KR20100119868A - 반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템 - Google Patents

반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템 Download PDF

Info

Publication number
KR20100119868A
KR20100119868A KR1020107018154A KR20107018154A KR20100119868A KR 20100119868 A KR20100119868 A KR 20100119868A KR 1020107018154 A KR1020107018154 A KR 1020107018154A KR 20107018154 A KR20107018154 A KR 20107018154A KR 20100119868 A KR20100119868 A KR 20100119868A
Authority
KR
South Korea
Prior art keywords
subject
arterial
height
blood pressure
pulse wave
Prior art date
Application number
KR1020107018154A
Other languages
English (en)
Inventor
벤자민 가비쉬
Original Assignee
벤자민 가비쉬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 벤자민 가비쉬 filed Critical 벤자민 가비쉬
Publication of KR20100119868A publication Critical patent/KR20100119868A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

펄스파 검출 유닛의 적어도 일부가 대상자의 신체의 일부에 결합되고, 상기 펄스파 검출 유닛은 대상자의 신체의 일부의 동맥압에 응답하는 신호를 생성하는, 펄스파 검출 유닛(10)이 제공된다. 펄스파 파라미터 판정 유닛(16)은 펄스파 검출 유닛의 일부가 대상자의 심장에 대해 각각의 제 1 및 제 2 높이에 있는 동안 상기 펄스파 검출 유닛으로부터 각각의 제 1 및 제 2 신호를 수신한다. 동맥 파라미터 연산 유닛(34)은 제 1 및 제 2 신호를 처리함으로써 대상자의 동맥 특정을 판정하고, 상기 동맥 특성 판정에 응답하여 출력을 생성한다. 다른 실시예가 또한 기술된다.

