KR20100128849A - Control method of vehicle - Google Patents

Control method of vehicle Download PDF

Info

Publication number
KR20100128849A
KR20100128849A KR1020090047499A KR20090047499A KR20100128849A KR 20100128849 A KR20100128849 A KR 20100128849A KR 1020090047499 A KR1020090047499 A KR 1020090047499A KR 20090047499 A KR20090047499 A KR 20090047499A KR 20100128849 A KR20100128849 A KR 20100128849A
Authority
KR
South Korea
Prior art keywords
vehicle
sensor
angle
relative distance
ranging
Prior art date
Application number
KR1020090047499A
Other languages
Korean (ko)
Other versions
KR101293108B1 (en
Inventor
황재영
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to KR1020090047499A priority Critical patent/KR101293108B1/en
Publication of KR20100128849A publication Critical patent/KR20100128849A/en
Application granted granted Critical
Publication of KR101293108B1 publication Critical patent/KR101293108B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control
    • B60Y2300/143Speed control

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Traffic Control Systems (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

PURPOSE: A method for controlling a vehicle is provided to increase side accuracy without influences of surrounding environments. CONSTITUTION: A method for controlling a vehicle includes an adaptive navigation control system which controls driving speed. The adaptive navigation control system senses a relative distance to a vehicle(30) located in front of a vehicle(20) using a RADAR(RAdio Detection And Ranging) sensor and a LIDAR(LIght Detection And Ranging) sensor. The adaptive navigation control system checks a difference between an angle at which a microwave outputted from the RADAR sensor enters and an angle at which a microwave outputted from the LIDAR sensor enters. The adaptive navigation control system controls driving speed by determining whether a vehicle intercepts in front of another vehicle if the difference is larger than a reference angle.

Description

자동차의 제어방법{CONTROL METHOD OF VEHICLE}CONTROL METHOD OF VEHICLE}

본 발명은 자동차의 제어방법에 관한 것으로, 더욱 상세하게는 전방감지센서로 전방에 있는 차량을 감지하여 주행속도를 조절하는 적응순항제어시스템을 구비한 자동차의 제어방법에 관한 것이다.The present invention relates to a control method of a vehicle, and more particularly, to a control method of a vehicle having an adaptive cruise control system for detecting a vehicle in front by a front sensor and adjusting a traveling speed.

일반적으로 적응순항제어시스템(Adaptive Cruise Control : 이하, "ACC"라고도 함)은 종래의 순항제어(Cruise Control)기능에 정간격 주행 기능을 추가한 것이다. 순항제어기능이란 운전자가 가속 페달을 사용하지 않는 상태에서 운전자가 설정한 소정의 속도로 차량을 일정하게 주행시키는 기능을 의미한다. 즉, 운전자가 가속 페달을 이용하여 차량을 소정 속도로 주행시킨 상태에서 순항제어 모드 키 등을 이용하여 순항제어 모드를 설정하면, 운전자가 가속 페달을 사용하지 않더라도 차량은 순항제어 모드가 설정되었을 때의 속도를 계속하여 유지하는 기능을 말한다.In general, the adaptive cruise control system (hereinafter, also referred to as "ACC") adds a regular interval driving function to a conventional cruise control function. The cruise control function means a function of constantly driving the vehicle at a predetermined speed set by the driver without using the accelerator pedal. That is, if the driver sets the cruise control mode by using the cruise control mode key or the like while driving the vehicle at a predetermined speed by using the accelerator pedal, the vehicle may be set to the cruise control mode even if the driver does not use the accelerator pedal. Speak the ability to keep pace.

이와 같이, 순항제어기능은 차량 속도를 일정하게 유지시키므로 운전자가 가속, 감속 페달을 사용하지 않고도 차량을 원하는 속도로 주행시킬 수 있다는 편리성을 제공한다. 그러나 순항제어 모드로 차량을 주행시키는 경우에 전방의 차량의 존재 여부에 관계없이 차량은 일정 속도를 유지하므로 교통사고를 유발할 수 있다는 문제가 발생한다.As such, the cruise control function keeps the vehicle speed constant, thereby providing the convenience that the driver can drive the vehicle at a desired speed without using the acceleration and deceleration pedals. However, when driving the vehicle in the cruise control mode, there is a problem that the vehicle maintains a constant speed regardless of the presence of the vehicle ahead and may cause a traffic accident.

이러한 문제를 방지하기 위하여 제안된 것인 적응순항제어시스템(Adaptive Cruise Control)이다. The Adaptive Cruise Control is proposed to prevent this problem.

구체적으로, 적응순항제어시스템(Adaptive Cruise Control)은 카메라 등의 전방감지센서를 이용하여 전방 물체를 감지하고, 그에 따라 제어 차량의 종방향 거동을 자동 제어하는 시스템이다. 이러한 시스템은 도로 주행 시 전방차량과의 적정한 거리를 유지하는데 필요한 가속, 감속 및 정지와 같은 운전자의 반복적인 작업에 대한 스트레스를 감소시킬 수 있다. 또한, 제어 차량을 정해진 속도로 자동 운행하고 전방 물체의 움직임에 따라 자동으로 감속 또는 가속함으로서 차량의 연비개선과 함께, 교통 흐름도 원활하게 할 수 있다는 장점이 있다.In detail, the adaptive cruise control system is a system that detects a front object by using a front sensor such as a camera, and automatically controls the longitudinal behavior of the control vehicle accordingly. Such a system can reduce the stress on the driver's repetitive tasks such as acceleration, deceleration and stopping required to maintain a proper distance from the vehicle ahead when driving on the road. In addition, by automatically driving the control vehicle at a predetermined speed and automatically decelerating or accelerating according to the movement of the front object, there is an advantage that the traffic flow can be smoothly improved with the improvement of the fuel efficiency of the vehicle.

