KR20080040271A - 3 phase amorphous inductive power transfer system of electric railway vehicle - Google Patents

3 phase amorphous inductive power transfer system of electric railway vehicle Download PDF

Info

Publication number
KR20080040271A
KR20080040271A KR1020060107986A KR20060107986A KR20080040271A KR 20080040271 A KR20080040271 A KR 20080040271A KR 1020060107986 A KR1020060107986 A KR 1020060107986A KR 20060107986 A KR20060107986 A KR 20060107986A KR 20080040271 A KR20080040271 A KR 20080040271A
Authority
KR
South Korea
Prior art keywords
phase
power
vehicle
induction
electric
Prior art date
Application number
KR1020060107986A
Other languages
Korean (ko)
Inventor
이병송
한경희
이형우
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020060107986A priority Critical patent/KR20080040271A/en
Publication of KR20080040271A publication Critical patent/KR20080040271A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4241Arrangements for improving power factor of AC input using a resonant converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/46DC to AC converters with more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/30Railway vehicles

Abstract

A three-phase amorphous inductive power transfer system of an electric railway vehicle is provided to prevent a short-circuit of the electric railway vehicle such as a bimodal or a light electric railway vehicle due to physical contact by removing a feeder. A three-phase amorphous inductive power transfer system of an electric railway vehicle includes a three-phase inductive power transfer apparatus and an on-board current collector. The three-phase inductive power transfer apparatus is installed on a railway line to inductively transfer power to the electric railway vehicle by converting signal-phase power into three-phase power. The on-board current collector is installed in the electric railway vehicle to supply the power of the inductive power transfer apparatus to a motor driving unit(90) of the electric railway vehicle. The three-phase inductive power transfer apparatus is installed in an acceleration zone where the electric railway vehicle starts in a station and in another acceleration zone where the electric railway vehicle starts after a stop by a signal.

Description

전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템{3 PHASE AMORPHOUS INDUCTIVE POWER TRANSFER SYSTEM OF ELECTRIC RAILWAY VEHICLE}Three phase amorphous induction feeding system for electric railroad vehicle {3 PHASE AMORPHOUS INDUCTIVE POWER TRANSFER SYSTEM OF ELECTRIC RAILWAY VEHICLE}

도 1은 본 발명에 따른 유도 급전 설비시스템의 구성도,1 is a configuration diagram of an induction power supply system according to the present invention,

도 2는 도 1의 정차형 충전부와 주행형 충전부의 설치위치를 설명하기 위한 도면,2 is a view for explaining the installation position of the stop charging part and the driving type charging part of FIG.

도 3은 본 발명에 따라 지상에 설치되는 3상 유도급전장치와 차상에 설치되는 차상 집전장치의 상세구성도,3 is a detailed configuration diagram of a three-phase induction feeder installed on the ground and a vehicle current collector installed on the vehicle according to the present invention;

도 4는 본 발명에 따른 배터리부의 상세구성도를 나타낸다.Figure 4 shows a detailed configuration of the battery unit according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 -- 정차형 충전부, 20 -- 주행용 충전부,10-stop charging part, 20-driving charge part,

31,32 -- 단상 급전라인, 40 -- 전력변환장치,31,32-single-phase feed line, 40-power converter,

41 -- 역률개선회로, 50 -- 아몰퍼스 유도변압부,41-power factor correction circuit, 50-amorphous induction transformer,

51, 61 -- 심아몰퍼스 철, 52a,52b,52c -- 코일,51, 61-core iron, 52a, 52b, 52c-coil,

53 -- 실드스크린, 60 -- 아몰퍼스 집전장치,53-shield screen, 60-amorphous current collector,

62a,62b,62c -- 코일, 70 -- 공진형 컨버터,62a, 62b, 62c-coil, 70-resonant converter,

80 -- 배터리부.80-Battery compartment.

본 발명은 전기 철도 차량 노선 내에 설치되는 3상 아몰퍼스 유도 급전 설비 시스템에 관한 것으로, 더욱 상세하게는 전기 철도 차량의 급전시스템에서 급전선을 제거하여 물리적 접촉에 의한 급전선의 모든 사고 위험을 제거하면서도 급전 효율을 극대화할 수 있는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템에 관한 것이다.The present invention relates to a three-phase amorphous induction feeder system installed in an electric rail vehicle route, and more particularly, by removing the feeder from the electric feeder system of the electric railroad, eliminating all risks of accidents of the feeder due to physical contact. It relates to a three-phase amorphous induction power supply system for an electric railway vehicle that can maximize the.