Description

반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템{DETERMINATION OF PHYSIOLOGICAL PARAMETERS USING REPEATED BLOOD PRESSURE MEASUREMENTS}
본 발명은 일반적으로 의료 장치에 관한 것이다. 특히, 본 발명은 동맥 특성을 평가하는 외부 장치에 관한 것이다.
동맥(artery)의 기계적 특성(mechanical property)과 심혈관 질환 사이의 연관성에 대해 관심이 증가하고 있다. 고혈압, 당뇨병 및 울혈성 심부전과 같은, 일반적인 질환에서의 동맥의 변형된 기계적 특성은 일반적으로 질환의 병리학적 징후(disease pathology, symptoms)와 발병률 및 사망률(morbidity and mortality)의 위험성과 연관되어 있다. 주로 동맥 경화도(arterial stiffness)(또는 탄성(compliance), 즉, 1/경화도)에 연관된 동맥의 기계적 특성을 모니터링하는 비침습 방법은 임상 현장에서 대중적인 것이 되어가고 있다.
혈압은 임상 및 가정간호(home setting) 모두에서 진단에 사용되는 공통된 생리학적인 파라미터이다. 혈압은 2개의 구성성분을 포함하는데, 이는 각각 수축기 혈압(systolic blood pressure)과 확장기 혈압(diastolic blood pressure)이라고 한다. 수축기 혈압과 확장기 혈압은 각각 각각의 심장주기(cardiac cycle) 동안 발생하는 최대 및 최소 동맥압에 대응한다.
수축기 혈압과 확장기 혈압 사이의 차이를 맥압(pluse pressure)이라고 한다. 확장기로부터 수축기까지의 심장주기 동안의 동맥압에서의 증가는 동맥 체적에서의 그에 수반된 증가에 의해 달성된다. 심장주기의 코스에 대한 최대 및 최소 동맥 체적 사이의 차이를 펄스 체적이라고 한다. 동맥의 단위 길이당 펄스 체적은 그 동맥의 펄스 면적이다.
동맥 경화도 G(P)는 다음과 같이 정의될 수 있다:
Figure pct00001
여기서, P(t)는 시간(t)에서의 동맥 내에서의 순간적인 압력이고, V(t)는 시간(t)에서의 동맥의 체적이다. P(t)와 V(t) 모두는 시간에 따라 가변이다. 종래기술에서 공지된 동맥 경화도의 "선형화된" 정의는 펄스 체적(ΔV)에 의해 나누어진 맥압(PP)으로 주어진다. 선형화된 정의, 및 수학식 1에 의해 주어진 정의는 G(P)가 상수인 경우, P(t)와 V(t) 사이의 선형 관계의 경우에만 동일한 결과를 제공한다. 그러나, 동맥은 일반적으로 더 큰 동맥압에 대해 더 경화되고, 따라서, 일반적으로 동맥압과 동맥 체적 사이에는 비선형 관계이다.(본 출원 전체에서, "동맥 경화도"와 "비선형화된 동맥 경화도"는 수학식 1에 의해 정의된 동맥 경화도를 가리킨다. 선형화된 동맥 경화도는 "선형화된 동맥 경화도"라고 한다.)
동맥 체적과 반대로, 동맥 경화도는 동맥 단면적(Area) 또는 동맥 직경(Diam)에 대해 유사하게 하기와 같이 정의된다:
G(P)=dP(t)/dArea(t), 및
G(P)=dP(t)/dDiam(t).
(본문에 참조에 의해 통합된, Gosling 등의 논문, "Terminology for describing the elastic behavior", Hypertension 2003; 41: 1180-1182에서 요약된 바와 같이, 종래기술에서 사용되는 동맥 경화도의 다수의 정의가 있다는 것에 유의하라. 일반적으로, 본 출원에서 사용되는 것과 같은 동맥 경화도는 수학식 1에서 정의된 바와 같은 동맥 경화도이다. 그러나, 본 출원의 범위는 당업자가 명확히 이해하는 바와 같이, 본 출원에서 기술된 결과, 관계, 및 실시예를 획득하기위해 필요한 변경을 가하여 동맥 경화도의 대안의 정의를 이용하는 것을 포함한다.)
맥압(PP)에 의해 나누어지는 펄스 체적(ΔV)을 동맥 커패시턴스(arterial capacitance)라고하고, 이러한 비율은 혈액의 흐름을 부드럽게하는 방식으로 일시적으로 혈액을 저장하기 위한 동맥의 역량을 측정한다는 것에 유의하라.
하기의 현상학적 관계는 동맥의 기계적 특성의 비선형성을 특징으로하는 압력에 독립적인 파라미터(즉, 동맥압이 변할때 가변인 동맥 경화도와는 달리, 동맥압이 가변일 때 상수를 유지하는 파라미터)를 제공한다:
A) 수축기 혈압과 확장기 혈압 사이의 관계:
연장된 시간동안 그의 혈압이 모니터링되는 대상자에서의 확장기 혈압(D)에 대한 수축기 혈압(S)의 플롯은 공통적으로 하기의 관계식을 나타낸다:
Figure pct00002
여기서 ASI는 대상자에 특정된 상수이고, 발명자에 의해 동맥 경화도 인덱스라고 칭해진다. ASI는 S 대 D의 플롯의 최적합(best fit) 라인의 기울기이고, S와 D의 관계는, 본문에 참조에 의해 통합된 논문, "The linear relationship between systolic and diastolic blood pressure monitored over 24 hours: assessment and correlates", J Hypertension 2008 26: 199-209("Gavish 2008")에서 Gavish 등에 의해 평가된다. 연관된 파라미터는, 논문 "Ambulatory arterial stiffness index derived from 24 hour ambulatory blood pressure monitoring", Hypertension 2006; 47: 359-364에서 Li 등에 의해 정의된 바와 같은, "Ambulatory arterial stiffness index"("AASI")이다. AASI는 하기와 같이 정의된다:
AASI=1-(S 대 D의 플롯의 최적합 라인의 기울기)
AASI는, 본문에 참조에 의해 통합된, Dolan 등의 논문, "Ambulatory arterial stiffness index as a predictor of cardiovascular mortality in the Dublin Outcome Study", Hypertension 2006; 47: 365-370에서의, 심장혈관 사망률(cardiovascular mortality)의 예측변수가 되는 것으로 도시된다. 유사하게, (a) 참조문헌 "A modified ambulatory arterial stiffness index is independently associated with all-cause mortality", Journal of Human Hypertension(2008) 22, 761-766, 및 (b) Ben-Dov 등의, 요약본이 2007년 9월 26일-29일, Tucson, AZ, 61차 Annual High Blood Pressure Research Conference 2007에서 제시된, 참조문헌 "Measures of Linear Relationship Between Systolic and Diastolic Ambulatory Blood Pressure Predict All-Cause Mortality"에서, 저자들은 사망률에 연관된 S와 D 사이의 관계를 기술하였다.
(ASI와 AASI는 "Gavish 2008"논문에 제시된 것과 같이 수학적으로 연관된다. 따라서, 본 발명의 범위는 당업자가 명확히 이해하는 바와 같이, 본 출원에서 기술된 결과, 관계, 및 실시예를 획득하기위해 필요한 변경을 가하여 ASI 대신 AASI를 이용하는 것을 포함한다.)
보다 특정하여, ASI는 본문에 참조에 의해 통합된 "Repeated blood pressure measurements may probe directly an arterial property", Am. J. Hypertension 2000; 13: 19A("Gavish 2000"),이라는 제하의 Gavish에 의한 논문에서 수축기 동안 동맥이 더 경화되는 경향을 측정하도록 도시된다.
Gavish 2000에 따르면,
Figure pct00003
Gavish 2008은 ASI가 1 내지 2의 범위에 빈번하게 있다는 사실을 기술한다.
B) 동맥 경화도의 압력 의존성
Pagani에 의한 논문, "Effects of age on aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep", Circ. Res. 1979; 44; 420-429, 및 본문에 참조에 의해 통합된 Gavish에 의한 논문, "The pressure dependence of arterial compliance: A model interpretation", Am J Hypertens 2001; 14: 121A("Gavish 2001")에서 미분 동맥 경화도(differential arterial stiffness)(G(P))가 압력에 대해 선형으로 증가하는 것이 도시된다.
압력에 대해 미분 동맥 경화도(dG(P)/dP)를 플롯팅한 곡선의 기울기는 압력 증가와 함께 경화되는 동맥의 경향을 특징으로 하는 압력에 독립적인 생리학적 파라미터이다. 상기 곡선의 기울기는 Gavish 2001에서의 건강한 대상자의 것에 비해 순환기 질환으로 고통받고 있는 대상자에 대해 상이한 범위의 값을 가지는 것으로 도시된다.
C) 수축기 혈압과 확장기 혈압의 높이 의존성
임의의 기준 높이에 대해, 측정치 부위의 높이에 따라 혈압이 달라진다는 것은 공지된 현상이다. 예를 들면, 유체정역학적인(hydrostatic) 효과를 반영할 때 이러한 현상을 기술하는, "Textbook of Medical Physiology"(Guyton AC and Hall JE, W.B.Saunders, Philadelphia, 9판, 14장, pp. 161-181)을 참조하라. 예를 들면, 심장과 측정 부위 사이의 혈액의 수은주(a column of blood)에 의해 작용되는 추가적인 압력에 기인하여, 심장보다 더 낮은 레벨에 있는 부위에서의 혈압은 심장에서의 혈압보다 더 크다. 이러한 효과에 따라, 혈압은 측정 부위를 10cm 낮추는 것에 대해 약 8mm Hg 만큼 증가한다. 따라서, Guyton에 따라, 높이에 대해 수축기 압력과 확장기 압력을 플롯팅하는 것은 동일한 기울기를 가진 2개의 평행한 라인을 가져오게 된다.
하기의 특허가 관심의 대상이다:
Apple의 미국 특허 5,103,833,
Whitt의 미국 특허 6,309,359,
Peel의 미국 특허 4,779,626,
Yang의 미국 특허 7,101,338,
Ota 등의 미국 특허 5,778,879,
Claxton의 미국 특허 4,998,534,
Negishi의 미국 특허 5,201,319,
Burleson의 미국 특허 5,778,979,
Kato의 미국 특허 6,872,182.
관심의 대상인 하기의 참조문헌은 참조에 의해 본문에 통합되었다.
"The nonlinearity of pressure-diameter relationship in arteries as a source for pulse pressure widening: A model view," Gavish, 2006년 6월 15일-17일, Milan, the European Society of Hypertension 미팅에서 요약본 #1547이 제시됨("Gavish 2006"),
"Practical Noninvasive Vascular Diagnosis," Kempczinski RF 및 Yao JST(1982), YearBook Medical Publishers, Chicago,
"Velocity of transmission of the pulse and elasticity of arteries," Bramwell J.C., 및 Hill A.V., Lancet Ⅰ 1922, 891-892,
"Pulse wave analysis," O'Rourke MF 등, Br J Clin Pharmacol, 2001;51; 507-522,
"Plethysmographic characterization of vascular wall by a new parameter - minimum rise time: Age dependence in health," Gavish B., Microcirc Endothel lymph. 1987:3; 281-296,
"Biometry," Sokal RR 및 Rohlf FJ (1981), 2nd ed. Chap 15 pp. 561-616, Freeman, New York,
"Regression Analysis for Social Science," von Eye A, 및 Schuster C, Academic Press, San Diego, 1998, Chap 12, pp. 209-236,
Micro Medical Ltd(Kent, UK)는 동맥 트리의 2개의 위치 사이에서의 동맥 경화도 측정시 기술되는 the PulseTrace PWV를 제조한다.
본 발명은 동맥 특성을 평가하는 외부의 의료장치를 제공하기 위한 것이다.
도 1c에 도시된 바와 같이, 높이에 대해 수축기 혈압과 확장기 혈압이 상이한 종속성을 나타내는 것이 본 발명자에 의해 발견되었다.
하기의 관계가 수축기 혈압(S(H))과 높이(H) 사이 및 확장기 혈압(D(H))과 높이(H)사이에 존재한다:
Figure pct00004
여기서,
Figure pct00005
Figure pct00006
여기서,
Figure pct00007
여기서, As, Bs, Ad, 및 Bd는 일반적으로 특정한 대상자에 대해 일정하고, 여기서 Bd 및 Bs는 같을 필요는 없다. 본 발명의 일부 실시예에서, 대상자의 Bs 및 Bd는 하기에 기술되는 바와 같이 회귀분석(regression analysis)에 의해 판정된다.
수학식 4 및 5는 수학식 2와 조합되어, 동맥 경화도 인덱스(ASI)의, 높이에 대한 수축기 혈압의 도함수(Bs)와 높이에 대한 확장기 혈압의 도함수(Bd) 사이의 하기의 관계식을 제공한다:
Figure pct00008
그것은 도 1c에 도시된 바와 같이, 높이에 대한 수축기 압력의 도함수가 높이에 대한 확장기 압력의 도함수와 일반적으로 상이한 ASI가 일반적으로 1과 같지 않다는 사실로부터 뒷받침된다.
모든 이 3가지 현상은 동맥에서 유지되는 공지된 현상학적 압력-체적 관계를 이용하여 동맥 특성에 링크될 수 있다:
Figure pct00009
여기서, u, v 및 Ve는 압력에 독립적인 조정가능한 상수이고, 여기서 Ve는 "동맥 팽창도(arterial expansivity)"라고 하고, 파라미터(u)는 "제로-경화도(zero-stiffness) 압력"이다.
동맥 팽창도의 역(즉, 1/Ve)은 "경화도 상수"(Stefanadis 등에 의한 논문, "Pressure-diameter relation of the human aorta", Circulation 1995; 92: 2210-2219에 설명되어 있는 바와 같이)로서 알려져있다.
제로 경화도 압력(u)은 동맥 외부의 압력이 동맥압보다 충분히 더 클 때 발생하는 동맥 붕괴의 현상에 기인하여, 현재 모델이 덜 유효한 것보다 더 낮은 압력이다. 파라미터(u)는 하기와 같이 수학식 2에 의해 주어진 파라미터 A 및 ASI로부터 연산될 수 있다.
(수학식 7a)
Figure pct00010
하기의 관계식은 동맥 경화도(G(P))와 동맥압(P) 사이에 존재한다.
Figure pct00011
수학식 8이 주어지면, D에 대해 플로팅된 G(D)의 기울기와, S에 대해 플로팅된 G(S)의 기울기(및 일반적으로 P에 대해 플로팅된 G(P))는 경화도 상수, 1/Ve를 제공할 수 있다. 즉, 하기의 수학식을 제공한다:
Figure pct00012
모두 상기에서 그 논문들이 인용된, Gavish 2000과 Gavish 2001에 기술된 기술을 이용하면, 수학식 8은 동맥 경화도 인덱스(ASI)를 수축기 동맥 경화도(G(S)), 확장기 동맥 경화도(G(D)) 및 펄스 체적(ΔV)에 연관시키는 하기의 표현식을 도출하는 것을 볼 수 있다:
Figure pct00013
수학식 10은 ASI가 판정된 혈압 측정치에 추가하여, ΔV가 측정되면, Ve가 하기의 수학식에 의해 연산될 수 있음을 보여준다.
Figure pct00014
수학식 10에 따르면, ASI=1은 압력에 독립적인 경화도를 가진 탄성 동맥과 선형 압력 체적 관계식에 대응한다. ASI가 1을 초과하는 크기는 동맥의 비탄성적 속성에 대응하고, 동맥압을 증가시킬때 경화하는 자신의 경향에 연관되어, 선형성으로부터 동맥의 압력-체적 관계식의 편차를 반영한다. 본문에 참조에 의해 통합된, 2006년 6월 15일-17일, Milan, the European Society of Hypertension 미팅에서 요약본 #1547이 제시된 Gavish에 의한 참조문헌, "The nonlinearity of pressure-diameter relationship in arteries as a source for pulse pressure widening: A model view,"("Gavish 2006")은 후속하는 수학식 10의 자신의 해석과 함께 혈압 측정치를 이용하여 수학식 2에 의해 연산되는 바와 같이, 동맥의 동맥 경화도 인덱스를 이용하여 맥압을 동맥의 탄성 및 비탄성 속성과 연관된 구성요소로 분할할 수 있다는 것을 보여준다. 일반적으로, 발명자는, 비선형 압력 체적 관계식에 연관된 맥압의 구성요소가 심장질환의 위험 요인에 연관되는 것으로, 가정한다. 따라서, 본 발명의 일부 실시예에 의해 제공되는 바와 같이, 임상 현장에서 이들 구성요소들을 판정할 수 있는 것은, 진단을 할때 외과의사를 보조하는 다른 것들과 함께 사용될 수 있는 유용한 진단 도구 또는 도구이다.
(동맥 체적을 포함하는 본문에 제시된 모든 결과 및 관계식은 동맥 단면적 및 동맥 직경에, 필요한 변경을 가하여 동일하게 적용한다. 따라서, "펄스 체적"에 대해 기술된 결과 및 관계식은 "펄스 면적" 및 "펄스 직경"에 대해 동일하게 유지한다. 따라서, 본 발명의 범위는 당업자에게 명확한 바와 같이 펄스 체적 대신에 필요한 변경을 가하여 펄스 면적 및/또는 펄스 직경을 이용하는 것을 포함한다.)
Gavish 2006은 수학식 10으로부터 동맥 체적과의 선형 관계식(PP-elastic)을 가지는 맥압(PP)의 컴포넌트, 동맥 체적과의 비선형 관계식(PP-nonelastic)을 가지는 맥압의 컴포넌트, 및 동맥 경화도 인덱스(ASI) 사이의 관계식을 도출한다.