그러나, 적응순항제어시스템(Adaptive Cruise Control)에서 전방감지센서로 사용되는 LIDAR(LIght Detection And Ranging)센서는 빛을 이용하여 전방에 있는 물체의 거리를 감지하는 것으로 외부환경(눈,비,안개 등)에 약하다는 문제가 있으며, RADAR(RAdio Detection And Ranging)센서는 전파를 이용하여 전방에 있는 물체의 거리를 감지하는 것으로 측면 정확도(Lateral Accuracy)가 낮다는 문제가 있다.However, LIDAR (LIght Detection And Ranging) sensor, which is used as a forward detection sensor in Adaptive Cruise Control, detects the distance of an object in front of it by using light. ), And RADAR (RAdio Detection And Ranging) sensor detects the distance of an object in front of it by using radio waves, and has a problem of low lateral accuracy.

본 발명은 전술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은 LIDAR(LIght Detection And Ranging)센서와 RADAR(RAdio Detection And Ranging)센 서를 모두 사용하여 자동차의 전방에 있는 물체를 감지함으로서 주변환경에 영향을 받지 않으면서 측면 정확도를 높일 수 있는 자동차의 제어방법을 제공하는 것이다. The present invention is to solve the above problems, an object of the present invention is to detect the object in front of the vehicle by using both a LIIDAR (LIght Detection And Ranging) sensor and RADAR (RAdio Detection And Ranging) sensor to the surrounding environment It is to provide a vehicle control method that can increase the lateral accuracy without being affected.

전술한 목적을 달성하기 위한 본 발명의 일실시예에 의한 자동차의 제어방법은 RADAR(RAdio Detection And Ranging)센서 및 LIDAR(LIght Detection And Ranging)센서로 자동차의 전방에 위치한 차량의 상대거리를 감지하고, 상기 Radar센서에서 출력된 전파가 반사되어 들어오는 각도와 상기 Lidar센서에서 출력된 빛이 반사되어 들어오는 각도의 차이각을 확인하고, 상기 차이각이 기준각도 이상인 것으로 확인되면, 상기 차량이 상기 자동차의 전방으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절하는 적응순항제어시스템을 구비하는 것이 바람직하다.The control method of the vehicle according to an embodiment of the present invention for achieving the above object is to detect the relative distance of the vehicle located in front of the vehicle with a RADAR (RAdio Detection And Ranging) sensor and LIDAR (LIght Detection And Ranging) sensor And checking a difference angle between an angle at which the radio wave output from the Radar sensor is reflected and an angle at which the light output from the Lidar sensor is reflected, and when the difference angle is determined to be greater than or equal to a reference angle, is determined that the vehicle is of the vehicle. It is desirable to have an adaptive cruise control system that adjusts the traveling speed by judging to cut-in ahead.

상기 각도의 차이가 기준각도 미만인 것으로 확인되면, 상기 RADAR센서에서 감지한 상대 거리와 상기 LIDAR센서에서 감지한 상대 거리를 평균하여 상기 자동차의 전방에 위치한 차량의 평균상대거리를 산출하고, 상기 평균상대거리에 따라 주행속도를 조절하는 적응순항제어시스템을 구비하는 것이 바람직하다.When it is determined that the difference in angle is less than the reference angle, the relative distance detected by the RADAR sensor and the relative distance detected by the LIDAR sensor are averaged to calculate an average relative distance of the vehicle located in front of the vehicle, and the average relative distance It is desirable to have an adaptive cruise control system that adjusts the traveling speed according to the distance.

상기 RADAR센서 및 LIDAR센서 중 어느 하나의 센서에 의해서만 차량이 검출되면, 상기 차량을 검출한 센서에 의해 감지되는 상대거리를 평균상대거리로 하여 주행속도를 조절하는 적응순항제어시스템을 구비하는 것이 바람직하다.When the vehicle is detected only by one of the RADAR sensor and the LIDAR sensor, it is preferable to have an adaptive cruise control system for adjusting the traveling speed by using the relative distance detected by the sensor detecting the vehicle as the average relative distance. Do.

상기 각도의 차이가 기준각도 이상인 것으로 확인되면, 상기 각도의 차이값, RADAR센서 및 LIDAR센서로 구한 상대거리로 상기 전방에 위치한 차량의 폭을 검출하고, 상기 폭이 기준폭 이상인 것으로 확인되면 상기 차량이 상기 자동차의 전방 으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절하는 적응순항제어시스템을 구비하는 것이 바람직하다.When it is determined that the difference in the angle is greater than or equal to the reference angle, the width of the vehicle located in front of the vehicle is detected at the relative distance obtained by the difference value of the angle, the RADAR sensor, and the LIDAR sensor, and when the width is determined to be greater than the reference width, the vehicle is detected. It is desirable to have an adaptive cruise control system for adjusting the traveling speed by judging that the vehicle cuts in front of the vehicle.

이상에서 상세히 살펴본 바와 같이, 본 발명의 일측면에 의하면 LIDAR(LIght Detection And Ranging)센서와 RADAR(RAdio Detection And Ranging)센서를 모두 사용하여 물체의 상대거리를 감지하므로 주변환경에 영향을 받지 않으면서 측면 정확도를 높일 수 있는 전방감지센서를 제공할 수 있다.As described in detail above, according to an aspect of the present invention, since both the LIDAR (LIght Detection And Ranging) sensor and the RADAR (RAdio Detection And Ranging) sensor detect the relative distance of the object without being affected by the surrounding environment. It is possible to provide a front sensor that can increase the lateral accuracy.