기존 전기철도시스템, 예컨대 TRAM·노면전차, 경전철, 바이모달(Bimodal;버스철), BRT(Bus Rapid Transit;간선급행버스) 등의 전기철도차량 시스템은 차량에 설치된 집전 설비(팬터그래프, 집전자)와 급전용 전차선(혹은 제3궤조)의 물리적 접촉을 바탕으로, 집전 및 급전시스템이 구성되어 왔으며, 이러한 이유로 유지보수가 불가피하며, 접촉식 집전장치(판토그래프 및 제3궤조 방식)에 관련된 제어 설비 구성이 복잡하다Existing electric rail systems such as TRAMs, streetcars, light rails, bimodal buses, and bus rapid transit buses, such as BRT (Bus Rapid Transit), are used in current collectors (pantographs, current collectors) installed in vehicles. On the basis of the physical contact of the electric power supply line (or the third rail) with the power supply, the current collector and the power supply system have been constructed, and for this reason, maintenance is inevitable, and the control related to the contact current collector (pantograph and the third rail). Complex configuration

이와 같은 전기철도시스템의 경우, 전차선이 전 노선에 걸쳐 설치되고, 직류급전방식의 경우, 고저항 지락에 대한 보호장치가 필요하며, 교류급전방식의 경우에도, 절연 이격거리 확보를 위해 터널 및 차량의 크기가 커지는 점, 그리고 통신유도장해에 대한 노출 영역이 확대되는 문제점을 가지고 있다.In the case of such an electric railway system, a tram line is installed over all routes, and in the case of a DC power supply system, a protection device against a high resistance ground is required.In the case of an AC power supply system, a tunnel and a vehicle are required to secure an insulation separation distance. Has a problem that the size of M is increased and the area of exposure to communication induction obstacles is enlarged.

이러한 이유로 종래의 단상 유도전력 급전 시스템의 경우, 중소형 전기 철도 시스템 이상의 규모를 요구하는 일반철도 시스템의 급전 전력량을 공급하는데 한계가 있다. For this reason, in the case of the conventional single-phase induction power supply system, there is a limit to supply the power supply of the general railway system that requires more than the small and medium sized electric railway system.

보통 집전장치의 재질을 페라이트나, 기존 적층된 철심을 사용하였는데, 유도급전방식의 특성상 수~수십 kHz의 주파수를 사용하므로 집전장치의 재질은 고주파수에 의한 손실을 최소화하는 설계가 필요하다.In general, the material of the current collector is made of ferrite or a conventionally stacked iron core. Due to the characteristics of the induction feeding method, a frequency of several to several tens of kHz is used, so the material of the current collector needs to be designed to minimize the loss caused by the high frequency.

따라서 종래의 급전시스템에서는 급전장치와 급전선간 물리적 접촉으로 인한 유지보수의 문제가 발생되고, 집전성능 확보를 위한 압상력 제어 기법 및 집전장치의 복잡한 구성과 소음문제, 이선 등으로 인한 전력품질이 저하되며, 지락사고를 대비한 보호설비 및 절연이격거리 확보를 위한 터널, 차량크기의 증가를 요구할 뿐만 아니라, 유도급전 시스템을 적용하는 경우에는 일반 전기 철도 차량의 요구 전력량을 충당하기 위해 전력량 증가가 요구되는 등의 문제점이 있다.Therefore, in the conventional power supply system, there is a problem of maintenance due to the physical contact between the power supply device and the power supply line, and the power quality deteriorates due to the complex configuration of the current collector and the noise problem, and the fault of the current collector. In addition to increasing the size of tunnels and vehicles to secure protection facilities and insulation distances for ground faults, the application of an induction feeding system requires an increase in the amount of power to meet the required power of general electric rail vehicles. There is a problem such as being.

본 발명은 상기한 제반 문제점을 개선하기 위하여 발명한 것으로, 차량이 역사에서 출발하는 가속구간, 신호 등에 의한 정차시에서 출발하는 가속구간 등, 전기차량이 주행을 위해 대부분의 에너지를 소비하는 구간에서 유도급전방식에 의거하여 단시간에 충전할 수 있도록 함과 아울러 최대집전/급전의 효율을 극대화할 수 있도록 된 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템을 제공하고자 함에 발명의 목적이 있다.The present invention has been invented to improve the above-mentioned problems, and in a section in which an electric vehicle consumes most of its energy for driving, such as an acceleration section starting from a stop at a history, a signal, etc. An object of the present invention is to provide a three-phase amorphous induction power supply system for an electric railway vehicle that can be charged in a short time based on an induction power supply method and maximize the efficiency of maximum current collection / feeding.

상기한 목적을 실현하기 위한 본 발명의 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템은, 단상전원을 3상 전원으로 변환하여 전기차량에 유도급전할 수 있도록 선로에 설치되는 3상 유도급전장치와, 상기 유도급전장치의 전력을 유도방식으로 수전하여 전기차량의 모터구동부로 공급할 수 있도록 차량에 설치되는 차상 집전장치로 이루어짐을 특징으로 한다.The three-phase amorphous induction power supply system for an electric railway vehicle of the present invention for realizing the above object is a three-phase induction power supply device which is installed on the line to convert the single-phase power supply to the three-phase power supply to induction power supply to the electric vehicle, and Characterized in that the in-vehicle current collector is installed in the vehicle to receive the electric power of the induction feeder in an induction method so that it can be supplied to the motor drive unit of the electric vehicle.

상기 3상 유도급전장치는 차량이 역사에서 출발하는 가속구간, 신호 등에 의한 정차시에서 출발하는 가속구간에 설치됨을 특징으로 한다.The three-phase induction feeding device is characterized in that the vehicle is installed in the acceleration section starting when the vehicle stops due to the acceleration section starting from the history.

상기 3상 유도급전장치는 상기 차상 집전장치에서 전력을 집전받는 상황에 따라 달라지는 역률분을 보상하는 역률개선회로, 인버터 콘트롤러, 3 상의 교류전원을 발생시키는 제1, 제2, 제3 인버터, 그리고 3상 유도방식의 급전을 위한 컨덕터로 이루어짐을 특징으로 한다.The three-phase induction power supply device is a power factor improvement circuit for compensating power factor changes according to a situation in which power is collected in the onboard current collector, an inverter controller, first, second, third inverters for generating three-phase AC power, and It is characterized by consisting of a conductor for three-phase induction feeding.

상기 차상 집전장치는 3상 유도방식의 아몰퍼스 집전장치, 유도된 전력의 누설 및 무효전력분을 보상할 수 있는 공진형 컨버터, 상기 공진형 컨버터에 각각 병렬로 연결되는 것으로, 상기 아몰퍼스 집전장치에서 수전된 전력을 충전하는 배터리부와 전기차량의 주행용 모터의 구동을 위한 모터구동부로 이루어짐을 특징으로 한다.The in-vehicle current collector is a three-phase induction amorphous current collector, a resonant converter capable of compensating for leakage of induced power and reactive power, and the resonant converter are connected in parallel, respectively, in the amorphous current collector Characterized in that consisting of a battery unit for charging the electric power and the motor driving unit for driving the driving motor of the electric vehicle.

상기 배터리부는 수전된 전력을 충전하는 배터리, 고밀도의 에너지 방전이 가능한 울트라 캐패시터, 상기 배터리와 울트라 캐패시터의 출력을 선택하여 소정 직류 전압으로 변환하여 출력하는 양방향 DC-DC 컨버터, 상기 배터리와 울트라 캐 패시터 및 양방향 DC-DC 컨버터의 동작을 제어하는 EMS 콘트롤러로 이루어짐을 특징으로 한다.The battery unit includes a battery for charging power received, an ultracapacitor capable of high-density energy discharge, a bidirectional DC-DC converter for selecting an output of the battery and the ultracapacitor and converting the output into a predetermined DC voltage, and outputting the battery and the ultracapacitor. It features an EMS controller that controls the operation of the sheeter and the bidirectional DC-DC converter.

이하 본 발명의 바람직한 일실예에 대한 구성 및 작용을 예시도면에 의거하여 상세히 설명한다.Hereinafter, the configuration and operation of the preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 유도 급전 설비시스템의 구성도를 나타내고, 도 2는 도 1의 정차형 충전부와 주행용 충전부의 설치위치를 설명하기 위한 도면을 각각 나타낸다. 이하에서 설명되는 전기차량은 TRAM, 노면전차, 경전철, 바이모달(Bimodal;버스철), BRT(Bus Rapid Transit;간선급행버스) 등을 나타낸다.1 is a configuration diagram of an induction power supply facility system according to the present invention, Figure 2 is a view for explaining the installation position of the stationary charging portion and the driving charging portion of Figure 1, respectively. The electric vehicle described below represents a TRAM, a streetcar, a light rail, a bimodal (Bimodal), a BRT (Bus Rapid Transit).

정차형 충전부(10)는 S/bay라고도 하며, 역안에 차량이 정차하여 충전할 수 있는 유도전력변환장치로써 변압기의 1차측을 말하고, 주행용 충전부(20)는 Charging Zone 이라고도 하며, 주행도중 주행구간이 길어 무정차로 급속충전을 위한 주행구간으로서 특히 곡선 주행구간과 같이 차량이 저속으로 주행하는 위치에 설치된다.The stationary charging unit 10 is also referred to as S / bay, and refers to the primary side of the transformer as an induction power converter that can be charged by stopping the vehicle in the station. As the section is long, it is installed at a position where the vehicle travels at a low speed, such as a curved driving section, as a driving section for rapid charging without a car.

도 1에 도시된 바와 같이 단상 급전라인(31)(32)에는 전력변환장치(40)를 매개로 정차형 충전부(10)와 주행용 충전부(20)가 다수 병렬로 연결되어 있으며, 도 2에 도시된 바와 같이 상기 정차형 충전부(10)는 전기차량이 정차하는 역사에 설치되고, 주행용 충전부(20)는 주행도중 주행구간이 길어 무정차로 급속충전을 하기 위한 것으로 전기차량이 비교적 서행하는 곡선구간에 다수 설치된다. As shown in FIG. 1, a plurality of stop type charging unit 10 and a driving charging unit 20 are connected in parallel to single-phase power supply lines 31 and 32 via a power converter 40. As shown, the stop type charging unit 10 is installed in the history of stopping the electric vehicle, the driving charging unit 20 is a curve for driving the electric vehicle relatively slowly as it is for fast charging without interruption due to a long driving section during driving. Many are installed in the section.

그리하여 전기차량은 역사에 정차중이거나 혹은 곡선구간을 비교적 서행 운 행하고 있을 때 정차형 충전부(10) 또는 주행용 충전부(20)로부터 유도급전방식에 의거하여 집전작용이 이루어지게 된다.Thus, when the electric vehicle is stopped in history or is running relatively slowly in a curved section, the current collecting action is performed based on the induction feeding method from the charging type charging part 10 or the driving charging part 20.

이와 같이 정차형 충전부(10)와 주행용 충전부(20)에서 이루어지는 급전작용은 정차형 충전부(10)의 경우 정차형 충전부(10) 앞단에서 차량의 주행을 감지한 후 급전을 하도록 하고, 주행용 충전부(20)의 경우 차량의 에너지 축적량을 검사하여 급전을 하도록 함이 바람직하다.As described above, the feeding action performed at the stop charging part 10 and the driving charging part 20 may be performed after detecting the driving of the vehicle at the front end of the stop charging part 10 in the case of the stop charging part 10. In the case of the charging unit 20, it is preferable to supply power by inspecting the energy accumulation amount of the vehicle.

도 3은 본 발명에 따라 지상에 설치되는 3상 유도급전장치와 차상에 설치되는 차상 집전장치의 상세구성도를 나타낸다.Figure 3 shows a detailed configuration of the three-phase induction power supply device installed on the ground and the vehicle current collector installed on the vehicle according to the present invention.

지상에 설치되는 3상 유도급전장치는 전력변환장치(40)와 아몰퍼스 유도변압부(50)로 이루어져 있으며, 특히 상기 전력변환장치(40)는 차상 집전장치에서 전력을 집전받는 상황에 따라 달라지는 역률분을 보상하는 역률개선회로(41), 인버터 콘트롤러(42), 3 상의 교류전원을 발생시키는 제1, 제2, 제3 인버터(43;43a,43b,43c)로 이루어져 있다.The three-phase induction feeder installed on the ground is composed of a power converter 40 and the amorphous induction transformer 50, in particular, the power converter 40 is a power factor that varies depending on the situation in which power is collected in the onboard current collector And a power factor improving circuit 41 for compensating for minutes, an inverter controller 42, and first, second and third inverters 43; 43a, 43b, 43c for generating AC power in three phases.

제1, 제2, 제3 인버터(43;43a,43b,43c)는 전력스위칭소자를 이용하여 구성하게 되며, 단상 급전라인(31)(32)에서 수전되어 정류된 직류전원을 인버터 콘트롤러(42)의 제어에 따라 스위칭되어 스위칭 펄스 형태의 3상 교류전원으로 변환하는 작용을 한다.The first, second, and third inverters 43; 43a, 43b, and 43c are configured by using a power switching element, and the inverter controller 42 receives DC power received and rectified in the single-phase power supply lines 31 and 32. It is switched under the control of) and converts into a three-phase AC power in the form of a switching pulse.

아몰퍼스 유도변압부(50)는 심아몰퍼스 철(51)에 3개의 코일(52; 52a,52b,52c)이 권취되어 각 코일(52a,52b,52c)에서는 3상의 교류전원을 급전할 수 있도록 이루어져 있으며, 제1, 제2, 제3 인버터(43;43a,43b,43c)에서 스위칭 펄스형태로 변환된 교류전원을 정현파 형태의 파형으로 출력한다. 특히 외부로 전자파가 방출되는 것을 방지할 수 있도록 실드스크린(53)이 설치되어 있다.The amorphous induction transformer 50 is formed of three coils 52 (52a, 52b, 52c) wound around the core iron core 51 so that each coil 52a, 52b, 52c can feed three-phase AC power. The AC power converted by the first, second, and third inverters 43; 43a, 43b, and 43c into a switching pulse form is output as a sinusoidal waveform. In particular, the shield screen 53 is installed to prevent the electromagnetic wave is emitted to the outside.

한편, 차상에는 지상의 아몰퍼스 유도변압부(50)에 구비된 코일(52a,52b,52c)과 대응되어 3상의 교류전력을 유도방식으로 집전하는 아몰퍼스 집전장치(60)가 구비되어 있다. 이를 위해 상기 아몰퍼스 집전장치(60)는 심아몰퍼스 철(61)에 3개의 코일(62; 62a,62b,62c)이 권취되어 각 코일(62a,62b,62c)에서는 3상의 교류전원을 집전할 수 있도록 이루어져 있으며, 상기 아몰퍼스 유도변압부(50)의 실드스크린(53)과 마찬가지로 코일(62; 62a,62b,62c)이 권취된 심아몰퍼스 철(61)의 외측으로는 외부로 전자파가 방출되는 것을 방지할 수 있도록 실드스크린(63)이 설치되어 있다.On the other hand, in the vehicle phase, an amorphous current collector 60 is provided to correspond to the coils 52a, 52b, 52c provided in the amorphous induction transformer 50 on the ground to collect three-phase AC power in an inductive manner. To this end, the amorphous current collector 60 has three coils 62 (62a, 62b, 62c) wound around the core iron 61 to collect three phase AC power in each of the coils 62a, 62b, 62c. In the same manner as the shield screen 53 of the amorphous induction transformer 50, the electromagnetic waves are emitted to the outside of the core amorphous iron 61 in which the coils 62; 62a, 62b, and 62c are wound. The shield screen 63 is installed to prevent it.

상기 철심(61)은 아몰퍼스 합금으로 형성하는 것이 바람직한바, 아몰퍼스 합금은 철(Fe), 붕소(B),규소(Si) 등의 혼합물을 용융 후 급속냉각시켜 만들어지는 비정질 자성재료로써, 비결정질 구조로 되어 있어서 매우 뛰어난 자구유동성이 있기 때문에 자화가 쉽게 되므로 철심손실을 줄일 수 있고, 규소강판 이하의 박막으로 전기저항이 규소강판에 비하여 약 3배 정도로 크므로 유기된 전압에 의한 와전류 손실이 매우 적고 고주파특성이 우수하며 기계적 강도가 강하고 탄성이 높은 특성이 있기 때문이다.The iron core 61 is preferably formed of an amorphous alloy. The amorphous alloy is an amorphous magnetic material made by melting a mixture of iron (Fe), boron (B), silicon (Si) and the like and then rapidly cooling it, and has an amorphous structure. Due to its excellent magnetic flux, it is easy to magnetize and can reduce iron core loss. Since the thin film is less than silicon steel, the electrical resistance is about 3 times higher than that of silicon steel, so the eddy current loss due to induced voltage is very small. This is because the high frequency characteristics are excellent, the mechanical strength is strong and the elasticity is high.

상기 아몰퍼스 집전장치(60)의 출력단에는 유도된 전력의 누설 및 무효전력분을 보상할 수 있는 공진형 컨버터(70)가 연결되어 유도된 3상 교류전력을 직류로 변환하여 출력한다.An output terminal of the amorphous current collector 60 is connected to a resonant converter 70 that can compensate for leakage of induced power and reactive power, thereby converting the induced three-phase AC power into DC.

상기 공진형 컨버터(70)에는 상기 아몰퍼스 집전장치에서 수전된 전력을 충전하는 배터리부(80)와 전기차량의 주행용 모터의 구동을 위한 모터구동부(90)가 각각 병렬로 연결되어 있다.The resonant converter 70 is connected to the battery unit 80 for charging the power received from the amorphous current collector and the motor driving unit 90 for driving the driving motor of the electric vehicle in parallel.

상기 배터리부(80)는 도 4에 도시된 바와 같이 수전된 전력을 충전하는 배터리(81), 고밀도의 에너지 방전이 가능한 울트라 캐패시터(82), 상기 배터리(81)와 울트라 캐패시터(82)의 출력을 선택하여 소정 직류 전압으로 변환하여 출력하는 양방향 DC-DC 컨버터(83) 그리고 상기 배터리(81)와 울트라 캐패시터(82) 및 양방향 DC-DC 컨버터(83)의 동작을 제어하는 EMS 콘트롤러(84)를 포함하여 이루어져 있다.As shown in FIG. 4, the battery unit 80 includes a battery 81 for charging received power, an ultracapacitor 82 capable of high-density energy discharge, and an output of the battery 81 and the ultracapacitor 82. Selects a bidirectional DC-DC converter 83 for converting and outputting a predetermined DC voltage, and an EMS controller 84 for controlling operations of the battery 81, the ultracapacitor 82, and the bidirectional DC-DC converter 83. Consists of including.

상기 울트라 캐패시터(82)는 배터리(81)와 전기차량의 구동을 위한 모터(도시되지 않음) 사이에 연결되는 것으로, 이는 고밀도의 에너지 방전이 가능하여 모터구동부(90)로의 급전에너지(혹은 배터리 방전에너지)의 고전력 급전이 가능하다. 또한, 전기차량이 정차후 가속하거나 언덕을 오르는 등 급가속을 위해 높은 전력을 요구할 때 배터리(81)의 급격한 충방전 현상을 완화하므로써 배터리(81)의 수명이 저하되는 것을 방지하는 작용을 이용한다.The ultracapacitor 82 is connected between the battery 81 and a motor (not shown) for driving the electric vehicle, which is capable of high-density energy discharge and thus feeds energy to the motor driver 90 (or battery discharge). High power supply). In addition, when the electric vehicle requires a high power for rapid acceleration such as accelerating or climbing a hill after stopping, a sudden charging / discharging phenomenon of the battery 81 is alleviated, thereby preventing the life of the battery 81 from being lowered.

양방향 DC-DC 컨버터(83)는 EMS 콘트롤러(84)의 제어에 따라 상기 배터리(81) 또는 울트라 캐패시터(82)의 출력을 선택하여 전기차량의 구동에 필요한 레벨의 소정 직류 전압으로 변환하여 출력하는 작용을 한다.The bidirectional DC-DC converter 83 selects the output of the battery 81 or the ultracapacitor 82 under the control of the EMS controller 84, and converts the output to a predetermined DC voltage at a level required for driving the electric vehicle. It works.

특히, EMS 콘트롤러(84)는 급전상태의 경우 공진형 컨버터(70)로부터 급전되는 전력을 배터리(81)로 충전하며, 충전상태를 감지하여 완전 충전상태가 되면 충 전을 중단하도록 제어하는 한편, 방전상태의 경우 배터리(81) 또는 울트라 캐패시터(82)의 방전전력을 모터구동부(90)로 공급하도록 제어한다.In particular, the EMS controller 84 charges the power supplied from the resonant converter 70 to the battery 81 in the power supply state, and detects the charge state and controls to stop the charge when the battery is in a fully charged state. In the discharged state, the discharge power of the battery 81 or the ultracapacitor 82 is controlled to be supplied to the motor driving unit 90.

이와 같이 본 발명은 전기차량이 역사에 정차하거나 곡선구간에서 차량에 설치된 배터리부에 유도방식에 의거 충전작용이 이루어지면서 전기차량은 배터리부에 충전된 전원이나 혹은 지상에서 공급되는 전원에 의거 주행이 가능하게 된다.As described above, the present invention provides a charging operation based on the induction method of the battery unit installed in the vehicle in the history or in the curved section, and the electric vehicle is driven based on the power charged from the battery unit or the power supplied from the ground. It becomes possible.

또한, 전기차량에의 충전작용은 단시간 충전을 위한 유도급전 방식으로 이루어짐으로써 물리적 접촉의 위험이 없이 전기차량의 정차 중 충전은 물론 주행 중 집전/충전이 가능하다.In addition, the charging operation to the electric vehicle is made by the induction feeding method for a short time charging, it is possible to charge the electric vehicle during the stop, as well as to collect the current while driving, without the risk of physical contact.

그리고 본 발명에 따른 전기차량 시스템의 경우, 차량이 역사에서 출발하는 가속구간, 혹은 신호 등에 의한 정차시에서 출발하는 가속구간에서 대부분의 에너지가 소비되므로, 이 구간의 주행용 충전부(20)에서 제공되는 급전에너지나, 이미 충전된 배터리 내 에너지를 이용하여 차량주행이 가능하게 된다.In the electric vehicle system according to the present invention, since most of the energy is consumed in the acceleration section starting from the station or when the vehicle stops due to a signal, the charging section 20 for driving in this section is provided. The vehicle can be driven by using the feed energy or the energy in the battery which is already charged.

상기한 바와 같이 본 발명은 전기철도 시스템에서 급전 선로를 3상 전력의 유도전력 방식으로 충전 및 급전장치를 구성하여, 궤도와 함께 노선 내에 연속적으로 설치되어야 하는 급전선을 제거함으로써 물리적 접촉에 의한 TRAM, 노면전차, 경전철, 바이모달, BRT 와 같은 전기철도차량 시스템 등의 철도 차량의 단락 사고 위험의 제거는 물론, 노출된 전기장치의 요소를 제거하여 환경 및 미관적 측면에서도 장점을 가지며, 아몰퍼스 집전장치의 적용으로 고주파에서의 철손을 최소화하여 전체 시스템 효율의 극대화가 가능하다. 또한 터널 등의 절연이격거리를 최소화함으로써, 기존 철도시스템 설비를 축소하고, 제한된 충전 및 급전 기회에도 불구하고 집전/급전의 효율을 최대화하는 유도급전시스템의 장점은 그대로 가지게 된다.As described above, the present invention constitutes a charging and feeding device for a feed line in a three-phase induction power system in an electric railway system, and removes a feed line that must be continuously installed in a line with a track, thereby obtaining a TRAM by physical contact. As well as eliminating the risk of short-circuit accidents in railway vehicles such as streetcars, light rails, bimodals, and electric railway vehicle systems such as BRT, it also has advantages in terms of environment and aesthetics by removing elements of exposed electrical devices. By minimizing the iron loss at high frequency, it is possible to maximize the overall system efficiency. In addition, by minimizing the insulation separation distance of the tunnel, the advantages of the induction feeding system to reduce the existing railway system equipment, and maximize the efficiency of current collection / feeding despite limited charging and feeding opportunities.

Claims (5)

단상전원을 3상 전원으로 변환하여 전기차량에 유도급전할 수 있도록 선로에 설치되는 3상 유도급전장치와, 상기 유도급전장치의 전력을 유도방식으로 수전하여 전기차량의 모터구동부로 공급할 수 있도록 차량에 설치되는 차상 집전장치로 이루어짐을 특징으로 하는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템.A three-phase induction feeding device installed on a line to convert single-phase power into three-phase power to induce electric power feeding to an electric vehicle, and a vehicle to receive electric power of the induction feeding device in an inductive manner and supply it to the motor driving part of the electric vehicle. A three-phase amorphous induction power supply system for an electric railway vehicle, characterized in that the vehicle current collector is installed on. 제1항에 있어서, 상기 3상 유도급전장치는 차량이 역사에서 출발하는 가속구간, 신호 등에 의한 정차시에서 출발하는 가속구간에 설치됨을 특징으로 하는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템.The three-phase amorphous induction power supply system for an electric railway vehicle according to claim 1, wherein the three-phase induction feeder is installed in an acceleration section starting at the time when the vehicle stops due to an acceleration section, a signal, or the like. 제1항에 있어서, 상기 3상 유도급전장치는 상기 차상 집전장치에서 전력을 집전받는 상황에 따라 달라지는 역률분을 보상하는 역률개선회로, 인버터 콘트롤러, 3 상의 교류전원을 발생시키는 제1, 제2, 제3 인버터, 그리고 3상 유도방식의 급전을 위한 컨덕터로 이루어짐을 특징으로 하는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템.The first and second power supply circuits of claim 1, wherein the three-phase induction power supply device generates a power factor improvement circuit, an inverter controller, and three-phase AC power for compensating a power factor change depending on a situation in which power is collected from the on-vehicle current collector. And a third inverter, and a conductor for feeding a three-phase induction type electric three-phase amorphous induction power supply system for an electric railway vehicle. 제1항에 있어서, 상기 차상 집전장치는 3상 유도방식의 아몰퍼스 집전장치, 유도된 전력의 누설 및 무효전력분을 보상할 수 있는 공진형 컨버터, 상기 공진형 컨버터에 각각 병렬로 연결되는 것으로, 상기 아몰퍼스 집전장치에서 수전된 전력을 충전하는 배터리부와 전기차량의 주행용 모터의 구동을 위한 모터구동부로 이루어짐을 특징으로 하는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템.The method of claim 1, wherein the on-vehicle current collector is connected in parallel to the three-phase induction amorphous current collector, the resonant converter capable of compensating the leakage of the induced power and the reactive power, and the resonant converter, respectively, The three-phase amorphous induction power supply system for an electric railway vehicle comprising a battery unit for charging electric power received from the amorphous current collector and a motor driving unit for driving a driving motor of an electric vehicle. 제4항에 있어서, 상기 배터리부는 수전된 전력을 충전하는 배터리, 고밀도의 에너지 방전이 가능한 울트라 캐패시터, 상기 배터리와 울트라 캐패시터의 출력을 선택하여 소정 직류 전압으로 변환하여 출력하는 양방향 DC-DC 컨버터, 상기 배터리와 울트라 캐패시터 및 양방향 DC-DC 컨버터의 동작을 제어하는 EMS 콘트롤러로 이루어짐을 특징으로 하는 전기 철도 차량용 3상 아몰퍼스 유도 급전 시스템.The method of claim 4, wherein the battery unit is a battery for charging the received power, an ultra-capacitor capable of high-density energy discharge, a bidirectional DC-DC converter for selecting and outputting the output of the battery and the ultra-capacitor to a predetermined DC voltage, And a EMS controller for controlling the operation of the battery, the ultracapacitor and the bidirectional DC-DC converter.
KR1020060107986A 2006-11-02 2006-11-02 3 phase amorphous inductive power transfer system of electric railway vehicle KR20080040271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060107986A KR20080040271A (en) 2006-11-02 2006-11-02 3 phase amorphous inductive power transfer system of electric railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060107986A KR20080040271A (en) 2006-11-02 2006-11-02 3 phase amorphous inductive power transfer system of electric railway vehicle

Publications (1)

Publication Number Publication Date
KR20080040271A true KR20080040271A (en) 2008-05-08

Family

ID=39647970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060107986A KR20080040271A (en) 2006-11-02 2006-11-02 3 phase amorphous inductive power transfer system of electric railway vehicle

Country Status (1)

Country Link
KR (1) KR20080040271A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046406A2 (en) * 2009-10-16 2011-04-21 Korea Advanced Institute Of Science And Technology Apparatus and method for testing electromagnetic susceptibility of on-line electric vehicle
WO2011110620A2 (en) 2010-03-12 2011-09-15 Johannes Wittmann Assembly for inductive energy transmission to electrically operated road vehicles
KR101134562B1 (en) * 2009-12-23 2012-04-13 한국과학기술원 Power supply system and method for non contact electromagnetic inductive charging of electric vehicle
KR101141694B1 (en) * 2009-12-23 2012-05-04 한국과학기술원 Power supply system and method for non contact electromagnetic inductive charging of electric vehicle
KR101146658B1 (en) * 2010-04-08 2012-05-22 한국철도기술연구원 Power feeding system for EV charging using power feeding network of DC traction system
WO2012176942A1 (en) * 2011-06-22 2012-12-27 한국과학기술원 Power supply system and method
WO2012176943A1 (en) * 2011-06-22 2012-12-27 한국과학기술원 Power supply system and method
KR101403696B1 (en) * 2012-09-05 2014-06-05 한국철도기술연구원 Tube railroad system using propellant activate device of magneto hydro-dynamics using non-contacting quick charge
KR101538647B1 (en) * 2013-07-25 2015-07-22 한국철도기술연구원 Appatatus for wireless power feeding rail car using amorphous core
WO2020001378A1 (en) * 2018-06-25 2020-01-02 西南交通大学 Three-phase power supply and collection device for maglev train
KR102146924B1 (en) 2020-06-17 2020-08-21 한국철도공사 System and method for measuring the status information of the feeder cable in the tunnel section

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011046406A2 (en) * 2009-10-16 2011-04-21 Korea Advanced Institute Of Science And Technology Apparatus and method for testing electromagnetic susceptibility of on-line electric vehicle
KR101150255B1 (en) * 2009-10-16 2012-06-12 한국과학기술원 Appartus and method for testing eletromagnetic susceptibility of an on-line electric vehicle
WO2011046406A3 (en) * 2009-10-16 2011-10-27 Korea Advanced Institute Of Science And Technology Apparatus and method for testing electromagnetic susceptibility of on-line electric vehicle
KR101134562B1 (en) * 2009-12-23 2012-04-13 한국과학기술원 Power supply system and method for non contact electromagnetic inductive charging of electric vehicle
KR101141694B1 (en) * 2009-12-23 2012-05-04 한국과학기술원 Power supply system and method for non contact electromagnetic inductive charging of electric vehicle
WO2011110620A2 (en) 2010-03-12 2011-09-15 Johannes Wittmann Assembly for inductive energy transmission to electrically operated road vehicles
KR101146658B1 (en) * 2010-04-08 2012-05-22 한국철도기술연구원 Power feeding system for EV charging using power feeding network of DC traction system
WO2012176942A1 (en) * 2011-06-22 2012-12-27 한국과학기술원 Power supply system and method
WO2012176943A1 (en) * 2011-06-22 2012-12-27 한국과학기술원 Power supply system and method
KR101403696B1 (en) * 2012-09-05 2014-06-05 한국철도기술연구원 Tube railroad system using propellant activate device of magneto hydro-dynamics using non-contacting quick charge
KR101538647B1 (en) * 2013-07-25 2015-07-22 한국철도기술연구원 Appatatus for wireless power feeding rail car using amorphous core
WO2020001378A1 (en) * 2018-06-25 2020-01-02 西南交通大学 Three-phase power supply and collection device for maglev train
US20210129707A1 (en) * 2018-06-25 2021-05-06 Southwest Jiaotong University Three-phase power supply and collection device for maglev train
US11897345B2 (en) * 2018-06-25 2024-02-13 Southwest Jiaotong University Three-phase power supply and collection device for maglev train
KR102146924B1 (en) 2020-06-17 2020-08-21 한국철도공사 System and method for measuring the status information of the feeder cable in the tunnel section

Similar Documents

Publication Publication Date Title
KR20080040271A (en) 3 phase amorphous inductive power transfer system of electric railway vehicle
US8827058B2 (en) Inductively receiving electric energy for a vehicle
JP5161816B2 (en) Railway vehicle system
Choi et al. Advances in wireless power transfer systems for roadway-powered electric vehicles
US8836161B2 (en) Rolling stock system and control method thereof
US8944226B2 (en) Transferring electric energy to a vehicle, using a system which comprises consecutive segments for energy transfer
JP5259820B2 (en) Railway vehicle drive system
JP5100690B2 (en) Railway vehicle system
JP4981973B2 (en) Charging system for overhead line-less transportation system
KR101237552B1 (en) Railway system installing power supply facility on railroads between stations
WO2014008114A2 (en) System and method for operating a hybrid vehicle system
KR101569189B1 (en) Wireless Power Transmission System for Tram Vehicle
JP2009113691A (en) Ground power supply system of battery-driven type vehicle in railroad vehicle
KR102249722B1 (en) Wireless charging power supply system during running of electric vehicles and industrial equipment
KR101606152B1 (en) Apparatus and method for providing electric power and thrust force to a wireless charging lim type maglev hybrid vehicle
JP5281372B2 (en) Electric railway vehicle drive system
CN109421548B (en) Control method of main-auxiliary integrated traction system
Schmid et al. Overview of electric railway systems
KR101104120B1 (en) Large power and high efficiency amorphous or nanocrystalline electromagnetic induction apparatus and electromagnetic induction system for reducing eddy of electric vehicle
CN111181156A (en) Power supply system with coexistence of non-contact power supply and contact power supply of tramcar
JP2006335289A (en) Electricity feeding method and device to electric drive vehicle
JP5190883B2 (en) Overhead voltage compensation vehicle
CN112238793A (en) Phase detection during passage through a separate point in a rail vehicle current supply device
KR100925344B1 (en) Amorphous Induced Sudden Charging System of Rail Car for Reducing Leakage Flux
Ronanki Overview of rolling stock

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application