정의에 의해, PP-elastic은 하기와 같이 판정된다:
Figure pct00015
추가로, PP-nonelastic은 PP에서 PP-elastic을 차감한 것이다. 따라서, 수학식 12와 상기에 제시된 관계식을 이용하여, 발명자는 Gavish 2006에서 하기를 제시한다:
Figure pct00016
(수학식 13a)
Figure pct00017
(수학식 13b)
Figure pct00018
예를 들면, 수학식 13에 기초하여, ASI=1.1이라면, PP-nonelastic/PP-elastic=0.05이고, 이는 맥압의 비탄성 컴포넌트는 탄성 컴포넌트의 5%임을 나타낸다. 한편, ASI=2이면, 대응하는 비율은 44%가 된다.
발명자는 수학식 1에 의해 주어진 형태로, 즉 G(D)=dD/dV의 식으로 확장기 동맥 경화도와 상술한 선형화된 형태(PP/ΔV) 사이의 관계식을 수학식 12와 수학식 13을 조합하여 하기의 수학식으로 도출한다:
Figure pct00019
수축기 동맥 경화도(G(S)는 그런다음 수학식 10을 이용하여 확장기 동맥 경화도(G(D))로부터 판정될 수 있다.
추가로,
ASI=G(S)/G(D)이고,
ASI=Bs/Bd이기 때문에,
발명자는 높이에 대한 수축기 혈압의 도함수(Bs)가 수축기 압력(S)의 중간값에서의 수축기 동맥 경화도(G(S))에 비례하고, 높이에 대한 확장기 혈압의 도함수(Bd)가 확장기 압력(D)의 중간값에서의 확장기 동맥 경화도(G(D))에 비례한다고 가정한다.
발명자의 가정에 대한 수학적 베이시스가 본문에 설명되어있지만, 본 발명의 범위는 이러한 가정에 대응하는 실시예에 한정되는 것이 아님에 유의하라.
본 발명의 일부 실시예에서, "혈압 측정치"라는 용어는 측정 부위에서의 혈압 센서에 의해 생성된 혈압 신호를 처리한 결과를 포함하는 것에 유의하라.
본 발명의 일부 실시예에서, 대상자의 혈압(또는 동맥압에 대응하는 또다른 측정치)은 측정 디바이스가 결합되는 대상자의 신체의 일부가 기준 높이에 대해 제 1 높이에 있는 동안 측정된다. 대상자의 신체의 일부는 기준 높이에 대해 제 2 높이로 이동되고, 대상자의 혈압(또는 다른 측정치)은 대상자의 신체의 일부가 제 2 높이에 있을때 2번째로 측정된다. 대상자의 생리학적 파라미터는 혈압 측정치(또는 다른 측정치) 및, 선택적으로, 제 1 및 제 2 높이에 관한 표시를 처리함으로써 판정되고, 출력이 상기 생리학적 파라미터 판정에 대응하여 생성된다.
상대적으로 넓은 범위의 높이에 대해 취해진 반복된 혈압(BP) 측정치는 일반적으로 상술한 동맥을 특징짓는 다수의 파라미터를 판정하기 위해 취해진다. 심장 레벨에 대해 림프의 높이를 변경하는 것이 전체 신체에서 BP에 영향을 주지않으면서 국부적으로 BP를 변경하는 시스템적인 방식이 될 수 있다. 따라서, 일부 실시예에서, 림프의 높이는 혈압을 시스템적으로 변화시키기 위해 시스템적으로 변화된다.
본 발명의 일부 실시예에서, 하나 이상의 동맥 특성의 세트가 기준 포인트에 대해 상이한 높이로 혈압 측정 부위를 배치하는 동안 혈압을 반복적으로 측정함으로써 도출된다. 대안으로 또는 추가하여, 측정 부위의 높이, 펄스 체적, 펄스 직경, 펄스 면적, 펄스파 패턴의 기하학적 특성, 및/또는 펄스파 속도가 측정되고 및/또는 도출된다. 그 모두 또는 일부가 본 발명의 실시예에 따라 다수의 상이한 높이에서 측정되고 및/또는 도출된 이러한 파라미터는 집합적으로 본 출원에서 "펄스파 특성" 또는 "펄스파 파라미터"로서 기술된다(이러한 측정치 모두가 맥동하는 파형에 연관되기 때문).
펄스파의 기하학적 특성은 예를 들면 맥압의 변화율, 펄스 라이즈타임, 펄스 감쇠시간, 수축기 및/또는 확장기에 대응하는 시간 포인트 사이의 듀레이션, 및/또는 펄스파의 상대적 진폭을 포함한다.
펄스파 특성은 일반적으로 참조에 의해 본문에 통합된 하기 참조문헌에 기술된 바와 같이 종래기술에 공지된 기술을 이용하여 판정된다:
상기에서 인용된 Pagani(1979),
"Practical Noninvasive Vascular Diagnosis," Kempczinski RF 및 Yao JST(1982), Year Book Medical Publishers, Chicago, 이는 하기를 기술한다:
· Part Ⅱ의 동맥 직경의 초음파 판정, 2장, "Ultrasound", Summer DS, pp21-47,
· Part Ⅲ의 펄스 체적 및 파형, 7장, "Segmental volume plethysmography: the pulse volume recorder" Kempczinski RF, 및 Part Ⅲ의 3장에서의 "Plethysmography", Yao JT 및 Flinn WR.
"Velocity of transmission of the pulse and elasticity of arteries," Bramwell J.C., 및 Hill A. V., Lancet Ⅰ 1922, 891-892, 이는 펄스파 속도에 의한 동맥 경화도의 판정을 기술한다.
"Pulse wave analysis," O'Rourke MF 등, J Clin Pharmacol, 2001;51; 507-522, 이는 펄스 파형의 분석을 기술한다.
이러한 기술들은 예를 들면 상술한 the PulseTrace PWV에서의 Micro Medical Ltd에 의해 상업적으로 적용된다.
펄스파 특성은 혈압 측정 부위에 배치된 하나 이상의 센서에 의해 측정된다. 일부 실시예에서, 센서는 커프, 혈관내 압력 센서, 광체적변동파형(PPG: photoplethysmogram), 및/또는 스트레인 게이지 체적 변동 기록계를 포함한다. 일부 실시예에서, 센서는 힘을 측정 부위에서 신체 부분의 주변에 가하는 커프를 포함한다. 일부 실시예에서, 센서는 예를 들면 헤모글로빈의 스펙트럼 특성과 같은 압력에 따라 변하는 혈액 특성을 검출한다. 예를 들면, 핑거마운팅된(finger-mounted) PPG가 대상자의 손가락 상에 배치되어 대상자가 자신의 손을 올리고 내리는 동안 대상자의 손가락에서의 혈압을 측정한다.
본 발명의 일부 실시예에서, ASI는 하기에 기술되는 바와 같이, 수학식 2를 이용하여 상이한 높이에서 반복된 혈압 측정치를 취함으로써 판정된다. 혈압 측정 부위의 높이는 ASI가 판정될 수 있는 S 및 D에 대한 값의 범위를 제공하기 위해 변경될 수 있다.
일부 실시예에서, 맥압의 탄성 컴포넌트를 그의 비탄성 컴포넌트에 연관시키는 비율은 수학식 12를 이용하여 ASI로부터 판정되고, 및/또는 이러한 컴포넌트들의 절대값은 수학식 13a를 이용하여 ASI와 맥압으로부터 판정된다.
일부 실시예에서, 혈압 측정치가 측정되는 각각의 높이에서, 펄스 체적, 펄스 면적, 및/또는 펄스 체적에 연관된 기타 파라미터가 측정된다. 수학식 14를 이용하여, 동맥 경화도의 수축기 및/또는 확장기 값이 판정된다. 일부 실시예에서, 동맥 확장도는 수학식 9 또는 11을 이용하여 판정된다. 일부 실시예에서, 수학식 14로부터 수축기 또는 확장기 동맥 경화도의 값과 수학식 9 또는 11을 이용하여 동맥 확장도 값을 연산하면, 제로-경화도 압력이 수학식 8을 이용하여 연산된다.
일부 애플리케이션에 대해, 혈압 측정치가 취해지는 각각의 높이에 대해, 기준 높이에 대한 혈압 측정 부위의 높이가 측정 또는 평가되고, 높이(Bs)에 대한 수축기 혈압의 도함수 및/또는 높이(Bd)에 대한 확장기 혈압의 도함수가 수학식 4 및 5를 이용하여 판정된다. 일부 실시예에서, ASI는 Bs 및 Bd에 대한 값과 수학식 6을 이용하여 연산 또는 증명된다.
일부 실시예에서, 혈압 측정 부위의 높이는 예를 들면, 높이를 수동으로 측정하고 사용자 인터페이스 상에 높이를 입력하는 것과 같은, 종래 기술에 공지된 기술을 이용하여 측정 및 평가된다. 대안으로 또는 추가로, 측정 동안 혈압 측정 부위를 지지하는 지지 구조체의 위치에 연관된 데이터가 사용자 인터페이스로 입력되거나 또는 센서에 의해 검출된다. 예를 들면, 지지 구조체의 위치는, 상기에서 인용되고 본문에 참조에 의해 통합된 미국 특허 4,779,626에서 기술된 기술을 이용하여, 지지 구조체에 결합된 유체로 채워진 튜브에 의해 생성된 유체정역학적인 압력을 검출함으로써 검출된다. 대안으로 또는 추가하여, 혈압 측정 부위의 높이는, 상기에서 인용되고 본문에 참조에 의해 통합된 미국 특허 7,101,338에 기술된 기술을 이용하여, 혈압 센서, 혈압 측정 부위, 및/또는 지지 구조체의 공간 위치를 검출하는 3D 가속 칩을 이용하여 판정된다.
본문에 기술된 일부 실시예가 혈압 측정치, 또는 대상자의 동맥 파라미터를 판정하기 위한 혈압 신호의 사용을 기술하지만, 본 발명의 범위는 대상자의 동맥 파라미터를 판정하기 위한 다른 측정치를 이용하는 것을 포함한다는 것에 유의하라. 예를 들면, 펄스 체적, 펄스 면적, 펄스 직경, 유체 속도, 스펙트럼 특성, 및/또는 대상자의 신체의 상이한 파라미터가 필요한 변경을 가하여 대상자의 동맥 파라미터를 판정하기 위해 측정된다.
본 발명은 도면과 함께 그의 하기의 상세한 설명으로부터 보다 완전히 이해될 것이다.
본 발명에 따르면, 임상 및 가정 간호에서 동맥의 특성을 평가하여 진단에 사용되는 외부 의료 장치를 제공할 수 있다.
도 1a는 본 발명의 일 실시예에 따른 상이한 높이에 배치된 암 커프의 개략도이다.
도 1b는 수축기 혈압과 확장기 혈압 사이의 관계를 도시하는 그래프로서, 상기 혈압은 본 발명의 일 실시예에 따라 도 1a의 암 커프를 이용하여 측정되는 그래프이다.
도 1c는 수축기 혈압 및 확장기 혈압과 혈압 측정 부위의 높이 사이의 관계를 도시하는 그래프로서, 상기 혈압은 본 발명의 일 실시예에 따라 도 1a의 암 커프를 이용하여 측정되는 그래프이다.
도 2a는 본 발명의 일 실시예에 따른 상이한 높이에 배치된 팔목 커프의 개략도이다.
도 2b는 수축기 혈압과 확장기 혈압 사이의 관계를 도시하는 그래프로서, 상기 혈압은 본 발명의 일 실시예에 따라 도 2a의 팔목 커프를 이용하여 측정되는 그래프이다.
도 2c는 수축기 혈압 및 확장기 혈압과 혈압 측정 부위의 높이 사이의 관계를 도시하는 그래프로서, 상기 혈압은 본 발명의 일 실시예에 따라 도 2a의 팔목 커프를 이용하여 측정되는 그래프이다.
도 3a-b는 본 발명의 각각의 실시예에 따른 혈압 측정 장치의 블록도이다.
도 4는 본 발명의 일 실시예에 따른 혈압 측정 장치의 동작을 도시하는 플로우차트이다.
도 5는 본 발명의 일 실시예에 따른 대상자의 생리학적 파라미터를 판정하는 프로세스를 도시하는 플로우차트이다.
도 6은 본 발명의 일 실시예에 따른 혈압을 측정하는 커프로 사용하는 동작 입력 유닛의 개략도이다.
도 7은 본 발명의 일실시예에 따른 혈압 및 펄스 체적을 측정하는 커프로 사용하는 동작 입력 유닛의 개략도이다.
도 8은 본 발명의 일 실시예에 따라 혈압을 측정하고 혈압 측정 부위의 높이에 관한 정보를 수동으로 수신하는 장치의 개략도이다.
도 9는 본 발명의 일 실시예에 따라 혈압 및 펄스 체적을 측정하고 혈압 측정 부위의 높이에 관한 정보를 수동으로 수신하는 장치의 개략도이다.
도 10은 본 발명의 일 실시예에 따라 혈압을 측정하고 센서를 통해 혈압 측정 부위의 높이에 관한 정보를 수신하는 장치의 개략도이다.
도 11은 본 발명의 일 실시예에 따라 혈압 및 펄스 체적을 측정하고 센서를 통해 혈압 측정 부위의 높이에 관한 정보를 수신하는 장치의 개략도이다.
도 12는 본 발명의 일 실시예에 따른 혈압 측정 부위를 지지하는 지지 구조체의 개략도이다.
도 1a를 참조하면, 이는 본 발명의 일 실시예에 따른, 상이한 높이(H)("커프 높이")에 있는 커프의 개략도이다. 도시된 바와 같이, 커프 높이는 예를 들면 플로어와 같은 임의의 기준 높이와 커프의 중심과 같은 커프 상의 위치 사이에 측정된다. 일부 실시예에서(도 1a에 도시된 바와 같이), 커프는 대상자의 팔 주위에 배치되고(즉, "암 커프"), 대상자는 다수의 상이한 높이에 커프를 배치시키기 위해 다수의 상이한 자세(즉, 신체 위치)를 취한다.
일부 실시예에서, 연속한 커프 높이들 사이의 거의 상수인 커프-높이 간격을 가지는, 다수의 커프 높이가 하기와 같이 판정된다. 사용자가 자신을 편안하게 배치시키도록 허용하는 최대 및 최소 커프 높이가 판정된다. 최대 및 최소 높이 사이의 차이는 (n-1) 간격으로 분할된다. 대상자는 먼저 커프 높이가 최소인 위치를 취하고, 본문에 기술된 바와 같이 측정치를 취한다. 후속하여, 대상자는 하나의 높이 간격만큼 커프 높이를 올리고, 상기 측정을 반복한다. 대상자는 계속하여, 커프 높이가 최대 커프 높이가 될 때까지 점진적인 간격만큼 커프의 높이를 올리고, 측정치를 취한다. 일반적으로 대상자는, 대상자에게 불편함을 초래하지 않으면서 대상자의 자세를 안정적으로 하기위해, 다른 손으로, 신체의 상이한 부분으로, 또는 예를 들면 테이블과 같은 액세서리로 자신의 팔을 지지함으로써 각각의 커프 높이에 커프를 유지시킨다. 일반적으로, 커프가 배치되는 팔은 커프의 변형을 방지하기 위해 커프가 배치되는 팔 상의 위치가 아니라 다른 위치에서 지지된다. 커프 높이를 판정하기 위한 이러한 프로시저는 필요한 변경을 가하여 본 출원에서 언급된 모든 유형의 커프에 적용될 수 있다.
커프가 각각의 높이에 있는 동안, 혈압 측정치 및/또는 기타 측정치가 커프에 의해 측정된다. 예를 들면, 도시된 바와 같이, 대상자는 7개의 상이한 자세를 취할 수 있다. 자세 1에서, 손은 자유롭게 매달려 있고, 커프 높이는 최소이다. 자세 2에서, 손은 복부에 배치되고, 커프가 심장 레벨에 배치되는 자세 3에서, 손은 약간 들어올려져서 다른 손에 의해 지지된다. 자세 4는 자세 3과 유사하지만, 플로어와 평행하게 팔이 어깨 레벨에 배치된다. 자세 5는 자세 4와 유사하지만, 팔은 어깨 레벨 위로 약간 들어올려져서, 커프가 대상자의 목의 레벨에 있도록 한다. 자세 6에서, 손등이 이마 위에 배치되어, 커프가 대상자의 입의 레벨에 있도록 하고, 자세 7에서는, 팔뚝이 머리에 의해 완전히 지지되어, 커프가 대상자의 귀의 레벨에 있다. 일반적으로, 자세들은 사용자가 주어진 자세를 취함으로써 측정이 취해지는 팔이 지지되고 커프가 구속되지 않는다. 일부 실시예에서, 팔은 팔과 팔뚝 사이의 각도가 거의 일정한 자세의 세트로 배치된다.
도 1b를 참조하면, 이는 본 발명의 일 실시예에 따라 도 1a의 암 커프(9)를 이용하여 혈압이 측정되는, 수축기(S) 혈압과 확장기(D) 혈압 사이의 관계식을 도시하는 그래프이다. 상기 데이터는 표준 디지털 혈압 모니터로 측정되고, 암 커프는 도 1A에서 도시된 자세를 취하는 대상자에 의해 배치된다. 플로팅된 예에서, S와 D 사이의 상호 관계 계수(r)는 0.969로 알려졌고, 라인의 기울기의 계측값, 즉ASI는 1.500±0.144(Gavish 2008에 기술된 바와 같이, 대칭형의 회귀를 이용하여 중간값±중간값의 표준 오차)이다.
도 1c를 참조하면, 이는 본 발명의 일실시예에 따른 수축기(S) 혈압과 확장기(D) 혈압 및 혈압 측정 부위의 높이 사이의 관계식을 도시하는 그래프이고, 상기 혈압은 도 1a의 암커프(9)를 이용하여 측정된다. 측정 부위의 높이와 수축기 및 확장기 압력의 상호 관계 계수는 각각 0.992 및 0.973이다. 높이에 대한 수축기 혈압의 도함수(Bs)는 -0.941±0.048mmHg/cm이고, 높이에 대한 확장기 혈압의 도함수(Bd)는 -0.662±0.059mmHg/cm이다. Bd로 Bs를 나누면, 1.497±0.076이고, 이는 ASI에 대한 상기 추정치와 유사하다.
도 2a를 참조하면, 이는 본 발명의 일 실시예에 따른, 상이한 높이(H)에 있는 커프(9)의 개략도이다. 일부 실시예에서(도 2a에 도시된 바와 같이), 커프("팔목 커프")는 대상자의 팔목 주위에 배치되고, 대상자는 다수의 상이한 높이(H)에 커프를 배치시키기 위해 다수의 상이한 자세를 취한다. 커프가 각각의 높이에 있는 동안, 혈압 측정치 및/또는 기타 측정치가 커프에 의해 측정된다. 예를 들면, 도시된 바와 같이, 대상자는 6개의 상이한 자세를 취할 수 있다. 자세 1에서, 손은 자유롭게 매달려 있고, 커프 높이는 최소이다. 자세 2에서, 손은 허벅지 측면에 배치되고, 자세 3에서, 팔목이 복부상에 수평으로 배치되된다. 자세 4에서, 커프가 심장 레벨에 배치되고, 팔꿈치가 다른 손에 의해 지지된다. 자세 5에서, 팔뚝이 어깨 높이에서 수평으로 배치된다. 자세 6에서는, 팔뚝이, 커프가 대상자의 이마 레벨이 있도록, 수직으로 배치된다. 일부 실시예에서, 팔은 팔뚝과 손바닥 사이의 각도가 거의 일정한 자세의 세트로 배치된다.
도 2b를 참조하면, 이는 본 발명의 일 실시예에 따라 도 2a의 팔목 커프(9)를 이용하여 혈압이 측정되는, 수축기(S) 혈압과 확장기(D) 혈압 사이의 관계식을 도시하는 그래프이다. 상기 데이터는 표준 디지털 혈압 모니터로 측정되고, 팔목 커프는 도 2a에서 도시된 자세를 취하는 대상자에 의해 배치된다. 플로팅된 예에서, S와 D 사이의 상호 관계 계수(r)는 0.980으로 알려졌고, 라인의 기울기의 계측값, 즉, ASI는 1.044±0.105이다.
도 2c를 참조하면, 이는 본 발명의 일실시예에 따른 수축기(S) 혈압과 확장기(D) 혈압 및 혈압 측정 부위의 높이 사이의 관계식을 도시하는 그래프이고, 상기 혈압은 도 2a의 팔목 커프(9)를 이용하여 측정된다. 측정 부위의 높이와 수축기 및 확장기 압력의 상호 관계 계수는 각각 0.963 및 0.993이다. 높이에 대한 수축기 혈압의 도함수(Bs)는 -0.775±0.108mmHg/cm이고, 높이에 대한 확장기 혈압의 도함수(Bd)는 -0.748±0.044mmHg/cm이다. Bd로 Bs를 나누면, 1.036±0.117이고, 이는 ASI에 대한 상기 추정치와 유사하다.