이하에서는 본 발명의 바람직한 실시예를 본 도면을 참조하여 상세하게 설명하도록 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

도 1 은 본 발명의 일실시예에 따른 적응순항제어시스템을 구비한 자동차의 제어블록도이다.1 is a control block diagram of a vehicle having an adaptive cruise control system according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 자동차는 정상주행모드에서 적응순항제어모드로 전환시킬 수 있는 ACC작동모드 설정키(10)와, 전방에 있는 다른 차량의 상대속도 및 상대거리를 감지하는 전방감지센서(11)와, 자동차의 전방에 존재하는 목표물체의 종류를 알 수 있는 카메라센서(12)와, 자동차의 주행속도를 검출하는 차속센서(13)와, 시스템의 제어 전반을 관장하는 전자제어부(14)와, 자동차를 제동시키는 전자제어브레이크(15)와, 자동차의 주행속도를 제어하는 전자제어쓰로틀(16)을 포함할 수 있다.As shown in FIG. 1, the vehicle has an ACC operation mode setting key 10 capable of switching from the normal driving mode to the adaptive cruise control mode, and a front sensor for sensing a relative speed and a relative distance of another vehicle in front of the vehicle. (11), a camera sensor 12 for knowing the type of target object present in front of the vehicle, a vehicle speed sensor 13 for detecting the traveling speed of the vehicle, and an electronic controller for controlling overall control of the system ( 14), an electronic control brake 15 for braking the vehicle, and an electronic control throttle 16 for controlling the traveling speed of the vehicle.

ACC작동모드 설정키(10)는 자동차의 운행모드를 정상주행모드에서 적응순항 제어모드(ACC)로 전환시킬 수 있는 스위치이며, 운전자가 가속 페달(미도시)을 밟아 자동차를 원하는 속도까지 가속시킨 후 ACC작동모드 설정키(10)를 입력하면, ACC작동모드 설정키(10)가 온되었을 때의 주행 속도로 자동차의 속도가 유지되도록 제어되지만, 전방에 있는 제어대상차량과의 거리에 따라 사용자가 설정한 주행속도는 상승 또는 하강하게 된다. The ACC operation mode setting key 10 is a switch for switching the driving mode of the vehicle from the normal driving mode to the adaptive cruise control mode (ACC), and the driver accelerates the vehicle to a desired speed by stepping on an accelerator pedal (not shown). If the ACC operation mode setting key 10 is input afterwards, the vehicle speed is controlled to be maintained at the traveling speed when the ACC operation mode setting key 10 is turned on, but the user is controlled according to the distance to the control target vehicle in front of the vehicle. The driving speed set by the user will rise or fall.

전방감지센서(11)는 자동차의 전방에 존재하는 차량의 상대속도 및 상대거리를 감지하여 전자제어부(14)에 전송한다. 본 발명에서는 자동차에 전방감지센서(11)인 LIDAR(LIght Detection And Ranging)센서와 RADAR(RAdio Detection And Ranging)센서를 모두 장착하여 사용하게 된다.The front detection sensor 11 detects the relative speed and the relative distance of the vehicle existing in front of the vehicle and transmits it to the electronic controller 14. In the present invention, both the front detection sensor 11, the LIDAR (LIght Detection And Ranging) sensor and the RADAR (RAdio Detection And Ranging) sensor are mounted and used.

LIDAR(LIght Detection And Ranging)센서는 빛을 이용하여 전방 물체와의 거리를 감지하는 것으로서, 자동차의 전방으로 출력된 빛이 전방 물체에 부딪혀 반사되어 돌아오는 시간을 측정하여 자동차와 전방 차량과의 상대거리 및 상대속도를 감지할 수 있다. LIDAR(LIght Detection And Ranging)센서는 자동차의 측면에 있는 물체를 감지할 때 정확도가 높다는 장점이 있다.LIDAR (LIght Detection And Ranging) sensor detects the distance from the front object by using light, and measures the time when the light output from the front of the car hits the front object and reflects the return. The distance and relative speed can be detected. LIDAR (LIght Detection And Ranging) sensors have the advantage of high accuracy when detecting objects on the side of the car.

여기서 상대거리란 자동차와 전방차량과의 거리를 의미하는 것이며, 상대속도는 자동차의 속도와 전방차량과의 속도의 차이를 의미한다.Here, the relative distance means the distance between the vehicle and the front vehicle, and the relative speed means the difference between the speed of the vehicle and the speed of the front vehicle.

RADAR(RAdio Detection And Ranging)센서는 전파를 이용하여 전방 물체와의 거리를 감지하는 것으로서, 자동차의 전방으로 출력된 전파가 전방 물체에 부딪혀 반사되어 돌아오는 시간을 측정하여 자동차와 전방 차량과의 상대거리 및 상대속도를 감지할 수 있다. RADAR(RAdio Detection And Ranging)센서는 외부환경(눈,비,안 개 등)에 강하다는 장점이 있다.RADAR (Radio Detection And Ranging) sensor detects the distance from the front object by using the radio waves, and measures the time when the radio wave output from the front of the car hits the front object and reflects it and returns. The distance and relative speed can be detected. RADAR (Radio Detection And Ranging) sensor has the advantage of being strong against the external environment (snow, rain, fog, etc.).

카메라센서(12)는 공기저항을 줄이고 비, 눈, 먼지 등에 의해 렌즈에 영향을 미치지 않도록 자동차 내부의 앞부분에 전방을 향하여 설치되어 자동차의 전방을 촬영할 수 있으며, 그 정보를 전자제어부(14)에 전송함으로서, 전방감지센서(11)에 의해 감지된 자동차 전방의 물체의 종류를 알 수 있도록 한다.The camera sensor 12 may be installed toward the front of the inside of the vehicle so as to reduce the air resistance and not affect the lens by rain, snow, dust, etc., so as to photograph the front of the vehicle, and transmit the information to the electronic controller 14. By transmitting, it is possible to know the type of the object in front of the vehicle detected by the front sensor (11).

차속센서(13)는 자동차의 주행속도를 검출하여 전자제어부(14)에 그 정보를 전송하는 것으로서, 그 측정방식에 따라서 다양한 종류가 있다. 대표적인 예로는 리드 스위치식 센서가 있는데, 리드 스위치식 센서는 마그넷 로터 가까이에 리드 스위치를 설치하고, 마그넷 로터를 회전시키면 리드 스위치를 통과하는 자속의 방향이 변화되기 때문에 차속이나 회전수를 검출할 수 있게 된다.The vehicle speed sensor 13 detects the traveling speed of the vehicle and transmits the information to the electronic controller 14, and there are various types according to the measurement method. A typical example is a reed switch type sensor. A reed switch type sensor is installed near a magnet rotor and rotates the magnet rotor to change the direction of the magnetic flux passing through the reed switch. Will be.

전자제어부(14)는 적응순항제어시스템의 제어 전반을 관장한다. 구체적으로, 자동차의 운행 중 ACC작동모드 설정키(10)가 입력되면 전방감지센서(11)에서 전송되는 자동차 전방의 물체의 상대속도 및 상대거리 정보와, 카메라센서(12)에서 입력되는 목표물체의 종류에 대한 정보를 종합하여 제어대상차량을 선정한다.The electronic controller 14 manages overall control of the adaptive cruise control system. Specifically, when the ACC operation mode setting key 10 is input during driving of the vehicle, the relative speed and relative distance information of the object in front of the vehicle transmitted from the front sensor 11 and the target object input from the camera sensor 12 The vehicle to be controlled is selected by integrating the information on the types of vehicles.

또한, 전자제어부(14)는 ACC작동모드 설정키(10)가 온되었을 때 주행 속도를 기준속도로 하여 자동차를 제어하며, 전방에 있는 제어대상차량과의 거리에 따라 자동차의 기준속도를 상승 또는 하강시키게 된다. 구체적으로, 전자제어부(14)는 원칙적으로 ACC작동모드 설정키(10)가 온되었을 때의 자동차의 주행 속도를 유지하도록 전자제어쓰로틀(16)을 제어하며, 제어대상차량과의 거리에 따라 다음과 같은 작동을 수행한다.In addition, when the ACC operation mode setting key 10 is turned on, the electronic controller 14 controls the vehicle by using the traveling speed as the reference speed, and increases or decreases the reference speed of the vehicle according to the distance from the control target vehicle in front of the vehicle. Descended. Specifically, the electronic controller 14 controls, in principle, the electronic control throttle 16 to maintain the traveling speed of the vehicle when the ACC operation mode setting key 10 is turned on, and according to the distance from the vehicle to be controlled. Perform the same operation as

즉, 전자제어부(14)는 ACC 작동 모드가 설정되면 차속센서(13)로부터 차속을 검출하고, 정지시간 설정키(미도시)에 의해 설정된 정지시간을 이용하여 전방 차량과의 안전 거리를 검출한다. 또한, 전방감지센서(11) 및 카메라센서(12)에 의해 전방 차량과의 거리 즉, 차간 거리를 검출한다. 이후, 안전 거리와 차간 거리의 차이값을 검출하여 소정의 허용 범위 내에 있는지 판단하고, 그 결과에 따라 전자제어쓰로틀(16) 및 전자제어브레이크(15)를 제어하여 차량의 주행 속도를 조절한다. 한편, 상술한 ACC 작동 모드에 대해서는 한국공개특허 제2000-0055183호에 상세히 기재되어 있다.That is, the electronic controller 14 detects the vehicle speed from the vehicle speed sensor 13 when the ACC operation mode is set, and detects the safety distance from the vehicle ahead using the stop time set by the stop time setting key (not shown). . In addition, the front sensor 11 and the camera sensor 12 detects the distance to the front vehicle, that is, the distance between the vehicles. Thereafter, it is determined whether the difference between the safety distance and the vehicle distance is within a predetermined allowable range, and accordingly, the electronic control throttle 16 and the electronic control brake 15 are controlled to adjust the traveling speed of the vehicle. On the other hand, the ACC operation mode described above is described in detail in Korean Patent Laid-Open No. 2000-0055183.

한편, 전자제어부(14)는 자동차에 설치된 2종류의 전방감지센서에서 감지된 전방차량의 상대거리 정보를 이용하여 자동차의 주행속도를 조절한다.On the other hand, the electronic controller 14 adjusts the traveling speed of the vehicle by using the relative distance information of the front vehicle detected by the two types of front detection sensors installed in the vehicle.

첫째로, 전자제어부(14)는 RADAR(RAdio Detection And Ranging)센서에서 출력된 전파가 반사되어 들어오는 각도와 상기 LIDAR(LIght Detection And Ranging)센서에서 출력된 빛이 반사되어 들어오는 각도의 차이를 확인하고, 각도의 차이가기준각도 이상인 것으로 확인되면, 검출된 차량이 자동차의 전방으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절한다. 또한, 각도의 차이가 기준각도 이상인 것으로 확인되면, 차이각과 RADAR센서 및 LIDAR센서로 구한 상대거리로 전방에 위치한 차량의 폭을 검출하고, 검출된 폭이 기준폭 이상인 것으로 확인되면 감지된 차량이 자동차의 전방으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절할수도 있다.First, the electronic controller 14 checks the difference between the angle at which the radio wave output from the RADAR (Radio Detection And Ranging) sensor is reflected and the angle at which the light output from the LIDAR (LIght Detection And Ranging) sensor is reflected. When the difference in the angle is determined to be greater than or equal to the reference angle, it is determined that the detected vehicle cuts in the front of the vehicle and adjusts the driving speed. In addition, if it is determined that the difference in the angle is greater than the reference angle, the width of the vehicle located in front of the difference angle and the relative distance obtained by the RADAR sensor and the LIDAR sensor is detected, and if the detected width is determined to be greater than the reference width, the detected vehicle is a vehicle. You can also adjust the running speed by judging (cut-in) in front of.

둘째로, 전자제어부(14)는 자동차의 전방에 있는 차량과의 상대거리를 산출 할 때, RADAR(RAdio Detection And Ranging)센서에 의해 측정된 상대거리와, LIDAR(LIght Detection And Ranging)센서에 의해 측정된 상대거리를 종합하여 평균한 값을 전방차량의 평균상대거리로 추정하고, 전방차량과의 평균상대거리를 기준으로 자동차의 주행속도를 조절한다. 상술한 방법에 의하면, 산출된 전방차량과의 상대거리값이 더욱 정확해진다.Secondly, when the electronic controller 14 calculates a relative distance from the vehicle in front of the vehicle, the electronic controller 14 uses the relative distance measured by the RADAR (RAdio Detection And Ranging) sensor and the LIDAR (LIght Detection And Ranging) sensor. The average value of the measured relative distances is estimated as the average relative distance of the front vehicle, and the driving speed of the vehicle is adjusted based on the average relative distance to the front vehicle. According to the above method, the calculated relative distance value with the front vehicle becomes more accurate.

셋째로, 전자제어부(14)는 LIDAR(LIght Detection And Ranging)센서에 의해 감지된 차량은 없지만, RADAR(RAdio Detection And Ranging)센서에 의해 차량이 감지될 경우, 외부환경이 취약하다는 가정 하에 RADAR(RAdio Detection And Ranging)센서에 의해 감지된 차량과의 상대속도를 기준으로 자동차의 주행속도를 조절한다.Thirdly, the electronic control unit 14 does not detect a vehicle by a LIIDAR (LIght Detection And Ranging) sensor, but when the vehicle is detected by a RADAR (RAdio Detection And Ranging) sensor, it is assumed that the external environment is vulnerable. Adjust the driving speed of the vehicle based on the relative speed with the vehicle detected by the sensor.

전자제어브레이크(15)는 감속 페달(미도시)의 구동에 따라 차량의 속도를 감속시킬 수 있고, 전자제어쓰로틀(16)은 가속 페달(미도시)의 구동에 따라 개폐가 제어됨으로서 차량의 속도를 가속시킬 수 있다.The electronic control brake 15 may reduce the speed of the vehicle according to the driving of the deceleration pedal (not shown), and the electronic control throttle 16 may control the opening and closing of the vehicle according to the driving of the acceleration pedal (not shown). Can be accelerated.

도 2는 본 발명의 일실시예에 의한 전방감지센서에 의해 전방차량을 감지하는 것을 도시한 개략도이다.2 is a schematic diagram illustrating sensing a front vehicle by a front sensor according to an embodiment of the present invention.

도 2에 도시한 바와 같이, 자동차(20)가 적응순항제어시스템을 구동하여 운행하는 도중 다른 차량(30)이 전방으로 끼어들게 되면(cut-in), LIDAR(LIght Detection And Ranging)센서에 의해 자동차(20)와 전방차량(30)과의 상대거리(a)가 측정되고, RADAR(RAdio Detection And Ranging)센서에 의해서도 전방차량(30)과의 상대거리(b)가 측정된다. 또한, RADAR(RAdio Detection And Ranging)센서에서 출력된 전파가 반사되어 들어오는 각도와 LIDAR(LIght Detection And Ranging)센서에서 출력된 빛이 반사되어 들어오는 각도와의 차이각(θ)도 구할 수 있다.As shown in FIG. 2, when another vehicle 30 is cut-in while the vehicle 20 is driving and driving the adaptive cruise control system, a LIght Detection And Ranging (LIDAR) sensor is used. The relative distance a between the vehicle 20 and the front vehicle 30 is measured, and the relative distance b between the vehicle 20 and the front vehicle 30 is also measured by a RADAR (Radio Detection And Ranging) sensor. In addition, a difference angle θ between an angle at which the radio wave output from the RADAR sensor is reflected and an angle at which the light output from the LIDAR (LIght Detection And Ranging) sensor is reflected may be obtained.

이 때, 전자제어부(14)는 상술한 차이각(θ)이 기준각도 이상인 것으로 확인되면, 자동차(20)의 전방에 다른 차량(30)이 끼어드는 것으로 판단하고, 이에 따라 제어대상차량을 끼어드는 차량(30)으로 변경하여 주행속도를 조절하게 된다. 기존에 RADAR(RAdio Detection And Ranging)센서만을 사용하여 전방물체를 감지할 때에는 반사량이 많은 뒤범퍼 코너 부분을 차량(30)으로 인식하여 차량(30)의 앞부분이 자동차(20)의 차선으로 끼어들어도 인식하지 못함으로서 사고 위험이 있었지만, 본 발명에 의하면 RADAR(RAdio Detection And Ranging)센서와 LIDAR(LIght Detection And Ranging)센서를 가지고 상술한 방법으로 전방에 끼어드는 차량(30)을 감지하므로, 보다 신속하게 컷인(cut-in)차량을 감지하여 사고 위험을 줄일 수 있다.At this time, when it is determined that the difference angle θ is greater than or equal to the reference angle, the electronic controller 14 determines that another vehicle 30 is interrupted in front of the vehicle 20, thereby interposing the controlled vehicle. Lifting is changed to the vehicle 30 to adjust the traveling speed. Conventionally, when detecting a front object using only a RADAR (Radio Detection And Ranging) sensor, the rear bumper corner with a large amount of reflection is recognized as the vehicle 30 so that the front part of the vehicle 30 may be cut into the lane of the vehicle 20. Although there was a risk of accident by not recognizing, according to the present invention, the vehicle 30 intervening in the front by the above-mentioned method is detected with a RADAR (RAdio Detection And Ranging) sensor and a LIDAR (LIght Detection And Ranging) sensor. The risk of accidents can be reduced by detecting cut-in vehicles.

한편, RADAR(RAdio Detection And Ranging)센서에 반사되어 돌아오는 전파와 LIDAR(LIght Detection And Ranging)센서에 반사되어 돌아오는 빛 사이의 차이각이 기준각도 이하이면, 끼어드는 차량이 아니라 자동차의 전방에 있는 차량을 감지한 것으로 판단하게 되며, 기준각도는 양 센서의 설치위치 차이에 의해 생기는 오차를 고려하여 설계자가 정할 수 있다. On the other hand, if the difference angle between the radio wave reflected by the RADAR (Radio Detection And Ranging) sensor and the light reflected by the LIDAR (LIght Detection And Ranging) sensor is less than or equal to the reference angle, It is determined that the vehicle is detected, and the reference angle can be determined by the designer in consideration of an error caused by the difference between the installation positions of the two sensors.

그리고, 전자제어부(14)는 LIDAR(LIght Detection And Ranging)센서에 의해 측정된 상대거리(a), RADAR(RAdio Detection And Ranging)센서에 의해 측정된 상대거리(b) 및 차이각(θ)을 이용하여 전방에 끼어드는 차량(30)의 폭(width, x)을 구할 수 있다. 상술한 방법으로 구한 전방 차량의 폭(width, x)은 자동차(20)의 전방으로 끼어들 때, 일정 폭 이상의 값을 가지게 되며, 이에 따라 자동차(20)의 전방 으로 다른 차량이 끼어드는 것을 판단할 수도 있다. 이에 따라, 전자제어부(14)는 차속을 조절하여 사고를 미연에 방지할 수 있다. In addition, the electronic controller 14 measures the relative distance (a) measured by the LIDAR (LIght Detection And Ranging) sensor, the relative distance (b) measured by the RADAR (RAdio Detection And Ranging) sensor, and the difference angle θ. By using this, the width (x) of the vehicle 30 that cuts in front can be obtained. The width (x) of the front vehicle obtained by the above-described method has a value greater than or equal to a certain width when cutting into the front of the vehicle 20, and thus determines that another vehicle enters the front of the vehicle 20. You may. Accordingly, the electronic control unit 14 can prevent the accident in advance by adjusting the vehicle speed.

도 3은 본 발명의 일실시예에 의한 자동차의 제어흐름도이다.3 is a control flowchart of a vehicle according to an embodiment of the present invention.

도 3에 도시한 바와 같이, 전자제어부(14)는 자동차의 정상운행 중에 운전자에 의해 ACC작동모드 설정키(10)가 입력되었는지 확인하고, ACC작동모드 설정키(10)가 입력된 것으로 확인되면 ACC작동모드 설정키(10)가 온되었을 때 주행 속도를 기준속도로 하여 자동차를 운행한다.(s10,s20)As shown in FIG. 3, the electronic controller 14 checks whether the ACC operation mode setting key 10 is input by the driver during normal driving of the vehicle, and when it is confirmed that the ACC operation mode setting key 10 is input. When the ACC operation mode setting key 10 is turned on, the vehicle is driven with the traveling speed as the reference speed. (S10, s20)

다음으로, 전자제어부(14)는 전방감지센서(11)에 의해 전방에 차량이 감지되는지 확인한다. 이는 전방에 감지된 차량과의 거리에 따라 자동차의 기준속도를 상승 또는 하강시켜야 하기 때문이다.(s30)Next, the electronic controller 14 checks whether the vehicle is detected in front by the front sensor 11. This is because the reference speed of the vehicle must be raised or lowered according to the distance from the vehicle sensed in front of the vehicle (s30).

다음으로, 자동차의 전방에 차량이 감지되면, RADAR(RAdio Detection And Ranging)센서에 반사되어 돌아오는 전파와 LIDAR(LIght Detection And Ranging)센서에 반사되어 돌아오는 빛 사이의 각 즉, 차이각(θ)과 기준각도(θ1)의 크기를 비교하거나, LIDAR(LIght Detection And Ranging)센서에 의해 측정된 상대거리(a), RADAR(RAdio Detection And Ranging)센서에 의해 측정된 상대거리(b) 및 차이각(θ)으로 구한 전방에 끼어드는 차량의 폭(width, x)과 기준폭(x1)의 크기를 비교한다.(s40)Next, when the vehicle is detected in front of the vehicle, an angle, that is, a difference angle between the radio waves reflected by the RADAR (RAdio Detection And Ranging) sensor and the light reflected by the LIDAR (LIght Detection And Ranging) sensor, is returned. ) And the magnitude of the reference angle (θ1), or the relative distance (a) measured by the LIDAR (LIght Detection And Ranging) sensor, the relative distance (b) and the difference measured by the RADAR (RAdio Detection And Ranging) sensor Compare the size of the width (x) of the vehicle intervening in the front by the angle (θ) and the reference width (x1) (s40).

한편, 기준각도(θ1) 및 기준폭(x1)은 양 센서의 설치위치 차이에 의해 생기는 오차를 고려하여 설계자가 정할 수 있으며, 전방에 차량이 끼어드는 것으로 판단할 수 있는 차이각 및 폭을 기준각도(θ1) 및 기준폭(x1)으로 정할 수 있다.On the other hand, the reference angle (θ1) and the reference width (x1) can be determined by the designer in consideration of the error caused by the difference in the installation position of the two sensors, and based on the difference angle and width that can be determined that the vehicle in front The angle θ1 and the reference width x1 may be determined.

다음으로, 전자제어부(14)는 차이각(θ)이 기준각도(θ1)이상인 것으로 확인되거나, 차량의 폭(width, x)이 기준폭(x1)이상인 것으로 확인되면 전방에 다른 차량이 끼어드는 것(cut-in)으로 판단하고, 끼어드는 차량을 제어대상차량으로 선정한다. 즉, 적응순항제어시스템을 구동하는 자동차의 속도 조절을 위한 기준차량으로 전방에 끼어드는 차량을 선택한다.(s50)  Next, the electronic controller 14 determines that the difference angle θ is greater than or equal to the reference angle θ1, or if another vehicle is inserted in front of the vehicle when it is determined that the width x of the vehicle is greater than or equal to the reference width x1. It judges that it is cut-in, and selects the interrupted vehicle as a control target vehicle. In other words, the vehicle to be cut ahead is selected as the reference vehicle for speed regulation of the vehicle driving the adaptive cruise control system.

한편, 전자제어부(14)는 차이각(θ)이 기준각도(θ1)미만인 것으로 확인되거나, 차량의 폭(width, x)이 기준폭(x1)미만인 것으로 확인되면 전방에 있는 차량을 제어대상차량으로 선정한다.(s60)On the other hand, the electronic controller 14 determines that the difference angle θ is less than the reference angle θ1, or if the width x of the vehicle is less than the reference width x1, the vehicle in front of the vehicle to be controlled. (S60)

다음으로, 전자제어부(14)는 전단계에서 제어대상차량으로 선정된 차량을 기준으로 차속을 조절한다. 즉, 전방에 있는 제어대상차량과의 거리에 따라 자동차의 기준속도를 상승 또는 하강시킨다.(s70)Next, the electronic controller 14 adjusts the vehicle speed based on the vehicle selected as the control target vehicle in the previous step. That is, the reference speed of the vehicle is raised or lowered according to the distance from the control target vehicle in front of the vehicle (s70).

도 1은 본 발명의 일실시예에 따른 적응순항제어시스템을 구비한 자동차의 제어블록도1 is a control block diagram of a vehicle having an adaptive cruise control system according to an embodiment of the present invention.

도 2는 본 발명의 일실시예에 의한 전방감지센서에 의해 전방차량을 감지하는 것을 도시한 개략도Figure 2 is a schematic diagram showing detecting the front vehicle by the front sensor according to an embodiment of the present invention

도 3은 본 발명의 일실시예에 의한 자동차의 제어흐름도3 is a control flowchart of a vehicle according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호 설명 *Explanation of symbols on the main parts of the drawings

10 : ACC작동모드 설정키 11 : 전방감지센서     10: ACC operation mode setting key 11: Front sensor

14 : 전자제어부     14: electronic control unit

Claims (4)

RADAR(RAdio Detection And Ranging)센서 및 LIDAR(LIght Detection And Ranging)센서로 자동차의 전방에 위치한 차량의 상대거리를 감지하고,RADAR (RAdio Detection And Ranging) sensor and LIDAR (LIght Detection And Ranging) sensor detect the relative distance of the vehicle in front of the car, 상기 RADAR센서에서 출력된 전파가 반사되어 들어오는 각도와 상기 LIDAR센서에서 출력된 빛이 반사되어 들어오는 각도의 차이각을 확인하고,Check the difference angle between the angle at which the radio wave output from the RADAR sensor is reflected and the angle at which the light output from the LIDAR sensor is reflected, and 상기 차이각이 기준각도 이상인 것으로 확인되면,If the difference angle is determined to be more than the reference angle, 상기 차량이 상기 자동차의 전방으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절하는 적응순항제어시스템을 구비한 자동차의 제어방법.And an adaptive cruise control system for controlling a traveling speed by determining that the vehicle cuts in front of the vehicle. 제 1 항에 있어서,The method of claim 1, 상기 차이각이 기준각도 미만인 것으로 확인되면,If the difference is found to be less than the reference angle, 상기 RADAR센서에서 감지한 상대거리와 상기 LIDAR센서에서 감지한 상대 거리를 평균하여 상기 자동차의 전방에 위치한 차량의 평균상대거리를 산출하고,The average relative distance of the vehicle located in front of the vehicle is calculated by averaging the relative distance detected by the RADAR sensor and the relative distance detected by the LIDAR sensor, 상기 평균상대거리에 따라 주행속도를 조절하는 적응순항제어시스템을 구비한 자동차의 제어방법.A control method for a vehicle having an adaptive cruise control system for adjusting a traveling speed according to the average relative distance. 제 2 항에 있어서,The method of claim 2, 상기 RADAR센서 및 LIDAR센서 중 어느 하나의 센서에 의해서만 차량이 검출되면,If the vehicle is detected only by one of the RADAR sensor and LIDAR sensor, 상기 차량을 검출한 센서에 의해 감지되는 상대거리를 평균상대거리로 하여 주행속도를 조절하는 적응순항제어시스템을 구비한 자동차의 제어방법.A control method of a vehicle having an adaptive cruise control system for adjusting a traveling speed by using a relative distance detected by a sensor detecting the vehicle as an average relative distance. 제 1 항에 있어서,The method of claim 1, 상기 차이각이 기준각도 이상인 것으로 확인되면,If the difference angle is determined to be more than the reference angle, 상기 차이각과 상기 상대거리로 상기 전방에 위치한 차량의 폭을 검출하고,Detecting the width of the vehicle located in front of the vehicle using the difference angle and the relative distance; 상기 폭이 기준폭 이상인 것으로 확인되면 상기 차량이 상기 자동차의 전방으로 끼어드는 것(cut-in)으로 판단하여 주행속도를 조절하는 적응순항제어시스템을 구비한 자동차의 제어방법.And an adaptive cruise control system for adjusting a traveling speed by determining that the vehicle cuts in front of the vehicle when it is determined that the width is equal to or greater than a reference width.
KR1020090047499A 2009-05-29 2009-05-29 Control method of vehicle KR101293108B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090047499A KR101293108B1 (en) 2009-05-29 2009-05-29 Control method of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090047499A KR101293108B1 (en) 2009-05-29 2009-05-29 Control method of vehicle

Publications (2)

Publication Number Publication Date
KR20100128849A true KR20100128849A (en) 2010-12-08
KR101293108B1 KR101293108B1 (en) 2013-08-12

Family

ID=43505679

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090047499A KR101293108B1 (en) 2009-05-29 2009-05-29 Control method of vehicle

Country Status (1)

Country Link
KR (1) KR101293108B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190046551A (en) * 2017-10-26 2019-05-07 현대자동차주식회사 Apparatus and method for drive controlling of vehicle
KR20200094378A (en) * 2019-01-30 2020-08-07 주식회사 만도 Driver assistance system and controlling method thereof
US10782399B2 (en) 2016-06-09 2020-09-22 Daegu Gyeongbuk Institute Of Science And Technology Object detecting method and apparatus using light detection and ranging (LIDAR) sensor and radar sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921307B2 (en) 2015-01-30 2018-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Combined RADAR sensor and LIDAR sensor processing
KR101795432B1 (en) 2016-02-26 2017-11-10 현대자동차주식회사 Vehicle and controlling method for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240799A (en) * 1988-07-30 1990-02-09 Mazda Motor Corp Running controller for vehicle
JP2001021641A (en) * 1999-07-07 2001-01-26 Oki Electric Ind Co Ltd Active distance measuring system
KR20060096237A (en) * 2005-03-04 2006-09-11 남기창 Safe driving automation systems and method for automobile
KR20070088879A (en) * 2006-02-27 2007-08-30 김석조 Control system of distance between cars

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10782399B2 (en) 2016-06-09 2020-09-22 Daegu Gyeongbuk Institute Of Science And Technology Object detecting method and apparatus using light detection and ranging (LIDAR) sensor and radar sensor
KR20190046551A (en) * 2017-10-26 2019-05-07 현대자동차주식회사 Apparatus and method for drive controlling of vehicle
KR20200094378A (en) * 2019-01-30 2020-08-07 주식회사 만도 Driver assistance system and controlling method thereof

Also Published As

Publication number Publication date
KR101293108B1 (en) 2013-08-12

Similar Documents

Publication Publication Date Title
US7668638B2 (en) Inter-vehicle distance control apparatus
US10752247B2 (en) Vehicle control apparatus
EP3437947B1 (en) Driving assistance system
EP1769962B1 (en) Adaptive cruise control system for vehicle
JP4571757B2 (en) Method and apparatus for controlling the running speed of a vehicle
US8200409B2 (en) Travel control system for vehicle
JP3978170B2 (en) Vehicle inter-vehicle distance control device
EP2621784B1 (en) Adaptive cruise control acceleration rate control
US7206686B2 (en) System and method for detecting an object ahead of a vehicle and controlling the vehicle in response to the detected object
EP1278075A2 (en) Vehicle control apparatus with obstruction detection unit
KR101293108B1 (en) Control method of vehicle
US7295147B2 (en) Sensor arrangement and method for regulating the distance of motor vehicles
KR20150101621A (en) Adaptive cruise control system and control method for the same
KR20150134059A (en) Adaptive cruise control system with vehicle interval regulation function and method for thereof
US11479248B2 (en) Vehicle control apparatus
KR20110060244A (en) Adaptive cruise control system and method thereof
JP4330937B2 (en) Radar equipment
JP3714105B2 (en) Vehicle distance control device and recording medium
US20200300991A1 (en) Vehicle control system
JP5194822B2 (en) Vehicle travel control device
JP2021116001A (en) Drive support device
JP4395798B2 (en) Radar equipment
KR101254228B1 (en) System for making a driver operate a car easily and controlling methodl of the same
KR20100133042A (en) System for making a driver operate a car easily and travel controlling method of the same
KR20190011630A (en) Smart cruise control apparatus and method with rear impact mitigation function

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee