens <400> 3 atgtgatatat atatcaggat ttgttgagct tcctggccct ggtggcacaa aagaagcacc 60 atattactta gtgcttcatg gctagcttga aatgcaacga agatttgtcc agccaggctc 120 cacaccccca aaaagctcct ggctgtgtca tttgctcgtt tgcctttaaa ggtactaata 180 taacagcaag taccttacat g 201 <210> 4 <211> 201 <212> DNA <213> Homo sapiens <400> 4 agaacaagat gcacagaaag agcttcagag atctgcagtg tccctcttaa atattcagca 60 gagtattttg aatgcatgtg aggaaactcg cctaggtaaa agaaaggact actcaagaag 120 attaagaaca atcccaagtt tcaaacaggg ctgggtgtag tggacaaagt attctatagc 180 acacaaggta gagggttttg c 201 <210> 5 <211> 201 <212> DNA <213> Homo sapiens <400> 5 aagtgttcac atccacccgt atctgtgctg cacggttcaa atggagcaat tgcctgggtt 60 aaggcgcata atacctataa caaaggggaa gtcaggatga cgcattgaag tccacagagg 120 taggctcgag tcccagcaag gccacttgct acctatgtga cttggggcac attcactaac 180 tctcagcctg tttcctcagg a 201 <210> 6 <211> 201 <212> DNA <213> Homo sapiens <400> 6 aagacgtgtg cccactgagc ctttccaagt gctttactct gagatggtcc aagaggtgtt 60 tctgagaagg ctatttttat tgtctttggt gacacattat atgatgcaga tgtggtttcc 120 atcaatccat ctagaaagtc tatgcatagg gttatgtctc actttcccta ttagtgacct 180 ggaggaagca ctgcattttt g 201 <210> 7 <211> 201 <212> DNA <213> Homo sapiens <400> 7 acaaaaaagt aacaaaaaag taacttcttt tgatttcata ggctcacaac tggagggaca 60 tttgcttcag gatgaattat gtcttgagtc tcactgatat atgatttgga taagaccctg 120 gactttagag ttgatgctga aatgagttaa gacttctgag gctattggac tggaatggat 180 gcattttgca tgtaaggagg a 201 <210> 8 <211> 201 <212> DNA <213> Homo sapiens <400> 8 agcgaaattc cctcctcggt ctacatatta gttttgatgc ttcccatacc cattcctgtc 60 aattttgcat cctgcacagc tcaaaaacga aaccaaattt cgactgtcct ggaacatata 120 ttgtgtgggg aagacaaaga ataaacacat ataaaaagta atattagaaa gataaatgag 180 agaaagggag tatagactgt c 201 <210> 9 <211> 201 <212> DNA <213> Homo sapiens <400> 9 accccttgga agcttctgga accttccaga ggagccttat ttgggtggtc ttgctgcctt 60 tcccctgccc agggaaggac agcgcacctg ttagagaatg ctgcttggct atttgtgcga 120 taaaatcagt tgaacgctgg tctttaggct cagaagctac cgttagccag tagccaaaca 180 tccagcagtg aggcagggat g 201 <210> 10 <211> 201 <212> DNA <213> Homo sapiens <400> 10 tctctgtggg tgtgagttat gagagctgta ttgtaagtgt gctctcccta aatggttaca 60 gacaagaaac acatggtttt aagaggcacc cattaaaccc ataagatgaa tggcatgtat 120 ttggcatctc tactttgtgg agaaacaaga cagtggtttc ctgaaatcaa attctgccaa 180 ggattgtctt agaaataggg c 201 <210> 11 <211> 201 <212> DNA <213> Homo sapiens <400> 11 gagaatggca gaaggggaga gatagacagt tagaaaatat ccaagatata gaattatcca 60 gtcctcacaa ttctagctgt aggttactct tatgcagagt catgcttctt gaggatgata 120 cccagaaatg tggtcacagc tcatctagcc ctgccttctg gagaggactt catcttattt 180 taaccctcta ctaccaccat g 201 <210> 12 <211> 201 <212> DNA <213> Homo sapiens <400> 12 gttatctttg tcctgttgga aatatatata aaacaggtct agggaaacgc agctggttag 60 aatgcaaaac ccttttacaa cagagaaacg tcgctataga actgcatttt gtgagcacac 120 ggccttcatg ctaaatcctg cacttttttc ttagttaatt tcacttgtac cttggcgact 180 attatgcaga atgatccata c 201 <210> 13 <211> 201 <212> DNA <213> Homo sapiens <400> 13 tgagtaaggc tacaactaga