도 3a-b를 참조하면, 이는 본 발명의 일 실시예에 따른 혈압 측정 장치의 블록도이다. 펄스파 검출 유닛(10)은 일반적으로, 마이크로프로세서 또는 수동으로 제어되는 가압 및 배출 유닛(도시되지 않음)에 의해 공기압이 제어되는, 사용자의 팔(도 1에 도시된 바와 같이)에 고정된 커프(예를 들면 커프(9)), 팔목(도 2에 도시된), 발목, 또는 손가락을 포함한다. 펄스파 검출 유닛은 신호를 생성하는 압력 센서(도시되지 않음)를 포함한다. (일부 실시예에서, 신호-생성 센서는 커프로부터 원격으로 배치되고, 상기 커프는 본문에 기술된 바와 같이 대상자의 신체의 일부에 결합된다. 예를 들면, 커프에 의해 검출된 압력은 제어 유닛 내부에 배치된 센서로 이송되어, 검출된 압력에 응답하여 센서가 전기 신호를 생성한다.) 이러한 장치의 부분은 현재 표준 상업용 전기 가정용 혈압 모니터에서 사용된다.
일부 실시예에서, 펄스파 검출 유닛(10)은 배경기술과 과제의 해결수단에서 상술한 기술을 이용하여 커프 체적이 연산될 수 있는 신호를 생성하는 서브유닛을 포함한다. 예를 들면, 양자 모두가 참조에 의해 본문에 통합된, Apple 등의 미국 특허 제 5,103,833, 또는 "A new oscillometry-based method for estimating the brachial arterial compliance under loaded conditions", Liu SH, Wang JJ, Huang KS, IEEE Trans Biomed Eng. 2008 55: 2463-2470"에 기술된 기술들이 사용된다.
대안으로 또는 추가하여, 펄스파 검출 유닛은 동맥 직경을 측정한다. 동맥 직경은 일반적으로 초음파 추적을 이용하여 측정된다. 일부 실시예에서, 동맥 단면적은 동맥 직경 측정을 이용하여 연산된다. 일부 애플리케이션에 대해, 펄스파 검출 유닛은 과제의 해결수단에서, 상기 인용된 참조 문헌(예를 들면, 본문에 참조에 의해 통합된 하기의 참조문헌, Kempczinski 등(1982), Bramwell 등(1922), O'Rourke 등(2001), Gavish(1987))에 기술된 기술에 따라 펄스파 속도, 및/또는 펄스파 패턴 기하학적 특성을 측정한다.
일부 실시예에서, 펄스파 검출 유닛(10)의 동작은 펄스파 파라미터 판정 유닛(16)을 통해 동작 입력 유닛(22)에 의해 제어된다. 펄스파 검출 유닛의 제어는, 예를 들면, 측정을 시작 및 중단하고, 단순 BP 판정으로서 단일한 측정 또는 생리학적 파라미터를 연산하는데에 유용한 일련의 측정을 수행하도록 선택하고, 예를 들면 저장된 데이터에 액세스함으로써 동작을 최적화하도록 메뉴로부터 선택을 하는 것을 포함할 수 있다. 일부 애플리케이션에 대해, 측정의 상태와 그의 제어는 디스플레이 유닛(20)을 통해 사용자에게 제공된다. 일부 실시예에서, 펄스파 검출 유닛에 의해 생성된 신호는 아날로그-디지털 컨버터(12)에 의해 디지털화되고 마이크로프로세서(14)에 의해 처리된다.
일부 실시예에서, 마이크로프로세서는 BP와 펄스 체적(측정된다면), 압력에 종속적인 동맥 특성에 연관될 수 있는 펄스파로부터 도출될 수 있는 모든 다른 파라미터를 판정하는 펄스파 파라미터 판정 유닛(16)을 포함한다. 예를 들면, 판정 유닛은 동맥압의 상승 시간(예를 들면, 참조에 의해 본문에 통합된, "Plethysmographic characterization of vascular wall by a new parameter-minimum rise time: Age dependence in health", Microcirc Endothel Lymph, 1987:3;281-296의 논문에서 Gavish B,에 의해 정의된 바와 같은 "최소 상승 시간") 또는 동맥압의 감쇠 시간을 판정한다. 일부 실시예에서, 데이터는 데이터 스토리지(18)에 저장되고, 및/또는 디스플레이 유닛에 의해 디스플레이된다. 일부 애플리케이션에서, 데이터 스토리지(18)는 삭제되거나 또는 동작 입력 유닛(22)에 의해 제공되는 입력에 이어져 다운로드될 수 있는 이전의 펄스파 측정치와 생리학적 데이터를 또한 저장한다.
일부 실시예에서, 동맥 파라미터 연산 유닛(34)은 일련의 데이터 포인트, 예를 들면 도 1b에서 도시된 라인의 기울기로부터 도출될 수 있는 파라미터를 분석한다. 이러한 연산을 수행함으로써, 이러한 유닛은 또한 예측되는 행동으로부터 특정한 데이터의 편차를 식별하고 사용자에게 측정을 반복하도록 요청하는 메시지를 생성하거나 또는 추가적인 측정을 수행하기 위한 효익을 식별할 수 있다. 동맥 파라미터 연산 유닛(34)은 또한 사용자가 생리학적 파라미터의 적절한 판정을 위해 적합한 상이한 높이로 펄스파 검출 유닛을 배치시키도록 가이드하는 것을 활성화한다. 가이드하는 것은 음성 메시지와 같은 사용자에 대한 추가적인 자극을 생성하는 디스플레이 유닛(20) 또는 높이-연관 지시 생성 유닛(36)을 통해 사용자에게 전달된다.
일부 실시예에서, 디스플레이 유닛(20) 또는 높이-연관 지시 생성 유닛(36)은 사용자로 하여금 특정한 자세를 가정하여 취하도록 하거나, 또는 커프가 장착된 조직(organ)을 주어진 공간 방향으로 이동시키도록 가이드한다. 예를 들면, 도 1a 및 2a에 도시된 바와 같이, 사용자가 상이한 자세를 취함으로써 상이한 높이의 측정 부위가 달성되는 실시예에서, 높이-연관 명령어는 생성할 특정한 자세를 도시한다. 일부 실시예에서, 높이 표시(예를 들면, 펄스파 검출 유닛(10)의 높이를 지시하는)는 높이-연관 입력 유닛(32)을 이용하여 키입력된다. 이러한 정보는 미터 스틱을 이용하여 사용자에 의해 예를 들면 플로어와 같은 임의의 기준으로부터 직접 측정된 높이가 될 수 있다. 일부 실시예에서, 지지 구조체는 혈압 측정 부위를 바람직한 자세로 배치하는 것을 돕고, 직접 또는 코드를 통해 간접적으로 높이 정보(예를 들면, 펄스파 검출 유닛(10)의 높이를 지시하는)를 제공한다. 이러한 구조체는 도 12를 참조하여 하기에 기술된다.
일부 실시예에서, 동맥 파라미터 연산 유닛(34)은 혈압과 높이 사이의 선형 관계식을 이용하여 표준에서 벗어난 높이-연관 측정치를 검출한다.
도 3b에 도시된 장치는 전체적으로 도 3a의 것과 유사하다. 도 3a의 장치는 높이-연관 데이터가 수동으로 입력되는 높이-연관 입력 유닛(32)을 포함한다. 도 3b의 장치는 (예를 들면) 검출된 펄스파 신호를 생성하는 사용자의 신체 부분의 중력 중심의 높이, 도 1a 및 2a를 참조하여 기술된 커프 높이, 또는 상이한 펄스파 검출 유닛(10)의 높이, 또는 펄스파 검출 유닛의 상이한 부분이 판정되는 신호를 생성하는 높이 검출 유닛(33)을 포함한다. 이러한 신호들은 예를 들면 본문에 참조에 의해 통합된 미국 특허 7,101,338에 기술된 바와 같은 공간 위치를 검출하는 3D 가속칩을 이용하여 본문에 참조에 의해 통합된 미국 특허 4,779,626에 기술된 바와 같은 유체 충전 튜브에서의 유체정역학적인 압력을 검지함으로써, 및/또는 도 12를 참조하여 기술된 바와 같은 지지 구조체에 의해 제공된 코드를 통해 생성된다. 따라서, 도 3a를 참조하여 기술된 펄스파 파라미터 판정 유닛(16)은 기준 포인트로부터 측정된 높이로 높이 검출 유닛(33)에 의해 제공된 신호 또는 코드를 변환하는 펄스파 파라미터 및 높이 판정 유닛(17)에 의해 도 3b의 장치에서 대체된다. 일부 실시예에서, 기준 포인트는 동작 입력 유닛(22)을 통해 사용자로부터의 입력을 이용하여 선택된다. 예를 들면, 기준 포인트는 심장 레벨이거나, 또는 그것은 측정하는 동안 심장 레벨이 변하지 않도록 하는 플로어 레벨(예를 들면, 도 1a 및 2a를 참조하여 기술된, 높이가 커프 높이일 때)이 될 수 있다. 측정하는 동안 심장 레벨이 변하지 않으면, 기준 포인트는 일반적으로 심장 레벨이 된다.
일부 실시예에서, 동맥 파라미터 연산 유닛(34)은 측정 부위의 높이에 관한 데이터를 마이크로프로세서(14)가 수신하지 않고서, 즉, 높이-연관 입력 유닛(32) 또는 높이-검출 유닛(33)으로부터 데이터를 수신하지 않고서 대상자의 동맥 파라미터를 연산한다는 것을 유의하라. 예를 들면, 수학식 13을 이용하여 ASI로부터 연산된 ASI 및/또는 PP-nonelastic/PP-elastic 비율은 마이크로프로세서(14)가 펄스파 측정부위의 높이에 관한 데이터를 수신하지 않고서 연산될 수 있다. 일부 실시예에서, 사용자에 의한 상이한 높이에서의 측정 부위의 배치는 BP에서의 가변성을 생성하는 도구로서 기능한다. 따라서, 마이크로프로세서(14)가 측정 부위의 높이에 관한 데이터를 수신하는 것이 필수적으로 중요한 것은 아니다.
도 4를 참조하면, 이는 본 발명의 일 실시예에 따른, 혈압 측정 장치의 동작을 도시하는 플로우 차트이다. 일부 실시예에서, 동작 입력 유닛(22)을 통해 장치를 켠 후에, 펄스파 파라미터 판정 유닛(16)에서의 측정과 연산에 포함된 버퍼가 클리어되는 동안 시작 프로세스가 발생하고(단계(ST1)), 자세 번호에 대한 인덱스(n)가 값 1을 수용한다(단계(ST2)). 후속하여, 디스플레이 유닛(20) 및/또는 높이-연관 지시 생성 유닛(36)이 사용자로 하여금 시작 신호를 생성하도록 하는 자세를 취하도록 사용자에게 지시한다(단계(ST3)). (일반적으로, 동작 입력 유닛(22)은 준비되었을 때 사용자가 누르는 START 버튼을 포함한다.) START 버튼이 눌러지는 것에 응답하여, 장치는 펄스파 검출 유닛(10)을 활성화하고, 그의 출력이 A/D컨버터(12)에 의해 디지털화되고, 펄스파 파라미터 판정 유닛(16)에 의해 수신된다(단계(ST4)). 판정 유닛은 펄스파 파라미터를 연산한다(단계(ST5)). 이러한 파라미터는 수축기 혈압(S)과 확장기 혈압(D), 수축기 및 확장기 펄스파 속도(일반적으로, 상이한 위치에서 동시에 체적과 압력파형을 측정함으로써 연산), 펄스파 패턴의 기하학적 특성, 펄스 체적(ΔV), 펄스 면적, 및/또는 펄스 직경을 포함한다. 단계(ST6)에서, 결과적인 파라미터가 수용가능성을 위해 테스트되는데, 예를 들면, 수용가능성 테스트는 S 또는 D가 미리정해진 범위 내에 있는지가 될 수 있다. 표준에서 벗어난 값은, 예를 들면 측정하는 동안의 조직의 이동 또는 부적절한 커프 배치에 의해 발생될 수 있다. 일반적으로, 측정치는, 사용자 또는 오퍼레이터가 문제점을 인식하고 측정을 반복하기를 원하는 경우에, 동작 입력 유닛(22)을 통해 수동으로 삭제될 수 있다. 응답시, 측정치는 데이터 스토리지(18)로부터 삭제되고, 단계(ST8 및 ST9)는 삭제된 측정을 반복하도록 지시하는 결과를 야기한다. 파라미터가 수용가능하지 못한 것으로 발견되면, 장치는 단계(ST3)로 돌아간다.
일부 애플리케이션에 대해, 단계(ST7)에서, 수용가능한 펄스파 파라미터는 높이-연관 입력 유닛(32) 또는 높이-검출 유닛(33)에 의해 제공된 높이-연관 데이터와 함께 데이터 스토리지(18)에 저장된다. 미리 저장된 펄스파 파라미터(있다면)를 이용하여, 단계(ST8)에서, 장치는 파라미터 및 단계(ST10)에서 연산된 그의 통계적 유의성을 이용하여(통계적 유의성을 연산하는 것에 관한 보다 상세한 것은 하기에서 제공된다.) 생리학적 파라미터를 판정하는데에 보다 많은 측정이 바람직한지를 판정한다. 보다 많은 측정이 생리학적 파라미터를 연산하기 위해 바람직하다면, 새로운 값(m)이 자세 번호(n)에 대해 적용되고(단계(ST9)), 프로세스는 단계(ST3)로 리턴하여, 여기서 디스플레이(20)가 새로운 자세(번호(m))를 디스플레이하고 및/또는 사용자로 하여금 이러한 자세를 취하도록 하는 신호를 디스플레이하고, 상기 디스플레이는 사용자로 하여금 측정을 시작하도록 지시한다.
일반적으로, 사용자는 예를 들면, 도 1a의 자세 1-7과 같이 미리정해진 순서로 자세를 취하도록 지시를 받는다. 일부 실시예에서, 사용자는 동작 입력 유닛(22)을 통한 자세의 수동 선택에 의해 이러한 자동 프로세스를 번복(override)할 수 있다. 추가로, 단계(ST10)에서, 장치는 표준에서 벗어난 측정치(이전의 측정치가 필수적인 것은 아님)를 식별할 수 있다. 예를 들면, 장치는 동맥 파라미터 판독물 중 하나가 다른 동맥 파라미터 판독물에 의해 구축된 관계식으로부터 도출되는 것을 식별함으로써 표준에서 벗어난 측정치를 식별한다. 일반적으로, 표준에서 벗어난 측정치를 식별하는 것에 응답하여, 사용자로 하여금 바람직한 자세에서 하나 이상의 측정을 반복하도록 지시하는 신호가 생성된다. 일부 실시예에서, 동맥 파라미터 연산 유닛은 예를 들면 동맥 특성을 판정하기 위해 표준에서 벗어난 측정치를 이용하지 않음으로써 표준에서 벗어난 측정치를 판정하는 것에 응답하여, 대상자에게 측정을 반복하도록 지시하지 않고서 대상자의 동맥 특성을 판정한다. 일반적으로, 생리학적 파라미터의 세트가 충분한 정확성으로 판정될 때(파라미터의 세트는 제조사에 의해 미리정해지거나 또는 동작 입력 유닛(22)을 통해 사용자 및/또는 의료 전문가에 의해 미리 선택됨), 연산의 결과가 디스플레이 유닛(20) 상에 디스플레이되고 자동으로 데이터 스토리지(18)에 저장된다(단계(ST11)).
도 5를 참조하면, 이는 본 발명의 일 실시예에 따른, 대상자의 생리학적 파라미터를 판정하는 프로세스를 도시하는 플로우 차트이다. 일반적으로, 생리학적 파라미터는 수학식 2, 4, 5 및 8에 따라, X 플롯대 Y의 선형 회귀분석에 의해 판정된다. 일부 실시예에서, 연산된 생리학적 파라미터의 통계적 유의성을 판정하기 위해 기울기의 통계적 유의성이 판정된다.
하기의 통계적 배경은 연산 프로세스를 이해하는 데에 도움이 될 것이다: 제로가 아닌 기울기와 선형 관계를 피팅하기 위해 가정된 n 데이터 포인트[X(i); Y(i)](i=1, 2..., n)가 주어지면, 이러한 가정을 테스트하기 위한 표준 통계 방법이 하기와 같이 정의된 상호관계 계수 r을 판정한다:
Figure pct00020
여기서,
Figure pct00021
브래킷은 표준화 연산, 즉 n 항에 대해 합하고 n으로 그 결과를 나누는 것을 나타낸다.
유사하게,
Figure pct00022
Figure pct00023
이다.
Figure pct00024
Figure pct00025
는 각각 X 및 Y 데이터의 표준 편차이다. r의 값은 1(완전한 상호관계)과 0(상호관계없음) 사이의 범위이다. n 데이터 포인트에 대해 연산된 r의 값은 하기의 방식(참조에 의해 통합된 Sokal RR 및 Rohlf FJ(1981) "Biometry" 2판, 15장 pp.561-616, Freeman, New York를 참조하라)에서 기울기의 유의성(p)에 연관된다:
파라미터
Figure pct00026
Figure pct00027
와 같고, 여기서 t(공지된 t 테스트로부터 취해진)는 유의성 레벨 p 및 n의 함수이고, 표준 통계표에서 볼 수 있다. 주어진 n으로부터 시작하고 p<0.05를 필요로하면, 하기와 같이 t의 함수로서
Figure pct00028
을 표시함으로써 r-critical 값을 판정할 수 있다:
Figure pct00029
r>r-critical에 대해, 기울기는 p<0.05 레벨 이내에서 유의성을 가진다. 하기 표는 연관된 데이터를 나타낸다.
n t(p=0.05에 대해)
Figure pct00030
-critical
r-critical
4 3.18 0.771 0.878
5 2.77 0.657 0.811
6 2.57 0.569 0.754
7 2.45 0.500 0.707
8 2.37 0.445 0.667
9 2.31 0.400 0.633
대안으로, 유사한 방법이 예를 들면,
Figure pct00031
와 같은 비선형 모델에 적용될 수 있고, 여기서 a, b, 및 c는 상호 관계 계수 r을 또한 제공할 수 있는 표준 비선형 회귀방법에 의해 판정된다. 또한, 비선형 회귀의 경우, r=1은 제시된 모델과 데이터 사이의 완전한 매칭, r=0은 제시된 모델과 데이터 사이의 완전한 미스매칭에 해당한다. r-critical 값을 미리 판정하는 동일한 접근 방식을 선형 모델에 대해 상술한 바와 같이 비선형 모델에 적용할 수 있다.
일부 실시예에서, 장치는 사용자가 다수의 자세를 취하는 동안 연속한 측정을 수행하도록 사용자에게 지시를 한다(도 4에 도시된 단계(ST3)). 단계(ST9)에서 각각의 측정에 대한 자세가 판정되는, 상기 자세들은 디폴트 패턴을 따르거나, 또는 특정한 자세를 사용자가 취하는 것에 의해 수동으로 선택될 수 있다. 일반적으로, 수동 동작은 바람직한 자세의 디폴트 순서를 번복한다. 연속적인 측정 프로세스는 수행된 측정이 미리 정해진 최소 수의 자세를 포함할 때 종료한다(단계(ST81)). 일부 애플리케이션에 대해, 사용자는 자발적으로 동일한 자세로 다수의 측정을 수행하지만(수동으로 선택된), 이러한 측정에 충분히 상이한 자세들이 포함되지 않는다면 연산은 수행되지 않는다. 일부 실시예에서, 다수의 상이한 자세에서의 측정은 충분히 넓은 범위의 높이-종속 펄스파 파라미터를 측정하기 위해 활용된다. 일부 애플리케이션에 대해, r의 연산된 값은 대응하는 저장된 r-critical 값에 비교된다(단계(ST101)). r>r-critical이라면, 장치는 회귀분석을 수행하고(단계(ST104)), 결과를 디스플레이하고 저장한다(단계(ST11)). 동일한 프로시저가 비선형 회귀 모델에 적용될 수 있다.
일부 실시예에서, 선형 회귀 분석이, 상기 인용된 Gavish 2008에 기술되고, von Eye A, 및 Schuster C의, "Regression Analysis for Social Science" Academic Press, San Diego, 1998, 12장, pp. 209-236("von Eye 1998")의 논문에서 기술된 기술에 따라 수행된다. 이들 논문 모두는 참조에 의해 통합된다. S와 D 사이의 관계식을 모델링하는 선형 회귀 라인의 기울기는, 대칭형 회귀에 의해 연산된 기울기가 r에 의해 나누어진 표준 회귀에 의해 도출된 기울기에 의해 추정될 수 있는 Gavish 2008에 기술된 발견에 기초하여, r에 의해 나누어진 표준 회귀에 의해 도출된 기울기에 의해 추정될 수 있다. 표준 회귀에 의해 도출된 기울기가
Figure pct00032
에 의해 표시된다는 것이 종래기술에 공지되어 있기 때문에, 대칭형 회귀에 의해 연산된 기울기가, Gavish(2008)의 발견에 따라,
Figure pct00033
인 것으로 추정될 수 있다.
본 발명의 범위는 제 1 변수와 제 2 변수를 측정하기 위해 측정 디바이스를 이용하고 상기 제 1 변수와 제 2 변수사이의 선형 관계식을 (a)상기 제 1 변수의 표준 편차를 (b) 상기 제 2 변수의 표준 편차로 나눔으로써 판정하는 것을 포함한다. 상기 판정 단계는 일반적으로 제어 유닛을 이용하여 수행된다. 일부 실시예에서, 제 1 및 제 2 변수 각각은 대상자의 수축기 혈압 및 확장기 혈압이다.
일부 실시예에서, 종래 기술에 공지된 기술을 이용하여 표준에서 벗어난 포인트를 검출하는 대안 또는 추가적인 방법이 사용된다. 예를 들면, 회귀 라인으로부터의 포인트의 편차는 Gavish의 미국 특허 제 6,662,032에 기술된 기술 및/또는 von Eye 1998에 기술된 기술을 이용하여 판정된다.
일반적으로, 기울기가 현저하지 않은 것으로 판정되면, 즉, p≤0.05에 대해 r≤r-critical이라면, 장치는 최대 편향 데이터 포인트(most deviant data point)를 식별하고 그를 배제한다(단계(ST102)). 일부 실시예에서, 이는 [X(i);Y(j)] 데이터 포인트를 제거하고 나머지 n-1포인트(i=1 내지 n, 그러나, i
Figure pct00034
j)를 이용하여 r(j)를 연산함으로써 수행된다. 최대 r(j)값은 최대 편향 데이터 포인트를 배제할 때 획득된다. r(j)가 n-1 데이터 포인트에 대응하는, r-critical 보다 더 큰 것으로 밝혀질 때(단계(103)), 상술한 바와 같이 회귀 분석(단계(ST104))이 적용된다. 일부 실시예에서, r이 자신의 임계값에 도달하지 못하면, 사용자는 적절한 자세에서 최대 편향이 되도록 발견되는 측정을 반복하도록 지시를 받는다(단계(ST9)). 대안으로, 사용자는 사용자가 선택한 자세로 추가적인 측정을 하도록 지시를 받는다. 반복 횟수가 미리정해진 최대값에 도달할 때까지, 기울기가 유의성있는 값에 도달하지 않는 한은 편향 데이터 포인트는 새로운 것에 의해 대체되고, 분석이 반복된다(단계(ST82)). 일부 실시예에서, 반복 횟수가 최대에 도달할 때, 기울기가 분석되고 유의성이 없는 것에 대해 특별한 마크를 가지고 결과가 디스플레이된다. 일부 실시예에서, 사용자는 반복 횟수가 최대에 도달한 후에 조차 자발적으로 사용자가 선택한 자세에서 측정을 추가할 수 있다. 대상자의 생리학적 파라미터는 자발적인 측정에 응답하여 연산되어, 자발적인 측정 결과를 포함하고, 통계적으로 유의성을 가지는 결과를 제공한다. 일반적으로, 회귀 분석에 의해 판정된 각각의 파라미터에 대해, 오차 판정을 평가하는 것이 가능하다(예를 들면, von Eye 1998 논문과 Gavish 2008 논문에 기술된 방법을 이용하여). 일부 실시예에서, 이러한 오차는 저장되고 및/또는 디스플레이된다.
일부 실시예에서, ST104는 회귀 파라미터와 심장 레벨에서 수행된 측정의 표시를 이용하여 심장 레벨 자세에서의 혈압을 측정하는 단계를 포함한다. 일부 실시예에서, 이러한 방식으로 심장 레벨에서 혈압을 판정하는 것은 상이한 높이에서 수행된 다수의 측정에 포함되고 결과인 회귀 라인이 평균을 내는 것을 나타내기 때문에 다수의 측정을 표준 평균을 내는 것 보다 더 정확하다. 일부 애플리케이션에 대해, 수축기 동맥 경화도 및/또는 확장기 동맥 경화도와 같은, 다른 압력-종속 파라미터가 심장 레벨에서 판정된다.
도 6을 참조하면, 이는 본 발명의 일 실시예에 따른, 혈압을 측정하는 커프로 사용하기 위한, 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 일반적으로, 높이-연관 지시 생성 유닛(36)은 사용자로 하여금 상이한 자세를 취하도록 지시하고, 사용자가 자세를 취했을 때 펄스파 검출 유닛(10)(도 3a에 도시됨)이 혈압을 측정한다. 일부 실시예에서, 장치는 사용자에게 음성 지시를 제공하는 스피커를 포함한다. 일반적으로, 상기 유닛은 데이터 입력을 위한 버튼뿐만 아니라 하나 이상의 스크린을 포함한다. 일부 애플리케이션에 대해, 디스플레이 유닛(20)은 2가지 유형의 스크린을 포함하는데: 하나의 유형은 측정하는 동안 사용되고(스크린(100)), 다른 하나는 생리학적 파라미터를 보고하기 위한 것이다(스크린(200)). 일반적으로, 스크린(100)은 사용자에 의해 취해지는 자세를 디스플레이 하는데, 예를 들면, 도 1a에는 7개의 자세가 도시되고, 스크린(200)은 디스플레이되는 다양한 변수들의 명칭과 단위를 디스플레이한다. 이러한 기본적인 디스플레이 구조는 도시된 모든 실시예에 의해 공유된다.
일부 실시예에서, 동작 입력 유닛(22)의 ON 버튼이 눌러지면, 측정 스크린(100)이 디스플레이된다. 일부 애플리케이션에 대해, 스크린은 하기를 표시한다:
ⅰ) "1"로 번호가 매겨진, 디폴트로 선택된 자세,
ⅱ) 이러한 번호를 향해 지시되는 "자세 마커" 및/또는,
ⅲ) 디스플레이 상단부에서의 날짜 및 시간.
일부 실시예에서, 스피커는 예를 들면 "손을 자유롭게 아래로 늘어뜨리고 준비되면 START를 누르세요"와 같은 사용자가 취해야할 자세를 기술하는 음성 지시를 제공한다. 일부 실시예에서, 음성 지시를 하는 동안, "자세 마커"는 사라지고 그 위에 "시작 마커"가 START 버튼이 눌러질 때까지 깜박거린다. 일부 실시예에서, 적절한 순환의 복구를 보장하기 위해, 지시가 주어지는 시간과 측정이 취해지는 시간 사이의 래그가 있다.
일부 실시예에서, 사용자는 혈압 측정 부위가 먼저 심장 레벨에 있는 자세를 취하도록 지시를 받는다. 일부 애플리케이션에 대해, 이러한 특정한 자세에 대해, 심장과 같은 아이콘이 또한 디스플레이된다. 일부 실시예에서, 사용자가 START를 누를때, 장치는 측정을 시작하고, 적합한 유닛으로 대응하는 라벨 "SYS", "DIA", "Pulse"가 평행한 위치에서 상자 커버 상에 인쇄되는, 값들인, 수축기 BP, 확장기 BP 및 펄스율을 디스플레이한다. 이러한 파라미터들은 일반적으로 날짜 및 시간, 및 자세 번호와 함께 저장되며, 그렇지 않으면 사용자는 측정 결과를 삭제하는 Delete 버튼을 누른다. 일부 실시예에서, 잘못된 측정이 취해지면, 예를 들면 수축기 BP 데이터의 위치에 ERR과 같은 적절한 오류 메시지가 디스플레이된다. 일부 실시예에서, 음성 메시지는 예를 들면, "측정하는 동안 손을 움직이지 마세요", 또는 "측정을 반복하세요"와 같은 "정정지시"를 제공한다. 일부 실시예에서, 제 1 측정은 항상 반복된다.
일부 실시예에서, 상이한 자세에서의 일련의 측정은 POSTURE를 누름으로써 시작된다. 각각의 측정 완료시, 사용자는 POSTURE 버튼을 누르고, 다음 자세가 디스플레이된다. POSTURE를 누르기 전에 START를 누르면 측정을 반복하고 새로운 데이터 포인트를 동일한 자세에 추가한다. 상기 프로세스는 일반적으로 측정이 모든 지정된 자세에서 수행될때까지 반복된다. 일부 실시예에서, POSTURE를 누른후 Delete를 누르면 현재 자세가 무시되고 이전의 자세에서의 측정이 취해진다. 이는 예를 들면 손을 올리는 것과 같은 일부 자세가 손의 움직임이 제한된 사람에 대해, 또는 BP가 너무 높을때(이는 가장 낮은 센서 위치에서의 측정을 하는 동안 통증을 가져온다), 또는 BP가 너무 낮을때(이는 가장 높은 센서 위치에서의 측정하고자하는 디바이스의 고장을 야기한다)와 같이 달성하기 어려울 때 중요하다. 이러한 프로세스 동안, 장치는 도 4 및 도 5를 참조하여 기술된 데이터 처리를 수행한다.
이러한 프로세스는 예를 들면 파라미터 ASI 및/또는 수학식 13을 이용하여 연산된 PP-nonelastic/PP-elastic 비율의 판정을 가져오고, 이는 스크린이 "nonelastic"이라고 나타내는 것에 인접하여 분석 스크린(200)에 의해 디스플레이된다. 일반적으로, 사용자에 의해 취해진 상이한 자세는 BP에서의 가변성을 생성하기 위한 도구로서 기능한다. 따라서, 디스플레이된 것과 같이 정확한 자체를 취하는 것이 필수적으로 중요한 것은 아니다.
일부 실시예에서, 심장 레벨에서의 혈압은 회귀 모델을 이용하여 연산되고 스크린 상에 표시된다. 일부 실시예에 대해, 평균 펄스율이 또한 디스플레이된다.
도 7을 참조하면, 이는 본 발명의 일실시예에 따른 혈압 및 펄스 체적을 측정하는 커프로 사용하는 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 상기 유닛은 일반적으로 분석 스크린(300 및 400)을 포함한다(일부 실시예에서, 스크린(300 및 400)에 도시된 데이터는 단일 스크린에 모두 도시된다.)
분석 스크린(300 및 400)은, 스크린(300 및 400)이 추가적인 펄스파 파라미터 및/또는 측정되는 추가적인 펄스파 파라미터로부터 연산될 수 있는 추가적인 동맥 특성(ASI 및/또는 PP-nonelastic/PP-elastic 비율에 추가하여)을 추가적으로 디스플레이한다는 점에서 도 6의 분석 스크린(200)과 상이하다. 예를 들면, 추가적인 펄스파 파라미터는 펄스 면적, 펄스 직경, 펄스 체적, 동맥 커패시턴스 및/또는 동맥 확장도를 포함한다. (도 7에 도시된 바와 같이 스크린(400) 상에 나타나는 "Capacity"라는 단어는 동맥 커패시턴스를 표시한다는 것에 유의하라.) 추가적인 동맥 특성은 수축기 동맥 경화도, 확장기 동맥 경화도, 및/또는 제로 경화도 압력을 포함한다. 일부 실시예에서, 이러한 동맥 특성의 일부 또는 모두는 심장 레벨에서 측정되고, 심장 레벨을 나타내는 심볼에 인접하여 디스플레이된다. 일부 실시예에서, 도출된 모든 펄스파 파라미터 및/또는 동맥 특성이 디스플레이되는 것은 아니다.
도 8을 참조하면, 이는 본 발명의 일 실시예에 따른 혈압을 측정하는 펄스파 검출 유닛(10)과 수동으로 혈압 측정 부위의 높이에 관한 정보를 수신하는 높이-연관 입력 유닛(32)으로 사용하는, 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 도 8의 장치는 전체적으로 도 6의 장치와 유사하다. 도 8의 장치는 예를 들면, 하기의 2가지 방식중 하나로 높이 표시를 키입력하는 디지트 선택기를 포함한다: ⅰ) 높이는 사용자에 의해 측정되어 키입력된다, 또는 ⅱ) 하기에 기술되는 바와 같이, 지지 구조체의 높이에 대응하는 코드가 키입력된다. 상기 장치는 예를 들면 높이에 대한 수축기 혈압의 도함수 및 높이에 대한 확장기 혈압의 도함수를 디스플레이하는(ASI에 추가하여) 분석 스크린(500)을 포함한다.
도 9를 참조하면, 이는 본 발명의 일 실시예에 따른 혈압 및 펄스 체적을 측정하는 펄스파 검출 유닛(10)과 수동으로 혈압 측정 부위의 높이에 관한 정보를 수신하는 높이-연관 입력 유닛(32)으로 사용하는, 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 일부 실시예에서, 상기 장치는 공지된 높이에서의 혈압과 펄스 체적의 측정치를 이용하여 연산될 수 있는 파라미터를 디스플레이 하기 위한 분석 스크린(350, 400 및 500)을 포함한다.
도 10을 참조하면, 이는 본 발명의 일 실시예에 따른 혈압을 측정하는 펄스파 검출 유닛(10)(도 3a에 도시된)과 혈압 측정 부위의 높이에 관한 정보를 수신하는 높이-검출 유닛(33)으로 사용하는, 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 상기 장치는 전체적으로 도 8에 대해 기술된 것과 유사하지만, 하기의 차이점을 가진다: ⅰ) 펄스파 센서의 높이는 높이-검출 유닛에 의해 직접 측정된다. 그리고 ⅱ) 높이를 키 입력하는 키가 없다.
도 11을 참조하면, 이는 본 발명의 일 실시예에 따른 혈압 및 펄스 체적을 측정하는 펄스파 검출 유닛(10)(도 3a에 도시된)과 센서를 통해 혈압 측정 부위의 높이에 관한 정보를 수신하는 높이-검출 유닛(33)으로 사용하는, 동작 입력 유닛(22), 디스플레이 유닛(20), 및 높이-연관 지시 생성 유닛(36)의 개략도이다. 일부 실시예에서, 상기 장치는 공지된 높이에서의 혈압과 펄스 체적의 측정치를 이용하여 연산될 수 있는 파라미터를 디스플레이 하기 위한 분석 스크린(350, 400 및 500)을 포함한다.
도 12를 참조하면, 이는 본 발명의 일 실시예에 따른 혈압 측정 부위를 지지하기 위한 지지 구조체(40)의 개략도이다. 도시된 지지 구조체는 상이한 높이에서의 혈압 측정을 위해 팔목 커프로 팔뚝을 지지하기 위해 설계된다. 일반적으로, 팔뚝 지지 구조체(40)는 높이-고정 로드(60)에 부착된 지지 암(50)을 포함하고, 상기 높이-고정 로드는 수직 위치로 유지되고, 베이스(도시되지 않음)에 부착되거나 또는 벽 또는 다른 안정적인 구조체(도시되지 않음)에 견고하게 고정됨으로써 높이에 고정된다. 일부 실시예에서, 팔뚝 지지체는 사용자로 하여금 자신의 팔둑을 그 위에 배치할 수 있도록 하는 거리에 포크형 홀더(52)에 의해 고정된 2개의 지지 아치(51)를 포함한다.
일반적으로, 포크형 홀더(52)의 확장부(53)는, 화살표(57 및 59)에 의해 도시된 바와 같이, 그것이 가변적인 돌출부와 회전이 자유로운 방식으로(즉, "신축자재(telescopic)" 기능) 홀더(54)에 삽입된다. 지지 아치(51)의 형태는 일반적으로 확장부(53)가 대략 커프의 중력 중심을 향해 가리키는 방식으로 선택된다. 홀더(54)는 일반적으로 2-10cm의 간격으로(예를 들면 5cm 간격) 로드(64) 상의 미리 정해진 높이에서 이루어진 그루브(62) 중 하나로 밀어넣어짐으로써 팔뚝의 지지체(40)의 높이를 고정시키는 위치 로커(56)를 포함하는 커플러에 의해 높이-고정 로드(60)에 고정된다. 커플러와 위치 로커(56)를 가진 홀더(54)는 높이-고정 로드(60)에 대해 수직인 평면에서 회전이 자유롭다. 그 결과, 팔뚝 지지체(40)는 오퍼레이터에게 높이(H)를 선택하지만 사용자가 선택된 높이에 팔뚝을 배치시키기 위해 편안한 자세를 발견하기 위해 필요한 모든 정도의 자유도를 주는 편리한 방식을 제공한다. 그루브(62)는 높이-연관 코드에 의해 마킹된다. 사용자가 앉을 때, 심장 레벨이 그루브(62) 중 하나의 높이에 근접한 것이 추천된다. 일부 실시예에서, 심장 레벨과 커프의 중력 중심 사이에 근소한 차이가 있는 경우, 오퍼레이터는 차이를 감소시키기 위해 ~2.5cm의 높이의 얇은 받침대를 배치시킬 수 있다.
이러한 방식으로, 심장 레벨의 높이-연관 코드가 상기 높이-연관 코드에 의해 특징을 가지는 상이한 미리정해진 높이에서 펄스파 파라미터를 측정하는 기준을 생성한다. 예를 들면, 단위 변화가 5cm 높이 간격에 대응하고 심장레벨이 코드 번호 5에 연관되는, 높이-연관 코드가 #1, #2, #3...(도시된 바와 같이)로 번호가 매겨진다면, 코드 번호 10에 대응하는 위치로 팔뚝을 배치하는 것은 커프가 심장 레벨 위의 25cm에 있다는 것을 의미한다.
이러한 액세서리를 사용은 팔목형 커프에 한정되는 것이 아니다. 미리정해진 높이로 커프의 중력 중심을 유지하면서, 커프를 가진 림프를 편안한 자세로 배치시키기 위한 다수 또는 모든 가능한 정도의 자유도를 유지하는 원리는 다수의 상이한 방식으로 구현될 수 있다. 상이한 사람이 팔 또는 팔목의 두께가 현저하게 상이할 수 있기 때문에, 홀더(54)의 높이에 대해 지지 아치(51)의 깊이 만큼 상이한 다수의 지지암(50)이 있을 수 있거나, 또는 단일한 모델의 지지암(50)이 이러한 변수(도시되지 않음)를 조정하기 위해 적절한 배치로 제공될 수 있다.
높이-연관 코드(또는 높이 자체)는 도 8 및 9에 대해 기술된 바와 같이 키입력될 수 있을지라도, 일부 실시예에서, 코드는 장치로 전자적으로 전송된다. 도면의 우측에 하나의 실시예가 도시된다: 팔뚝 지지체(40)의 로드(64)는 로드(60)로의 지지암(50)의 연결이 높이-연관 코드와 선형으로 증가하는 저항을 생성하는 방식으로 일련의 레지스터(R)를 포함한다. 이러한 저항은 장치로의 입력으로서 기능하고, 이는 저항을 대응하는 높이로 변환한다. 이러한 방식에서, 팔뚝 지지체(40)는 높이-검출 유닛(33)의 감지 컴포넌트로서 기능하고, 장치 인터페이스는 도 10 또는 도 11에 도시된 바와 같다. 본문에 기술된 바와 같이, 일부 실시예에서, 본문에 기술된 기술에 따라, 높이-검출 유닛은 팔뚝 지지체(40)에 결합되고, 팔뚝 지지체의 높이를 검출한다.
펄스파 검출 유닛이 펄스 체적을 검출하는 실시예가 기술되었지만, 본 발명의 범위는 예를 들면 펄스 체적, 펄스 면적 및 펄스 직경에 직접 연관된 기타 펄스파 파라미터를 검출하는 펄스파 검출 유닛을 포함한다.
높이 표시가 검출되거나 또는 높이-연관 입력 유닛으로 입력되는 실시예가 기술될지라도, 일부 실시예에서, 실제 높이가 검출되고 및/또는 높이 연관 입력 유닛으로 예를 들면 위치 센서, 가속 센서, 초음파 검출기, 및/또는 상이한 방식을 이용하여 입력된다. 일부 실시예에서, 상술한 하나 이상의 센서들은 펄스파 검출 유닛에 결합되고 대상자의 신체의 일부에 결합되는 펄스파 검출 유닛의 적어도 일부의 높이를 측정한다. 예를 들면, 센서는 대상자의 팔에 결합되는 혈압 커프에 결합될 수 있다.
상술한 본 발명의 일부 실시예가 입력으로서(일 형태 또는 다른 형태로) 높이를 활용하더라도, 본 발명의 범위는 높이 입력을 하지 않고 혈관 특성의 판정을 포함하는데, 예를 들면, 측정이 취해진 특정한 높이를 지시하지 않고서 상이한 높이에서 기록된 다수의 측정에 기초하여 혈압 특성을 판정하는 것을 포함한다는 것이 또한 이해될 수 있다.
상술된 그리고 하기에 청구되는 본 발명의 일부 실시예가 혈압 센서를 기술한다고 하더라도, "혈압 센서"라는 용어의 범위는, 예를 들면 혈압 측정 커프, 광혈류측정과 같은 동맥압에 응답하여 신호를 생성하는 센서, 및/또는 종래 기술에 공지된 동맥압에 응답하여 표시를 생성하는 기타 센서를 포함한다는 것이 이해될 수 있다.
당업자는 본 발명이 특정하게 도시되고 상술된 것에 한정되지 않음이 이해될 것이다. 그러나, 본 발명의 범위는 상술된 다양한 특징의 조합 및 하부조합 모두 및, 종래기술에 없는 그의 변형과 변경을 포함하고, 이는 상기 설명을 판독시 당업자가 이해할 것이다.

Claims (99)

  1. 적어도 일부가 대상자의 신체의 일부에 결합되도록 구성되는 펄스파 검출 유닛으로서, 상기 펄스파 검출 유닛은 상기 대상자의 신체의 일부의 동맥압에 응답하는 신호를 생성하도록 구성되는 펄스파 검출 유닛; 및
    제어 유닛을 포함하고,
    상기 제어 유닛은,
    상기 대상자의 신체의 일부에 결합되는 펄스파 검출 유닛의 일부가 대상자의 심장에 대해 각각의 제 1 및 제 2 높이에 있는 동안 상기 펄스파 검출 유닛으로부터 각각의 제 1 및 제 2 신호를 수신하도록 구성된 펄스파 파라미터 판정 유닛, 및
    상기 제 1 및 제 2 신호를 처리함으로써 대상자의 동맥 특성을 판정하고, 상기 동맥 특성 판정에 응답하여 출력을 생성하도록 구성된 동맥 파라미터 연산 유닛,
    을 구비하는 것을 특징으로 하는 장치.
  2. 제 1 항에 있어서, 상기 펄스파 검출 유닛은 측정하는 혈액량에 응답하여 신호를 생성하도록 구성되는 것을 특징으로 하는 장치.
  3. 제 1 항에 있어서, 상기 펄스파 검출 유닛은 혈관내 압력 센서를 포함하는 것을 특징으로 하는 장치.
  4. 제 1 항에 있어서, 상기 펄스파 파라미터 판정 유닛이 제 1 신호를 수신한 것에 후속하여 그리고 상기 펄스파 검출 유닛이 상기 제 2 신호를 생성하기 전에,
    상기 동맥 파라미터 연산 유닛이,
    상기 대상자 신체의 일부에 결합된 펄스파 검출 유닛의 일부가, 상기 펄스파 검출 유닛이 상기 제 2 신호를 생성할 때 있어야할 상기 제 2 높이를 판정하고; 및
    상기 제 2 높이 판정에 응답하여 출력을 생성하도록;
    구성되는 것을 특징으로 하는 장치.
  5. 제 1 항에 있어서, 상기 펄스파 검출 유닛은 광 체적측정(photoplethysmographic) 센서를 포함하는 것을 특징으로 하는 장치.
  6. 제 1 항에 있어서, 상기 펄스파 검출 유닛은 스트레인 게이지 체적 변동 기록계(plethysmograph)를 포함하는 것을 특징으로 하는 장치.
  7. 제 1 항에 있어서, 상기 펄스파 검출 유닛은 상기 대상자의 혈액의 측정하는 스펙트럼 특성에 응답하여 신호를 생성하도록 구성되는 것을 특징으로 하는 장치.
  8. 제 1 항에 있어서, 상기 동맥 파라미터 연산 유닛은 펄스파 검출 유닛의 일부가 각각의 제 1 및 제 2 자세를 취하도록 대상자에 지시함으로써 각각의 제 1 및 제 2 높이에 있는 동안 상기 제 1 및 제 2 신호의 생성을 보조하도록 구성되는 것을 특징으로 하는 장치.
  9. 제 1 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 펄스파 검출 유닛의 일부가 결합되는 대상자의 신체의 일부를 각각의 제 1 및 제 2 높이로 이동하도록 대상자에게 지시함으로써 상기 펄스파 검출 유닛의 일부가 각각의 제 1 및 제 2 높이에 있는 동안, 상기 제 1 및 제 2 신호의 생성을 보조하도록 구성되는 것을 특징으로 하는 장치.
  10. 제 1 항 내지 7 항 중 어느 한 항에 있어서, 신호를 수신하는 동안, 상기 펄스파 검출 유닛의 일부가 제 1 및 제 2 높이에 있는 동안 상기 펄스파 검출 유닛의 일부가 결합되는 대상자의 신체의 부분을 지지하도록 구성되는 지지 구조체를 더 포함하는 것을 특징으로 하는 장치.
  11. 제 10 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 각각의 제 1 및 제 2 높이에 연관된 높이들로 상기 지지 구조체를 이동시킴으로써 상기 펄스파 검출 유닛의 일부가 각각의 제 1 및 제 2 높이에 있는 동안, 상기 제 1 및 제 2 신호의 생성을 보조하도록 구성되는 것을 특징으로 하는 장치.
  12. 제 10 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 각각의 제 1 및 제 2 높이에 연관된 높이들로 상기 지지 구조체를 이동시키도록 상기 대상자에 지시함으로써 상기 펄스파 검출 유닛의 일부가 각각의 제 1 및 제 2 높이에 있는 동안, 상기 제 1 및 제 2 신호의 생성을 보조하도록 구성되는 것을 특징으로 하는 장치.
  13. 제 1 항 내지 7 항 중 어느 한 항에 있어서,
    상기 제어 유닛은 상기 제 1 및 제 2 높이에 관한 높이 표시를 수신하도록 구성되고, 및
    상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 신호와 상기 제 1 및 제 2 높이에 관한 높이 표시를 처리함으로써 상기 대상자의 동맥 특성을 판정하도록 구성되는 것을 특징으로 하는 장치.
  14. 제 13 항에 있어서, 상기 제어 유닛에 결합된 높이-연관 입력 유닛을 더 포함하고, 상기 제어 유닛은 상기 높이-연관 입력 유닛을 통해 상기 대상자로부터의 높이 표시를 수신하도록 구성되는 것을 특징으로 하는 장치.
  15. 제 13 항에 있어서, 상기 제 1 및 제 2 높이를 검출하도록 구성되는 높이-검출 유닛을 더 포함하고, 상기 제어 유닛은 상기 높이-검출 유닛으로부터의 높이 표시를 수신하도록 구성되는 것을 특징으로 하는 장치.
  16. 제 15 항에 있어서, 상기 높이-검출 유닛은 대상자의 신체의 일부에 결합된 상기 펄스파 검출 유닛의 일부와 결합되고, 상기 펄스파 검출 유닛의 일부의 공간 위치를 지시하는 신호를 생성하도록 구성된 위치 센서를 포함하는 것을 특징으로 하는 장치.
  17. 제 15 항에 있어서, 상기 높이-검출 유닛은 대상자의 신체의 일부에 결합된 상기 펄스파 검출 유닛의 일부에 결합되고, 상기 펄스파 검출 유닛의 일부의 공간 위치를 지시하는 신호를 생성하도록 구성된 가속 센서를 포함하는 것을 특징으로 하는 장치.
  18. 제 15 항에 있어서, 상기 높이-검출 유닛은 대상자의 신체의 일부에 결합된 상기 펄스파 검출 유닛의 일부에 결합되고, 상기 펄스파 검출 유닛의 일부의 공간 위치를 지시하는 신호를 생성하도록 구성된 초음파 검출기를 포함하는 것을 특징으로 하는 장치.
  19. 제 15 항에 있어서, 상기 펄스파 검출 유닛의 일부가 상기 신호의 수신동안 결합되는 상기 대상자의 신체의 일부를 지지하도록 구성된 지지 구조체를 더 포함하고, 상기 높이-검출 유닛은 상기 지지 구조체의 일부의 높이를 측정하도록 구성되고, 상기 지지 구조체의 일부의 높이는 상기 펄스파 검출 유닛의 일부의 높이에 연관되는 것을 특징으로 하는 장치.
  20. 제 19 항에 있어서, 압력이 상기 지지 구조체의 일부의 높이에 종속적인 유체를 더 포함하고, 상기 높이-검출 유닛은 상기 유체의 압력을 측정하도록 구성된 압력 센서를 포함하는 것을 특징으로 하는 장치.
  21. 제 19 항에 있어서, 상기 높이-검출 유닛은 공간 위치를 지시하는 신호를 생성하도록 구성된 위치 센서를 포함하고, 상기 위치 센서는 상기 지지 구조체의 일부에 결합되는 것을 특징으로 하는 장치.
  22. 제 19 항에 있어서, 상기 높이-검출 유닛은, 특성이 지지 구조체의 일부의 높이에 종속적이 되도록 결합된 하나 이상의 전기 컴포넌트를 포함하는 것을 특징으로 하는 장치.
  23. 제 22 항에 있어서, 상기 높이-검출 유닛은 통과하는 전류가 상기 지지 구조체의 일부의 높이에 종속적이 되도록 결합된 하나 이상의 레지스터를 포함하는 것을 특징으로 하는 장치.
  24. 제 1 항 내지 9 항 중 어느 한 항에 있어서,
    상기 펄스파 파라미터 판정 유닛은,
    상기 펄스파 검출 유닛으로부터, 상기 대상자의 신체의 일부에 결합된 펄스파 검출 유닛의 일부가 대상자의 심장에 대해 각각의 제 3 및 제 4 높이에 있는 동안 상기 대상자의 신체의 일부의 동맥압에 응답하는 적어도 제 3 및 제 4 신호를 수신하고;
    상기 각각의 높이들에 대응하는, 상기 대상자의 제 1, 제 2, 제 3 및 제 4 펄스파 파라미터를 판정하고,
    상기 파라미터 중 하나가 허용되지 못하는 것을 판정하고, 및
    허용되지 못하는 파라미터를 사용하지 않도록,
    더 구성되는 것을 특징으로 하는 장치.
  25. 제 24 항에 있어서, 상기 펄스파 판정 유닛은, 상기 펄스파 파라미터 판정 유닛이 상기 파라미터 중 하나가 허용되지 못하는지를 판정하는 것에 응답하여, 상기 대상자가 측정을 반복해야하는 것을 지시하는 출력 신호를 상기 대상자에게 생성하도록 구성되는 것을 특징으로 하는 장치.
  26. 제 1 항 내지 9 항 중 어느 한 항에 있어서,
    상기 펄스파 파라미터 판정 유닛은, 펄스파 검출 유닛으로부터, 상기 대상자의 신체의 일부에 결합된 펄스파 검출 유닛의 일부가 대상자의 심장에 대해 각각의 제 3 및 제 4 높이에 있는 동안 상기 대상자의 신체의 일부의 동맥압에 응답하는 적어도 제 3 및 제 4 신호를 수신하도록 더 구성되고;
    상기 동맥 파라미터 연산 유닛은,
    상기 각각의 높이들에 대응하는, 상기 대상자의 제 1, 제 2, 제 3 및 제 4 펄스파 파라미터를 판정하고,
    동맥 파라미터 중 하나가 다른 동맥 파라미터에 의해 구축된 관계식으로부터 편향되는지를 식별하고, 및
    상기 대상자의 동맥 특성 판정시, 상기 관계식으로부터 편향된 동맥 파라미터를 사용하지 않도록,
    구성되는 것을 특징으로 하는 장치.
  27. 제 26 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 상기 동맥 파라미터 연산 유닛이 상기 관계식으로부터 상기 동맥 파라미터 중 하나가 편향되는지를 판정하는것에 응답하여, 상기 대상자가 측정을 반복해야하는 것을 지시하는 출력 신호를 상기 대상자에게 생성하도록 구성되는 것을 특징으로 하는 장치.
  28. 제 26 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 상기 동맥 파라미터 연산 유닛이 상기 관계식으로부터 상기 동맥 파라미터 중 하나가 편향되는지를 판정하는것에 응답하여, 상기 대상자에게 측정을 반복하도록 지시하지 않으면서 상기 대상자의 동맥 특성을 판정하도록 구성되는 것을 특징으로 하는 장치.
  29. 제 1 항 내지 9 항 중 어느 한 항에 있어서, 상기 동맥 파라미터 연산 유닛은 회귀 분석에 의해 제 1 변수와 제 2 변수 사이의 선형 관계식을 판정함으로써 상기 동맥 특성을 판정하도록 구성되는 것을 특징으로 하는 장치.
  30. 제 29 항에 있어서, 상기 제 1 변수는 수축기 혈압을 포함하고, 상기 제 2 변수는 확장기 혈압을 포함하고, 상기 동맥 파라미터 연산 유닛은 상기 수축기 혈압과 상기 확장기 혈압 사이의 선형 관계식을 판정함으로써 상기 선형 관계식을 판정하도록 구성되는 것을 특징으로 하는 장치.
  31. 제 29 항에 있어서, 상기 제 1 변수는 혈압을 포함하고, 상기 제 2 변수는 높이를 포함하고, 상기 동맥 파라미터 연산 유닛은 상기 혈압과 상기 높이 사이의 선형 관계식을 판정함으로써 상기 선형 관계식을 판정하도록 구성되는 것을 특징으로 하는 장치.
  32. 제 31 항에 있어서,
    상기 펄스파 파라미터 판정 유닛은 상기 펄스파 검출 유닛으로부터 각각의 수축기 혈압 센서 신호와 확장기 혈압 센서 신호를 수신하도록 구성되고;
    상기 동맥 파라미터 연산 유닛은,
    각각의 수축기 혈압 표시와 확장기 혈압 표시가 수신될 때 (a) 수축기 혈압 신호와 확장기 혈압 신호들을, (b) 상기 펄스파 검출 유닛의 일부의 높이들에 연관시키는 각각의 수축기 기울기 및 확장기 기울기를 판정하고,
    각각의 수축기 혈압 표시와 확장기 혈압 표시가 수신될 때 (a) 수축기 혈압 신호와 확장기 혈압 신호들을, (b) 상기 펄스파 검출 유닛의 일부의 높이들에 연관시키는 상기 판정된 수축기 기울기 및 확장기 기울기로부터의 대상자의 동맥 경화도 인덱스를 판정하도록,
    구성되는 것을 특징으로 하는 장치.
  33. 제 31 항에 있어서, 상기 동맥 파라미터 연산 유닛은 선형 관계식에 기초하여 대상자의 심장 레벨에서의 상기 대상자의 혈압을 판정하도록 구성되는 것을 특징으로 하는 장치.
  34. 제 29 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 제 2 변수의 표준 편차에 의해 상기 제 1 변수의 표준 편차를 나눔으로써 희귀 분석을 수행하도록 구성되는 것을 특징으로 하는 장치.
  35. 제 34 항에 있어서, 상기 선형 관계식은 상기 제 1 변수와 제 2 변수 사이의 기울기를 포함하고, 상기 동맥 파라미터 연산 유닛은 상기 제 1 변수의 표준 편차를 상기 제 2 변수의 표준 편차에 의해 나눔으로써 상기 제 1 변수와 제 2 변수 사이의 기울기를 판정하도록 구성되는 것을 특징으로 하는 장치.
  36. 제 29 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 변수 사이의 선형성의 정도 및 상관관계의 유의성을 판정함으로써 동맥 특성을 판정하도록 구성되는 것을 특징으로 하는 장치.
  37. 제 36 항에 있어서, 동맥 파라미터 연산 유닛은,
    상기 제 1 변수와 제 2 변수 사이의 선형 관계식의 제 1 상호 관계계수를 연산하고;
    데이터 포인트를 제거하고, 상기 데이터 포인트가 제거된 상기 제 1 변수와 제 2 변수 사이의 선형 관계식의 제 2 상호 관계계수를 연산하고, 및
    상기 제 1 상호 관계계수를 상기 제 2 상호관계 계수에 비교하는 것에 의해,
    표준에서 벗어난 데이터 포인트를 식별하도록 구성되는 것을 특징으로 하는 장치.
  38. 제 1 항 내지 4 항 중 어느 한 항에 있어서, 상기 펄스파 검출 유닛의 일부는 상기 대상자의 신체의 일부에 결합되도록 구성된 혈압 커프를 포함하고, 상기 펄수파 검출 유닛은 각각의 제 1 및 제 2 혈압 센서 신호를 생성함으로써 제 1 및 제 2 신호를 생성하도록 구성되는 혈압 센서를 더 포함하는 것을 특징으로 하는 장치.
  39. 제 38 항에 있어서, 상기 커프는 대상자의 팔 주위에 배치되도록 구성된 암 커프를 포함하는 것을 특징으로 하는 장치.
  40. 제 38 항에 있어서, 상기 커프는 대상자의 팔목 주위에 배치되도록 구성된 팔목 커프를 포함하는 것을 특징으로 하는 장치.
  41. 제 38 항에 있어서, 상기 커프는 대상자의 다리 주위에 배치되도록 구성된 다리 커프를 포함하는 것을 특징으로 하는 장치.
  42. 제 38 항에 있어서, 상기 펄스파 검출 유닛은 대상자의 수축기 혈압을 측정하도록 구성되는 것을 특징으로 하는 장치.
  43. 제 38 항에 있어서, 상기 펄스파 검출 유닛은 대상자의 확장기 혈압을 측정하도록 구성되는 것을 특징으로 하는 장치.
  44. 제 38 항에 있어서, 상기 동맥 파라미터 연산 유닛은, 상기 제 1 및 제 2 혈압 센서 신호를 처리함으로써, 대상자의 맥압의 탄성 컴포넌트, 맥압의 비탄성 컴포넌트, 및 상기 맥압의 탄성 컴포넌트를 그의 비탄성 컴포넌트에 관련시키는 비율을 판정하도록 구성되는 것을 특징으로 하는 장치.
  45. 제 38 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 혈압 센서 신호를 처리함으로써 대상자의 동맥 커패시턴스를 판정하도록 더 구성되는 것을 특징으로 하는 장치.
  46. 제 38 항에 있어서, 상기 펄스파 검출 유닛은 상기 대상자의 수축기 혈압을 측정하고 상기 대상자의 확장기 혈압을 측정하도록 구성되고, 상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 신호를 처리함으로써 수축기 혈압과 확장기 혈압 사이의 관계식을 판정하도록 구성되는 것을 특징으로 하는 장치.
  47. 제 46 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 혈압 센서 신호를 처리함으로써 상기 대상자의 동맥 경화도 인덱스를 판정하도록 구성되는 것을 특징으로 하는 장치.
  48. 제 46 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 혈압 센서 신호를 처리함으로써 상기 대상자의 수축기 혈압 및 확장기 혈압 사이의 관계식을 정의하는 기울기와 가로좌표를 판정하도록 구성되고, 상기 관계식은 선형인 것을 특징으로 하는 장치.
  49. 제 38 항에 있어서,
    상기 펄스파 검출 유닛은 상기 대상자의 펄스 체적에 연관된 펄스 체적 신호를 생성하도록 구성된 펄스 센서를 포함하고,
    상기 펄스파 파라미터 판정 유닛은, 상기 대상자의 신체의 일부에 결합되는 상기 펄스파 검출 유닛의 일부가 상기 대상자의 심장에 대해 각각의 제 1 및 제 2 높이에 있는 동안, 상기 펄스 체적 센서로부터의 각각의 제 1 및 제 2 펄스 체적 센서 신호를 수신하도록 구성되고, 및
    상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 혈압 센서 신호와 상기 제 1 및 제 2 펄스 체적 신호를 처리함으로써 대상자의 동맥 특성을 판정하도록 구성되는 것을 특징으로 하는 장치.
  50. 제 49 항에 있어서, 상기 펄스 체적 신호를 생성하도록 구성된 상기 펄스 체적 센서는 상기 혈압 센서와 동일한 것을 특징으로 하는 장치.
  51. 제 49 항에 있어서, 상기 펄스 체적 센서는 대상자의 펄스 체적, 펄스 면적, 및 펄스 직경으로 구성된 그룹으로부터 선택된 파라미터를 측정함으로써 펄스 체적 신호를 생성하도록 구성되는 것을 특징으로 하는 장치.
  52. 제 49 항에 있어서, 상기 동맥 파라미터 연산 유닛은 상기 제 1 및 제 2 혈압 센서 신호와 상기 제 1 및 제 2 펄스 체적 신호를 처리함으로써 상기 대상자의 적어도 하나의 파라미터를 판정하도록 구성되고, 상기 파라미터는 수축기 동맥 경화도, 확장기 동맥 경화도, 동맥 확장도, 및 제로-경화도 압력으로 구성된 그룹에서 선택되는 것을 특징으로 하는 장치.
  53. 제 1 변수 및 제 2 변수를 측정하도록 구성된 측정 장치;
    상기 제 2 변수의 표준 편차로 상기 제 1 변수의 표준 편차를 나눔으로써 상기 제 1 변수와 상기 제 2 변수 사이의 선형 관계식을 판정하도록 구성된 제어 유닛; 및
    선형 관계식을 출력하도록 구성된 출력 유닛;을 포함하는 것을 특징으로 하는 장치.
  54. 대상자의 신체의 일부에 결합되면서, 신호를 생성하는 디바이스의 적어도 일부가 상기 대상자의 심장에 대해 제 1 높이에 있는 동안, 대상자의 동맥압에 응답하는 제 1 신호를 수신하는 단계;
    상기 디바이스의 일부가 대상자의 심장에 대해 제 2 높이에 있는 동안 2번째로 상기 대상자의 동맥압에 응답하는 제 2 신호를 수신하는 단계;
    상기 제 1 및 제 2 신호를 처리함으로써 상기 대상자의 동맥 특성을 판정하는 단계; 및
    상기 동맥 특성을 판정하는 것에 응답하여 출력을 생성하는 단계;를 포함하는 것을 특징으로 하는 방법.
  55. 제 54 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 대상자의 혈액의 체적을 측정하는 것에 응답하여 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  56. 제 54 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 대상자의 혈관내 혈압을 측정하는 것에 응답하여 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  57. 제 54 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 대상자의 혈액 체적의 광체적 흡수 측정(photoplethysmographically measuring)에 응답하여 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  58. 제 54 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 대상자의 혈액의 스펙트럼 특성을 측정하는 것에 응답하여 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  59. 제 54 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 스트레인 게이지 체적 변동 기록계로부터의 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  60. 제 54 항 내지 59 항 중 어느 한 항에 있어서,
    제 1 및 제 2 높이를 판정하는 단계; 및
    상기 높이들의 판정에 응답하여 높이-출력을 생성하는 단계;를 더 포함하는 것을 특징으로 하는 방법.
  61. 제 60 항에 있어서, 높이들을 판정하는 것에 응답하여 높이-출력을 생성하는 단계는, 신호를 수신하는 동안, 디바이스의 일부가 결합되는 대상자의 신체의 일부를 지지하는 지지 구조체를 이동시키는 단계를 포함하는 것을 특징으로 하는 방법.
  62. 제 60 항에 있어서, 높이들을 판정하는 것에 응답하여 높이-출력을 생성하는 단계는, 신호를 수신하는 동안, 디바이스의 일부가 결합되는 대상자의 신체의 일부를 지지하는 지지 구조체를 이동시키도록 대상자에 지시하는 단계를 포함하는 것을 특징으로 하는 방법.
  63. 제 60 항에 있어서, 높이들을 판정하는 것에 응답하여 높이-출력을 생성하는 단계는 대상자에게 자세를 취하도록 지시하는 단계를 포함하는 것을 특징으로 하는 방법.
  64. 제 60 항에 있어서, 높이들을 판정하는 것에 응답하여 높이-출력을 생성하는 단계는 디바이스의 일부를 각각의 제 1 및 제 2 높이로 이동시키도록 대상자에게 지시하는 단계를 포함하는 것을 특징으로 하는 방법.
  65. 제 54 항 내지 59 항 중 어느 한 항에 있어서,
    상기 제 1 및 제 2 높이에 관한 높이 표시를 수신하는 단계를 더 포함하고,
    상기 대상자의 동맥 특성을 판정하는 단계는 상기 제 1 및 제 2 신호와 상기 제 1 및 제 2 높이에 관한 높이 표시를 처리함으로써 동맥 특성을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  66. 제 65 항에 있어서, 상기 높이 표시를 수신하는 단계는 사용자로부터 상기 높이 표시를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  67. 제 65 항에 있어서, 상기 표시를 수신하는 단계는 높이-검출 유닛으로부터 상기 표시를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  68. 제 67 항에 있어서, 상기 높이-검출 유닛은 가속 센서, 초음파 센서, 유압 센서로 구성된 그룹으로부터 선택된 높이-검출 유닛을 포함하고, 상기 높이-검출 유닛으로부터의 표시를 수신하는 단계는 상기 선택된 높이-검출 유닛으로부터의 표시를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  69. 제 67 항에 있어서, 상기 높이-검출 유닛으로부터 표시를 수신하는 단계는 전기 컴포넌트에 연관된 특성에 기초하여 상기 표시를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  70. 제 69 항에 있어서, 상기 높이-검출 유닛으로부터 표시를 수신하는 단계는 하나 이상의 레지스터를 통과하는 전류의 특성에 기초하여 상기 표시를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  71. 제 54 항 내지 59 항 중 어느 한 항에 있어서,
    대상자의 신체의 일부에 결합되면서, 디바이스의 일부가 각각의 제 3 및 제 4 높이에 있는 동안, 대상자의 동맥압에 응답하는 제 3 신호 및 제 4 신호를 수신하는 단계;
    상기 각각의 높이에 대응하는, 상기 대상자의 제 1, 제 2, 제 3 및 제 4 펄스파 파라미터를 판정하는 단계;
    상기 파라미터 중 하나가 허용되지 않는 것을 식별하는 단계; 및
    허용되지 않는 파라미터를 사용하지 않는 단계;를 더 포함하는 것을 특징으로 하는 방법.
  72. 제 71 항에 있어서, 상기 파라미터 중 하나가 허용되지 않는 것을 식별하는 단계에 응답하여, 대상자가 측정을 반복해야한다는 것을 지시하는 출력신호를 대상자에게 생성하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  73. 제 54 항 내지 59 항 중 어느 한 항에 있어서,
    대상자의 신체의 일부에 결합되면서, 디바이스의 일부가 각각의 제 3 및 제 4 높이에 있는 동안, 대상자의 동맥압에 응답하는 제 3 신호 및 제 4 신호를 수신하는 단계;
    상기 각각의 높이에 대응하는, 상기 대상자의 제 1, 제 2, 제 3 및 제 4 동맥 파라미터를 판정하는 단계;
    다른 동맥 파라미터에 의해 구축된 관계식으로부터 동맥 파라미터가 편향되는 것을 식별하는 단계; 및
    상기 대상자의 동맥 특성을 판정하는 관계식으로부터 편향된 동맥 파라미터는 사용하지 않는 단계;를 더 포함하는 것을 특징으로 하는 방법.
  74. 제 73 항에 있어서, 상기 관계식으로부터 동맥 파라미터 중 하나가 편향되는 것을 판정하는 단계에 응답하여, 상기 대상자가 측정을 반복해야한다는 것을 지시하는 출력 신호를 상기 대상자에게 생성하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  75. 제 73 항에 있어서, 대상자의 동맥 특성을 판정하는 단계는, 상기 관계식으로부터 동맥 파라미터 중 하나가 편향되는 것을 판정하는 단계에 응답하여, 상기 대상자에게 측정을 반복하도록 지시하지 않으면서 동맥 특성을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  76. 제 54 항 내지 59 항 중 어느 한 항에 있어서, 상기 동맥 특성을 판정하는 단계는 회귀 분석에 의해 제 1 변수와 제 2 변수 사이의 선형 관계식을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  77. 제 76 항에 있어서, 제 1 변수와 제 2 변수 사이의 선형 관계식을 판정하는 단계는 상기 제 2 변수의 표준 편차에 의해 상기 제 1 변수의 표준 편차를 나누는 단계를 포함하는 것을 특징으로 하는 방법.
  78. 제 76 항에 있어서, 상기 제 1 변수는 혈압을 포함하고, 상기 제 2 변수는 높이를 포함하고, 상기 선형 관계식을 판정하는 단계는 혈압과 높이 사이의 선형 관계식을 정의하는 기울기를 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  79. 제 78 항에 있어서, 상기 동맥 특성은 대상자의 심장 레벨에서의 상기 대상자의 혈압을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  80. 제 78 항에 있어서, 상기 기울기를 판정하는 단계는 (a) 수축기 혈압 및 확장기 혈압을 (b) 높이에 연관시키는 각각의 수축기 및 확장기 기울기를 판정하는 단계를 포함하고,
    상기 판정된 수축기 및 확장기 기울기로부터 대상자의 동맥 경화도 인덱스를 판정하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  81. 제 76 항에 있어서, 제 1 변수와 제 2 변수 사이의 선형 관계식을 판정하는 단계는 상기 제 2 변수의 표준 편차에 의해 상기 제 1 변수의 표준 편차를 나누는 단계를 포함하는 것을 특징으로 하는 방법.
  82. 제 81 항에 있어서, 상기 제 1 변수는 수축기 혈압을 포함하고, 상기 제 2 변수는 확장기 혈압을 포함하고, 상기 선형 관계식을 판정하는 단계는 수축기 혈압과 확장기 혈압 사이의 선형 관계식을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  83. 제 76 항에 있어서, 상기 동맥 특성을 판정하는 단계는 상기 제 1 및 제 2 변수 사이의 선형성의 정도 및 상관관계의 유의성을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  84. 제 83 항에 있어서, 편향된 데이터 포인트를 식별하는 단계를 더 포함하고,
    상기 표준에서 벗어난 데이터 포인트는:
    상기 제 1 변수와 제 2 변수 사이의 선형 관계식의 제 1 상호 관계 계수를 연산하고;
    데이터 포인트를 제거하고, 상기 데이터 포인트가 제거된 상기 제 1 변수와 제 2 변수 사이의 선형관계식의 제 2 상호 관계 계수를 후속하여 연산하고; 및
    상기 제 1 상호 관계계수를 상기 제 2 상호 관계계수와 비교;
    함으로써 식별하는 것을 특징으로 하는 방법.
  85. 제 54 항 내지 56 항 중 어느 한 항에 있어서, 상기 제 1 및 제 2 신호를 수신하는 단계는 상기 대상자의 제 1 및 제 2 혈압을 지시하는 제 1 및 제 2 혈압 신호들을 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  86. 제 85 항에 있어서, 상기 신호들을 수신하는 단계는 상기 대상자의 제 1 및 제 2 수축기 혈압을 지시하는 신호들을 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  87. 제 85 항에 있어서, 상기 혈압 신호들을 수신하는 단계는 상기 대상자의 제 1 및 제 2 확장기 혈압을 지시하는 신호들을 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  88. 제 85 항에 있어서, 동맥 특성을 판정하는 단계는 대상자의 맥압의 탄성 컴포넌트를 그의 비탄성 컴포넌트에 연관시키는 비율을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  89. 제 85 항에 있어서, 적어도 하나의 혈압 신호를 처리함으로써 상기 대상자의 동맥 커패시턴스를 판정하는 단계를 더 포함하는 것을 특징으로 한다.
  90. 제 85 항에 있어서, 대상자의 신체의 일부는 대상자의 팔을 포함하고, 혈압 신호를 수신하는 단계는 대상자의 팔 주위에 커프를 배치시키는 단계를 포함하는 것을 특징으로 한다.
  91. 제 85 항에 있어서, 상기 대상자의 신체의 일부는 대상자의 팔목을 포함하고, 상기 혈압 신호를 수신하는 단계는 대상자의 팔목의 주위에 커프를 배치하는 단계를 포함하는 것을 특징으로 한다.
  92. 제 85 항에 있어서, 상기 대상자의 신체의 일부는 대상자의 다리를 포함하고, 상기 혈압 신호를 수신하는 단계는 대상자의 다리의 주위에 커프를 배치하는 단계를 포함하는 것을 특징으로 한다.
  93. 제 85 항에 있어서, 상기 동맥 특성을 판정하는 단계는 대상자의 수축기 혈압과 확장기 혈압 사이의 관계식을 판정하는 단계를 포함한다.
  94. 제 93 항에 있어서, 상기 관계식을 판정하는 단계는 상기 관계식을 정의하는 기울기와 가로좌표를 판정하는 단계를 포함하고, 상기 관계식은 선형인 것을 특징으로 하는 방법.
  95. 제 93 항에 있어서, 상기 관계식을 판정하는 단계는 대상자의 동맥 경화도 인덱스를 판정하는 단계를 특징으로 하는 방법.
  96. 제 85 항에 있어서,
    대상자의 신체의 일부에 결합되면서, 디바이스의 일부가 각각 제 1 및 제 2 높이에 있는 동안, 대상자의 펄스 체적을 지시하는 제 1 신호 및 제 2 신호를 수신하는 단계를 더 포함하고,
    상기 동맥 특성을 판정하는 단계는 제 1 및 제 2 혈압 신호와 제 1 및 제 2 펄스 체적 신호를 처리함으로써 동맥 특성을 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  97. 제 96 항에 있어서, 펄스 체적 신호를 수신하는 단계는 대상자의 펄스 체적, 펄스 면적 및 펄스 직경으로 구성된 그룹으로부터 선택된 파라미터를 지시하는 신호를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  98. 제 96 항에 있어서, 동맥 특성을 판정하는 단계는 수축기 동맥 경화도, 확장기 동맥 경화도, 동맥 확장도, 및 제로-경화도 압력으로 구성된 그룹으로부터 선택된 대상자의 적어도 하나의 파라미터를 판정하는 단계를 포함하는 것을 특징으로 하는 방법.
  99. 제 1 변수 및 제 2 변수를 측정하는 단계; 및
    상기 제 2 변수의 표준 편차에 의해 상기 제 1 변수의 표준 편차를 나눔으로써 상기 제 1 변수와 상기 제 2 변수 사이의 선형 관계식을 판정하는 단계;를 포함하는 것을 특징으로 하는 방법.
KR1020107018154A 2008-01-15 2009-01-15 반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템 KR20100119868A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US2114108P 2008-01-15 2008-01-15
US61/021,141 2008-01-15

Publications (1)

Publication Number Publication Date
KR20100119868A true KR20100119868A (ko) 2010-11-11

Family

ID=40885726

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107018154A KR20100119868A (ko) 2008-01-15 2009-01-15 반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템

Country Status (8)

Country Link
US (1) US20110009718A1 (ko)
EP (1) EP2237720A2 (ko)
JP (1) JP2011509733A (ko)
KR (1) KR20100119868A (ko)
CN (1) CN101990415A (ko)
AU (1) AU2009205311A1 (ko)
CA (1) CA2713389A1 (ko)
WO (1) WO2009090646A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074193A2 (ko) * 2010-11-29 2012-06-07 경희대학교 산학협력단 혈관경화도 진단을 위한 정보 제공 방법
WO2019039657A1 (ko) * 2017-08-25 2019-02-28 (주)참케어 광센싱 기반 혈압 측정 장치

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101037796B1 (ko) * 2008-11-17 2011-05-27 삼성전자주식회사 혈압 측정 장치의 정확성을 검사하는 방법 및 장치
JP5884256B2 (ja) * 2010-05-19 2016-03-15 セイコーエプソン株式会社 血圧測定装置及び血圧測定方法
WO2013112979A1 (en) * 2012-01-26 2013-08-01 Alivecor, Inc. Ultrasonic digital communication of biological parameters
WO2014048924A1 (en) * 2012-09-28 2014-04-03 Murray Dermot Jerome A device for measuring brachial blood pressure in an individual
EP3079570B1 (en) * 2013-12-11 2018-03-28 Koninklijke Philips N.V. System and method for measuring a pulse wave of a subject
US20150327786A1 (en) 2014-05-19 2015-11-19 Qualcomm Incorporated Method of Calibrating a Blood Pressure Measurement Device
US20160302672A1 (en) * 2014-08-04 2016-10-20 Yamil Kuri System and Method for Determining Arterial Compliance and Stiffness
US9408541B2 (en) 2014-08-04 2016-08-09 Yamil Kuri System and method for determining arterial compliance and stiffness
CN107106054B (zh) * 2014-09-08 2021-11-02 苹果公司 使用多功能腕戴式设备进行血压监测
CN204515353U (zh) 2015-03-31 2015-07-29 深圳市长桑技术有限公司 一种智能手表
US20170347895A1 (en) 2015-01-04 2017-12-07 Vita-Course Technologies Co.,Ltd System and method for health monitoring
CN107847153B (zh) * 2015-07-03 2020-12-04 深圳市长桑技术有限公司 一种生理参数监测的系统和方法
WO2017099374A1 (ko) 2015-12-07 2017-06-15 삼성전자 주식회사 혈압 측정 장치 및 이를 이용한 혈압 측정 방법
KR102584577B1 (ko) * 2015-12-07 2023-10-05 삼성전자주식회사 혈압 측정 장치 및 이를 이용한 혈압 측정 방법
HK1223231A2 (zh) * 2016-05-16 2017-07-21 Onedash Ltd 種量血壓的方法,與其裝置
IL246009B (en) 2016-06-02 2018-11-29 Ezer Haim A system and method for monitoring the condition of a cerebral aneurysm
CN109414199B (zh) 2016-06-14 2023-08-01 皇家飞利浦有限公司 用于最大动脉顺应性的无创评估的设备和方法
US10524672B2 (en) * 2016-06-21 2020-01-07 Capsule Technologies, Inc. Diastolic blood pressure measurement calibration
US11337657B2 (en) * 2016-06-24 2022-05-24 Philips Healthcare Informatics, Inc. Dynamic calibration of a blood pressure measurement device
JP6631423B2 (ja) * 2016-07-04 2020-01-15 オムロン株式会社 生体情報検知装置および生体情報検知装置を備える椅子
CN109475303A (zh) * 2016-07-14 2019-03-15 皇家飞利浦有限公司 用于对血管中的性质测量结果的质量进行反馈的装置、系统和方法
BR102016022714A8 (pt) * 2016-09-29 2018-05-22 Zammi Instrumental Ltda sistema de zeramento automático e ajuste eletrônico do nível do transdutor de pressão aplicados a monitoires de sinais vitais
WO2019050738A1 (en) 2017-09-05 2019-03-14 Purdue Research Foundation DIAGNOSTIC AND THERAPEUTIC DEVICE FOR COMPROMISED VASCULAR HEMODYNAMIC ANALYSIS
CN111867452B (zh) * 2018-03-20 2023-09-26 夏普株式会社 评价系统以及评价装置
JP7049895B2 (ja) * 2018-04-05 2022-04-07 オムロンヘルスケア株式会社 血圧測定装置
CN112739255B (zh) * 2018-05-25 2024-07-02 精准医电科技股份有限公司 血压测量设备
JP7124552B2 (ja) * 2018-08-21 2022-08-24 オムロンヘルスケア株式会社 測定装置
CN109893111B (zh) * 2019-03-06 2021-07-23 深圳市理邦精密仪器股份有限公司 一种动态血压测量模式选择方法及装置
CN110251100B (zh) * 2019-06-17 2020-08-11 清华大学 一种脉诊仪

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779626A (en) * 1986-09-09 1988-10-25 Colin Electronics Co., Ltd. Method and apparatus for compensating for transducer position in blood pressure monitoring system
JPH04259447A (ja) * 1991-02-13 1992-09-16 Fukuda Denshi Co Ltd 血圧測定方法及び血圧測定用スタンド
US5934277A (en) * 1991-09-03 1999-08-10 Datex-Ohmeda, Inc. System for pulse oximetry SpO2 determination
US6045510A (en) * 1994-02-25 2000-04-04 Colin Corporation Blood pressure measuring apparatus
JP3318727B2 (ja) * 1994-06-06 2002-08-26 日本光電工業株式会社 脈波伝播時間方式血圧計
JP3297971B2 (ja) * 1995-02-16 2002-07-02 オムロン株式会社 電子血圧計
US6554774B1 (en) * 2000-03-23 2003-04-29 Tensys Medical, Inc. Method and apparatus for assessing hemodynamic properties within the circulatory system of a living subject
DE60118236T8 (de) * 2000-11-14 2007-06-06 Omron Healthcare Co., Ltd. Elektronisches sphygmomanometer
US7101338B2 (en) * 2004-05-12 2006-09-05 Health & Life Co., Ltd. Sphygmomanometer with three-dimensional positioning function
JP2003126054A (ja) * 2001-10-29 2003-05-07 Nippon Colin Co Ltd 動脈硬化度評価装置
JP3925858B2 (ja) * 2002-11-08 2007-06-06 日本精密測器株式会社 非観血式血圧計
DE102004032579A1 (de) * 2004-07-05 2006-02-09 Braun Gmbh Verfahren und Messgerät zur Bestimmung des Blutdrucks
JP2006212155A (ja) * 2005-02-02 2006-08-17 Motoharu Hasegawa 血管硬化度評価装置、血管硬化指数算出プログラム、及び血管硬化指数算出方法。
JP2007014684A (ja) * 2005-07-11 2007-01-25 Motoharu Hasegawa 動脈硬化度評価装置および動脈硬化指数算出プログラム
WO2007024777A2 (en) * 2005-08-22 2007-03-01 Massachusetts Institute Of Technology Wearable blood pressure sensor and method of calibration
WO2007064654A1 (en) * 2005-11-29 2007-06-07 Massachusetts Institute Of Technology Apparatus and method for blood pressure measurement by touch
US20070179362A1 (en) * 2006-01-30 2007-08-02 Chun-Mei Chou Method of feedbacking physical condition of fetus and gravida automatically
JP3125595U (ja) * 2006-05-25 2006-09-28 日本精密測器株式会社 手首血圧計
CA2657328A1 (en) * 2006-07-08 2008-01-17 University Of Kentucky Research Foundation Lung cancer diagnostic assay
US20090099461A1 (en) * 2007-10-15 2009-04-16 Summit Doppler Systems, Inc. System and method for a non-supine extremity blood pressure ratio examination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074193A2 (ko) * 2010-11-29 2012-06-07 경희대학교 산학협력단 혈관경화도 진단을 위한 정보 제공 방법
WO2012074193A3 (ko) * 2010-11-29 2012-07-26 경희대학교 산학협력단 혈관경화도 진단을 위한 정보 제공 방법
WO2019039657A1 (ko) * 2017-08-25 2019-02-28 (주)참케어 광센싱 기반 혈압 측정 장치
US10925494B2 (en) 2017-08-25 2021-02-23 Charmcare Co., Ltd. Optical sensor-based blood pressure measuring device

Also Published As

Publication number Publication date
US20110009718A1 (en) 2011-01-13
CA2713389A1 (en) 2009-07-23
JP2011509733A (ja) 2011-03-31
WO2009090646A2 (en) 2009-07-23
EP2237720A2 (en) 2010-10-13
WO2009090646A3 (en) 2010-03-11
CN101990415A (zh) 2011-03-23
AU2009205311A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR20100119868A (ko) 반복된 혈압 측정치를 이용하여 생리학적 파라미터를 판정하는 방법 및 시스템
KR101068116B1 (ko) 비침습적 연속 혈압 및 동맥 탄성도 측정을 위한 요골 맥파센싱 장치 및 방법
JP5984088B2 (ja) 非侵襲的連続血圧モニタリング方法及び装置
US20130138001A1 (en) Non-invasive blood pressure measuring apparatus and measuring method thereof
US11678809B2 (en) Apparatus and method for determining a calibration parameter for a blood pressure measurement device
US10561331B2 (en) Method and apparatus for detecting atrial fibrillation
US20090012411A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
EP3457929B1 (en) Non-invasive system and method for measuring blood pressure variability
US20200359916A1 (en) Blood pressure meter and method for measuring blood pressure using the same
JP4117211B2 (ja) 血管弾性測定装置
US20120108985A1 (en) Cuffless blood pressure monitor
CN109561838A (zh) 血压测试装置及利用其的血压测试方法
JP3217280U (ja) 人の血圧を得る装置
WO2023072730A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject&#39;s blood pressure
TW201904513A (zh) 無拘束式血壓量測裝置及使用其之血壓量測方法
CN115988986A (zh) 用于使用无袖带监测设备来监测用户的血压的方法
JP2020110443A (ja) 血行情報算出装置、血行情報算出方法、及びプログラム
Gerin et al. The measurement of blood pressure in cardiovascular research
Sims et al. Low-cost oscillometric non-invasive blood pressure monitors: device repeatability and device differences
WO2020119296A1 (en) A method for calibrating a blood pressure monitor, and a wearable device thereof
Zheng et al. Blood pressure difference between the measurements taken during cuff inflation and deflation
Gupta Blood Pressure Monitoring
WO2023072842A1 (en) Device, system and method for calibrating a blood pressure surrogate for use in monitoring a subject&#39;s blood pressure
Raamat et al. Simultaneous pneumo-and photoplethysmographic recording of oscillometric envelopes applying a local pad-type cuff on the radial artery
Jeong et al. New Algorithms for compensation of Error Rate in Noninvasive Blood Pressure Measurement System Using Optical Sensors

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid