KR20100133407A - Conductive paste for planar heating element, and printed circuit and planar heating element using same - Google Patents

Conductive paste for planar heating element, and printed circuit and planar heating element using same Download PDF

Info

Publication number
KR20100133407A
KR20100133407A KR1020107022290A KR20107022290A KR20100133407A KR 20100133407 A KR20100133407 A KR 20100133407A KR 1020107022290 A KR1020107022290 A KR 1020107022290A KR 20107022290 A KR20107022290 A KR 20107022290A KR 20100133407 A KR20100133407 A KR 20100133407A
Authority
KR
South Korea
Prior art keywords
planar heating
conductive paste
polyurethane resin
parts
crystalline
Prior art date
Application number
KR1020107022290A
Other languages
Korean (ko)
Other versions
KR101601996B1 (en
Inventor
료 하마사키
가즈히로 아베
Original Assignee
토요 보세키 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토요 보세키 가부시기가이샤 filed Critical 토요 보세키 가부시기가이샤
Publication of KR20100133407A publication Critical patent/KR20100133407A/en
Application granted granted Critical
Publication of KR101601996B1 publication Critical patent/KR101601996B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4202Two or more polyesters of different physical or chemical nature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[과제] 본 발명은 수지로서 결정 융점을 가지는 중합체를 이용하면서도 용제 용해성이 양호하며, 또한 반복 승온을 실시하여도 비저항 및 PTC 특성이 양호하고, 또한 융점 이상으로 승온되어도 급격히 저항값이 저하되지 않는 면상 발열체용 도전성 페이스트를 제공한다.
[해결수단] 본 발명은 결정 융점을 가지는 폴리우레탄 수지 (I)과 도전성 입자 (II)를 포함하는 면상 발열체용 도전성 페이스트이고, 바람직하게는 폴리우레탄 수지 (I)의 결정 융점이 20 내지 100 ℃이고, 바람직하게는 폴리우레탄 수지 (I)이 적어도 비정질성 성분과 결정성 성분을 반응시킨 면상 발열체용 도전성 페이스트에 관한 것이다.
[PROBLEMS] The present invention has good solvent solubility while using a polymer having a crystal melting point as a resin, and has good resistivity and PTC characteristics even after repeated heating, and does not suddenly lower the resistance even when the temperature is raised above the melting point. Provided is a conductive paste for a planar heating element.
The present invention is an electrically conductive paste for a planar heating element comprising a polyurethane resin (I) having a crystalline melting point and conductive particles (II), and preferably a crystal melting point of the polyurethane resin (I) is 20 to 100 ° C. Preferably, the polyurethane resin (I) relates to an electrically conductive paste for a planar heating element in which at least an amorphous component and a crystalline component are reacted.

Description

면상 발열체용 도전성 페이스트 및 이를 이용한 인쇄 회로, 면상 발열체 {CONDUCTIVE PASTE FOR PLANAR HEATING ELEMENT, AND PRINTED CIRCUIT AND PLANAR HEATING ELEMENT USING SAME}Conductive paste for planar heating element, printed circuit using same, planar heating element {CONDUCTIVE PASTE FOR PLANAR HEATING ELEMENT, AND PRINTED CIRCUIT AND PLANAR HEATING ELEMENT USING SAME}

본 발명은 도전성 페이스트에 관한 것이며, 더욱 상세하게는 도전성 페이스트를 필름 또는 기판 상에 도포 또는 인쇄, 경화시킴으로써 회로를 형성하거나, 면상 발열체를 제조하는 것에 관한 것이다. 더욱 상세하게는, PTC(Positive Temperature Coefficient) 특성을 가지는 면상 발열체에 관한 것이다.TECHNICAL FIELD The present invention relates to a conductive paste, and more particularly, to forming a circuit or manufacturing a planar heating element by applying, printing, or curing a conductive paste on a film or a substrate. More specifically, the present invention relates to a planar heating element having a PTC (Positive Temperature Coefficient) characteristic.

면상 발열체는 바닥 난방, 자동차나 욕실 거울의 흐림 방지, 애완동물이나 관엽 식물 등의 보온 등에 사용되고 있다. 이 중, 자기 온도 조절 기능, 즉 PTC 특성이 있는 면상 발열체는, PTC 특성이 없는 발열체와 비교하여 연속적인 온도 조절이 가능하고, 서미스터(thermistor) 등이 불필요하기 때문에 부품 개수를 줄이는 등의 특징이 있어, 상기한 용도에 널리 사용되고 있다. 통상, 이러한 면상 발열체는, 수지 및 도전성 물질로 구성되어 있으며, 면상 발열체의 온도 상승에 따라 수지가 부피 팽창을 일으켜, 도전성 물질끼리의 도통을 차단함으로써 PTC 특성이 발현된다고 한다.Planar heating elements are used for floor heating, antifogging of automobiles and bathroom mirrors, and thermal insulation for pets and houseplants. Among them, the surface heating element having a self-temperature control function, that is, PTC characteristic, can continuously adjust temperature compared with the heating element without PTC characteristic, and the number of parts is reduced because thermistor or the like is unnecessary. It is widely used for the above uses. Usually, such a planar heating element is composed of a resin and a conductive material. As the temperature of the planar heating element rises, the resin causes volume expansion, thereby blocking the conduction between the conductive materials, thereby exhibiting PTC characteristics.

종래, 이러한 PTC 특성을 가지는 면상 발열체는, 올레핀계 수지에 카본 블랙, 흑연, 금속 분말 등을 포함하는 도전성 물질을 혼련한 것, 수지 및 도전성 물질을 용제에 분산 또는 용해시켜 이루어지는 것을 도포·건조한 것 등이 제안되어 있다(예를 들면 특허문헌 1). 또한, 이러한 면상 발열체의 제조 방법으로는, 전자는 압출 성형 또는 프레스 성형에 의한 방법, 후자는 스크린 인쇄 등의 수단으로 기재에 도포하는 방법이 이용되어 왔지만, 면상 발열체의 형상을 자유롭게 설계할 수 있다는 관점에서 후자의 방법이 자주 이용되며, 스크린 인쇄를 가능하게 하기 위해서 페이스트 타입이 널리 사용되고 있다.Conventionally, a planar heating element having such a PTC characteristic is obtained by kneading a conductive material containing carbon black, graphite, metal powder, or the like into an olefinic resin, or by dispersing or dissolving a resin and a conductive material in a solvent. Etc. are proposed (for example, patent document 1). In addition, as the method of manufacturing the planar heating element, the former method by extrusion molding or press molding and the latter method by applying to the substrate by means of screen printing or the like have been used, but the shape of the planar heating element can be freely designed. In view of the latter method, the latter method is often used, and paste type is widely used to enable screen printing.

페이스트 타입에서는, 베이스 중합체로서 에틸렌-아세트산비닐 공중합체(EVA) 등의 고분자 수지를 이용하는 것이 제안되어 있다(예를 들면 특허문헌 2). 이는 베이스 중합체 내의 에틸렌 부분이 PTC 특성을 나타내고, 아세트산비닐 부분의 용제 용해성을 나타내는 특성이 면상 발열체용 도전성 페이스트 재료로서 적합하다고 한다. 이 경우, 용제 가용성과 PTC 특성을 양립시키기 위해서는 EVA의 아세트산비닐 함유량을 조정할 필요가 있지만, 용해성 향상을 위해 아세트산비닐의 공중합비를 증대시키면, PTC 특성이 저하된다. 반대로, 아세트산비닐의 공중합비를 감소시키면, PTC 특성은 양호해지지만, 용제 용해성이 악화된다는 문제가 있다.In paste type, it is proposed to use polymer resin, such as ethylene-vinyl acetate copolymer (EVA), as a base polymer (for example, patent document 2). It is said that the ethylene part in a base polymer shows a PTC characteristic, and the characteristic which shows the solvent solubility of a vinyl acetate part is suitable as an electrically conductive paste material for surface heating elements. In this case, in order to make solvent solubility compatible with PTC characteristics, it is necessary to adjust the vinyl acetate content of EVA. However, when the copolymerization ratio of vinyl acetate is increased to improve solubility, the PTC characteristics are lowered. On the contrary, when the copolymerization ratio of vinyl acetate is reduced, the PTC characteristic becomes good, but there is a problem that the solvent solubility deteriorates.

또한, 유리 전이 온도가 50 ℃ 이하인 수지를 이용함으로써 PTC 특성을 향상시킨 도전성 페이스트가 제안되어 있다(예를 들면 특허문헌 3). 그러나, 이 경우, 반복하여 전압을 인가하면, PTC 특성이 저하되는 경향이 있었다. 이는 면상 발열체의 사용 온도가 되는 40 ℃ 내지 70 ℃ 부근에 장시간 베이스 수지가 노출되면, 수지 중에 미소한 유동부가 발생하고, 도전성 미립자의 분산 구조가 변화하는 것이 한가지 원인이라 생각된다.Moreover, the electrically conductive paste which improved PTC characteristic by using resin whose glass transition temperature is 50 degrees C or less is proposed (for example, patent document 3). However, in this case, when voltage is repeatedly applied, PTC characteristic tends to be reduced. This is considered to be one of the reasons that when the base resin is exposed to 40 ° C. to 70 ° C., which becomes the use temperature of the planar heating element, for a long time, a minute flow part occurs in the resin, and the dispersion structure of the conductive fine particles changes.

또한, 결정성 수지를 조합한 도전성 페이스트가 제안되어 있다(예를 들면 특허문헌 4). 이 경우, 용융 전후에서의 부피 변화가 큰 결정성 수지를 배합함으로써, PTC 특성을 향상시킬 수 있지만, 이러한 결정성 수지를 베이스 중합체로서 잉크상 또는 페이스트상의 PTC 조성물을 제조할 때의 최대 난제는, 베이스 중합체의 용제 가용성과 PTC 특성과의 양립이다. 즉, 잉크상 또는 페이스트상의 조성물로 하기 위해서는 베이스 중합체를 적당한 용제에 용해시키는 것이 불가결하지만, 중합체의 결정화도가 높으면 PTC 특성은 우수하지만 용제에는 용해되기 어려워지고, 반대로 중합체의 결정화도가 낮으면 용제에는 용해되기 쉽지만 PTC 특성은 떨어지는 것과 같이, 용제 가용성과 PTC 특성 양자는 상반되는 성능이다. 이 때문에, 이러한 결정성 수지를 조합한 도전성 페이스트는, 용제 가용성과 PTC 특성 중 어디에서도 반드시 충분히 만족할 수 있는 것이라 할 수는 없다. 또한 사용 가능한 용제도 매우 한정되기 때문에, 범용성의 측면에서도 문제가 있다.Moreover, the electrically conductive paste which combined crystalline resin is proposed (for example, patent document 4). In this case, by blending the crystalline resin having a large volume change before and after melting, the PTC characteristic can be improved, but the greatest difficulty in preparing the ink composition or paste-like PTC composition as the base polymer is, It is compatible with the solvent solubility of the base polymer and the PTC properties. That is, in order to form an ink or paste composition, it is indispensable to dissolve the base polymer in a suitable solvent. However, when the crystallinity of the polymer is high, the PTC property is excellent, but it is difficult to dissolve in the solvent. Likely to be poor, but with poor PTC properties, both solvent solubility and PTC properties are at opposite performances. For this reason, the electrically conductive paste which combined such a crystalline resin cannot necessarily be fully satisfied in any of solvent solubility and a PTC characteristic. In addition, since the solvents that can be used are very limited, there are problems in terms of versatility.

또한, 결정성 수지를 이용한 경우, 융점을 초과하여 피크 온도에 도달한 후, 급격히 저항값이 낮아지는 경우가 있다. 이는 융점 이상으로 승온되어 결정성 중합체가 용융되면, 그 중에 분산된 도전성 충전제가 재차 서로 접촉하여 도통하는 것이 원인이라 생각된다. 이러한 성질을 가지는 PTC 조성물은, 어떠한 요인으로 피크 온도 이상으로 승온된 경우, 자기 온도 제어 기능을 상실하여 대전류가 흐르게 되는 결과, 점점 온도가 상승하고, 마침내 소손(燒損)으로까지 연결되는 경우도 있을 수 있다.Moreover, when a crystalline resin is used, after reaching a peak temperature beyond melting | fusing point, a resistance value may fall rapidly. This is considered to be caused by the fact that when the crystalline polymer is melted and the temperature rises above the melting point, the conductive fillers dispersed therein are brought into contact with each other again. When the PTC composition having such a property is raised above the peak temperature due to any factor, as a result of the loss of the self-temperature control function and the large current flowing, the temperature gradually increases and eventually leads to burnout. There may be.

상기한 바와 같은 피크 온도에 도달한 후에 다시 급격히 저항값이 낮아지는 성질을 개선하기 위해서, 종래의 결정성 올레핀 수지계 PTC 조성물에서는, 시트상으로 프레스 성형한 후, 전자선, 또는 γ선 등의 방사선을 조사하여 수지를 가교하는 것이 행해지고 있다. 그러나, 이러한 방사선 등의 조사는 장치가 고가일 뿐 아니라, 조건에 따라서는 수지에 활성 라디칼을 남기고, 내열성, 내구성을 현저히 열화시키는 경우도 있어, 면밀한 제조 조건 관리를 필요로 하며, 비용적인 문제도 가지고 있었다.In order to improve the property of rapidly lowering the resistance value again after reaching the peak temperature as described above, in the conventional crystalline olefin resin-based PTC composition, after press molding into a sheet form, radiation such as electron beams or γ-rays is applied. It irradiates and crosslinks resin. However, such irradiation of radiation and the like is not only expensive, but also leaves active radicals in the resin depending on the conditions, and may significantly deteriorate heat resistance and durability, requiring careful management of manufacturing conditions and cost problems. I had.

일본 특허 공개 (평)1-304704호 공보Japanese Patent Laid-Open No. 1-304704 일본 특허 공개 (평)10-183039호 공보Japanese Patent Publication No. 10-183039 일본 특허 공개 제2000-86872호 공보Japanese Patent Laid-Open No. 2000-86872 일본 특허 공개 제2001-76850호 공보Japanese Patent Laid-Open No. 2001-76850

본 발명의 과제는, 이들 종래의 도전성 수지 조성물, 도전성 페이스트가 가지고 있는 문제점을 개선하는 것이다. 즉, 수지로서 결정 융점을 가지는 중합체를 이용하면서도 용제 용해성이 양호하고, 또한 반복 승온을 실시하여도 비저항 및 PTC 특성이 양호하며, 융점 이상으로 승온되어도 급격한 저항값의 저하가 없는 면상 발열체용 도전성 페이스트를 제공하는 것이다.An object of the present invention is to improve the problems of these conventional conductive resin compositions and conductive pastes. That is, while using a polymer having a crystalline melting point as a resin, the solvent solubility is good, the specific resistance and PTC characteristics are good even when repeated heating is repeated, and even if the temperature rises above the melting point, there is no sudden decrease in the resistance value of the planar heating element conductive paste To provide.

이상과 같은 문제를 해결하기 위해서 예의 검토한 결과, 결합제로서 결정 융점을 가지는 폴리우레탄 수지를 이용함으로써, 놀랍게도 고온 영역에서의 PTC 특성 및 도전성을 대폭 개선할 수 있는 것을 발견하여 본 발명에 도달하였다. 즉, 본 발명은 용제 가용성을 유지한 후에, PTC 특성이 매우 양호하고 또한, 반복하여 승강온을 행하여도 비저항이 원래의 값으로 되돌아가는 리턴 특성이 양호하며, 융점 이상으로 승온되어도 급격한 저항값의 저하가 없는 면상 발열체용 도전성 페이스트를 제공할 수 있다.As a result of earnestly examining in order to solve the above problems, the inventors have found that by using a polyurethane resin having a crystal melting point as a binder, the PTC properties and conductivity in the high temperature region can be remarkably improved, and the present invention has been reached. That is, in the present invention, after maintaining the solvent solubility, the PTC characteristic is very good, and the return characteristic of returning the specific resistance to the original value is good even after repeatedly raising and lowering the temperature. The electrically conductive paste for planar heating elements which does not fall can be provided.

즉, 본 발명은 이하의 도전성 페이스트 및 이를 이용한 인쇄 회로, 면상 발열체에 관한 것이다.That is, the present invention relates to the following conductive paste, a printed circuit using the same, and a planar heating element.

(1) 결정 융점을 가지는 폴리우레탄 수지 (I)과 도전성 입자 (II)를 포함하는 면상 발열체용 도전성 페이스트.(1) The electrically conductive paste for planar heating elements containing polyurethane resin (I) and electroconductive particle (II) which have a crystalline melting point.

(2) 상기 (1)에 있어서, 폴리우레탄 수지 (I)의 결정 융점이 20 내지 100 ℃인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(2) The conductive paste for a planar heating element according to (1), wherein the crystal melting point of the polyurethane resin (I) is 20 to 100 ° C.

(3) 상기 (1) 또는 (2)에 있어서, 폴리우레탄 수지 (I)이 적어도 비정질성 성분과 결정성 성분을 반응시킨 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(3) The conductive paste for a planar heating element according to (1) or (2), wherein the polyurethane resin (I) reacts at least an amorphous component with a crystalline component.

(4) 상기 (1) 또는 (2)에 있어서, 폴리우레탄 수지 (I)이 적어도 비정질성 폴리에스테르폴리올, 융점 5 내지 120 ℃의 결정성 폴리에스테르폴리올, 폴리이소시아네이트를 주된 성분으로서 반응시킨 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(4) The above-mentioned (1) or (2), wherein the polyurethane resin (I) reacts at least an amorphous polyester polyol, a crystalline polyester polyol having a melting point of 5 to 120 ° C, and a polyisocyanate as main components. A conductive paste for planar heating elements to be used.

(5) 상기 (1) 내지 (4) 중 어느 하나에 있어서, 폴리우레탄 수지 (I)이 추가로 우레아 결합을 함유하고 있는 결정성 폴리우레탄우레아인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(5) The conductive paste for a planar heating element according to any one of (1) to (4), wherein the polyurethane resin (I) is a crystalline polyurethane urea further containing a urea bond.

(6) 상기 (5)에 있어서, 결정성 폴리우레탄우레아의 우레아 결합량이 10 내지 1000 eq/ton의 범위인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(6) The conductive paste for a planar heating element according to (5), wherein the urea bonding amount of the crystalline polyurethane urea is in a range of 10 to 1000 eq / ton.

(7) 상기 (1) 내지 (6) 중 어느 하나에 있어서, 폴리우레탄 수지 (I)이 용제에 가용인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(7) The conductive paste for planar heating elements according to any one of (1) to (6), wherein the polyurethane resin (I) is soluble in a solvent.

(8) 상기 (4) 내지 (7) 중 어느 하나에 있어서, 폴리우레탄 수지 (I)을 구성하는 결정성 폴리에스테르폴리올의 수 평균 분자량이 1200 내지 20000의 범위에 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(8) The planar heating element according to any one of (4) to (7), wherein the number average molecular weight of the crystalline polyester polyol constituting the polyurethane resin (I) is in the range of 1200 to 20000. Conductive paste.

(9) 상기 (4) 내지 (8) 중 어느 하나에 있어서, 폴리우레탄 수지 (I)을 구성하는 결정성 폴리에스테르폴리올이 비정질성 폴리에스테르폴리올 100 중량부에 대하여 85 내지 300 중량부 공중합되어 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(9) In any one of said (4)-(8), 85-300 weight part of crystalline polyester polyols which comprise a polyurethane resin (I) are copolymerized with respect to 100 weight part of amorphous polyester polyols. A conductive paste for planar heating elements, characterized by the above-mentioned.

(10) 상기 (4) 내지 (9) 중 어느 하나에 있어서, 폴리우레탄 수지 (I)을 100 중량부로 했을 때에, 추가로 결정성 폴리에스테르폴리올이 50 중량부 이하 함유되어 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(10) When the polyurethane resin (I) is 100 parts by weight, the crystalline polyester polyol is further contained 50 parts by weight or less in any one of the above (4) to (9). Conductive paste for heating element.

(11) 상기 (1) 내지 (10) 중 어느 하나에 있어서, 폴리우레탄 수지 (I) 100 중량부에 대하여, 도전성 입자 (II)가 40 내지 400 중량부의 비율로 포함되는 면상 발열체용 도전성 페이스트.(11) The electrically conductive paste for planar heating elements in any one of said (1)-(10) in which electroconductive particle (II) is contained in the ratio of 40-400 weight part with respect to 100 weight part of polyurethane resins (I).

(12) 상기 (1) 내지 (11) 중 어느 하나에 있어서, 도전성 입자 (II)가 구상 카본이고, 그의 평균 입경이 0.1 내지 30 ㎛인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.(12) The conductive paste for planar heating elements according to any one of (1) to (11), wherein the conductive particles (II) are spherical carbons, and their average particle diameter is 0.1 to 30 µm.

(13) 상기 (1) 내지 (12) 중 어느 하나에 기재된 면상 발열체용 도전성 페이스트를 이용한 인쇄 회로.(13) The printed circuit using the electrically conductive paste for planar heating elements in any one of said (1)-(12).

(14) 상기 (1) 내지 (12) 중 어느 하나에 기재된 면상 발열체용 도전성 페이스트를 이용한 면상 발열체.The planar heating element using the electrically conductive paste for planar heating elements in any one of said (1)-(12).

본 발명의 도전성 페이스트는 양호한 도전성, PTC 특성, 리턴 특성, 밀착성, 내굴곡성 등의 기본 물성을 가져 면상 발열체 용도에 바람직하다.The electrically conductive paste of this invention has favorable basic physical properties, such as electroconductivity, PTC characteristic, return characteristic, adhesiveness, and bend resistance, and is suitable for a planar heating element use.

이하, 본 발명의 도전성 페이스트의 실시 형태에 대해서 자세히 설명한다. 본 발명의 도전성 페이스트는 저장 안정성이 양호하고, 또한 양호한 PTC 특성을 제공하는 것이다. PTC 특성이란, 회로 저항이 온도의 상승과 함께 증대되는 특성을 의미하며, 본 발명에서는 실시예에서 나타낸 바와 같이, 예를 들면 80 ℃ 및 30 ℃일 때 저항 변화의 배율(시트 저항(80 ℃)/시트 저항(30 ℃))이 3 이상이면 "PTC 특성을 가진다"라고 정의한다. PTC 특성으로는, 상기 배율은 5 이상이 바람직하고, 보다 바람직하게는 10 이상, 더욱 바람직하게는 100 이상이다. 상한은 특별히 한정되지 않지만, 일반적으로 50000 이하이다. 한편, 인쇄 방식으로 면상 발열체를 제작하는 경우는 건조막 두께가 대개 20 ㎛ 이하로 한정되기 때문에, 압출 성형 방식의 도전성 수지 조성물보다 상당히 낮은 비저항이 요구된다. 본 발명의 도전성 페이스트의 비저항으로는 600 Ω·cm 이하가 바람직하고, 보다 바람직하게는 450 Ω·cm 이하, 더욱 바람직하게는 400 Ω·cm 이하이다. 하한은 특별히 한정되지 않지만, 일반적으로 1×10-2 Ω·cm 이상이다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of the electrically conductive paste of this invention is described in detail. The electrically conductive paste of this invention is good in storage stability, and provides favorable PTC characteristic. The PTC characteristic means a characteristic in which the circuit resistance increases with an increase in temperature, and in the present invention, as shown in the examples, the magnification of the resistance change at, for example, 80 ° C and 30 ° C (sheet resistance (80 ° C)). / Sheet resistance (30 占 폚) is defined as "has a PTC characteristic". As a PTC characteristic, 5 or more of the said magnifications are preferable, More preferably, it is 10 or more, More preferably, it is 100 or more. The upper limit is not particularly limited, but is generally 50000 or less. On the other hand, when producing a planar heating element by a printing method, since the dry film thickness is usually limited to 20 micrometers or less, the resistivity considerably lower than the electrically conductive resin composition of an extrusion molding system is calculated | required. As a specific resistance of the electrically conductive paste of this invention, 600 ohm * cm or less is preferable, More preferably, it is 450 ohm * cm or less, More preferably, it is 400 ohm * cm or less. The lower limit is not particularly limited, but is generally 1 × 10 -2 Ω · cm or more.

본 발명에서 이용하는 폴리우레탄 수지 (I)은 결정 융점을 가지고 있는 것이 바람직하다. 본 발명에서 말하는 "결정 융점을 가진다"란, 후술하는 방법으로 시차 주사 열량 분석계(DSC) 측정을 행했을 때에 융해열의 피크가 존재하는 것을 나타낸다. 폴리우레탄 수지에 결정 융점이 있으면, 결정 융점 근방에서의 중합체의 부피 변화에 따라, PTC 특성이 비약적으로 향상된다. 융점의 범위는 특별히 한정되지 않지만, 바람직하게는 10 내지 100 ℃, 보다 바람직하게는 20 내지 80 ℃이다. 100 ℃ 이상이면 용제에 대한 용해성이 현저히 떨어지기 때문에, 직전에 가열 용융시키는 등의 작업이 필요해지고, 제조시 작업성이 악화되는 경향이 있다. 한편 융점이 20 ℃보다 낮으면, 실온 부근에서 수지가 팽창된 상태이고, 저항값이 불안정해지는 경우가 있다. 또한, 본 발명의 도전성 페이스트에 있어서, 결정 융점을 가지는 폴리우레탄 이외의 수지로서, 그 밖의 우레탄계 수지, 폴리에스테르 수지, 에폭시 수지, 페놀 수지, 아크릴 수지, 스티렌-아크릴 수지, 스티렌-부타디엔 공중합체, 폴리스티렌, 폴리아미드 수지, 폴리카르보네이트 수지, 에틸렌-아세트산비닐 공중합 수지를 병용할 수도 있다. 상기한 수지를 병용할 때, 그 종류에 제한은 없지만, 기재에 대한 밀착성 및 내굴곡성 및 용제 용해성의 관점에서, 폴리에스테르 수지, 폴리우레탄 수지가 바람직하다. 상기 병용 수지는 결정 융점을 가지고 있거나, 가지고 있지 않을 수도 있다.It is preferable that the polyurethane resin (I) used by this invention has a crystalline melting point. The term "having a crystal melting point" as used in the present invention indicates that a peak of heat of fusion exists when a differential scanning calorimetry (DSC) measurement is performed by a method described later. When the polyurethane resin has a crystal melting point, the PTC characteristic is remarkably improved with the change in the volume of the polymer in the vicinity of the crystal melting point. Although the range of melting | fusing point is not specifically limited, Preferably it is 10-100 degreeC, More preferably, it is 20-80 degreeC. If it is 100 degreeC or more, since the solubility with respect to a solvent will fall remarkably, operation | movement, such as heat-melting immediately before, will be needed, and workability tends to deteriorate at the time of manufacture. On the other hand, when melting | fusing point is lower than 20 degreeC, resin may expand | swell at room temperature vicinity, and resistance value may become unstable. Moreover, in the electrically conductive paste of this invention, as resin other than the polyurethane which has a crystalline melting point, other urethane resin, polyester resin, an epoxy resin, a phenol resin, an acrylic resin, a styrene-acrylic resin, a styrene-butadiene copolymer, Polystyrene, polyamide resin, polycarbonate resin, and ethylene-vinyl acetate copolymer resin can also be used together. Although the kind is not restrict | limited when using said resin together, A polyester resin and a polyurethane resin are preferable from a viewpoint of adhesiveness with respect to a base material, bending resistance, and solvent solubility. The said combined resin may or may not have a crystalline melting point.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I)의 수 평균 분자량은, 내굴곡성의 측면에서 3000 이상이 바람직하고, 보다 바람직하게는 8000 이상이다. 수 평균 분자량이 3000 미만이면 양호한 내굴곡성을 얻기 어려우며, 페이스트 점도가 저하되고, 인쇄성이 저하되는 경우가 있다. 상한은 특별히 한정되지 않지만, 페이스트 점도, 용해성의 관점에서 10만 이하가 바람직하다.As for the number average molecular weight of the polyurethane resin (I) which has the crystal melting point used by this invention, 3000 or more are preferable from a viewpoint of bending resistance, More preferably, it is 8000 or more. If the number average molecular weight is less than 3000, it is difficult to obtain good bend resistance, the paste viscosity may decrease, and printability may decrease. Although an upper limit is not specifically limited, 100,000 or less are preferable from a paste viscosity and solubility viewpoint.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I)은, 적어도 비정질성 성분과 결정성 성분과 쇄연장 성분을 반응시킨 것이 바람직하다. 여기서 말하는 "비정질성 성분"이란 그 성분만으로 후술하는 방법으로 시차 주사 열량 분석계(DSC)를 측정했을 때에, 융해열의 피크가 존재하지 않는 것이고, "결정성 성분"이란 마찬가지로 측정했을 때에 융해열의 피크가 존재하는 것이다. 화합물의 다양성, 반응성으로부터, 비정질성 성분으로는 비정질성 폴리올, 결정성 성분으로는 결정성 폴리올, 쇄연장제로는 폴리이소시아네이트가 바람직하다.It is preferable that the polyurethane resin (I) which has a crystal melting point used by this invention made the amorphous component, the crystalline component, and the chain extending component react at least. The term "amorphous component" as used herein means that no peak of heat of fusion exists when the differential scanning calorimetry (DSC) is measured by the method described later with only that component. It exists. From the diversity and reactivity of the compound, an amorphous polyol is preferred as the amorphous component, a crystalline polyol as the crystalline component, and polyisocyanate is preferred as the chain extender.

상기 비정질성 폴리올로는 폴리에테르폴리올, 폴리에스테르폴리올 등을 들 수 있지만, 분자 설계의 자유도로부터 폴리에스테르폴리올이 바람직하다. 비정질성 폴리에스테르폴리올은 디카르복실산과 폴리올의 축합에 의해 얻어진다. 사용되는 디카르복실산으로는 테레프탈산, 이소프탈산, 오르토프탈산, 2,6-나프탈렌디카르복실산, 숙신산, 글루타르산, 아디프산, 세박산, 도데칸디카르복실산, 아젤라산 등의 지방족 디카르복실산, 탄소수 12 내지 28의 이염기산, 1,4-시클로헥산디카르복실산, 1,3-시클로헥산디카르복실산, 1,2-시클로헥산디카르복실산, 4-메틸헥사히드로 무수 프탈산, 3-메틸헥사히드로 무수 프탈산, 2-메틸헥사히드로 무수 프탈산, 디카르복시 수소 첨가 비스페놀 A, 디카르복시 수소 첨가 비스페놀 S, 다이머산, 수소 첨가 다이머산, 수소 첨가 나프탈렌디카르복실산, 트리시클로데칸디카르복실산 등의 지환족 디카르복실산, 히드록시벤조산, 락트산 등의 히드록시카르복실산을 들 수 있지만, 강도나 내열성, 또한 내습성, 내열충격성 등의 내구성 등의 관점에서, 전체 산 성분 중 방향족 디카르복실산이 40 몰% 이상 공중합되어 있는 것이 바람직하다. 보다 바람직하게는 50 몰% 이상이다. 또한, 발명의 효과를 손상시키지 않는 범위에서, 무수 트리멜리트산, 무수 피로멜리트산 등의 다가의 카르복실산, 푸말산 등의 불포화 디카르복실산, 추가로 5-술포이소프탈산나트륨염 등의 술폰산 금속 염기 함유 디카르복실산을 병용할 수도 있다.Examples of the amorphous polyol include polyether polyols and polyester polyols, but polyester polyols are preferred from the degrees of freedom of molecular design. Amorphous polyesterpolyols are obtained by condensation of dicarboxylic acids with polyols. Examples of the dicarboxylic acid used include aliphatic compounds such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, and azelaic acid. Dicarboxylic acid, dibasic acid having 12 to 28 carbon atoms, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexa Hydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, Although hydroxycarboxylic acids, such as alicyclic dicarboxylic acid, such as tricyclodecanedicarboxylic acid, hydroxybenzoic acid, and lactic acid, are mentioned, From a viewpoint of strength, heat resistance, durability, such as moisture resistance, thermal shock resistance, etc. , Full acid It is preferable that 40 mol% or more of aromatic dicarboxylic acids are copolymerized in powder. More preferably, it is 50 mol% or more. Moreover, in the range which does not impair the effect of this invention, polyhydric carboxylic acids, such as trimellitic anhydride and a pyromellitic dianhydride, unsaturated dicarboxylic acids, such as a fumaric acid, and 5-sulfoisophthalic acid salt, etc. The sulfonic acid metal base containing dicarboxylic acid can also be used together.

사용되는 폴리올로는 에틸렌글리콜, 프로필렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 네오펜틸글리콜, 1,6-헥산디올, 3-메틸-1,5-펜탄디올, 2-메틸-1,5-펜탄디올, 2,2-디에틸-1,3-프로판디올, 2-부틸-2-에틸-1,3-프로판디올, 1,9-노난디올, 1,10-데칸디올, 1,4-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,2-시클로헥산디메탄올, 이량체 디올 등을 들 수 있다. 또한, 발명의 효과를 손상시키지 않는 범위에서 트리메틸올에탄, 트리메틸올프로판, 글리세린, 펜타에리트리톨, 폴리글리세린 등의 다가 폴리올을 병용할 수도 있다.Polyols used include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentylglycol, 1,6-hexanediol, 3-methyl-1,5- Pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol, 1, 4- cyclohexane dimethanol, 1, 3- cyclohexane dimethanol, 1,2-cyclohexane dimethanol, dimer diol, etc. are mentioned. Moreover, you may use together polyhydric polyols, such as a trimethylol ethane, a trimethylol propane, a glycerin, pentaerythritol, polyglycerol, in the range which does not impair the effect of this invention.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I)을 구성하는 결정성 폴리올로는 폴리에테르폴리올, 폴리에스테르폴리올 등을 들 수 있지만, 분자 설계의 자유도로부터 폴리에스테르폴리올이 바람직하다. 결정성 폴리에스테르폴리올은 디카르복실산과 폴리올의 축합에 의해 얻어진다. 사용되는 디카르복실산으로는 테레프탈산, 이소프탈산, 오르토프탈산, 2,6-나프탈렌디카르복실산, 숙신산, 글루타르산, 아디프산, 세박산, 도데칸디카르복실산, 아젤라산 등의 지방족 디카르복실산, 탄소수 12 내지 28의 이염기산, 1,4-시클로헥산디카르복실산, 1,3-시클로헥산디카르복실산, 1,2-시클로헥산디카르복실산, 4-메틸헥사히드로 무수 프탈산, 3-메틸헥사히드로 무수 프탈산, 2-메틸헥사히드로 무수 프탈산, 디카르복시 수소 첨가 비스페놀 A, 디카르복시 수소 첨가 비스페놀 S, 다이머산, 수소 첨가 다이머산, 수소 첨가 나프탈렌디카르복실산, 트리시클로데칸디카르복실산 등의 지환족 디카르복실산, 히드록시벤조산, 락트산 등의 히드록시카르복실산을 들 수 있지만, 강도나 내열성, 또한 내습성, 내열충격성 등의 내구성 등의 관점에서, 전체 산 성분 중 방향족 디카르복실산이 40 몰% 이상 공중합되어 있는 것이 바람직하다. 보다 바람직하게는 50 몰% 이상이다. 덧붙여 말하면 방향족 디카르복실산은 테레프탈산인 것이 바람직하다. 또한, 발명의 효과를 손상시키지 않는 범위에서, 무수 트리멜리트산, 무수 피로멜리트산 등의 다가의 카르복실산, 푸말산 등의 불포화 디카르복실산, 추가로 5-술포이소프탈산나트륨염 등의 술폰산 금속 염기 함유 디카르복실산을 병용할 수도 있다.Examples of the crystalline polyol constituting the polyurethane resin (I) having a crystal melting point used in the present invention include polyether polyols, polyester polyols, and the like, but polyester polyols are preferred from the degrees of freedom of molecular design. Crystalline polyester polyol is obtained by condensation of dicarboxylic acid and polyol. Examples of the dicarboxylic acid used include aliphatic compounds such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedicarboxylic acid, and azelaic acid. Dicarboxylic acid, dibasic acid having 12 to 28 carbon atoms, 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methylhexa Hydrophthalic anhydride, 3-methylhexahydrophthalic anhydride, 2-methylhexahydrophthalic anhydride, dicarboxy hydrogenated bisphenol A, dicarboxy hydrogenated bisphenol S, dimer acid, hydrogenated dimer acid, hydrogenated naphthalenedicarboxylic acid, Although hydroxycarboxylic acids, such as alicyclic dicarboxylic acid, such as tricyclodecanedicarboxylic acid, hydroxybenzoic acid, and lactic acid, are mentioned, From a viewpoint of strength, heat resistance, durability, such as moisture resistance, thermal shock resistance, etc. , Full acid It is preferable that 40 mol% or more of aromatic dicarboxylic acids are copolymerized in powder. More preferably, it is 50 mol% or more. In addition, it is preferable that aromatic dicarboxylic acid is terephthalic acid. Moreover, in the range which does not impair the effect of this invention, polyhydric carboxylic acids, such as trimellitic anhydride and a pyromellitic dianhydride, unsaturated dicarboxylic acids, such as a fumaric acid, and 5-sulfoisophthalic acid salt, etc. The sulfonic acid metal base containing dicarboxylic acid can also be used together.

사용되는 폴리올로는 에틸렌글리콜, 프로필렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 네오펜틸글리콜, 1,6-헥산디올, 3-메틸-1,5-펜탄디올, 2-메틸-1,5-펜탄디올, 2,2-디에틸-1,3-프로판디올, 2-부틸-2-에틸-1,3-프로판디올, 1,9-노난디올, 1,10-데칸디올, 1,4-시클로헥산디메탄올, 1,3-시클로헥산디메탄올, 1,2-시클로헥산디메탄올, 이량체 디올 등을 들 수 있다. 또한, 발명의 효과를 손상시키지 않는 범위에서 트리메틸올에탄, 트리메틸올프로판, 글리세린, 펜타에리트리톨, 폴리글리세린 등의 다가 폴리올을 병용할 수도 있다.Polyols used include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, neopentylglycol, 1,6-hexanediol, 3-methyl-1,5- Pentanediol, 2-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,9-nonanediol, 1,10-decanediol, 1, 4- cyclohexane dimethanol, 1, 3- cyclohexane dimethanol, 1,2-cyclohexane dimethanol, dimer diol, etc. are mentioned. Moreover, you may use together polyhydric polyols, such as a trimethylol ethane, a trimethylol propane, a glycerin, pentaerythritol, polyglycerol, in the range which does not impair the effect of this invention.

또한, 범용성, 취급성을 고려하면, 예를 들면 결정성 폴리카프로락톤디올인 프락셀 230, 프락셀 240, 프락셀 CD220, 프락셀 H1P(다이셀 가가꾸사 제조), 결정성 공중합 폴리에스테르인 DYNACOLL7330, DYNACOLL7340, DYNACOLL7390(데구사(degussa)사 제조), 결정성 공중합 폴리에스테르인 HT-310, HT-400, HS2H-350S, HS2H-500S, HS2H-1000S(호코쿠 세이유사 제조) 등의 시판품을 사용할 수도 있다. 이들은 단독으로 사용할 수도 있고, 융점을 조정하기 위해서 2종 이상 병용하여도 하등 문제는 없다.Moreover, in consideration of versatility and handleability, for example, crystalline polycaprolactone diol, Fraxel 230, Fraxel 240, Fraxel CD220, Fraxel H1P (manufactured by Daicel Chemical Industries, Ltd.), DYNACOLL7330 and DYNACOLL7340, which are crystalline copolyesters, Commercial items, such as DYNACOLL7390 (made by Degussa) and HT-310, HT-400, HS2H-350S, HS2H-500S, and HS2H-1000S (made by Hokoku Seyou Co., Ltd.) which are crystalline copolyesters, can also be used. . These may be used independently and there is no problem even if it uses 2 or more types together in order to adjust melting | fusing point.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지를 구성하는 결정성 디올로는, 그의 융점이 5 내지 120 ℃의 범위인 것이 바람직하고, 보다 바람직하게는 20 내지 100 ℃의 범위이다. 융점이 5 ℃ 미만이면, 폴리우레탄으로서의 융점이 낮아지고, 면상 발열체로서 이용했을 때에 실온에서의 저항값이 불안정해지는 경우가 있다. 한편, 융점이 120 ℃를 초과하면, 취급성이 나쁠 뿐 아니라, 폴리우레탄으로서의 융점이 높아지고, 용제에 용해성이 악화될 우려가 있다. 본 발명에서는 상기한 융점의 범위 내에 있는 2종 이상의 결정성 디올을 병용하여 사용할 수도 있고, 상기한 융점의 범위 내에 있는 결정성 디올과 범위 외의 결정성 디올을 병용할 수도 있다.As crystalline diol which comprises the polyurethane resin which has a crystalline melting point used by this invention, it is preferable that the melting point is the range of 5-120 degreeC, More preferably, it is the range of 20-100 degreeC. If melting | fusing point is less than 5 degreeC, melting | fusing point as a polyurethane becomes low, and when used as a surface heating element, the resistance value at room temperature may become unstable. On the other hand, when melting | fusing point exceeds 120 degreeC, not only handleability is bad, but melting | fusing point as a polyurethane becomes high, and there exists a possibility that solubility to a solvent may deteriorate. In this invention, 2 or more types of crystalline diol which exists in the range of said melting | fusing point can also be used together, and crystalline diol which exists in the range of said melting | fusing point and crystalline diol outside the range can also be used together.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지를 구성하는 결정성 디올은, 수 평균 분자량으로 1000 내지 20000의 범위인 것이 바람직하고, 보다 바람직하게는 4000 내지 10000의 범위이다. 수 평균 분자량이 1000 미만이면, 결정성이 발현되지 않는 경우가 있다. 한편, 20000 이상이면, 공중합되지 않고 잔존하는 경우가 있을 뿐 아니라, 결정성이 높아지고, 용제에 대한 용해성이 악화될 우려가 있다. 본 발명에서는 상기한 수 평균 분자량의 범위 내에 있는 2종 이상의 결정성 디올을 병용하여 사용할 수도 있고, 상기한 수 평균 분자량의 범위 내에 있는 결정성 디올과 범위 외의 결정성 디올을 병용할 수도 있다.The crystalline diol constituting the polyurethane resin having a crystalline melting point used in the present invention is preferably in the range of 1000 to 20000 in number average molecular weight, and more preferably in the range of 4000 to 10000. If number average molecular weight is less than 1000, crystallinity may not express. On the other hand, when it is 20000 or more, it may not only remain uncopolymerized but it may increase crystallinity and the solubility to a solvent may deteriorate. In this invention, 2 or more types of crystalline diol which exists in the range of the said number average molecular weight can also be used together, and crystalline diol which exists in the range of said number average molecular weight and crystalline diol outside the range can also be used together.

본 발명의 도전성 페이스트에는, 결정 융점을 가지는 폴리우레탄 수지 (I)에 추가로, 상기 결정성 디올을 블렌드하여 사용할 수 있다. 그의 결정성 디올은, 결정 융점을 가지는 폴리우레탄 수지 100 중량%에 대하여 50 중량% 이하, 보다 바람직하게는 20 중량% 이하의 범위에서 함유될 수도 있다. 50 중량%를 초과하는 양을 블렌드하면, 용제 안정성이 현저히 저하될 뿐 아니라, 면상 발열체로서 이용한 경우에, 그의 결정성 디올의 융점을 초과하는 온도에서 현저히 저항값이 저하되는 경우가 있다. 이들 이유로부터 PTC 특성을 향상시키는 의미로, 폴리우레탄 수지에 대하여 50 중량% 이하의 양의 결정성 디올 그 자체를 적절히 배합할 수 있다.In addition to the polyurethane resin (I) which has a crystalline melting point, the said electrically conductive paste of this invention can mix and use the said crystalline diol. The crystalline diol may be contained in the range of 50% by weight or less, more preferably 20% by weight or less with respect to 100% by weight of the polyurethane resin having a crystal melting point. When the amount exceeds 50% by weight, not only the solvent stability is significantly lowered, but also when used as a surface heating element, the resistance value may be significantly lowered at a temperature exceeding the melting point of the crystalline diol. For these reasons, in the sense of improving PTC properties, the crystalline diol itself in an amount of 50% by weight or less with respect to the polyurethane resin can be appropriately blended.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I)을 구성하는 결정성 폴리에스테르폴리올은, 별도의 구성 성분인 비정질성 폴리에스테르폴리올 100 중량부에 대하여 85 내지 300 중량부인 것이 바람직하다. 보다 바람직하게는 비정질성 폴리에스테르폴리올 100 중량부에 대하여 120 내지 200 중량부이다. 비정질성 폴리에스테르폴리올 100 중량부에 대하여, 결정성 폴리에스테르폴리올이 85 중량부 미만이면, 결정성이 발현되지 않는 경우가 있다. 한편, 비정질성 폴리에스테르디올 100 중량부에 대하여, 결정성 디올이 300 중량부보다 많으면 결정성이 강해지고, 용제에 대한 용해성이 매우 악화되는 경우가 있다.It is preferable that the crystalline polyester polyol which comprises the polyurethane resin (I) which has the crystal melting point used by this invention is 85-300 weight part with respect to 100 weight part of amorphous polyester polyol which is another structural component. More preferably, it is 120-200 weight part with respect to 100 weight part of amorphous polyester polyols. If the crystalline polyester polyol is less than 85 parts by weight with respect to 100 parts by weight of the amorphous polyester polyol, crystallinity may not be expressed. On the other hand, when the crystalline diol is more than 300 parts by weight with respect to 100 parts by weight of the amorphous polyester diol, the crystallinity becomes strong and the solubility in a solvent may deteriorate very much.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I)을 구성하는 폴리이소시아네이트로는 2,4-톨릴렌디이소시아네이트, 2,6-톨릴렌디이소시아네이트, p-페닐렌디이소시아네이트, 4,4'-디페닐메탄디이소시아네이트, m-페닐렌디이소시아네이트, 3,3'-디메톡시-4,4'-비페닐렌디이소시아네이트, 2,6-나프탈렌디이소시아네이트, 3,3'-디메틸-4,4'-비페닐렌디이소시아네이트, 4,4'-디페닐렌디이소시아네이트, 4,4'-디이소시아네이트디페닐에테르, 1,5-나프탈렌디이소시아네이트, m-크실렌디이소시아네이트, 이소포론디이소시아네이트, 테트라메틸렌디이소시아네이트, 헥사메틸렌디이소시아네이트, 톨루엔디이소시아네이트 등을 들 수 있다.Examples of the polyisocyanate constituting the polyurethane resin (I) having a crystal melting point used in the present invention include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, and 4,4'-diphenyl Methane diisocyanate, m-phenylenedi isocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 2,6-naphthalenedi isocyanate, 3,3'-dimethyl-4,4'-biphenyl Rendiisocyanate, 4,4'- diphenylene diisocyanate, 4,4'- diisocyanate diphenyl ether, 1, 5- naphthalene diisocyanate, m-xylene diisocyanate, isophorone diisocyanate, tetramethylene diisocyanate, hexamethylene Diisocyanate, toluene diisocyanate, etc. are mentioned.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지에는 우레아 결합이 도입되어 있는 것이 바람직하다. 우레아 결합은 예를 들면 이소시아네이트 화합물과 디아민 화합물을 반응시킴으로써 형성된다. 우레아 결합을 도입함으로써 분자간 수소 결합 형성 부위가 증대되고, 도막의 강인성이 얻어질 뿐 아니라, 면상 발열체로서 이용했을 때에 융점을 초과하여 피크 온도에 도달한 후, 급격히 저항값이 낮아지는 것을 억제할 수 있다. 즉, 고온시의 저항값 안정성을 확보할 수 있다. 이는 분자 내에 수소 결합을 가짐으로써, 융점 이상으로 승온된 후에도 분자간 응집력을 유지할 수 있기 때문에, 계 내에 분산된 도전성 충전제가 재차 서로 접촉하여 도통하는 것이 없어지기 때문인 것으로 예상된다.It is preferable that the urea bond is introduce | transduced into the polyurethane resin which has the crystal melting point used by this invention. Urea bonds are formed, for example, by reacting an isocyanate compound with a diamine compound. By introducing urea bonds, the sites of intermolecular hydrogen bond formation are increased, the toughness of the coating film is obtained, and when used as a surface heating element, it is possible to suppress the rapid decrease in resistance after reaching the peak temperature beyond the melting point. have. That is, stability of resistance value at high temperature can be ensured. It is expected that this is because the intermolecular cohesion force can be maintained even after the temperature rises above the melting point by having a hydrogen bond in the molecule, so that conductive fillers dispersed in the system do not come into contact with each other again.

우레아 결합을 도입하는 방법으로는, 폴리우레탄 중합에 있어서, 일괄로 폴리이소시아네이트와 디아민을 반응시키는 방법, 폴리우레탄 중합 반응 말기에 디아민 및 디아민과 동등량의 폴리이소시아네이트기를 첨가하여 반응시키는 방법, 또한 디올에 대하여 이소시아네이트기를 지나치게 반응시켜 예비 중합체를 제작한 후, 과잉의 이소시아네이트기에 대하여, 당량의 디아민을 도입하는 방법 등을 들 수 있다. 본 발명에서 이용하는 폴리우레탄 수지의 제작시에는 어느 방법을 이용할 수도 있다.As a method for introducing a urea bond, in a polyurethane polymerization, a method of reacting polyisocyanate and diamine in a batch, a method of adding a polyisocyanate group equivalent to diamine and diamine and reacting at the end of the polyurethane polymerization reaction, and also diol After an isocyanate group is made to react too much with respect to, and a prepolymer is produced, the method etc. which introduce | transduce equivalent diamine with respect to an excess isocyanate group are mentioned. At the time of preparation of the polyurethane resin used by this invention, you may use any method.

상기 우레아 결합 도입에 이용하는 디아민으로는 에틸렌디아민, 메타크실렌디아민, 4,4'-디아미노디페닐메탄, 1,6-헥사메틸렌디아민, 1,8-옥탄디아민, 1,9-노난디아민, 1,10-데칸디아민, 1,11-운데칸디아민, 1,12-도데칸디아민, 2-메틸-1,5-펜탄디아민, 3-메틸-1,5-펜탄디아민, 2,2,4-트리메틸-1,6-헥산디아민, 2,4,4-트리메틸-1,6-헥산디아민, 2-메틸-1,8-옥탄디아민, 5-메틸-1,9-노난디아민, 3,4'-디아미노디페닐에테르, 4,4'-디아미노디페닐에테르, 3,4'-디아미노디페닐술폰, 3,3'-디아미노디페닐술폰, 4,4'-디아미노디페닐술폰, 4,4'-(p-페닐렌디이소프로필리덴)비스아닐린, 4,4'-〔1,3-페닐렌비스(1-메틸에틸리덴)〕아닐린, 1,4-비스(4-아미노페녹시)벤젠, 1,3-비스(4-아미노페녹시)벤젠, 1,3-비스(3-아미노페녹시)벤젠, 2,2'-〔4-(4-아미노페녹시)페닐〕프로판, 2,2'-〔3-(3-아미노페녹시)페닐〕술폰, 2,2'-〔4-(4-아미노페녹시)페닐〕술폰, 2,2'-비스〔4-(4-아미노페녹시)〕페닐헥사플루오로프로판, 2,2-비스(4-아미노페닐)헥사플루오로프로판, 2-(3-아미노페닐)-2-(4-아미노페닐)프로판, 4,4'-비스(4-아미노페녹시)비페닐, 비스〔4-(4-아미노페녹시)페닐〕에테르 등을 들 수 있으며, 이들을 단독 또는 2종 이상 혼합하여 이용된다.Examples of the diamine used to introduce the urea bond include ethylenediamine, methaxylenediamine, 4,4'-diaminodiphenylmethane, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9-nonanediamine, 1 , 10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4- Trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine, 3,4 ' -Diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone , 4,4 '-(p-phenylenediisopropylidene) bisaniline, 4,4'-[1,3-phenylenebis (1-methylethylidene)] aniline, 1,4-bis (4- Aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2 '-[4- (4-aminophenoxy) phenyl Propane, 2,2 '-[3- (3-aminophenoxy) phenyl Sulfone, 2,2 '-[4- (4-aminophenoxy) phenyl] sulfone, 2,2'-bis [4- (4-aminophenoxy)] phenylhexafluoropropane, 2,2-bis ( 4-aminophenyl) hexafluoropropane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 4,4'-bis (4-aminophenoxy) biphenyl, bis [4- ( 4-aminophenoxy) phenyl] ether, etc. are mentioned, These are used individually or in mixture of 2 or more types.

본 발명에서 이용하는 결정 융점을 가지는 폴리우레탄 수지 (I) 중 우레아 결합량은 하기의 범위인 것이 바람직하다. 또한, 본 발명에서의 우레아 결합량이란 수지 1 ton 당 우레아기 당량(eq/ton)인 것을 말하며, 폴리우레탄 수지의 단량체 조성비로부터 산출하는 값이다. 바람직한 우레아 결합량으로는, 10 내지 1000(eq/ton)이 바람직하고, 보다 바람직하게는 50 내지 500(eq/ton)의 범위이다. 10(eq/ton) 미만이면, 도막의 강인성에 기여하지 않을 뿐 아니라, PTC 특성으로서 융점을 초과하여 승온된 후에, 분자간 응집력을 유지할 수 없게 되기 때문에, 도전성 충전제가 재접촉하여 도통하여버릴 염려가 있다. 한편, 1000(eq/ton)을 초과하면, 바니시 안정성이 현저히 악화되는 경향이 있다.It is preferable that the amount of urea bonds in the polyurethane resin (I) which has the crystal melting point used by this invention is the following range. In addition, the urea bond amount in this invention means urea group equivalent (eq / ton) per 1 ton of resin, and is a value computed from the monomer composition ratio of a polyurethane resin. As a preferable amount of urea bond, 10-1000 (eq / ton) is preferable, More preferably, it is the range of 50-500 (eq / ton). If it is less than 10 (eq / ton), not only does it contribute to the toughness of the coating film, but also after the temperature rises above the melting point as a PTC characteristic, the intermolecular cohesion force cannot be maintained, so that the conductive filler may be brought into contact again. have. On the other hand, when it exceeds 1000 (eq / ton), the varnish stability tends to be significantly deteriorated.

본 발명에서 이용하는 폴리우레탄 수지 (I)은 이소시아네이트기와 반응하는 관능기를 1 분자 중에 2개 이상 가지는 분자량 5000 미만의 쇄연장 성분을 필요에 따라서 공중합할 수도 있다. 이소시아네이트기와 반응하는 관능기를 1 분자 중에 2개 이상 가지는 분자량 1000 미만의 화합물로는 헥산디올, 1,2-프로필렌글리콜, 1,3-프로판디올, 1,2-부틸렌글리콜, 1,3-부틸렌글리콜, 2,3-부틸렌글리콜, 2,2-디메틸-1,3-프로판디올, 3-메틸-1,5-펜탄디올, 2,2,4-트리메틸-1,3-펜탄디올, 2-에틸-1,3-헥산디올, 2,2-디메틸-3-히드록시프로필-2',2'-디메틸-3-히드록시프로파네이트, 2-노르말부틸-2-에틸-1,3-프로판디올, 3-에틸-1,5-펜탄디올, 3-프로필-1,5-펜탄디올, 2,2-디에틸-1,3-프로판디올, 3-옥틸-1,5-펜탄디올, 3-페닐-1,5-펜탄디올, 2,5-디메틸-3-나트륨술포-2,5-헥산디올, 모노에탄올아민 등을 들 수 있다. 이들은 단독 또는 병용으로 사용할 수 있다.The polyurethane resin (I) used by this invention may copolymerize the chain extending component of molecular weight less than 5000 which has 2 or more of functional groups which react with an isocyanate group in 1 molecule as needed. Examples of the compound having a molecular weight of less than 1000 having two or more functional groups reacting with an isocyanate group in one molecule include hexanediol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butylene glycol, and 1,3-butyl Ethylene glycol, 2,3-butylene glycol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-dimethyl-3-hydroxypropyl-2 ', 2'-dimethyl-3-hydroxypropanoate, 2-normalbutyl-2-ethyl-1, 3-propanediol, 3-ethyl-1,5-pentanediol, 3-propyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 3-octyl-1,5-pentane Diol, 3-phenyl-1,5-pentanediol, 2,5-dimethyl-3-sodium sulfo-2,5-hexanediol, monoethanolamine and the like. These can be used individually or in combination.

본 발명의 도전성 페이스트는 F값이 25 내지 80 %인 것이 바람직하다. 바람직하게는 35 내지 70 %, 보다 바람직하게는 40 내지 65 %이다. F값이란 페이스트 중에 포함되는 전체 고형분 100 질량부에 대한 충전재 질량부를 나타내는 수치이고, F값=(충전재 질량부/고형분 질량부)×100으로 표시된다. 여기서 말하는 고형 질량부란 용제 이외의 카본 입자, 그 밖의 충전재, 폴리에스테르계 수지를 포함하는 수지, 그 밖의 경화제나 첨가제를 전부 포함한다. F값이 25 % 미만이면 비저항이 높아지는 경향이 있다. 또한, 밀착성 및 또는 연필 경도가 저하되는 경향이 있다. 80 %를 초과하면 PTC 특성이 저하되는 경향이 있다.It is preferable that the F value of the electrically conductive paste of this invention is 25 to 80%. Preferably it is 35 to 70%, More preferably, it is 40 to 65%. F value is a numerical value which shows the filler mass part with respect to 100 mass parts of total solids contained in a paste, and is represented by F value = (filler mass part / solid content mass part) x100. Solid mass part here includes all carbon particles other than a solvent, another filler, resin containing polyester-type resin, and other hardening | curing agents and additives. If the F value is less than 25%, the specific resistance tends to increase. Moreover, there exists a tendency for adhesiveness and / or pencil hardness to fall. When it exceeds 80%, there exists a tendency for a PTC characteristic to fall.

본 발명의 도전성 페이스트에 있어서, 도전성 미립자 (II)는 특별히 한정되지 않지만, 비저항과 PTC 특성의 관점에서 카본 입자인 것이 바람직하다. 본 발명에서 이용하는 카본 입자는 구상인 것이 바람직하고, 비저항과 PTC 특성 및 리턴 특성의 측면으로부터 그 형상이 진구상인 것이 특히 바람직하다. 여기서 말하는 진구상이란, 후술하는 전자 현미경으로 카본 입자를 확대 관찰했을 때에, 그 단면이 거의 원형에 가깝고, 그 단경과 장경의 비가 80 % 이상인 것을 나타낸다. 더욱 바람직하게는 90 % 이상이다.In the electrically conductive paste of this invention, although electroconductive fine particle (II) is not specifically limited, It is preferable that it is carbon particle from a viewpoint of a specific resistance and a PTC characteristic. It is preferable that the carbon particle used by this invention is spherical, and it is especially preferable that the shape is spherical from a viewpoint of a specific resistance, a PTC characteristic, and a return characteristic. The spherical shape here means that when the carbon particle is expanded and observed with the electron microscope mentioned later, the cross section is almost circular and the ratio of the short diameter and long diameter is 80% or more. More preferably, it is 90% or more.

본 발명에서 이용되는 카본 입자의 평균 입경은 30 ㎛ 이하가 바람직하고, 보다 바람직하게는 10 ㎛ 이하, 가장 바람직하게는 7 ㎛ 이하이다. 하한은 0.1 ㎛ 이상이 바람직하고, 보다 바람직하게는 1 ㎛ 이상이다. 평균 입경이 30 ㎛를 초과하면 스크린 인쇄를 하는 경우에는 스크린에 클로깅을 일으키거나, 상기 구상 카본 입자의 침강에 의한 페이스트의 저장 안정성이 저하될 가능성이 있다. 평균 입경이 0.1 ㎛ 미만이면, 도전성이 저하되거나, 흡유량이 커져 페이스트의 점도가 높아지고, 상기 구상 카본 입자를 충분히 충전할 수 없게 될 가능성이 있다. 또한, 밀착성이 저하되거나, 인쇄성이 악화될 우려가 있다. 구상 카본 입자로는 MC0520, MC1020(닛본 카본(주) 제조), GCP10(유니티카(주) 제조) 등 시판되고 있는 것을 사용할 수 있다.The average particle diameter of the carbon particles used in the present invention is preferably 30 µm or less, more preferably 10 µm or less, and most preferably 7 µm or less. As for a minimum, 0.1 micrometer or more is preferable, More preferably, it is 1 micrometer or more. When the average particle diameter exceeds 30 µm, when screen printing, clogging may occur on the screen or the storage stability of the paste due to sedimentation of the spherical carbon particles may decrease. If the average particle diameter is less than 0.1 µm, the conductivity may decrease, the oil absorption amount may increase, the viscosity of the paste may increase, and the spherical carbon particles may not be sufficiently filled. Moreover, there exists a possibility that adhesiveness may fall or printability may deteriorate. As spherical carbon particles, those commercially available such as MC0520, MC1020 (manufactured by Nippon Carbon Co., Ltd.), GCP10 (manufactured by Unitica Co., Ltd.) can be used.

도전성 입자 (II)는 폴리우레탄 수지 (I) 100 중량부에 대하여 40 내지 400 중량부의 비율로 포함되는 것이 바람직하고, 특히 카본 입자의 경우에는, 도전성을 발휘하기 위해서 결정 융점을 가지는 폴리우레탄계 수지 (I) 100 질량부에 대하여, 40 내지 200 질량부 포함되는 것이 바람직하며, 분산성으로부터 60 내지 180 질량부 포함되는 것이 보다 바람직하고, 도막 경도 및 밀착성으로부터 80 내지 170 질량부 포함되는 것이 가장 바람직하다. 40 질량부보다 적은 경우, 원하는 도전성이 얻어지기 어렵고, 리턴 특성이 악화되는 경향이 있다. 200 질량부보다 많은 경우는 PTC 특성이 저하되는 경향, 또는 분산이 곤란해질 가능성이 있다.It is preferable that electroconductive particle (II) is contained in the ratio of 40-400 weight part with respect to 100 weight part of polyurethane resins (I), In particular, in the case of carbon particle, in order to exhibit electroconductivity, it is a polyurethane-type resin which has a crystalline melting point ( I) It is preferable to contain 40-200 mass parts with respect to 100 mass parts, It is more preferable that 60-180 mass parts is contained from dispersibility, It is most preferable that 80-170 mass parts is contained from coating film hardness and adhesiveness. . When less than 40 mass parts, desired electroconductivity is hard to be obtained and there exists a tendency for a return characteristic to deteriorate. When more than 200 mass parts, there exists a possibility that a PTC characteristic may fall or dispersion becomes difficult.

본 발명의 도전성 페이스트에는 카본 입자 이외의 도전성 미립자를 더 사용할 수도 있다. 즉, 특성을 저하시키지 않는 범위에서 공지된 플레이크상 은 분말, 구상 은 분말, 3차원 고차 구조의 은 분말, 수지상 은 분말, 흑연 분말, 카본 분말, 니켈 분말, 구리 분말, 금 분말, 팔라듐 분말, 알루미늄 분말, 인듐 분말 등을 병용할 수도 있지만, 상기 구상 카본 입자를 적어도 전체 도전성 미립자량의 20 질량% 이상, 보다 바람직하게는 30 질량% 이상 포함하는 것이 바람직하다. 상한은, 비용면으로부터 60 질량% 이하가 바람직하고, 보다 바람직하게는 40 질량% 이하이다. 이 중, 특히 바람직한 그 밖의 도전성 미립자로는, 흑연 분말, 도전성 카본 블랙을 들 수 있다. 이들 카본계 충전재와 구상 카본 입자를 병용함으로써, 자유롭게 비저항과 PTC 특성을 조절할 수 있다. 그 밖에, 페이스트 점성을 조정하는 목적 등으로 실리카 분말, 발연 실리카, 콜로이달 실리카, 탈크, 황산바륨 등의 비도전성 충전재를 소량 배합할 수도 있다.Electroconductive fine particles other than carbon particle can also be used for the electrically conductive paste of this invention. That is, known flake silver powder, spherical silver powder, silver powder of three-dimensional high order structure, dendritic silver powder, graphite powder, carbon powder, nickel powder, copper powder, gold powder, palladium powder, in the range which does not reduce a characteristic, Although aluminum powder, indium powder, etc. can also be used together, it is preferable to contain the said spherical carbon particle at least 20 mass% or more more preferably 30 mass% or more of the total amount of electroconductive fine particles. As for an upper limit, 60 mass% or less is preferable from a cost point, More preferably, it is 40 mass% or less. Among these, especially preferable other electroconductive fine particles are graphite powder and electroconductive carbon black. By using together these carbon-type filler and spherical carbon particle, a specific resistance and PTC characteristic can be adjusted freely. In addition, a small amount of non-conductive filler such as silica powder, fumed silica, colloidal silica, talc and barium sulfate may be blended for the purpose of adjusting paste viscosity.

본 발명의 도전성 페이스트에는 이들 이외에 공지된 무기물을 첨가할 수도 있고, 예를 들면, 탄화규소, 탄화붕소, 탄화티탄, 탄화지르코늄, 탄화하프늄, 탄화바나듐, 탄화탄탈, 탄화니오븀, 탄화텅스텐, 탄화크롬, 탄화몰리브덴, 탄화칼슘, 다이아몬드 카본락탐 등의 각종 탄화물, 질화붕소, 질화티탄, 질화지르코늄 등의 각종 질화물, 붕화지르코늄 등의 각종 붕화물, 산화티탄(티타니아), 산화칼슘, 산화마그네슘, 산화아연, 산화구리, 산화알루미늄, 실리카, 콜로이달 실리카 등의 각종 산화물, 티탄산칼슘, 티탄산마그네슘, 티탄산스트론튬 등의 각종 티탄산 화합물, 이황화 몰리브덴 등의 황화물, 불화마그네슘, 불화탄소 등의 각종 불화물, 스테아르산알루미늄, 스테아르산칼슘, 스테아르산아연, 스테아르산마그네슘 등의 각종 금속 비누, 그 밖에 활석, 벤토나이트, 탈크, 탄산칼슘, 벤토나이트, 카올린, 유리 섬유, 운모 등을 사용할 수 있다. 또한, 소포제, 난연제, 점착 부여제, 가수분해 방지제, 레벨링제, 가소제, 산화 방지제, 자외선 흡수제, 난연제, 안료, 염료를 사용할 수 있다. 또한 수지 분해 억제제로서 카르보디이미드, 에폭시 등을 적절하게 사용할 수도 있다. 이들은 단독 또는 병용으로 사용할 수 있다.In addition to these, a known inorganic substance may be added to the conductive paste of the present invention. For example, silicon carbide, boron carbide, titanium carbide, zirconium carbide, hafnium carbide, vanadium carbide, tantalum carbide, niobium carbide, tungsten carbide, and chromium carbide , Carbides such as molybdenum carbide, calcium carbide, diamond carbon lactam, various nitrides such as boron nitride, titanium nitride, zirconium nitride, various borides such as zirconium boride, titanium oxide (titanium), calcium oxide, magnesium oxide, zinc oxide , Various oxides such as copper oxide, aluminum oxide, silica, colloidal silica, various titanic compounds such as calcium titanate, magnesium titanate and strontium titanate, sulfides such as molybdenum disulfide, various fluorides such as magnesium fluoride and carbon fluoride, aluminum stearate , Various metal soaps such as calcium stearate, zinc stearate, magnesium stearate, talc, Bentonite, talc, calcium carbonate, bentonite, kaolin, glass fibers, mica and the like can be used. Moreover, an antifoamer, a flame retardant, a tackifier, a hydrolysis inhibitor, a leveling agent, a plasticizer, antioxidant, a ultraviolet absorber, a flame retardant, a pigment, and dye can be used. Moreover, carbodiimide, an epoxy, etc. can also be used suitably as a resin decomposition inhibitor. These can be used individually or in combination.

본 발명의 도전성 페이스트는 유기 수지와 반응할 수 있는 경화제를 배합할 수도 있다. 경화제를 배합함으로써, PTC 특성은 저하되지만, 융점 이상의 고온시 도막 물성의 향상을 기대할 수 있다. 이들 수지에 반응할 수 있는 경화제는, 종류는 한정되지 않지만 접착성, 내굴곡성, 경화성 등으로부터 이소시아네이트 화합물이 특히 바람직하다. 또한, 이들 이소시아네이트 화합물은 블록화하여 사용하는 것이 저장 안정성으로부터 바람직하다. 이소시아네이트 화합물 이외의 경화제로는 메틸화멜라민, 부틸화멜라민, 벤조구아나민, 요소 수지 등의 아미노 수지, 산 무수물, 이미다졸류, 에폭시 수지, 페놀 수지 등의 공지된 화합물을 들 수 있다.The electrically conductive paste of this invention can also mix | blend the hardening | curing agent which can react with organic resin. By mix | blending a hardening | curing agent, although PTC characteristic falls, the improvement of coating-film physical property at high temperature beyond melting | fusing point can be expected. Although the kind of hardening | curing agent which can react with these resin is not limited, An isocyanate compound is especially preferable from adhesiveness, bending resistance, curability, etc. Moreover, it is preferable from storage stability to use these isocyanate compounds by blocking. As hardening agents other than an isocyanate compound, well-known compounds, such as amino resin, such as methylated melamine, butylated melamine, benzoguanamine, and urea resin, acid anhydride, imidazole, epoxy resin, and a phenol resin, are mentioned.

이소시아네이트 화합물로는 방향족, 지방족의 디이소시아네이트, 3가 이상의 폴리이소시아네이트가 있고, 저분자 화합물, 고분자 화합물 중 어느 하나일 수도 있다. 예를 들면, 테트라메틸렌디이소시아네이트, 헥사메틸렌디이소시아네이트, 톨루엔디이소시아네이트, 디페닐메탄디이소시아네이트, 수소화 디페닐메탄디이소시아네이트, 크실릴렌디이소시아네이트, 수소화 크실릴렌디이소시아네이트, 다이머산디이소시아네이트, 이소포론디이소시아네이트 또는 이들 이소시아네이트 화합물의 삼량체 및 이들 이소시아네이트 화합물의 과잉량과 예를 들면 에틸렌글리콜, 프로필렌글리콜, 트리메틸올프로판, 글리세린, 소르비톨, 에틸렌디아민, 모노에탄올아민, 디에탄올아민, 트리에탄올아민 등의 저분자 활성 수소 화합물 또는 각종 폴리에스테르폴리올류, 폴리에테르폴리올류, 폴리아미드류의 고분자 활성 수소 화합물 등과 반응시켜 얻어지는 말단 이소시아네이트기 함유 화합물을 들 수 있다.As an isocyanate compound, there exist aromatic, aliphatic diisocyanate, and trivalent or more polyisocyanate, and any of a low molecular weight compound and a high molecular compound may be sufficient. For example, tetramethylene diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, diphenylmethane diisocyanate, hydrogenated diphenylmethane diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate Or trimers of these isocyanate compounds and excess amounts of these isocyanate compounds and low molecular weight active hydrogens such as ethylene glycol, propylene glycol, trimethylolpropane, glycerin, sorbitol, ethylenediamine, monoethanolamine, diethanolamine, triethanolamine, and the like. And terminal isocyanate group-containing compounds obtained by reacting a compound or various polyester polyols, polyether polyols, and high molecular weight active hydrogen compounds of polyamides.

이소시아네이트기의 블록화제로는, 예를 들면 페놀, 티오페놀, 메틸티오페놀, 에틸티오페놀, 크레졸, 크실레놀, 레조르시놀, 니트로페놀, 클로로페놀 등의 페놀류, 아세톡심, 메틸에틸케토옥심, 시클로헥사논옥심 등의 옥심류, 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올류, 에틸렌클로로히드린, 1,3-디클로로-2-프로판올 등의 할로겐 치환 알코올류, t-부탄올, t-펜탄올 등의 3급 알코올류, ε-카프로락탐, δ-발레로락탐, γ-부티로락탐, β-프로필락탐 등의 락탐류를 들 수 있고, 그 밖에도 방향족 아민류, 이미드류, 아세틸아세톤, 아세토아세트산에스테르, 말론산에틸에스테르 등의 활성 메틸렌 화합물, 메르캅탄류, 이민류, 이미다졸류, 요소류, 디아릴 화합물류, 중아황산소다 등도 들 수 있다. 이 중, 경화성으로부터 옥심류, 이미다졸류, 아민류가 특히 바람직하다.As a blocking agent of an isocyanate group, For example, phenols, such as phenol, thiophenol, methylthiophenol, ethylthiophenol, cresol, xylenol, resorcinol, nitrophenol, chlorophenol, acetoxime, methyl ethyl ketooxime, Oximes such as cyclohexanone oxime, alcohols such as methanol, ethanol, propanol and butanol, halogen-substituted alcohols such as ethylenechlorohydrin and 1,3-dichloro-2-propanol, t-butanol and t-pentanol And tertiary alcohols such as ε-caprolactam, δ-valerolactam, γ-butyrolactam, and β-propyllactam, and the like. Other examples thereof include aromatic amines, imides, acetylacetone, and acetoacetic acid. Active methylene compounds, such as ester and ethyl malonic acid ester, mercaptans, imines, imidazole, urea, diaryl compounds, sodium bisulfite, etc. are mentioned. Among these, oximes, imidazoles, and amines are especially preferable from curability.

이들 가교제에는, 그의 종류에 따라서 선택된 공지된 촉매 또는 촉진제를 병용할 수도 있다.In these crosslinking agents, you may use together the well-known catalyst or promoter chosen according to the kind.

본 발명의 도전성 페이스트에 이용하는 용제는 그의 종류에 제한은 없고, 예를 들면 톨루엔, 크실렌, 테트라메틸벤젠, 솔베소 100, 솔베소 150, 솔베소 200, 테트랄린 등의 방향족 탄화수소계, 데칼린, 헥산, 헵탄, 옥탄, 데칸 등의 지방족 탄화수소계, 아세트산메틸, 아세트산에틸, 아세트산이소프로필, 아세트산부틸 등의 에스테르계, 메탄올, 에탄올, 프로판올, 부탄올, 2-에틸헥산올 등의 알코올계, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로헥사논 등의 케톤계, (디)에틸렌글리콜디메틸에테르, 디에틸렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르, 디옥산, 디에틸에테르, 테트라히드로푸란 등의 에테르계, 셀로솔브아세테이트, 에틸셀로솔브, 부틸셀로솔브 등의 셀로솔브계, 카르비톨, 부틸카르비톨 등의 카르비톨류의 각종 용제를 사용할 수 있고, 용해성, 증발 속도 등을 고려하여 1종, 또는 2종 이상 선택되어 사용된다.The solvent used for the electrically conductive paste of this invention does not have a restriction | limiting in the kind, For example, aromatic hydrocarbon type, decalin, such as toluene, xylene, tetramethylbenzene, Solvesso 100, Solvesso 150, Solvesso 200, tetralin, Aliphatic hydrocarbons such as hexane, heptane, octane, decane, esters such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, alcohols such as methanol, ethanol, propanol, butanol, 2-ethylhexanol, acetone, Ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, (di) ethylene glycol dimethyl ether, diethylene glycol monoethyl ether, dipropylene glycol diethyl ether, dioxane, diethyl ether, tetrahydrofuran, etc. Various solvents of carbitols such as ether-based, cellosolve acetate, ethyl cellosolve, butyl cellosolve, and carbitols such as carbitol and butyl carbitol May have, in consideration of solubility, evaporation rate and the like are used is selected, 1 species, or two or more of them.

본 발명의 도전성 페이스트는, 상술한 바와 같이 예를 들면 80 ℃ 및 30 ℃일 때의 저항 변화의 배율(시트 저항(80 ℃)/시트 저항(30 ℃))로 3배 이상이면 PTC 특성을 가진다고 정의하지만, 다른 하나의 성능으로서 중요한 지표가 있다. 그것은 "리턴 특성"이라 불리는 것으로, 이 리턴 특성이란, 80 ℃로 승온한 후에 실온(25 ℃)까지 냉각했을 때의 저항값과, 승온 전의 실온(25 ℃)의 저항값과의 차(=변화율)를 의미한다. 리턴 특성이 양호해지기 위해서는, 승온 전의 실온의 저항값과 승온한 후, 냉각한 후 실온에서의 저항값의 차(변화율)가 ±1 내지 100 % 이내인 것이 바람직하다. 이는 즉, 승강온을 반복하여도 안정된 PTC 특성을 발휘하는 지표가 된다.As described above, the conductive paste of the present invention has a PTC characteristic when it is three times or more in the magnification (sheet resistance (80 ° C) / sheet resistance (30 ° C)) of resistance change at 80 ° C and 30 ° C, for example. Although defined, there is an important indicator as another performance. It is called "return characteristic", and this return characteristic is a difference (= change rate) between the resistance value when it cools to room temperature (25 degreeC) after heating up at 80 degreeC, and the resistance value of room temperature (25 degreeC) before temperature rising. ) Means. In order for a return characteristic to become favorable, it is preferable that the difference (change rate) of the resistance value at room temperature after cooling after raising temperature with the resistance value of room temperature before temperature rising is within +/- 1 to 100%. That is, it becomes an index which exhibits stable PTC characteristic even if it raises and lowers repeatedly.

상기 PTC 특성, 리턴 특성에 추가로, 고온시 저항값의 안정성도 중요해진다. 고온시 저항값의 안정성이란 80 ℃로 승온한 후, 추가로 그 이상의 온도로 승온했을 때에 현저한 저항값의 저하가 없는 것을 의미한다. 고온시 저항값의 안정성이 양호하다는 것은, 120 ℃까지 승온시킨 후의 저항값이 80 ℃의 저항값과 동등하거나 그 이상, 또는 감소하였다고 해도 80 ℃의 저항값보다도 20 % 미만 감소에 그치는 것을 의미한다. 고온 영역에 현저한 저항값의 감소가 있다는 것은, 고온에서 도통한다는 것이 되어 안전상 바람직하지 않다.In addition to the PTC characteristic and the return characteristic, the stability of the resistance value at high temperature is also important. The stability of the resistance value at high temperature means that there is no remarkable drop in resistance value when the temperature is raised to 80 ° C and further elevated. The good stability of the resistance value at high temperature means that the resistance value after raising the temperature to 120 ° C is reduced by less than 20% from the resistance value of 80 ° C even if the resistance value is equal to or higher than the resistance value of 80 ° C or decreased. . A significant decrease in the resistance value in the high temperature region indicates conduction at high temperature, which is undesirable for safety reasons.

본 발명의 도전성 페이스트는 스크린 인쇄, 회전식 스크린 인쇄, 그라비아 인쇄, 전사 인쇄, 롤 코팅, 코머 코팅, 플로우 코팅, 스프레이 도장 등 공지된 방법으로, PET 필름(시트)을 비롯한 플라스틱 필름에 인쇄하여 회로나 면상 발열체에 사용할 수 있다.The conductive paste of the present invention is a known method such as screen printing, rotary screen printing, gravure printing, transfer printing, roll coating, commerical coating, flow coating, spray coating, and the like. It can be used for surface heating elements.

<실시예><Examples>

이하, 본 발명에 대해서 실시예를 이용하여 구체적으로 설명하지만, 본 발명이 이들 실시예로 한정되는 것은 아니다. 실시예 중, 단순히 부로 되어 있는 것은 질량부를 나타낸다. 또한, 각 측정 항목은 이하의 방법에 따랐다.EMBODIMENT OF THE INVENTION Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these Examples. In the examples, those simply negative represent parts by mass. In addition, each measurement item followed the following method.

1. 수 평균 분자량1. Number average molecular weight

테트라히드로푸란을 용리액으로 한 워터즈사 제조 겔 침투 크로마토그래피(GPC) 150c를 이용하여, 칼럼 온도 30 ℃, 유량 1 ㎖/분으로 GPC 측정을 행한 결과로부터 계산하여, 폴리스티렌 환산의 측정값을 얻었다. 다만 칼럼은 쇼와 덴꼬(주) 쇼덱스(shodex) KF-802, 804, 806을 이용하였다.It calculated from the result of having performed GPC measurement by column temperature 30 degreeC and flow volume 1 ml / min using the Waters company gel permeation chromatography (GPC) 150c which made tetrahydrofuran the eluent, and obtained the measured value of polystyrene conversion. For the column, Showa Denko Co., Ltd. shodex KF-802, 804, 806 was used.

2. 유리 전이 온도(Tg) 및 융점(Tm)2. Glass transition temperature (Tg) and melting point (Tm)

샘플 5 mg을 알루미늄제 샘플 팬에 넣어 밀봉하고, 세이코 인스트루먼츠(주) 제조 시차 주사 열량 분석계(DSC) DSC-220을 이용하여, 200 ℃까지 승온 속도 20 ℃/분으로 측정하고, 융해열의 최대 피크 온도를 결정 융점으로서 구하였다. 유리 전이 온도는, 유리 전이 온도 이하의 베이스 라인의 연장선과 천이부에서의 최대 경사를 나타내는 접선과의 교점의 온도로 구하였다.5 mg of sample was placed in an aluminum sample pan and sealed, and measured using a Seiko Instruments Co., Ltd. differential scanning calorimetry (DSC) DSC-220 at 200 ° C. at a temperature increase rate of 20 ° C./min. The temperature was determined as the crystal melting point. The glass transition temperature was calculated | required by the temperature of the intersection of the extension line of the baseline below glass transition temperature, and the tangent which shows the largest inclination in a transition part.

3. 산가 3. Acid value

시료 0.2 g을 정칭하고 20 ㎖의 클로로포름에 용해시켰다. 이어서, 0.01 N의 수산화칼륨(에탄올 용액)으로 적정하여 구하였다. 지시약에는 페놀프탈레인 용액을 이용하였다.0.2 g of the sample was weighed and dissolved in 20 mL of chloroform. Then, it titrated and calculated | required with 0.01 N potassium hydroxide (ethanol solution). As the indicator, a solution of phenolphthalate was used.

4. 밀착성4. Adhesiveness

두께 100 ㎛의 어닐링 처리를 한 PET 필름에 도전성 페이스트를 스크린 인쇄하고, 25×200 mm의 패턴을 인쇄하고, 150 ℃에서 30 분간 건조, 경화시킨 것을 테스트 피스로 하였다. 건조막 두께는 20 내지 30 ㎛가 되도록 조정하였다. 이 테스트 피스를 이용하여 JIS K5600 5-6에 준하여 평가하였다. 점착 테이프는 셀로판 테이프 CT-12(니치반(주) 제조)를 이용하였다.The electrically conductive paste was screen-printed on the 100-micrometer-thick annealed PET film, the pattern of 25x200 mm was printed, it dried at 30 degreeC for 30 minutes, and it was set as the test piece. The dry film thickness was adjusted to be 20-30 micrometers. It evaluated in accordance with JIS K5600 5-6 using this test piece. The cellophane tape CT-12 (Nichiban Co., Ltd. product) was used for the adhesive tape.

5. 비저항5. resistivity

4.에서 제작한 테스트 피스를 이용하여 시트 저항과 막 두께를 측정하고, 비저항을 산출하였다. 또한, 시트 저항은 4 단자식의 디지털 멀티 미터를 이용하여 측정하였다.Sheet resistance and film thickness were measured using the test piece produced in 4., and specific resistance was computed. In addition, sheet resistance was measured using the 4-terminal digital multimeter.

6. 연필 경도6. pencil hardness

4.에서 제작한 테스트 피스를 이용하여 JIS S6006에 규정된 고급 연필을 이용하고, JIS K5400에 따라서 표면 경도를 평가하였다.The high quality pencil prescribed | regulated to JIS S6006 was used using the test piece produced by 4., and surface hardness was evaluated in accordance with JIS K5400.

7. PTC 특성7. PTC Characteristics

4.에서 제작한 테스트 피스를 이용하여 시트 저항을 30 ℃와 80 ℃에서 측정하고, 다음식으로 계산한 저항 변화의 배율로 평가하였다. 숫자가 클수록 양호한 PTC 특성이다.The sheet resistance was measured at 30 degreeC and 80 degreeC using the test piece produced by 4., and it evaluated by the magnification of the resistance change calculated by following Formula. The larger the number, the better the PTC characteristic.

저항 변화의 배율(배)=시트 저항(80 ℃)/시트 저항(30 ℃)Magnification of resistance change (times) = sheet resistance (80 ° C) / sheet resistance (30 ° C)

8. 리턴 특성8. Return property

7.에 기재된 방법으로, PTC 특성을 5회 반복하여 측정(30 ℃부터 80 ℃까지 5회 승강온의 반복)한 후, 실온(25 ℃)으로 냉각하여 시트 저항을 측정하고, 초기의 시트 저항과의 차이로 평가하였다.By the method described in 7., the PTC characteristic was repeatedly measured five times (repetition of elevated temperature five times from 30 ° C. to 80 ° C.), and then cooled to room temperature (25 ° C.) to measure sheet resistance, and the initial sheet resistance. It evaluated by difference with.

○: 초기의 저항값의 차(변화율)가 ±100 % 이내○: The difference (rate of change) of the initial resistance value is within ± 100%

△: 초기의 저항값에 대한 변화율이 ±101 내지 500 %(Triangle | delta): The change rate with respect to an initial resistance value is +/- 101%-500%

×: 초기의 저항값에 대한 변화율이 ±500 % 이상X: The rate of change with respect to the initial resistance is ± 500% or more

9. 고온시의 저항값 안정성9. Stability of resistance value at high temperature

6.에 기재된 방법으로 80 ℃까지 승온시킨 후, 추가로 120 ℃까지 승온시킨 후 80 ℃에서의 저항값과의 비교로부터 판단하였다.It heated up to 80 degreeC by the method of 6., and further heated up to 120 degreeC, and judged from the comparison with the resistance value at 80 degreeC.

◎: 120 ℃에서의 저항값이 80 ℃인 저항값보다도 높음 (Double-circle): Resistance value in 120 degreeC is higher than the resistance value of 80 degreeC

○: 120 ℃에서의 저항값이 80 ℃인 저항값과 동일하거나 20 % 미만 감소(Circle): The resistance value in 120 degreeC is equal to or less than 20% of the resistance value of 80 degreeC.

△: 120 ℃의 저항값이 80 ℃의 저항값과 비교하여 20 % 이상, 40 % 미만 감소(Triangle | delta): The resistance value of 120 degreeC reduces 20% or more and less than 40% compared with the resistance value of 80 degreeC.

×: 120 ℃의 저항값이 80 ℃의 저항값과 비교하여 40 % 이상 감소X: The resistance value of 120 degreeC decreased 40% or more compared with the resistance value of 80 degreeC

10. 저장 안정성10. Storage stability

도전성 페이스트를 5 ℃에서 1개월 저장한 후, 25 ℃에서 점도를 측정하고, 점도 변화로 평가하였다.After the electrically conductive paste was stored at 5 ° C for 1 month, the viscosity was measured at 25 ° C and evaluated by viscosity change.

○: 초기의 점도와 거의 동일한 값(초기의 점도의 1.5배 미만)○: almost the same value as the initial viscosity (less than 1.5 times the initial viscosity)

△: 초기의 점도의 1.5 내지 2배의 증점(Triangle | delta): The thickening of 1.5-2 times of the initial viscosity

×: 현저히 증점(초기의 점도의 2배를 초과함)X: Significantly thickening (more than twice the initial viscosity)

수지의 제조예Production Example of Resin

폴리에스테르폴리올 (A)의 합성Synthesis of Polyester Polyol (A)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 테레프탈산디메틸 100부, 이소프탈산디메틸 38부, 에틸렌글리콜 93부, 네오펜틸글리콜 73부, 테트라부틸티타네이트 0.065부를 투입하고, 180 ℃에서 3 시간 동안 에스테르 교환을 실시하였다. 이어서, 세박산 61부를 투입하고, 추가로 에스테르화 반응을 행하였다. 이어서, 1 mmHg 이하까지 서서히 감압하고, 240 ℃, 1.5 시간 동안 중합하였다. 얻어진 공중합 폴리에스테르의 조성은, 테레프탈산/이소프탈산/세박산/에틸렌글리콜/네오펜틸글리콜=50/20/30/57/43(몰비), 수 평균 분자량 2100, 산가 8 eq/ton, Tg 10 ℃이고, 결정 융점은 없었다. 결과를 하기 표 1에 나타낸다.100 parts of dimethyl terephthalate, 38 parts of dimethyl isophthalate, 93 parts of ethylene glycol, 73 parts of neopentyl glycol, and 0.065 parts of tetrabutyl titanate were added to a reaction vessel equipped with a stirrer, a condenser and a thermometer, and transesterified at 180 ° C. for 3 hours. Was carried out. Subsequently, 61 parts of sebacic acid were thrown in, and also esterification was performed. Subsequently, the mixture was gradually reduced to 1 mmHg or less and polymerized at 240 ° C. for 1.5 hours. The composition of the obtained copolyester is terephthalic acid / isophthalic acid / sebacic acid / ethylene glycol / neopentyl glycol = 50/20/30/57/43 (molar ratio), number average molecular weight 2100, acid value 8eq / ton, Tg 10 degreeC There was no crystal melting point. The results are shown in Table 1 below.

폴리에스테르폴리올 (B) 내지 (D)의 합성Synthesis of Polyester Polyols (B) to (D)

폴리에스테르폴리올 (A)와 마찬가지로 합성하였다. 폴리에스테르폴리올 (B) 내지 (C)는 결정 융점은 없고 비정질성이었지만, 폴리에스테르폴리올 (D) 내지 (E)는 결정 융점을 가졌다. 결과를 표 1에 나타낸다.It synthesize | combined like polyesterpolyol (A). The polyester polyols (B) to (C) had no crystal melting point and were amorphous, while the polyester polyols (D) to (E) had crystal melting points. The results are shown in Table 1.

Figure pct00001
Figure pct00001

결정 융점을 가지는 폴리우레탄 수지의 합성Synthesis of Polyurethane Resin with Crystal Melting Point

폴리우레탄 수지 (a)의 합성Synthesis of Polyurethane Resin (a)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (A) 1000부를 에틸카르비톨아세테이트 630부, 부틸셀로솔브아세테이트 210부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 250부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 시클로헥사논 2410부, 프락셀 240(다이셀 가가꾸사 제조, 융점 59 ℃, 수 평균 분자량 4000) 2000부를 가하여 80 ℃, 2 시간 동안 반응을 행한 후, 촉매로서 디부틸주석디라우레이트: 0.3부를 첨가하고, 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 시클로헥사논 990부, 솔베소 150: 5510부에서 용액을 희석하고, 폴리우레탄 수지 (a)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.1(중량%)이었다. 폴리우레탄 수지 (a)의 수 평균 분자량은 38000, 산가 8 eq/ton, Tm(융점)은 45 ℃였다.1000 parts of polyester polyols (A) of the synthesis example were dissolved in 630 parts of ethyl carbitol acetate and 210 parts of butyl cellosolve acetates in 80 degreeC in the reaction container provided with the stirrer, the capacitor, and the thermometer. Subsequently, after adding 250 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Thereafter, 2410 parts of cyclohexanone and 2000 parts of Fraxel 240 (manufactured by Daicel Chemical Industries, Melting Point 59 ° C., number average molecular weight 4000) were added thereto, followed by reaction at 80 ° C. for 2 hours, followed by dibutyltin dilaurate as a catalyst. : 0.3 parts was added and reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted at 990 parts of cyclohexanone and 5510 parts of Solvesso 150, and the polyurethane resin (a) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.1 (weight%). The number average molecular weight of the polyurethane resin (a) was 38000, an acid value of 8 eq / ton, and a Tm (melting point) of 45 ° C.

폴리우레탄 수지 (b)의 합성Synthesis of Polyurethane Resin (b)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B) 1000부를 에틸카르비톨아세테이트 630부, 부틸셀로솔브아세테이트 210부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 250부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 시클로헥사논 2910부, HS2H-500S(호코쿠 세이유사 제조, 융점 70 ℃, 수 평균 분자량 5000) 2500부를 가하여 80 ℃, 2 시간 동안 반응을 행한 후, 촉매로서 디부틸주석디라우레이트 0.3부를 첨가하고, 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 시클로헥사논 990부, 솔베소 150: 5510부에서 용액을 희석하고, 폴리우레탄 수지 (b)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (b)의 수 평균 분자량은 40000, 산가 10 eq/ton, Tm은 56 ℃였다.1000 parts of polyester polyols (B) of the synthesis example were dissolved in 630 parts of ethyl carbitol acetate and 210 parts of butyl cellosolve acetates at 80 degreeC in the reaction container provided with the stirrer, the capacitor, and the thermometer. Subsequently, after adding 250 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Thereafter, 2910 parts of cyclohexanone and 2500 parts of HS2H-500S (manufactured by Hokoku Seyou Co., Ltd., melting point 70 ° C., number average molecular weight 5000) were added thereto, and the reaction was carried out at 80 ° C. for 2 hours, followed by dibutyltin dilaurate as a catalyst. 0.3 parts were added and reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted in 990 parts of cyclohexanone and 5510 parts of Solvesso 150, and the polyurethane resin (b) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (b) was 40000, the acid value 10 eq / ton, and Tm was 56 ° C.

폴리우레탄 수지 (c)의 합성Synthesis of Polyurethane Resin (c)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B) 1000부, HS2H-500S(호코쿠 세이유사 제조, 융점 70 ℃, 수 평균 분자량 5000) 500부를 시클로헥사논 1100부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 148부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 촉매로서 디부틸주석디라우레이트 0.3부를 첨가하고, 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 630부, 솔베소 150: 970부, 에틸카르비톨아세테이트 1683부, 부틸셀로솔브아세테이트 561부에서 용액을 희석하고, 폴리우레탄 수지 (c)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (c)의 수 평균 분자량은 41000, 산가 11 eq/ton, Tm은 55 ℃였다.1000 parts of polyester polyols (B) of a synthesis example, and 500 parts of HS2H-500S (made by Hokoku Seiyu, melting | fusing point 70 degreeC, number average molecular weight 5000) in the reaction container provided with a stirrer, a capacitor | condenser, and a thermometer 80 to 1100 parts of cyclohexanone 80 It was dissolved at ℃. Subsequently, after adding 148 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Then, 0.3 part of dibutyltin dilaurate was added as a catalyst, and it reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted with 630 parts, Solvesso 150: 970 parts, ethylcarbitol acetate 1683 parts, and 561 parts of butyl cellosolve acetate, and the polyurethane resin (c) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (c) was 41000, the acid value 11 eq / ton, and Tm was 55 degreeC.

폴리우레탄 수지 (d)의 합성Synthesis of Polyurethane Resin (d)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B) 1000부, 폴리에스테르폴리올 (D) 1000부를 시클로헥사논 1448부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 172부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 촉매로서 디부틸주석디라우레이트 0.3부를 첨가하고, 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 시클로헥사논 833부, 솔베소 150: 4235부에서 용액을 희석하고, 폴리우레탄 수지 (d)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (d)의 수 평균 분자량은 44000, 산가 21 eq/ton, Tm은 72 ℃였다.1000 parts of polyester polyols (B) and 1000 parts of polyester polyols (D) of a synthesis example were dissolved in 1448 parts of cyclohexanone at 80 degreeC in the reaction container provided with the stirrer, the capacitor, and the thermometer. Subsequently, after adding 172 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Then, 0.3 part of dibutyltin dilaurate was added as a catalyst, and it reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted in 833 parts of cyclohexanone and 4235 parts of Solvesso 150, and the polyurethane resin (d) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (d) was 44000, an acid value 21 eq / ton, and Tm was 72 degreeC.

폴리우레탄 수지 (e)의 합성Synthesis of Polyurethane Resin (e)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B) 1000부, 폴리에스테르폴리올 (E) 1000부를 에틸카르비톨아세테이트 1085부, 부틸셀로솔브아세테이트 363부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 172부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 촉매로서 디부틸주석디라우레이트 0.3부를 첨가하고, 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 시클로헥사논 2281부, 에틸카르비톨아세테이트 2090부, 부틸셀로솔브아세테이트 697부에서 용액을 희석하고, 폴리우레탄 수지 (e)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (e)의 수 평균 분자량은 45000, 산가 19 eq/ton, Tm은 25 ℃였다.1000 parts of polyester polyols (B) and 1000 parts of polyester polyols (E) of Synthesis Example were dissolved in a reaction vessel equipped with a stirrer, a condenser and a thermometer at 80 ° C in 1085 parts of ethylcarbitol acetate and 363 parts of butyl cellosolve acetate. . Subsequently, after adding 172 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Then, 0.3 part of dibutyltin dilaurate was added as a catalyst, and it reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted with 2281 parts of cyclohexanone, 2090 parts of ethyl carbitol acetate, and 697 parts of butyl cellosolve acetate, and the polyurethane resin (e) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (e) was 45000, the acid value 19 eq / ton, and Tm was 25 degreeC.

폴리우레탄 수지 (f)의 합성Synthesis of Polyurethane Resin (f)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B): 1000부를 에틸카르비톨아세테이트 630부, 부틸셀로솔브아세테이트 210부에 80 ℃에서 용해시켰다. 이어서 디페닐메탄디이소시아네이트 250부를 첨가한 후, 2 시간 동안 반응을 행하였다. 그 후, 시클로헥사논 2010부, 프락셀 240(다이셀 가가꾸사 제조, 융점 59 ℃, 수 평균 분자량 4000) 1600부를 가하여 80 ℃, 2 시간 동안 반응을 행한 후, 디아미노디페닐메탄을 18부 가하고 반응을 계속하였다. 2 시간 후, 촉매로서 디부틸주석디라우레이트 0.3부를 첨가하여, 추가로 80 ℃에서 4 시간 동안 반응시켰다. 이어서, 시클로헥사논 990부, 솔베소 150: 5710부에서 용액을 희석하고, 폴리우레탄 수지 (f)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.1(중량%)이었다. 폴리우레탄 수지 (f)의 수 평균 분자량은 45000, 산가 12 eq/ton, Tm은 46 ℃, 우레아 결합량은 70 eq/ton이었다.1000 parts of polyester polyols (B) of a synthesis example were dissolved in 630 parts of ethyl carbitol acetate and 210 parts of butyl cellosolve acetates in 80 degreeC in the reaction container provided with the stirrer, the capacitor, and the thermometer. Subsequently, after adding 250 parts of diphenylmethane diisocyanate, reaction was performed for 2 hours. Thereafter, 2010 parts of cyclohexanone and 1600 parts of Fraxel 240 (manufactured by Daicel Chemical Co., Ltd., melting point: 59 ° C., number average molecular weight 4000) were added thereto, followed by reaction at 80 ° C. for 2 hours, followed by 18 parts of diaminodiphenylmethane. Was added and the reaction continued. After 2 hours, 0.3 part of dibutyltin dilaurate was added as a catalyst, and further reacted at 80 degreeC for 4 hours. Subsequently, the solution was diluted in 990 parts of cyclohexanone and 5710 parts of Solvesso 150, and the polyurethane resin (f) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.1 (weight%). The number average molecular weight of the polyurethane resin (f) was 45000, the acid value 12 eq / ton, Tm was 46 degreeC, and the amount of urea bonds was 70 eq / ton.

폴리우레탄 수지 (g)의 합성Synthesis of Polyurethane Resin (g)

교반기, 컨덴서, 온도계를 구비한 반응 용기 중에 합성예의 폴리에스테르폴리올 (B) 1000부, 비정질성 공중합 폴리에스테르디올인 ODX688(다이닛본 잉크(주) 제조) 1500부, 쇄연장제로서 1,6-헥산디올 50부, 네오펜틸글리콜 150부, 용제로서 에틸카르비톨아세테이트 2750부, 부틸셀로솔브아세테이트 920부를 투입하고, 80 ℃에서 용해시켰다. 이어서, 디페닐메탄디이소시아네이트(MDI) 760부를 첨가하고, 1 시간 동안 반응을 계속한 후, 디부틸주석디라우레이트 0.8부를 투입하고 추가로 80 ℃에서 4 시간 동안 반응시켰다. 그 후, 에틸카르비톨아세테이트 5030부, 부틸셀로솔브아세테이트 1670부를 가하여 희석하고, 폴리우레탄 수지 (g)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (g) 수 평균 분자량은 42000, 산가 10 eq/ton, Tg -12 ℃였다.1000 parts of polyester polyols (B) of the synthesis example, 1500 parts of ODX688 (made by Dainippon Ink Co., Ltd.) which are amorphous co-polyester diols, and 1, 6-chain extenders in the reaction container provided with a stirrer, a capacitor, and a thermometer. 50 parts of hexanediol, 150 parts of neopentyl glycol, 2750 parts of ethyl carbitol acetate and 920 parts of butyl cellosolve acetate were added as a solvent, and it melt | dissolved at 80 degreeC. Subsequently, 760 parts of diphenylmethane diisocyanate (MDI) were added, and the reaction was continued for 1 hour, 0.8 parts of dibutyltin dilaurate was added and reacted at 80 ° C. for 4 hours. Thereafter, 5030 parts of ethyl carbitol acetate and 1670 parts of butyl cellosolve acetate were added and diluted to obtain a polyurethane resin (g). Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The polyurethane resin (g) number average molecular weight was 42000, an acid value 10 eq / ton, and Tg-12 degreeC.

폴리우레탄 수지 (h)의 합성Synthesis of Polyurethane Resin (h)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (A) 1000부, 프락셀 220(다이셀 가가꾸사 제조, 융점 55 ℃, 수 평균 분자량 2000)을 20부, 에틸카르비톨아세테이트 570부, 부틸셀로솔브아세테이트를 190부 투입하고, 80 ℃에서 용해시켰다. 이어서, 디페닐메탄디이소시아네이트(MDI) 120부를 첨가하고, 1 시간 동안 반응을 계속한 후, 디부틸주석디라우레이트 0.2부를 투입하고 추가로 80 ℃에서 4 시간 동안 반응시켰다. 그 후, 시클로헥사논 1196부, 에틸카르비톨아세테이트 1096부, 부틸셀로솔브아세테이트를 365부를 가하여 희석하고, 폴리우레탄 수지 (h)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (h)의 수 평균 분자량은 40000, 산가 10 eq/ton, Tg 25 ℃였다.In a reaction vessel equipped with a stirrer, a condenser and a thermometer, 20 parts of 1000 parts of polyester polyols (A) of Synthesis Example, Fraxel 220 (manufactured by Daicel Chemical Co., Ltd., melting point 55 ° C., number average molecular weight 2000) and ethyl carbitol acetate 570 190 parts of butyl cellosolve acetate were added and it melt | dissolved at 80 degreeC. Subsequently, 120 parts of diphenylmethane diisocyanate (MDI) were added, and the reaction was continued for 1 hour, and then 0.2 part of dibutyltin dilaurate was added and reacted at 80 ° C. for 4 hours. Then, 1196 parts of cyclohexanone, 1096 parts of ethyl carbitol acetate, and 365 parts of butyl cellosolve acetate were added and diluted, and the polyurethane resin (h) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (h) was 40000, acid value 10 eq / ton, Tg 25 degreeC.

폴리우레탄 수지 (i)의 합성Synthesis of Polyurethane Resin (i)

교반기, 컨덴서, 온도계를 구비한 반응 용기에 합성예의 폴리에스테르폴리올 (B) 1000부, 프락셀 210(다이셀 가가꾸사 제조, 융점 47 ℃, 수 평균 분자량 1000)을 900부, 에틸카르비톨아세테이트 1680부, 부틸셀로솔브아세테이트를 560부 투입하고, 80 ℃에서 용해시켰다. 이어서, 디페닐메탄디이소시아네이트(MDI) 340부를 첨가하고, 1 시간 동안 반응을 계속한 후, 디부틸주석디라우레이트 0.3부를 투입하고 추가로 80 ℃에서 4 시간 동안 반응시켰다. 그 후, 시클로헥사논 2350부, 솔베소 150: 2130부를 가하여 희석하고, 폴리우레탄 수지 (i)를 얻었다. 얻어진 폴리우레탄 수지 용액의 고형분 농도는 25.0(중량%)이었다. 폴리우레탄 수지 (i)의 수 평균 분자량은 36000, 산가 12 eq/ton, Tg -5 ℃였다.In a reaction vessel equipped with a stirrer, a condenser, and a thermometer, 900 parts of polyester polyol (B) of Synthesis Example, Fraxel 210 (manufactured by Daicel Chemical Industries, Melting Point 47 ° C, number average molecular weight 1000) and ethylcarbitol acetate 1680 560 parts of butyl cellosolve acetate were added and dissolved at 80 ° C. Subsequently, 340 parts of diphenylmethane diisocyanate (MDI) were added, and the reaction was continued for 1 hour, and then 0.3 part of dibutyltin dilaurate was added and reacted at 80 ° C. for 4 hours. Then, 2350 parts of cyclohexanone and 2130 parts of Solvesso 150 were added and diluted, and polyurethane resin (i) was obtained. Solid content concentration of the obtained polyurethane resin solution was 25.0 (weight%). The number average molecular weight of the polyurethane resin (i) was 36000, an acid value 12 eq / ton, and Tg-5 degreeC.

상기 폴리우레탄 수지 (a) 내지 (i)의 물성을 통합한 것을 하기 표 2에 나타낸다.Integrating the physical properties of the polyurethane resins (a) to (i) is shown in Table 2 below.

Figure pct00002
Figure pct00002

실시예 1Example 1

도전성 미립자로서 MC0520(닛본 카본(주) 제조) 150부, 수지로서 상기에서 합성한 폴리우레탄 수지 용액 (a)(용제 조성(질량)비: 에틸카르비톨아세테이트/부틸셀로솔브아세테이트/시클로헥사논/솔베소 150=6/2/35/57) 400부(고형분 25 %), 레벨링제로서 BYK-354(빅케미 재팬(주)) 6.0부를 첨가하고, 추가로 솔베소 150을 가하여 충분히 프리믹스하였다. 이어서, 냉동 3축 롤로 3회 분산하여 도전성 페이스트를 얻었다. 얻어진 도전성 페이스트는 약간 흑색이고 점성이 양호하였다. 비저항은 6.6 Ω·cm, PTC 특성은 8.5배로 양호하고, 리턴 특성, 고온시의 저항값 안정성, 저장 안정성이 모두 양호하였다.Polyurethane resin solution (a) (solvent composition (mass) ratio synthesize | combined above as MC0520 (made by Nippon Carbon Co., Ltd.)) as resin, electroconductive fine particles (solvent composition (mass) ratio: ethyl carbitol acetate / butyl cellosolve acetate / cyclohexanone) / Solvesso 150 = 6/2/35/57) 400 parts (solid content 25%), 6.0 parts of BYK-354 (Bikkemi Japan Co., Ltd.) was added as a leveling agent, and Solvesso 150 was further added and premixed sufficiently. . Subsequently, it disperse | distributed 3 times with the frozen triaxial roll and obtained the electrically conductive paste. The obtained electrically conductive paste was slightly black and was viscous. The specific resistance was 6.6 Ω · cm, the PTC characteristic was 8.5 times good, and the return characteristics, resistance stability at high temperatures, and storage stability were all good.

실시예 2 내지 9Examples 2-9

실시예 1과 동일하게 평가하였다. 결과를 하기 표 3에 나타낸다. 어느 페이스트도 양호한 PTC 특성, 리턴 특성, 고온시의 저항값 안정성, 저장 안정성을 나타내었다.It evaluated similarly to Example 1. The results are shown in Table 3 below. Both pastes showed good PTC characteristics, return characteristics, resistance stability at high temperatures, and storage stability.

Figure pct00003
Figure pct00003

표 3, 하기 표 4에서의 숫자는 이하의 의미이다.The numbers in Table 3 and the following Table 4 mean the following.

1) 유기 수지: EVA, 시판되고 있는 아세트산비닐 함유량 30 몰%의 에틸렌비닐아세테이트를 그대로 사용하였다.1) Organic resin: EVA and commercially available ethylene vinyl acetate having 30 mol% of vinyl acetate content were used as it is.

2) 카본 a: MC0520(구상 카본(평균 입경 5 ㎛, 진구도 95))(닛본 카본사 제조)2) Carbon a: MC0520 (Spherical carbon (average particle diameter 5 micrometers, sphericity 95)) (made by Nippon Carbon Corporation)

3) 카본 b: MC1020(구상 카본(평균 입경 10 ㎛, 진구도 93))(닛본 카본사 제조)3) Carbon b: MC1020 (spherical carbon (average particle diameter 10 micrometers, sphericity 93)) (made by Nippon Carbon Co., Ltd.)

4) 카본 c: #4500(도전성 카본(평균 입경 0.04 ㎛))(도카이 카본사 제조)4) Carbon c: # 4500 (Conductive carbon (average particle diameter 0.04 µm)) (Tokai Carbon Co., Ltd.)

5) 첨가제 a: LMS100(입경 6 ㎛)(후지 탈크사 제조)5) Additive a: LMS100 (particle size 6 micrometers) (made by Fuji Talc)

6) 첨가제 b: 사일로포빅 603(입경 6.7 ㎛)(후지 실리시아사 제조)6) Additive b: Silopobic 603 (particle diameter 6.7 micrometers) (made by Fuji Silysia)

7) 첨가제 c: 스테아르산나트륨(닛본 유시사 제조)7) Additive c: Sodium stearate (made by Nippon Yushi)

8) 첨가제 d: 프락셀 240(폴리카프로락톤디올(수 평균 분자량 4000))(다이셀 가가꾸사 제조)8) Additive d: Fraxel 240 (polycaprolactone diol (number average molecular weight 4000)) (made by Daicel Chemical Industries, Ltd.)

9) 첨가제 e: 카르보디라이트 V-07(닛신보사 제조)9) Additive e: carbodilite V-07 (made by Nisshinbo Corporation)

10) 레벨링제: BYK-354(빅케미 재팬사 제조)10) Leveling agent: BYK-354 (manufactured by Big Chemi Japan Co., Ltd.)

11) ECA: 에틸카르비톨아세테이트11) ECA: Ethyl Carbitol Acetate

12) BCA: 부틸셀로솔브아세테이트12) BCA: Butyl Cellosolve Acetate

비교예 1Comparative Example 1

도전성 미립자로서 MC0520(닛본 카본(주) 제조) 150부, 수지로서 상기에서 합성한 폴리우레탄 수지 용액 (d)(용제 조성(질량)비: 에틸카르비톨아세테이트/부틸셀로솔브아세테이트=75/25) 400부(고형분 25 %), 레벨링제로서의 BYK-354(빅케미 재팬(주)) 6.0부를 첨가하고, 추가로 에틸카르비톨아세테이트 75부, 부틸셀로솔브아세테이트 25부를 가하고 충분히 프리믹스하였다. 이어서, 냉동 3축 롤로 3회 분산하여 도전성 페이스트를 얻었다. 얻어진 도전성 페이스트는 약간 흑색이고 점성이 양호하였다. 비저항은 4.8 Ω·cm였다. PTC 특성은 2.7배로 불량이었다.Polyurethane resin solution (d) (solvent composition (mass) ratio synthesize | combined above as 150 parts of MC0520 (made by Nippon Carbon Co., Ltd.) as electroconductive fine particles) (solvent composition (mass) ratio: ethyl carbitol acetate / butyl cellosolve acetate = 75/25) ) 400 parts (solid content 25%) and 6.0 parts of BYK-354 (Bikkemi Japan Co., Ltd.) as a leveling agent were added, 75 parts of ethyl carbitol acetate and 25 parts of butyl cellosolve acetate were added, and the mixture was sufficiently premixed. Subsequently, it disperse | distributed 3 times with the frozen triaxial roll and obtained the electrically conductive paste. The obtained electrically conductive paste was slightly black and was viscous. The specific resistance was 4.8 Ωcm. The PTC characteristic was defective at 2.7 times.

비교예 2 내지 7Comparative Examples 2 to 7

비교예 1과 마찬가지로 평가하였다. 결과를 표 3에 나타낸다. PTC 특성, 리턴 특성, 저장 안정성 등 실시예보다도 우수한 성능을 만족시키는 것은 아니었다. It evaluated similarly to the comparative example 1. The results are shown in Table 3. It did not satisfy the performance superior to the Example, such as a PTC characteristic, a return characteristic, and storage stability.

Figure pct00004
Figure pct00004

<산업상 이용 가능성>Industrial availability

본 발명의 도전성 페이스트는 매우 양호한 PTC 특성을 가지고, 또한 도전성, 리턴 특성, 고온시의 저항 안정성 등이 양호한 면상 발열체를 제공한다.The electrically conductive paste of this invention provides the planar heat generating body which has very favorable PTC characteristic, and is excellent in electroconductivity, a return characteristic, resistance stability at high temperature, etc.

Claims (14)

결정 융점을 가지는 폴리우레탄 수지 (I)과 도전성 입자 (II)를 포함하는 면상 발열체용 도전성 페이스트.The electrically conductive paste for planar heating elements containing polyurethane resin (I) and electroconductive particle (II) which have a crystalline melting point. 제1항에 있어서, 폴리우레탄 수지 (I)의 결정 융점이 20 내지 100 ℃인 것을 특징으로 하는 면상 발열체용 도전성 페이스트. The conductive paste for planar heating elements according to claim 1, wherein the melting point of the polyurethane resin (I) is 20 to 100 ° C. 제1항 또는 제2항에 있어서, 폴리우레탄 수지 (I)이 적어도 비정질성 성분과 결정성 성분을 반응시킨 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The conductive paste for planar heating elements according to claim 1 or 2, wherein the polyurethane resin (I) reacts at least an amorphous component with a crystalline component. 제1항 또는 제2항에 있어서, 폴리우레탄 수지 (I)이 적어도 비정질성 폴리에스테르폴리올, 융점 5 내지 120 ℃의 결정성 폴리에스테르폴리올, 폴리이소시아네이트를 주된 성분으로서 반응시킨 것을 특징으로 하는 면상 발열체용 도전성 페이스트. The planar heating element according to claim 1 or 2, wherein the polyurethane resin (I) reacts at least an amorphous polyester polyol, a crystalline polyester polyol having a melting point of 5 to 120 ° C, and a polyisocyanate as main components. Conductive paste. 제1항 내지 제4항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I)이 추가로 우레아 결합을 함유하고 있는 결정성 폴리우레탄우레아인 것을 특징으로 하는 면상 발열체용 도전성 페이스트. The conductive paste for planar heating elements according to any one of claims 1 to 4, wherein the polyurethane resin (I) is a crystalline polyurethane urea further containing a urea bond. 제5항에 있어서, 결정성 폴리우레탄우레아의 우레아 결합량이 10 내지 1000 eq/ton의 범위인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The conductive paste for a planar heating element according to claim 5, wherein the urea bonding amount of the crystalline polyurethane urea is in a range of 10 to 1000 eq / ton. 제1항 내지 제6항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I)이 용제에 가용인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The conductive paste for planar heating elements according to any one of claims 1 to 6, wherein the polyurethane resin (I) is soluble in a solvent. 제4항 내지 제7항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I)을 구성하는 결정성 폴리에스테르폴리올의 수 평균 분자량이 1200 내지 20000의 범위에 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The number average molecular weight of the crystalline polyester polyol which comprises a polyurethane resin (I) exists in the range of 1200-20000, The electrically conductive paste for planar heating elements in any one of Claims 4-7 characterized by the above-mentioned. 제4항 내지 제8항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I)을 구성하는 결정성 폴리에스테르폴리올이, 비정질성 폴리에스테르폴리올 100 중량부에 대하여 85 내지 300 중량부 공중합되어 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The crystalline polyester polyol constituting the polyurethane resin (I) is copolymerized with 85 to 300 parts by weight based on 100 parts by weight of the amorphous polyester polyol according to any one of claims 4 to 8. A conductive paste for planar heating elements to be used. 제4항 내지 제9항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I)을 100 중량부로 했을 때에, 추가로 결정성 폴리에스테르폴리올이 50 중량부 이하 함유되어 있는 것을 특징으로 하는 면상 발열체용 도전성 페이스트.The conductive material for planar heating element according to any one of claims 4 to 9, wherein when the polyurethane resin (I) is 100 parts by weight, 50 parts by weight or less of the crystalline polyester polyol is further contained. Paste. 제1항 내지 제10항 중 어느 한 항에 있어서, 폴리우레탄 수지 (I) 100 중량부에 대하여, 도전성 입자 (II)가 40 내지 400 중량부의 비율로 포함되는 면상 발열체용 도전성 페이스트. The electrically conductive paste for planar heating elements in any one of Claims 1-10 with which electroconductive particle (II) is contained in the ratio of 40-400 weight part with respect to 100 weight part of polyurethane resins (I). 제1항 내지 제11항 중 어느 한 항에 있어서, 도전성 입자 (II)가 구상 카본이고, 그의 평균 입경이 0.1 내지 30 ㎛인 것을 특징으로 하는 면상 발열체용 도전성 페이스트.Electroconductive particle (II) is spherical carbon, and the average particle diameter is 0.1-30 micrometers, The electrically conductive paste for planar heating elements in any one of Claims 1-11 characterized by the above-mentioned. 제1항 내지 제12항 중 어느 한 항에 기재된 면상 발열체용 도전성 페이스트를 이용한 인쇄 회로.The printed circuit using the electrically conductive paste for planar heating elements in any one of Claims 1-12. 제1항 내지 제12항 중 어느 한 항에 기재된 면상 발열체용 도전성 페이스트를 이용한 면상 발열체.The planar heating element using the electrically conductive paste for planar heating elements in any one of Claims 1-12.
KR1020107022290A 2008-04-07 2009-04-06 Conductive paste for planar heating element, and printed circuit and planar heating element using same KR101601996B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-099472 2008-04-07
JP2008099472 2008-04-07

Publications (2)

Publication Number Publication Date
KR20100133407A true KR20100133407A (en) 2010-12-21
KR101601996B1 KR101601996B1 (en) 2016-03-17

Family

ID=41161873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107022290A KR101601996B1 (en) 2008-04-07 2009-04-06 Conductive paste for planar heating element, and printed circuit and planar heating element using same

Country Status (3)

Country Link
JP (1) JP5370357B2 (en)
KR (1) KR101601996B1 (en)
WO (1) WO2009125740A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148124A2 (en) * 2011-04-26 2012-11-01 (주)피엔유에코에너지 Plane heating element composition with specific surface area having specific resistant component, and plane heating element using same
WO2012148126A2 (en) * 2011-04-26 2012-11-01 (주)피엔유에코에너지 Plane heating element composition having specific temperature coefficient of resistance and plane heating element using same
KR101437825B1 (en) * 2012-08-13 2014-09-05 주식회사 부일하우징 The manufacturing method of TPU coated Plane heater element.

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI534165B (en) * 2011-10-24 2016-05-21 迪愛生股份有限公司 Moisture-curable polyurethane hot-melt resin composition, adhesive and article
EP3008129A1 (en) * 2013-06-14 2016-04-20 Basf Se Heatable molded articles made from electrically conductive thermoplastic polyurethane
CN105637977A (en) * 2013-11-22 2016-06-01 东洋德来路博株式会社 Carbon heating composition and carbon heating element
WO2022215486A1 (en) * 2021-04-09 2022-10-13 東洋紡株式会社 Electroconductive composition
CN118202001A (en) * 2021-10-22 2024-06-14 东洋纺株式会社 Conductive composition
EP4421124A1 (en) * 2021-10-22 2024-08-28 Toyobo Co., Ltd. Electroconductive composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671923B2 (en) * 1987-10-21 1997-11-05 隆 太田 Conductive heating element and manufacturing method thereof
JP3979188B2 (en) * 2002-06-06 2007-09-19 松下電器産業株式会社 Heating element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012148124A2 (en) * 2011-04-26 2012-11-01 (주)피엔유에코에너지 Plane heating element composition with specific surface area having specific resistant component, and plane heating element using same
WO2012148126A2 (en) * 2011-04-26 2012-11-01 (주)피엔유에코에너지 Plane heating element composition having specific temperature coefficient of resistance and plane heating element using same
WO2012148124A3 (en) * 2011-04-26 2013-01-03 (주)피엔유에코에너지 Plane heating element composition with specific surface area having specific resistant component, and plane heating element using same
WO2012148126A3 (en) * 2011-04-26 2013-01-31 (주)피엔유에코에너지 Plane heating element composition having specific temperature coefficient of resistance and plane heating element using same
KR101437825B1 (en) * 2012-08-13 2014-09-05 주식회사 부일하우징 The manufacturing method of TPU coated Plane heater element.

Also Published As

Publication number Publication date
WO2009125740A1 (en) 2009-10-15
KR101601996B1 (en) 2016-03-17
JPWO2009125740A1 (en) 2011-08-04
JP5370357B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
KR101601996B1 (en) Conductive paste for planar heating element, and printed circuit and planar heating element using same
KR101223408B1 (en) Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
KR20100015580A (en) Conductive paste, and printed circuit board and planar heat generating body each using the same
JP5751509B2 (en) Conductive paste, conductive film, electric circuit and touch panel
JP6767089B2 (en) Conductive pastes, conductive coatings, conductive circuits, conductive laminates and touch panels
KR20150037861A (en) Conductive paste for laser etching, conductive thin film, and conductive laminate
TW200916314A (en) Surface protective film
KR101186755B1 (en) Resin compositions with high vibration damping ability
JP2008171828A (en) Conductive paste, and printed circuit using it
JP6343903B2 (en) Conductive paste and printed circuit using the same
JP4547623B2 (en) Conductive paste
JP6303367B2 (en) Conductive paste, conductive film and touch panel
JPH01159905A (en) Conductive paste
JP2019119841A (en) Laminate
JP5398456B2 (en) Polyester resin composition, adhesive comprising the polyester resin composition, and laminate using the adhesive
JP2005259546A (en) Conductive paste for rotary screen printing apparatus and conductor circuit using the same
JP2006252807A (en) Conductive paste and laminate using this
JP2008269876A (en) Conductive paste, printed circuit using the same, and flat heating body
JP3790869B2 (en) Conductive paste for metal plating
JP2006260818A (en) Conductive paste and printed circuit using the same
JP4573089B2 (en) Conductive paste and printed circuit using the same
JP5061608B2 (en) Coating composition, laminate and flexible flat cable
JP4800609B2 (en) Conductive paste, conductive sheet and method for producing the same
JP7545133B2 (en) PTC resistors and sheet heating elements
JP2002008441A (en) Conductive paste

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190218

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 5