ctttctgaat gaaatgaatg atttttctaa tactttgtgg 60 taagaaaccc accccctata tggctttagg atgcttcact atgaaatgtt aaatttgtgt 120 gtctgtttca agaccactgt actcaatttt tttttttttt ttggacaggg tctcactctg 180 tcacctaggt tggagtgcag t 201 <210> 14 <211> 201 <212> DNA <213> Homo sapiens <400> 14 ctccatctgg cccactaggc ccaaggctgc tggcttgctg ggatttgaac tcttctcttg 60 ctaatgcata taaaaacaat ttcctgctta tatcccattt cgttactttc tgaagcaagc 120 ttctgctgtg gcttataaga agttgtttta cattttgtca tacaggtata catgttgaga 180 gtggggatgg agtgatattt t 201 <210> 15 <211> 201 <212> DNA <213> Homo sapiens <400> 15 gcagaaatct aatggctgag aaagagccag ccattgaagg caggaggaat gtgggcaagc 60 taaacaggat tccaggcttt gggaacacca tagcgagaga ctcaaaggca ggaaagagcg 120 tggtgttttc caggaaatga aaggaggcaa aatgtggaag atatgaatga gggagaggga 180 caatttatta caaaacagta g 201 <210> 16 <211> 201 <212> DNA <213> Homo sapiens <400> 16 aaatggttgt gagaatctcc ttaagtccta ctcctctact aatgcagatc ctttgagctc 60 tcttttacta tttctccttt attttcctct cgatgattaa ctcaaatgcc attctgaagt 120 gtgctcaaca cataactaga tgctgaagag caggtggggg gaacttgcag aaaaagccct 180 gtaagtgtga cagtaagtga g 201 <210> 17 <211> 201 <212> DNA <213> Homo sapiens <400> 17 gccaagtctg tgaggactgg gcttgtccaa gtgtaacatt acatgtcgta ttgcattgat 60 gtcatgcagc actacaatat ggcagtttca gttatagttg caagagcata ggaatgtctt 120 ctgaagctaa tgaagtggta tttatattac ttcatgggaa cggccattaa aataattgct 180 cactatatct taaaaaatat c 201 <210> 18 <211> 201 <212> DNA <213> Homo sapiens <400> 18 ggccacatgc tcagtcataa agcaagtgtt aatgattttt aaaaaaatca aaatcatacc 60 aagcacactc ttgaaccaca gtgcaataaa accagaagtc aatatcaaga aggtctctca 120 aaactatgca aatacatgga aattaaacaa cttgttcctg aatgactcct gggtgaacat 180 caaaattaag gcagaaatca a 201 <210> 19 <211> 201 <212> DNA <213> Homo sapiens <400> 19 tatattacct tactctttca cctactttct taaggaatct ggctttggtt gaagttaagt 60 acatactgtc ttccaggtag agatatacta ctttaaagtc ctcaagtcct tgtgattcta 120 aggtcagaca ccattgacta agtaactagg caaatccaaa gactcagttt ttgacaaaca 180 gagtagtatt tgtagagatg t 201 <210> 20 <211> 201 <212> DNA <213> Homo sapiens <400> 20 tccacattgc ctgagcaaac tataagggga aattggtgtt tatttacatc ccatttctct 60 tcccaaggga tttgaaagac caggaggaag ctattaagga aacagtcgta ttttttccat 120 tgttatcctc atttatgata tagccattgc cccgtcacta aaatagctgc tgagccactt 180 ggtaaggcaa aagggaattc t 201 <210> 21 <211> 201 <212> DNA <213> Homo sapiens <400> 21 tctctggagg acctgtatgt gctatgcagt gggatccaca ctgtacaggt taagtttatt 60 ttgaggttca aggaattgag aagttagcat tagccttaac aatgaagttt aaatgacttt 120 tattttttta tcggttccac aaatgatgta gacttttatt ttttaaaaca gagcagctgt 180 aatgagatcc accaaattga a 201 <210> 22 <211> 201 <212> DNA <213> Homo sapiens <400> 22 ttaattttaa ataagtattc aaaaaattca cacacaaatt atattttttc ccaggaaaag 60 ataaatattg ccaatgtact gctatttgac ctcaaacaag acagattagg agtctcctca 120 aacaaggaag cttttgactt ggagaagtta actgttgttt ttagtttatg attgattgag 180 acaaatatat gaagatacct t 201 <210> 23 <211> 201 <212> DNA <213> Homo sapiens <400> 23 gaggccctga ccctgcccag cattgagcat ggctcctagg acttgataga gcccgaaggt 60 ttgctgagag ctcccaggat ggaagggccc tggcaacgac acggttattc atctatctgg 120 ccaagacatc cactaggtgc cttctgcaaa ctgagcacct tgctaggcac tgtgggatca 180 ccaaatgggg agggcagctt c 201 <210> 24 <211> 201 <212> DNA <213> Homo sapiens <400> 24 tctgacctca aatatgctta tatagcactg tgtgaactat gtgagtgtgt acattctcct 60 tttctcctcc ctttctctct gaaaagtgga ccagtagaac aaacagatgt ttcagagtta 120 cacagatgtg ggtttgaatc tcaattccac cacttctcag tttcttattt tctctttgtc 180 tctaaaatgg agataataac a 201 <210> 25 <211> 201 <212> DNA <213> Homo sapiens <400> 25 aaactgcact tagcacttgg caggagtggc ccttgccctg gaacctgccc tttaaggggt 60 ggcaaggctg gaggagggcc agagcaatat ctgttaaagt caatgactca tggcagggtc 120 aacgagtcca aaggatcaag aggttgcact agaccagagc tgatacctct ccccgcactt 180 ctagaccatg ctttagttgc c 201 <210> 26 <211> 201 <212> DNA <213> Homo sapiens <400> 26 gctactgcta tgttccaggt tcttctatta cattatgtct cagctttcta tgagctatgt 60 tatttacaag gtaaaagaat aacacctaag ttcatccatt gcttaagtga acccaaacgt 120 agtttgagat ctgtaggccg gtttaaattg agtctggtaa agctacttca gcctggaaaa 180 ggagagaaga aatgatagac t 201 <210> 27 <211> 201 <212> DNA <213> Homo sapiens <400> 27 atccttttgc tagatccctt ggatttccgt tttccgtgtg ttatcacact gttggaactg 60 ggaagaagag aaaaagaggc aagattttgg catttagtaa cttaagtctg aataccgagt 120 tttcatccgg gtgcatacgt acttaaaata ccaaatgggt ccaggaaggg ggacaaagta 180 cgctttaatt tatgagaaga t 201 <210> 28 <211> 201 <212> DNA <213> Homo sapiens <400> 28 acatcaaaga tttataagtg gaagaaagct tgctagataa ccctagataa aacttcatac 60 agtactagga tcagaaaagc aagaaactct aggtctaatt cagaaagtgt gaagtgttaa 120 gtagcccctt cccaggaact caaaggattc caattggatc tagtcaacta gatgccttgg 180 agaataagtc aaatgcctct t 201 <210> 29 <211> 201 <212> DNA <213> Homo sapiens <400> 29 attcatttat ggttttgctt ttcctaaata aaagcatgta tgcagagcag gcacatgtgg 60 gtagcttgtt tttactaatc tttatttaac actaaatatc ggatctgacg ttctcatata 120 ctatcaaatg tggtaaccat atcattcagc caacatagtg tcccttttcc ccaggaactg 180 ccacagaata gtattcttct t 201 <210> 30 <211> 201 <212> DNA <213> Homo sapiens <400> 30 tccctgcact gactggcccc tttgtctgga tgtttctttc tcttaatatg cttttctcta 60 gacacacaca gcccatttaa tggcacatca ggttggaact cttttgaaca taatgacagt 120 aatcagaagt cttgtttaac cagctgagcc cttccttcac catgcttaca ctcattttat 180 ccctttttcc ttttcttgcc t 201 <210> 31 <211> 201 <212> DNA <213> Homo sapiens <400> 31 tggttttgaa actgaaggta tattaaaatg tagtttgttg attagtgata tcaaaaatag 60 accaaaacaa caactgcttt cagtgaccca gagtttggga atcttgaact ttgcatttga 120 aacaagctga ttaaatttta taatttttat gtttgtaaat gacaaaggtt tggggctgcc 180 attttcaagc ttttctttgc a 201 <210> 32 <211> 201 <212> DNA <213> Homo sapiens <400> 32 actcatctgt caatgtctgc ttaggtggct tccatgcctt ggcattcaca atataaatag 60 ttcacacaag tgaactattc acaatagttc atgtcgtagt aaacatgtga gttctgccat 120 attttgcttg ttcaaaagga gtcagagtcc ggcctacttc taacaagctc cacttgtttg 180 aaggaaggag tttcaaagga a 201 <210> 33 <211> 201 <212> DNA <213> Homo sapiens <400> 33 atggcttggc atcagaagtg gaaaggaaag tagagtgttg tagaatgagt gctggatttg 60 aggtcagaag acctctttta attcccggta ctgtcaccga ctagatgtga cctatggcat 120 aacccttaaa tatccttgac ctcctctgtt tccttttatg ttaaaatggg aataataatg 180 catgctttga ccatcattta g 201 <210> 34 <211> 201 <212> DNA <213> Homo sapiens <400> 34 actctttttg tgtatgagac ttagttttaa aattagctat taaacaaaat gtttttcccc 60 cctaaaaaaa gaaaagtagc cccataaatg gaaacttaca ctttcacctg actgtgaagt 120 ctacagactc agagcctggc atctatgttc catgttcttc tggtttgtga gcccaaactt 180 tagttagtta cctttactaa g 201 <210> 35 <211> 201 <212> DNA <213> Homo sapiens <400> 35 atttcacttt cttcgtcctc tcgtcacagg tcttaacttt ctttctttgt tttcacatga 60 accctagcaa tgtcctcccc tatcctttat gttttataag caacgaatca cacagcactc 120 aattaagcat gtaagtctgt ctccctgtat tgtggtcagt ttgttacttg ttagaatcca 180 ggtatcattt cctgatttcc t 201 <210> 36 <211> 201 <212> DNA <213> Homo sapiens <400> 36 attgcataag gatccctgta acctagtgaa cacaagcaga gaaggcaaag aacatgcaag 60 tcaatgaaat atatgtgata tgcatcactg tttgctgaca cggtagatga catttaattc 120 caatgctctt cccgccattt tgacaacttg cttatcccaa tgaactttat cactgtcatt 180 ctggatttac aagaaaattc c 201 <210> 37 <211> 201 <212> DNA <213> Homo sapiens <400> 37 ttgtgtccag tgccatcagt aaaatgggaa gtagcagaag gagatgatag gtacctagga 60 agagatttca tgagctattc aataaatttt ggatgctttt cgatatttgg aagatgtgtg 120 tccttaggag agatggcctc tacacttgaa gttactaatt catggcaaac cattctcctt 180 caaagacaaa gttttgctga a 201 <210> 38 <211> 201 <212> DNA <213> Homo sapiens <400> 38 tacaatcctt gacaacccca aatttaaatc cctctgttct gaaagcagag aatcctccca 60 agtcctcaag gacagagaat cctctgggcc ttgatactga cagtacccca gctcgctaaa 120 aatgaacctt ccaagtccct caatacaaaa ttccttgggc ctcccagccc ctgaccccag 180 atcacccctt tcctgccccc g 201 <210> 39 <211> 201 <212> DNA <213> Homo sapiens <400> 39 tgtcagctct cacagccact cctaagcctt taagtgtggg tctccccagc cccacacctg 60 ccctcccaga gctgcccaca catgtctgct aagaggtgct cgtcttcagc cgggacccaa 120 cccttgccca agggatgctc ctgctggggg ccacgaaagg aggccagctc agcagcctgc 180 ttctgccttt gctcactcca g 201 <210> 40 <211> 201 <212> DNA <213> Homo sapiens <400> 40 ttggcctccc aaagtgctgg tattataggc atgagccacc acacccaacc caatactcta 60 cattcactat tagatcctct tagtagaaac cagtatccta aaacagatgc agagtgagat 120 ttacctaaca atttagtaaa aaatatagag ctgatgtatt atggagctga tttctttatc 180 tacactggta aaaatagtga a 201 <210> 41 <211> 201 <212> DNA <213> Homo sapiens <400> 41 tctaattatc tttacagaag ccaccaactt tcttttcctt atcccctgcc ccaaggaggt 60 cacacttgga tccacccaat agtatccagt tgactacgta ggttccatag accctggtgg 120 ctgctccccc ttccttgtcc ccgccgtctc tgcccatcat cctttcacca acttaaccaa 180 atgctattgt gccttctagg g 201 <210> 42 <211> 201 <212> DNA <213> Homo sapiens <400> 42 gcccctggga agtgcttctg attttatgtc ccctgcctac agaggatgaa attgggcccg 60 agggcactga agcaagctgg gtgaagttat cttgtttctc actcttatac ttctgcgagg 120 gaggggctct tttcagtcga actccaaaaa gcttttcaac atcatcctga ttggataggt 180 ttgcatgctg gttattatta c 201 <210> 43 <211> 201 <212> DNA <213> Homo sapiens <400> 43 ctcccaccct agatggcggg ctccttgaag gttggcagtg tgtctttgtc agcttctgcc 60 tggtagtggc tggcatttga taacttgtga atgaggaaat caatgcatga ggtgacacct 120 gggggttctt ttacaagtta cagctcccgc tttaaccctg ggggtttgtt tgagcctcac 180 agtagctctg aggtagggaa g 201 <210> 44 <211> 201 <212> DNA <213> Homo sapiens <400> 44 ctcaggctgg gccagtttcc attcccccac cttatctcag actgaggtga ggtgggacat 60 gacctggtgg gacatcattt ctgaccagta gcccttccct agaatatttc tgatgctcct 120 gccaactccc tccccaattt ggtttaggat agggatgccc tctcccagga tgcagcacaa 180 ctacaatggg ttggagggcc t 201 <210> 45 <211> 201 <212> DNA <213> Homo sapiens <400> 45 gactcttggc tctgctgtag ccatcacaga taatctcttg cactggggtg ggagcatctg 60 attggctgta tttaggtcat gtgaatgtgt ctgtaactgt cagggagctg aaagaactac 120 ctgtctccct ttggcttctg tactgcttcc cacttatctt gagagtgccc ctaaacaggc 180 aaggtgttca ggtactagtc a 201 <210> 46 <211> 201 <212> DNA <213> Homo sapiens <400> 46 agctccaact tacaatttta atgaactgga ggtttgcttt ttatatgcag tcttttctcg 60 gtcttgttta aggtctctag ctttagtata ttattctcct cgtattcaaa acattcaaaa 120 gtattgaaaa ttaccaagaa aagcctcaca tgtattaatc attttctttc caaatatatt 180 agaataacag gaagaagacc a 201 <210> 47 <211> 201 <212> DNA <213> Homo sapiens <400> 47 taattaataa tatctgaatg agactctgct aggagtctta aaaaaatgag acatgctttg 60 attaaagtaa aagaatatag aatgcttctg tctataagtg aaatgacttt tgttccagaa 120 taagaaagag gatggtgaag ggcaacacaa catatagaga tctgtttgag gttcacagaa 180 agtgaatctg aaagggacca c 201 <210> 48 <211> 201 <212> DNA <213> Homo sapiens <400> 48 tttggcctct caaattgtta ggattacagg catgagccac cagctcttta ttttaccata 60 aaagttgctt ataatctgcc acctgccaat ttcttcaccc ctgttgctat tcactaagac 120 ctagtcatat gcaacttttt atttttattt tttgtttcaa actcatttta ggttcaggga 180 gtacatgtgc ggtttttcta t 201 <210> 49 <211> 201 <212> DNA <213> Homo sapiens <400> 49 atgcaatagt catcaagtgg gtaaacttaa ggtttatttg ttttattgta tataaattat 60 atctcaattg aaatgtgaaa acaaagcaat aaaacatccc ctgttcccat ttcaggagtc 120 atgtctgggc tgcctgggag gacaacagga atactgatcg ctagagcaaa taaaagactc 180 ttggcagtgg gcaacttggt c 201 <210> 50 <211> 201 <212> DNA <213> Homo sapiens <400> 50 acttcaagca gggcagagac acaactaagg ggaagcaatt ctacagttct tcctctgatg 60 actttaactg tcctttcccc acctctgagc aggttttaga atttcatatc agatgcccag 120 gcagatagga ctgatgactg tcctctggat ctcttgcccc tccctactct aggattcagt 180 ccagcatctt cactacatgc a 201 <210> 51 <211> 201 <212> DNA <213> Homo sapiens <400> 51 ttatgccctg agccccatgc tgtgggttct tgctaggaga catactctgg ggaccactcc 60 tgggccaata gttagaagtg gttgggaagc aggtcaaata gttaataggc cagacaatgg 120 cccagattgc tagtgactcc cagacagcca aagatagaaa aattttcaaa taaaaaaatt 180 acataagtag ttgggatttt g 201 <210> 52 <211> 201 <212> DNA <213> Homo sapiens <400> 52 tacttctgct cttaacgtcc cgtgactttt tggattccat tctccctcat cctaagactt 60 cagtaatcca gtcatcccct cattctcgtg tcaatttctg cccctttact ggaacagtcc 120 caaaaaccta tattctagta tctcccattt attaaaaata cctcccttaa ccccacatcc 180 tcctgctttt ctctgtcctt c 201 <210> 53 <211> 201 <212> DNA <213> Homo sapiens <400> 53 ttattaaaat gtaactttcc agagatattg acacaagtaa atatacttgt tttgaattga 60 cattcca tcctacttgc gatacatcat agtgcccttt ttctagctaa gtggtcagta ctgttagcac 180 acttaaattt tctctgtgta g 201 <210> 54 <211> 201 <212> DNA <213> Homo sapiens <400> 54 aaactctaga ctctggagag ccttgatgcc cttcctcttt taccccgtcc ctgatgctcc 60 cccaagtagc atgatgccca gtggcccacc aacctcatta cccagcattg ctgacaacag 120 gcacagcctt ggtcactgtg aaaatgcccc acagcctcaa cctcagaagt gggaagtata 180 ctgcagattc actctatgcc a 201

Claims (9)

서열번호 1 내지 서열번호 54의 뉴클레오티드 서열 각각으로 이루어진 54개의 폴리뉴클레오티드 또는 그의 상보적 폴리뉴클레오티드에서, 상기 폴리뉴클레오티드의 101번째 위치에 단일염기다형성(SNP)이 존재하고, 상기 101번째 염기를 포함한 10개 이상의 연속된 뉴클레오티드로 이루어진 폴리뉴클레오티드를 포함하는 부녀 관계 확인용 마커 조성물.(SNP) exists at the 101st position of the polynucleotide in 54 polynucleotides or complementary polynucleotides thereof each consisting of the nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 54, and the 10 &lt; th &gt; A polynucleotide comprising a polynucleotide consisting of more than two consecutive nucleotides. 제1항에 있어서, 상기 마커 조성물은 아버지와 딸 사이의 친족 관계를 확인하기 위한 것인 마커 조성물.The marker composition according to claim 1, wherein the marker composition is for confirming a kinship between a father and a daughter. 제1항 또는 제2항의 마커 조성물을 포함하는 부녀 관계 확인용 마이크로어레이.A microarray for identifying a female relationship comprising the marker composition of claim 1 or claim 2. 분리된 핵산 시료를 제공하는 단계; 및
제1항 또는 제2항의 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 결정하는 단계를 포함하는 부녀 관계를 확인하는 방법.
Providing an isolated nucleic acid sample; And
Determining the nucleotide at the SNP position of the polynucleotide included in the marker composition of claim 1 or 2.
제4항에 있어서, 상기 방법은 아버지와 딸 사이의 친족 관계를 확인하기 위한 것인 방법.5. The method of claim 4, wherein the method is for identifying a kinship between a father and a daughter. 제4항에 있어서, 상기 폴리뉴클레오티드 마커의 SNP 위치의 뉴클레오티드를 결정하는 단계는 서열결정(sequencing), 프로브에 의한 혼성화 또는 단일염기 프라이머 연장(single base primer extension)에 의해 수행되는 것인 방법.5. The method of claim 4, wherein determining the nucleotide at the SNP position of the polynucleotide marker is performed by sequencing, hybridization with a probe, or single base primer extension. 제4항에 있어서, 상기 방법은 결정된 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 대조군 시료의 결과와 비교하는 단계를 더 포함하는 것인 방법.5. The method of claim 4, wherein the method further comprises comparing the nucleotide at the SNP position of the polynucleotide included in the determined female relationship confirmation marker composition to the result of a control sample. 제7항에 있어서, 상기 대조군 시료는 비교대상인 개인의 DNA이거나 또는 등록된 개인의 DNA 프로파일인 것인 방법.8. The method of claim 7, wherein the control sample is a DNA of an individual to be compared or a DNA profile of a registered individual. 제4항에 있어서, 상기 방법은 결정된 상기 부녀 관계 확인용 마커 조성물에 포함된 폴리뉴클레오티드의 SNP 위치의 뉴클레오티드를 확인하고 부녀 관계 판별 지수를 계산하는 단계를 더 포함하는 것인 방법.5. The method according to claim 4, wherein the method further comprises identifying nucleotides at SNP positions of the polynucleotides included in the determined marker sequence composition and calculating a female-female relationship determination index.
KR1020120020983A 2012-02-29 2012-02-29 Polynucleotide marker composition for identifying father and daughter and its use KR101731619B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120020983A KR101731619B1 (en) 2012-02-29 2012-02-29 Polynucleotide marker composition for identifying father and daughter and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120020983A KR101731619B1 (en) 2012-02-29 2012-02-29 Polynucleotide marker composition for identifying father and daughter and its use

Publications (2)

Publication Number Publication Date
KR20130099456A KR20130099456A (en) 2013-09-06
KR101731619B1 true KR101731619B1 (en) 2017-05-11

Family

ID=49450767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120020983A KR101731619B1 (en) 2012-02-29 2012-02-29 Polynucleotide marker composition for identifying father and daughter and its use

Country Status (1)

Country Link
KR (1) KR101731619B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013347A1 (en) * 2018-07-09 2020-01-16 주식회사 디엔에이링크 Composition, kit and microarray for personal identification, comprising at least 22 marker polynucleotides, and method for obtaining information required for personal identification using same
WO2023219214A1 (en) * 2022-05-12 2023-11-16 Republic Of Korea(National Forensic Service Director Ministry Of Interior And Safety) Snps panel for kinship identification in korean and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Forensic Science International: Genetics, Vol. 4, pp. e145-e148 (2010.)
Transfusion, Vol. 52, Issue 2, pp. 425-430 (온라인 발표일: 2011.07.25.)*

Also Published As

Publication number Publication date
KR20130099456A (en) 2013-09-06

Similar Documents

Publication Publication Date Title
EP3115468B1 (en) Increasing confidence of allele calls with molecular counting
JP5637850B2 (en) Amplification method of target nucleic acid sequence, detection method of mutation using the same, and reagent used therefor
CA2860338C (en) System and method of detecting rnas altered by cancer in peripheral blood
CN106701987A (en) PCR (polymerase chain reaction) amplification system for genotyping of three SNP (single-nucleotide polymorphism) loci related to human folic acid metabolism and detection kit
US20220098642A1 (en) Quantitative amplicon sequencing for multiplexed copy number variation detection and allele ratio quantitation
JPWO2011071046A1 (en) Probes for detecting polymorphisms in disease-related genes and uses thereof
AU2008301233A1 (en) Method of amplifying nucleic acid
KR101731619B1 (en) Polynucleotide marker composition for identifying father and daughter and its use
CN110295218B (en) Method for quantifying mutant allele burden of target gene
KR101646189B1 (en) Marker for diagnosing intrinsic atopic dermatitis and use thereof
EP3679155B1 (en) Method to confirm variants in ngs panel testing by snp genotyping
CN101548010A (en) Method of determining the haplotype of multiple allelic genes
KR101100437B1 (en) A polynucleotide associated with a colon cancer comprising single nucleotide polymorphism, microarray and diagnostic kit comprising the same and method for diagnosing a colon cancer using the polynucleotide
KR101174823B1 (en) Single nucleotide polymorphism marker for personal identification and its use
KR20180060624A (en) Snp markers for discrimination of raphanus sativus
KR101731618B1 (en) Single nucleotide polymorphism marker composition for identification of paternity and its use
KR101663171B1 (en) Biomarkers indicative of Down Syndrom and Their uses
WO2006070666A1 (en) Method of simultaneously detecting gene polymorphisms
KR101545935B1 (en) Composition for identifying primate species or primate individual marker using minisatellite of SCK/SLI gene
CN111549121B (en) Isothermal nucleic acid amplification-free MTHFR gene C677T locus typing method, reaction probe and detection system used by same
JP5635496B2 (en) EGFR gene polymorphism detection probe and use thereof
CN110527709B (en) Chimeric rate detection method based on chimera only
JP5860667B2 (en) Primer set for detecting EGFR exon 21L858R gene polymorphism and use thereof
KR101071081B1 (en) Polynucleotides comprising single nucleotide polymorphism derived from DEFA4 gene, microarrays and diagnostic kits comprising the same, and detection methods using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant