KR20100130711A - Induced sudden charging system for electric rail car - Google Patents

Induced sudden charging system for electric rail car Download PDF

Info

Publication number
KR20100130711A
KR20100130711A KR1020090049370A KR20090049370A KR20100130711A KR 20100130711 A KR20100130711 A KR 20100130711A KR 1020090049370 A KR1020090049370 A KR 1020090049370A KR 20090049370 A KR20090049370 A KR 20090049370A KR 20100130711 A KR20100130711 A KR 20100130711A
Authority
KR
South Korea
Prior art keywords
vehicle
power supply
section
induction
electric rail
Prior art date
Application number
KR1020090049370A
Other languages
Korean (ko)
Other versions
KR101039766B1 (en
Inventor
이병송
최성규
한경희
박찬배
이형우
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020090049370A priority Critical patent/KR101039766B1/en
Publication of KR20100130711A publication Critical patent/KR20100130711A/en
Application granted granted Critical
Publication of KR101039766B1 publication Critical patent/KR101039766B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/02Details
    • B60M1/10Arrangements for energising and de-energising power line sections using magnetic actuation by the passing vehicle
    • B60M1/106Arrangements for energising and de-energising power line sections using magnetic actuation by the passing vehicle by track-mounted magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PURPOSE: An induced charging system for an electric rail vehicle is provided to minimize the driving sequence errors of the system due to a detection error by varying sensing steps for converting sections. CONSTITUTION: An electric rail vehicle(10) includes a current collector(11) for performing an induced charging process. A detecting part measures the location of the electric rail vehicle. An electric power supplying section(20) is installed to the overall moving region of the electric rail vehicle. The electric power supplying section includes a section converting switch(21) which is separately turned on and turned off.

Description

궤도차량용 유도급전시스템{Induced Sudden Charging System for Electric Rail Car}Induced Sudden Charging System for Electric Rail Car}

본 발명은 전력을 동력원으로 하는 전동차의 유도전력전송 급전시스템에 관한 것으로, 보다 상세하게는 전력충전을 필요로 하는 전동차가 정차 시 또는 주행 중에 각 역사와 주행선로 상에 구비된 충전베이와 충전섹션에서 물리적 접촉 없이 급속 충전을 수행할 수 있도록 한 궤도차량의 유도급전시스템에 관한 것이다.The present invention relates to an electric power feeding system for induction power transmission of an electric vehicle using power as a power source, and more particularly, a charging bay and a charging section provided on a history and a driving line when an electric vehicle requiring electric power charging is stopped or driving. The present invention relates to an induction feeding system for a tracked vehicle that enables fast charging without physical contact.

일반적으로 전기차량은 전기를 전력공급원으로 하여 운행하는 차량을 의미하며, 고전압 전류가 흐르고 있는 가선으로부터 전기에너지를 공급받아 운행하는 전동차(Electric Rail Car)와, 차량 자체에 전력공급원으로 충전이 가능한 배터리를 탑재하고 탑재된 배터리에서 공급되는 전력을 이용하여 운행하는 전기자동차로 구분된다.In general, an electric vehicle refers to a vehicle that operates by using electricity as a power source, an electric rail car that receives electric energy from a live wire flowing with a high voltage current, and a battery that can be charged as a power source to the vehicle itself. It is divided into an electric vehicle that runs by using the power supplied from the mounted battery.

전동차의 경우 가선에 의해 정해진 궤도를 따라 이동하게 되는데, 집전장치로 상부에 팬터그래프(Pantograph)를 구비하고 스프링 또는 압축공기의 힘으로 가 선이 밀착되도록 밀어 올리는 가공전차선 방식과, 주행용 궤도의 상면 또는 측면에 설치된 독립적인 급전선으로부터 제3궤조 집전장치를 통해 수전하는 제3궤조식으로 나눌 수 있다.In the case of an electric car, it moves along a track defined by a wire. A pantograph is provided at the top as a current collector, and a overhead train line system that pushes up the wire to be in close contact with the force of a spring or compressed air, and an upper surface of a driving track Alternatively, it may be divided into a third rail type receiving power through the third rail current collector from an independent feeder installed on the side.

가공전차선 방식은 팬터그래프와 트롤리선(Trolley Line), 이와 접촉하는 습동판과 지지하는 구조체, 복원스프링, 압상장치 등을 포함하여 구성되며, 제3궤조식은 집전자의 일정 압착력을 유지하기 위해 별도의 스프링을 필요로 하고 승강장, 터널, 상하행 주행에 따라 설비의 위치가 서로 반대가 되므로 양측으로 집전자가 설치되어야 하는 등 설비 구성이 복잡하고 사용에 따른 소음이 발생한다.The overhead tramline system includes a pantograph and a trolley line, a sliding plate in contact with the support plate, a supporting structure, a restoring spring, and a pressing device, and the third trajectory type is used to maintain a constant pressing force of the current collector. It requires a spring and the location of the facilities is reversed according to the platform, tunnel, and up and down driving, so the current collector must be installed on both sides.

또한, 이러한 종래의 전동차 시스템의 경우 집전설비의 물리적 접촉을 바탕으로 집전 및 급전시스템이 구성되기 때문에 전동차, 특히 전기철도의 경우 집전성능 확보를 위한 압상력 제어 기법, 집전장치의 복잡한 구성 및 고속화에 따라 빈발하는 이선으로 인한 전력품질의 저하, 습동판의 마모, 소음문제, 트롤리선의 변형에 따른 파손 절단의 우려 등이 있으므로 장기 사용에 따른 유지보수에 많은 시간과 비용이 소요되게 된다.In addition, in the conventional electric vehicle system, since the current collecting and feeding system is configured based on the physical contact of the current collecting facility, the rolling force control technique for securing the current collecting performance in the electric vehicle, especially the electric railway, and the complicated configuration and speeding up of the current collecting device. Accordingly, there is a risk of power quality deterioration due to frequent two wires, sliding of a sliding plate, noise problems, and a breakage of cutting due to the deformation of a trolley wire.

또한, 종래의 전동차 시스템은 전차선이 전 노선에 걸쳐 설치되고 직류급전방식은 고저항 지락에 대한 보호장치를 필요로 하며, 교류급전방식은 절연 이격거리 확보를 위해 터널 및 차량의 크기가 커지고 통신유도장해에 대한 노출영역이 확대되는 등의 문제점이 있다.In addition, in the conventional electric vehicle system, the tram line is installed all over the line, and the DC power supply method requires a protection device against a high resistance ground fault, and the AC power supply method increases the size of the tunnel and the vehicle to secure the insulation separation distance, and induces communication There are problems such as an increase in the exposure area to the solution.

이와 같은 문제점을 해결하고자 유도전력에 의한 비접촉방식을 이용하여 전력을 공급받는 방식이 시도되고 있다.In order to solve such a problem, a method of receiving power using a non-contact method by inductive power has been attempted.

비접촉 유도급전 시스템은 일정 간격의 공극을 사이에 두고 비접촉으로 급전을 하는 방식으로서, 이동체의 전 이동 영역에 걸쳐 차량의 길이보다 긴 전원공급측 시스템을 설치하여 공극이나 집전자성체의 형상에 따라 결정되는 인덕턴스에 매칭되는 공진주파수의 전원을 지상에 매설된 전원공급권선에 인가함으로써, 에너지가 비접촉 상태에서 이동하고 있는 집전측으로 전송되는 방식이다.Non-contact induction power supply system is a non-contact power supply with a gap between the gaps, the inductance is determined according to the shape of the air gap or the current collector by installing a power supply side system longer than the length of the vehicle over the entire moving area of the moving body By applying the power of the resonant frequency matched to the power supply winding buried in the ground, the energy is transmitted to the current collector side moving in a non-contact state.

그런데, 반도체 제조공정용 등 기존의 유도급전 방식과 같은 시스템은 도 1고 같이, 전원공급측이 지상에 매립되어 있어 고주파 전원공급권선(급전측)(2)이 길게 분포되도록 설치되므로 그 위를 운행하는 자동화 설비 이동체(집전측)(1)로 완전하게 덮여 있지 않은 부분에서는 고주파 전자장에 노출되게 되어 있다.However, a system such as a conventional induction feeding method such as a semiconductor manufacturing process is installed in such a way that the high frequency power supply winding (feeding side) 2 is distributed long, as shown in FIG. The part which is not completely covered by the automated installation moving object (current collector side) 1 is exposed to a high frequency electromagnetic field.

또한, 이동체(1)의 집전체(1a) 대수에 따라 인덕턴스(부하특성)가 달라져 인버터 전원공급 효율이 저하되는 문제점이 있으며, 고주파 인버터를 구현시 인버터에 연결되는 집전체가 주행 구간이 긴 영역 전체에 걸쳐 있어, 불필요하게 인버터 용량이 커져야 하거나, 대수가 증가하는 등 동일한 급전성능대비 최초 설비비가 낭비될 우려가 있다.In addition, the inductance (load characteristic) is changed according to the number of current collectors 1a of the movable body 1, thereby degrading the power supply efficiency of the inverter, and when the high frequency inverter is implemented, the current collector connected to the inverter has a long running section. Throughout the whole, there is a fear that the initial equipment cost compared to the same power supply performance will be wasted, such as an unnecessary increase in the inverter capacity or an increase in the number of units.

이와 같이, 전자장의 노출 한계가 시스템 요구사항에 반드시 포함되어 있는 궤도차량의 경우 기존 방식의 유도급전 시스템에 전원 용량만을 더 증가하여 적용하면, 궤도차량과 같은 교통시스템으로서의 환경 안정성 면에서 적용이 불가능하고, 차량의 위치만을 감지하여 급전동작을 시작하면 금속체나 자성체를 잘못 감지하여 급전 시퀀스의 오류가 발생할 확률이 있으므로 고주파 전자장에 의한 금속의 유도가열 등의 위험에 노출될 문제가 있다.As such, in the case of a tracked vehicle where the exposure limit of the electromagnetic field is necessarily included in the system requirements, if the power supply capacity is further increased to the conventional induction feeding system, it cannot be applied in terms of environmental stability as a transportation system such as a tracked vehicle. In addition, when the power supply operation is started by detecting only the position of the vehicle, there is a possibility that an error of the power supply sequence occurs due to incorrect detection of a metal body or a magnetic body, thereby exposing a risk such as induction heating of metal by a high frequency electromagnetic field.

더불어, 고주파 인버터에 연결되는 집전체가 주행 구간이 긴 영역 전체에 걸쳐 있어 불필요하게 인버터 용량이 커져야 하거나, 대수가 증가하는 등 동일한 급전성능대비 최초 인버터 시스템 설비비가 낭비될 우려가 있다.In addition, since the current collector connected to the high frequency inverter is over an entire region with a long running section, the inverter capacity may be unnecessarily increased or the number of units may increase.

본 발명은 이러한 문제점을 해소하기 위한 것으로, 본 발명의 과제는 섹션 전환기능을 부가한 유도급전기술을 궤도차량에 이용하여 에너지손실 및 고주파 전자장의 위험을 방지하고, 섹션 전환을 위한 감지(sensing) 단계를 다양화함으로써, 궤도 위의 불순물(도전체 혹은 자성체)에 의한 감지 오류로 인한 급전시스템의 가동 시퀀스 오류를 최소화하여 섹션 전환의 신뢰성을 확보하며, 섹션 감지 on/off 제어와 급전에 필요한 인버터 시스템 설비를 최소화하여 인버터별 급전영역밀도를 높임으로서 급전 효율의 증대가 가능한 궤도차량용 유도급전시스템을 구현하는 것이다.The present invention is to solve this problem, the object of the present invention is to use the induction feeding technology with the section switching function in the track vehicle to prevent the risk of energy loss and high-frequency electromagnetic field, the sensing (sensing) for section switching By diversifying the stages, reliability of section switching is ensured by minimizing operation sequence errors of the feeding system due to detection errors caused by impurities (conductors or magnetic materials) on tracks, and the inverters required for section detection on / off control and feeding By minimizing the system equipment, the feed area density of each inverter is increased to implement the induction feed system for track vehicles that can increase the feed efficiency.

상술한 과제를 해결하기 위하여, 유도급전용 집전체를 구비한 궤도차량; 상기 궤도차량의 위치를 측정하는 감지부; 상기 궤도차량의 이동영역 전체 구간에 설치되되 차량의 길이보다 짧은 길이로 구획되는 다수의 전원공급섹션을 포함하는 궤도차량용 유도급전시스템이 제공된다.In order to solve the above problems, a track vehicle having a current collector for induction supply; A detector for measuring a position of the tracked vehicle; Provided is an induction power supply system for a track vehicle, which is installed in the entire region of the track vehicle and includes a plurality of power supply sections which are partitioned into a length shorter than the length of the vehicle.

이상에서 설명한 바와 같이, 본 발명은 유도급전기술을 기본으로 하여 차량길이에 비해 짧은 섹션 전환기능을 부가한 전원공급측을 구성하고, 고주파 전원공 급용 인버터시스템 대수를 최소화함으로써 유도급전설비의 에너지 집적화를 극대화하고, 섹션 전환을 위한 감지단계의 다양화를 위한 선 차량감지, 후 인덕턴스 감지방식을 채택하여 에너지손실 및 고주파 전자장의 위험이 최소화되는 효과를 제공한다.As described above, the present invention constitutes a power supply side with a short section switching function compared to the vehicle length based on the induction power supply technology, and minimizes the number of inverter systems for high frequency power supply, thereby integrating energy induction power supply facilities. It provides the effect of minimizing the risk of energy loss and high frequency electromagnetic field by adopting the line vehicle detection and the post inductance detection method for maximizing and diversifying the detection stage for section switching.

이하에서는, 본 발명에 의한 궤도차량용 유도급전시스템의 바람직한 실시예를 첨부 도면을 참고하여 설명한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the induction power supply system for track vehicles according to the present invention.

본 발명에 의한 궤도차량용 센셕 전환 비접촉식 유도급전시스템은 일정 간격의 공극을 사이에 두고 비접촉으로 급전을 하는 방식으로서, 도 2 내지 도 4와 같이 집전체(11)를 구비한 궤도차량(10), 상기 궤도차량의 위치를 측정하는 감지부(도시 생략), 상기 궤도차량의 이동역역 전체 구간에 설치되는 전원공급섹션(20)을 포함한다.Sensing switching non-contact induction feeding system for a track vehicle according to the present invention is a method of feeding in a non-contact with a gap of a certain interval between, the track vehicle 10 having a current collector 11, as shown in Figs. A sensing unit (not shown) for measuring the position of the tracked vehicle, and a power supply section 20 is installed in the entire section of the mobile station of the tracked vehicle.

이때, 궤도차량 및 궤도차량을 감지하기 위한 감지부는 이미 공지된 기술이므로 상세한 설명은 생략한다.At this time, the track vehicle and the detector for detecting the track vehicle is already known technology, so a detailed description thereof will be omitted.

다만, 본 발명의 전원공급섹션(20)은 차량의 길이보다 짧은 길이로 이동체(궤도차량)의 전 이동 영역에 걸쳐 다수 설치되고, 각각의 전원공급섹션(20)에는 개별적으로 온/오프 전환 가능한 섹션전환스위치(21)를 구비하여 차량의 정해진 개수의 섹션 위에 완벽하게 섹션을 덮고 위치한 경우, 전원공급이 시작되어 비접촉으로 에너지를 공급받도록 구성된다.However, a plurality of power supply sections 20 of the present invention are installed over the entire moving area of the moving body (orbital vehicle) with a length shorter than the length of the vehicle, and each power supply section 20 can be individually switched on and off. When provided with a section changeover switch 21 completely covers a section on a predetermined number of sections of the vehicle, the power supply is started and configured to receive energy in a non-contact manner.

이와 같이 구성된 본 발명은, 도 3 및 도 4와 같이 전원공급섹션(20)에 비해 차량(10)의 길이가 길기 때문에, 각 섹션별 궤도차량의 집전체의 개수가 일정하게 배치되고, 이에 따른 인덕턴스(부하특성)가 일정하여 매칭되는 공진주파수의 제어가 수월해지며, 차량으로 전원이 투입되고 있는 전원공급섹션을 완전하게 덮을 수있어 고주파 자기장의 외부 노출을 차단할 수 있다.In the present invention configured as described above, since the length of the vehicle 10 is longer than that of the power supply section 20 as shown in FIGS. 3 and 4, the number of current collectors of track vehicles for each section is uniformly arranged. The constant inductance (load characteristic) makes it easy to control the matching resonant frequency, and can completely cover the power supply section that is being powered by the vehicle, thereby preventing the external exposure of the high frequency magnetic field.

이때, 전원공급섹션(20)의 급전 시작을 결정하는 전원공급제어는 2단계의 감지 시스템이 모두 만족할 경우에만 동작하게 된다. 우선, 역사나 충전 구간에 차량의 진입을 위치센서를 이용하여 감지한 후, 각 섹션마다 소신호 인덕턴스 감지기를 두어 일정 간격의 인덕터 감지가 되었을 경우에만 급전전원을 허용한다. 이에 따라 금속체나 자성체를 잘못 감지하여 급전 시퀀스의 오류로 인한 위험을 방지할 수 있는 것이다.At this time, the power supply control for determining the power supply start of the power supply section 20 is operated only when the two-stage sensing system is satisfied. First, after detecting the vehicle's entry in the history or charging section using the position sensor, a small signal inductance detector is provided in each section to allow the power supply only when the inductor is detected at a predetermined interval. Accordingly, by incorrectly detecting a metal body or magnetic material, it is possible to prevent a risk due to an error in the power feeding sequence.

이와 같이 구성된 본 발명의 유도급전시스템에 의하면, 섹션 전환기능을 부가한 유도급전기술을 궤도차량에 이용하여 에너지손실 및 고주파 전자장의 위험을 방지하고, 섹션 전환을 위한 감지(sensing) 단계를 다양화함으로써, 궤도 위의 불순물(도전체 혹은 자성체)에 의한 감지 오류로 인한 급전시스템의 가동 시퀀스 오류를 최소화하여 섹션 전환의 신뢰성을 확보하며, 섹션 감지 on/off 제어와 급전에 필요한 인버터 시스템 설비를 최소화하여 인버터별 급전영역밀도를 높임으로서 급전 효율의 증대가 가능한 궤도차량용 유도급전시스템을 구현할 수 있다.According to the induction feeding system of the present invention configured as described above, the induction feeding technology with the section switching function is used for the tracked vehicle to prevent the risk of energy loss and the high frequency electromagnetic field and to diversify the sensing stage for the section switching. This ensures the reliability of section switching by minimizing the operating sequence error of the power supply system due to the detection error caused by impurities (conductor or magnetic material) on the track, and minimizes the section detection on / off control and the inverter system equipment required for feeding. Therefore, it is possible to implement an induction feeding system for a track vehicle that can increase the feeding efficiency by increasing the feeding area density for each inverter.

도 1은 종래 기술에 의한 유도급전시스템을 도시한 개략도.1 is a schematic diagram showing an induction power supply system according to the prior art.

도 2는 본 발명에 의한 유도급전시스템을 도시한 개략도.Figure 2 is a schematic diagram showing an induction power supply system according to the present invention.

도 3은 본 발명에 의한 유도급전시스템의 섹션 전환 시퀀스를 도시한 개략도.Figure 3 is a schematic diagram showing a section switching sequence of the induction feeding system according to the present invention.

도 4는 본 발명에 의한 유도급전시스템의 섹션 전환조건을 표시한 개략도.Figure 4 is a schematic diagram showing the section switching conditions of the induction feeding system according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>

10 ; 궤도차량 11 ; 집전체10; Tracked vehicles 11; House

20 ; 전원공급섹션 21 ; 전환스위치20; Power supply section 21; Changeover switch

Claims (3)

유도급전용 집전체를 구비한 궤도차량;A tracked vehicle having a current collector for inductive feeding; 상기 궤도차량의 위치를 측정하는 감지부;A detector for measuring a position of the tracked vehicle; 상기 궤도차량의 이동영역 전체 구간에 설치되되 차량의 길이보다 짧은 길이로 구획되는 다수의 전원공급섹션을 포함하는 것을 특징으로 하는 궤도차량용 유도급전시스템.Induction feeding system for a track vehicle, characterized in that it comprises a plurality of power supply section is installed in the entire section of the moving area of the track vehicle divided into shorter than the length of the vehicle. 청구항 1에 있어서,The method according to claim 1, 상기 각각의 전원공급섹션에는 개별적으로 온/오프 전환 가능한 섹션전환스위치가 구비되는 것을 특징으로 하는 궤도차량용 유도급전시스템.Induction power supply system for a tracked vehicle, characterized in that each of the power supply section is provided with a section switch for switching on / off individually. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2, 상기 감지부는 차체의 위치를 감지하는 센서와 소신호 이용 인덕턴스 측정을 감지하는 센서가 순차적으로 적용되는 것을 특징으로 하는 궤도차량용 유도급전시스템.The sensing unit inductive feeding system for a track vehicle, characterized in that the sensor for sensing the position of the vehicle body and the sensor for detecting small signal inductance measurement is applied sequentially.
KR1020090049370A 2009-06-04 2009-06-04 Induced Sudden Charging System for Electric Rail Car KR101039766B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090049370A KR101039766B1 (en) 2009-06-04 2009-06-04 Induced Sudden Charging System for Electric Rail Car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090049370A KR101039766B1 (en) 2009-06-04 2009-06-04 Induced Sudden Charging System for Electric Rail Car

Publications (2)

Publication Number Publication Date
KR20100130711A true KR20100130711A (en) 2010-12-14
KR101039766B1 KR101039766B1 (en) 2011-06-09

Family

ID=43506924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090049370A KR101039766B1 (en) 2009-06-04 2009-06-04 Induced Sudden Charging System for Electric Rail Car

Country Status (1)

Country Link
KR (1) KR101039766B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332792B1 (en) * 2011-05-23 2013-11-25 한국과학기술원 Power Supply Method, Apparatus and Power Transmission Apparatus by Segmentation of Feeding Line

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106314187B (en) * 2016-09-14 2018-11-06 东南大学 A kind of control method of the short segmentation dynamic radio power supply system of electric vehicle
CN106208420B (en) * 2016-09-14 2018-11-16 东南大学 A kind of low fluctuation electric car of reception power is segmented dynamic radio power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626968B2 (en) 2001-08-21 2005-03-09 一路 藤岡 Power supply device
JP4525331B2 (en) * 2004-12-20 2010-08-18 日産自動車株式会社 Microwave power transmission system for vehicle and microwave power transmission device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101332792B1 (en) * 2011-05-23 2013-11-25 한국과학기술원 Power Supply Method, Apparatus and Power Transmission Apparatus by Segmentation of Feeding Line

Also Published As

Publication number Publication date
KR101039766B1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4568736B2 (en) Overhead-less transportation system and charging method thereof
KR101172715B1 (en) Charging system of stringing-less traffic system
US8827058B2 (en) Inductively receiving electric energy for a vehicle
KR100944113B1 (en) Power supply system and method for electric vehicle
KR100944188B1 (en) Electric vehicle system
US20070278059A1 (en) System For Supplying Very Low Voltage Electrical Energy For An Electrical Traction Vehicle Comprising An Onboard Store Of Energy
CN102834281B (en) For the system (contact device) of one or more electrically driven vehicle
US10406922B2 (en) Charging module for an electric vehicle
US20120085610A1 (en) Ground-based power supply system for a transportation vehicle and associated methods
KR101569189B1 (en) Wireless Power Transmission System for Tram Vehicle
JP2009284696A (en) Power feeding controller in power feeding device for moving body
DK2552734T3 (en) SYSTEM CUSTOMIZED ONE OR MORE POWERFUL VEHICLES. (Detector array)
CN105244933A (en) Externally rechargeable vehicle having an electric drive and recharging station for the vehicle
CN107709083A (en) By electric vehicle and for by conducting the component formed come the system of static charging;Related system, facility, vehicle and method
JP2009113691A (en) Ground power supply system of battery-driven type vehicle in railroad vehicle
KR20080040271A (en) 3 phase amorphous inductive power transfer system of electric railway vehicle
KR101039766B1 (en) Induced Sudden Charging System for Electric Rail Car
JP6232958B2 (en) Contactless power supply system
KR101035454B1 (en) Non-contact charging system for electric automobile
KR100797115B1 (en) Induced Sudden Charging System for Electric Rail Car
EP2459413B1 (en) Road-based support for electric vehicles
CN113141044A (en) Automatic charging system of track robot
KR101332792B1 (en) Power Supply Method, Apparatus and Power Transmission Apparatus by Segmentation of Feeding Line
KR101629166B1 (en) Power supply system for vehicle using a semiconductor switching device
KR101356030B1 (en) System for Charging And Pick-up, Collector Device And Power Supply Structure Therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee