KR20100116940A - 보조 전원 장치 및 그것을 포함하는 사용자 장치 - Google Patents

보조 전원 장치 및 그것을 포함하는 사용자 장치 Download PDF

Info

Publication number
KR20100116940A
KR20100116940A KR1020090035617A KR20090035617A KR20100116940A KR 20100116940 A KR20100116940 A KR 20100116940A KR 1020090035617 A KR1020090035617 A KR 1020090035617A KR 20090035617 A KR20090035617 A KR 20090035617A KR 20100116940 A KR20100116940 A KR 20100116940A
Authority
KR
South Korea
Prior art keywords
power
storage device
power supply
auxiliary power
current limiter
Prior art date
Application number
KR1020090035617A
Other languages
English (en)
Other versions
KR101599835B1 (ko
Inventor
안병진
오경섭
박관종
김민호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020090035617A priority Critical patent/KR101599835B1/ko
Priority to US12/654,035 priority patent/US8806271B2/en
Publication of KR20100116940A publication Critical patent/KR20100116940A/ko
Priority to US14/337,882 priority patent/US9626259B2/en
Application granted granted Critical
Publication of KR101599835B1 publication Critical patent/KR101599835B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source

Abstract

본 발명의 실시 예에 따른 보조 전원 장치는 전원 라인, 전원 저장 장치, 그리고 전류 리미터를 포함한다. 전원 저장 장치는 전원 라인을 통해 외부 전원을 공급받고 보조 전원을 저장한다. 전류 리미터는 전원 라인으로부터 전원 저장 장치로 흐르는 과전류를 줄여준다. 전류 리미터는 가변 저항 회로를 이용하여 전원 저장 장치로 흐르는 전류량을 조절한다. 가변 저항 회로는 초기 동작 동안에는 저항값을 높여서 전원 저장 장치로 흐르는 과전류를 줄이고, 일정 시간이 지난 다음에는 저항값을 낮춰서 전원 저장 장치의 충전 시간을 줄인다.

Description

보조 전원 장치 및 그것을 포함하는 사용자 장치{AUXILIARY POWER SUPPLY AND USER DEVICE INCLUDING THE SAME}
본 발명은 사용자 장치(user device)에 관한 것으로, 좀 더 구체적으로는 보조 전원 장치를 포함하는 사용자 장치에 관한 것이다.
사용자 장치(user device)는 퍼스널 컴퓨터, 디지털 카메라, 캠코더, 휴대 전화 등과 같은 전자 장치들뿐만 아니라, 메모리 카드 등과 같은 저장 장치를 포함한다. 이들 사용자 장치는 대부분 내부적으로 데이터를 저장하기 위한 메모리 장치를 포함하고 있다.
메모리 장치에는 DRAM, SRAM 등과 같은 휘발성 메모리와 EEPROM, FRAM, PRAM, MRAM, Flash Memory 등과 같은 불휘발성 메모리 등이 있다. 휘발성 메모리는 전원이 차단될 때 저장된 데이터를 잃지만, 불휘발성 메모리는 전원이 차단되더라도 저장된 데이터를 보존한다.
사용자 장치는 내부 또는 외부에 있는 전원 장치(power supply)로부터 전원을 공급받는다. 여기에서, 전원 장치는 110V, 220V 등과 같은 가정용 또는 사업용 전원일 수도 있고, 사용자 장치 내부에 있는 어댑터나 충전 장치일 수도 있다. 사 용자 장치는 전원 장치의 갑작스런 파워 오프(이하, 서든 파워 오프라 함)로 인해, 데이터 손실 등과 같은 치명적인 손상을 입을 수 있다.
예를 들면, 플래시 메모리 기반의 SSD 저장 장치에서는 메타 데이터나 캐시 데이터 등을 안전하게 보호해야 하는데, 서든 파워 오프로 인해 이들 데이터를 잃을 수 있다. 이러한 문제점을 해결하기 위해, 제조업자들은 전원 장치의 서든 파워 오프를 대비하기 위한 여러 가지 사용자 장치들을 개발하고 있다.
본 발명의 목적은 외부 전원 공급 시에 슈퍼 커패시터로 흐를 수 있는 과전류를 줄이고, 슈퍼 커패시터의 충전 시간을 단축할 수 있는 보조 전원 장치 및 그것을 포함하는 사용자 장치를 제공하는 데 있다.
본 발명의 실시 예에 따른 보조 전원 장치는 외부 전원을 입력받기 위한 전원 라인; 외부 전원을 공급받고 보조 전원을 저장하는 전원 저장 장치; 및 상기 전원 라인으로부터 상기 전원 저장 장치로 흐르는 과전류를 줄이기 위한 전류 리미터를 포함하되, 상기 전류 리미터는 가변 저항 회로를 이용하여 상기 전원 저장 장치로 흐르는 전류량을 조절한다. 상기 가변 저항 회로는 초기 동작 동안에는 저항값을 높여서 상기 전원 저장 장치로 흐르는 과전류를 줄이고, 일정 시간이 지난 다음에는 저항값을 낮춰서 상기 전원 저장 장치의 충전 시간을 줄인다.
실시 예로서, 상기 전류 리미터는 상기 전원 저장 장치로부터 흐르는 역전류 를 줄이기 위한 단방향 소자를 더 포함할 수 있다. 상기 단방향 소자는 다이오드일 수 있다.
다른 실시 예로서, 상기 가변 저항 회로는 상기 전원 라인과 저항 노드 사이에 연결된 저항기; 기준 전압과 상기 저항 노드의 전압 레벨을 비교하기 위한 비교기; 및 상기 저항 노드와 상기 단방향 소자 사이에 연결되며, 상기 비교기의 전압 비교에 따라 제어되는 PMOS 트랜지스터를 포함한다.
또 다른 실시 예로서, 상기 전류 리미터는 상기 전원 라인의 기생 커패시터를 방전하기 위한 방전 회로를 더 포함할 수 있다. 상기 방전 회로는 상기 전원 라인과 접지 단자 사이에 연결되는 전압 분배 회로일 수 있다. 상기 가변 저항 회로는 상기 전원 라인과 저항 노드 사이에 연결된 저항기; 상기 전압 분배 회로의 분배 전압과 상기 저항 노드의 전압 레벨을 비교하기 위한 비교기; 및 상기 저항 노드와 상기 단방향 소자 사이에 연결되며, 상기 비교기의 전압 비교에 따라 제어되는 PMOS 트랜지스터를 포함한다.
본 발명의 실시 예에 따른 사용자 장치는 보조 전원을 제공하는 보조 전원 장치; 및 메인 전원의 서든 파워 오프 시에, 상기 보조 전원을 입력받아 서든 파워 오프 동작을 수행하는 저장 장치를 포함한다. 상기 보조 전원 장치는 상기 보조 전원을 저장하기 위한 슈퍼 커패시터; 및 초기 동작 동안에는 저항값을 높여서 상기 슈퍼 커패시터보다 상기 저장 장치로 흐르는 전류량이 많게 하고, 일정 시간이 지난 다음에는 저항값을 낮춰서 상기 슈퍼 커패시터의 충전 시간을 단축하기 위한 가변 저항 회로를 포함한다. 상기 보조 전원 장치는 초기 동작 동안에 저항값을 높여 서 상기 슈퍼 커패시터로 흐르는 과전류를 줄일 수 있다.
실시 예로서, 상기 가변 저항 회로의 저항값은 전원 관리 유닛에 의해 정해질 수 있다. 상기 전원 관리 유닛은 동작 모드에 따라 상기 전원 저장 장치의 보조 전원 양을 조절할 수 있다.
본 발명에 의하면, 초기 동작 동안에는 과전류를 줄이고 부팅 효율을 높일 수 있다. 그리고 본 발명은 일정 시간이 지난 다음에는 저항을 낮추어 슈퍼 커패시터의 충전 시간을 줄일 수 있다. 또한, 본 발명은 방전 회로를 추가로 포함함으로, 서든 파워 오프 동작에 효과적으로 대처할 수 있다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 실시 예를 첨부된 도면을 참조하여 설명한다.
도 1은 본 발명의 실시 예에 따른 사용자 장치(user device)를 보여주는 블록도이다. 도 1을 참조하면, 사용자 장치(100)는 보조 전원 장치(110)와 저장 장치(120)를 포함한다.
사용자 장치(100)는 퍼스널 컴퓨터(PC)로 구현되거나, 노트북 컴퓨터, 휴대폰, PDA(Personal Digital Assistant), 그리고 카메라 등과 같은 휴대용 전자 장치로 구현될 수 있다. 사용자 장치(100)는 전원 공급 장치(power supply)의 서든 파워 오프(SPO; Sudden Power Off) 시에, 보조 전원 장치(110)에 저장된 보조 전원을 사용하여 동작할 수 있다. 이하에서, 전원 공급 장치(power supply)는 보조 전원 장치(110)와의 구별을 위해 메인 전원 장치(main power supply) 또는 외부 전원 장치(external power supply)라는 용어로 사용될 것이다.
메인 전원 장치(도시되지 않음)는 사용자 장치(100)의 동작에 필요한 외부 전원을 제공한다. 예를 들면, 메인 전원 장치는 저장 장치(120)가 쓰기, 읽기, 소거, 또는 데이터 백업 동작 등을 수행하는데 필요한 전원을 제공한다. 한편, 메인 전원 장치는 사용자 부주의나 장치 결함 등 예기치 않은 상황으로 인해 갑자기 전원이 차단될 수 있다. 이러한 현상을 서든 파워 오프(SPO; Sudden Power Off)라고 한다.
메인 전원 장치가 서든 파워 오프 되면, 사용자 장치(100)는 저장 장치(120)에 저장된 데이터를 손실할 위험이 있다. 특히, 저장 장치(120)에서 처리 중인 데이터가 캐시 데이터나 메타 데이터와 같이 중요한 정보라면, 사용자 장치(100)는 서든 파워 오프로 인해 치명적인 손상을 입을 수 있다.
도 1에 도시된 사용자 장치(100)는 서든 파워 오프로 인한 손실을 줄이기 위해, 보조 전원 장치(110)를 구비한다. 도 1을 참조하면, 보조 전원 장치(110)는 슈퍼 커패시터(111), 전원 검출기(112), 전류 리미터(113), 단방향 소자(114), 그리고 스위치(115)를 포함한다.
슈퍼 커패시터(111)는 고용량의 전하를 보유할 수 있는 전원 저장 장치로서, 보조 전원을 저장하는데 사용된다. 슈퍼 커패시터(111)는 메인 전원 장치의 전원이 차단된 경우에, 보유 전하를 이용하여 사용자 장치(100)에 보조 전원을 제공한다. 슈퍼 커패시터(111)는 사용자 장치(100)의 파워 업(power up) 시 또는 노말 동작 시에 전하를 충전할 수 있다.
전원 검출기(112)는 제 1 전원 라인(PL1)에 연결되며, 메인 전원 장치의 전원 레벨을 검출한다. 전원 검출기(112)는 서든 파워 오프 시에 제 1 전원 라인(PL1)의 전원 레벨을 검출하고, 검출 결과로서 제 1 제어 신호(CTRL1)를 발생한다.
저장 장치(120)는 제 1 제어 신호(CTRL1)를 입력받고, 서든 파워 오프 동작을 수행한다. 저장 장치(120)는 서든 파워 오프 동작을 수행하기 위하여, 제 2 제어 신호(CTRL2)를 발생한다. 스위치(115)는 제 2 제어 신호(CTRL2)에 응답하여 턴 온한다. 스위치(115)가 턴 온 되면, 저장 장치(120)는 슈퍼 커패시터(111)의 보조 전원을 사용하여 서든 파워 오프 동작(SPO operation)을 수행한다. 한편, 사용자 장치(100)는 제 1 제어 신호(CTRL1)에 응답하여 스위치(115)가 턴 온 되도록 구현될 수도 있다.
전류 리미터(113)는 슈퍼 커패시터(111)와 제 1 전원 라인(PL1) 사이에 연결된다. 전류 리미터(113)는 슈퍼 커패시터(111)를 보호하기 위한 보호 장치이다. 전류 리미터(113)는 슈퍼 커패시터(111)로 흐르는 과전류 또는 슈퍼 커패시터(111)에 인가되는 과전압을 제한할 수 있다. 또한, 전류 리미터(113)는 슈퍼 커패시터(111)로부터 제 1 전원 라인(PL1)으로 흐를 수 있는 역전류를 막을 수 있다.
전류 리미터(113)는 다이오드(diode), 저항기(resistor), 전압 클램프(voltage clamp) 등으로 구현될 수 있다. 다이오드는 슈퍼 커패시터(111)의 역전 류를 막는데 사용된다. 저항기는 슈퍼 커패시터(111)로 흐르는 과전류를 막는 데 사용된다. 전압 클램프는 슈퍼 커패시터(111)를 충전할 때, 과전압으로 인한 손상을 방지할 수 있다. 도 2는 전류 리미터(113a)를 다이오드(D)로 구현한 예를 보여주고, 도 3은 전류 리미터(113b)를 저항기(Rc)로 구현한 예를 보여준다.
도 2를 참조하면, 다이오드(113a, D)는 제 1 전원 라인(PL1)과 슈퍼 커패시터(111) 사이에 연결된다. 다이오드(113a, D)는 슈퍼 커패시터(111)를 충전하는 경우에는 턴 온 되고, 방전하는 경우에는 턴 오프 되는 단방향 소자이다. 다이오드(113a, D)는 슈퍼 커패시터(111)로부터 제 1 전원 라인(PL1)으로 흐를 수 있는 역전류를 차단한다.
도 3을 참조하면, 저항기(113b, Rc)는 제 1 전원 라인(PL1)과 슈퍼 커패시터(111) 사이에 연결된다. 저항기(113b, Rc)는 일정한 저항을 갖는 수동 저항기(passive resistor)이다. 저항기(113b, Rc)는 외부 전원 공급 시에 슈퍼 커패시터(111)로 흐를 수 있는 과전류(in-rush current) 차단함으로 슈퍼 커패시터(111)를 보호할 수 있다.
다시 도 1을 참조하면, 단방향 소자(114)는 제 1 전원 라인(PL1)을 통해 메인 전원 장치와 연결되고, 제 2 전원 라인(PL2)을 통해 저장 장치(120)와 연결된다. 단방향 소자(114)는 제 1 및 제 2 전원 라인(PL1, PL2)의 전압 차에 따라, 제 1 전원 라인(PL1)으로부터 제 2 전원 라인(PL2)으로의 전류 통로(current path)를 형성한다. 즉, 단방향 소자(114)는 제 1 및 제 2 전원 라인(PL1, PL2)의 전압 차가 기준 전압(reference voltage) 이상이면 전류 통로를 형성하고, 이하이면 전류 통 로를 차단한다. 단방향 소자(114)는 다이오드(diode)를 통해 구현할 수 있다.
스위치(115)는 슈퍼 커패시터(111)와 제 2 전원 라인(PL2) 사이에 연결된다. 스위치(115)는 제 2 제어 신호(CTRL2)에 응답하여 슈퍼 커패시터(111)의 보조 전원을 제 2 전원 라인(PL2)를 통해 저장 장치(120)로 제공한다.
계속해서 도 1을 참조하면, 저장 장치(120)는 휘발성 메모리(도시되지 않음)와 불휘발성 메모리(도시되지 않음)를 포함할 수 있다. 휘발성 메모리는 전원이 차단될 때 데이터를 잃을 수 있는 저장 장치로, DRAM이나 SRAM 등을 포함한다. 불휘발성 메모리는 전원이 차단되더라도 데이터 보존할 수 있는 저장 장치로, EEPROM, FRAM, PRAM, MRAM, Flash Memory 등을 포함한다. 휘발성 메모리와 불휘발성 메모리는 메인 전원 장치 또는 보조 전원 장치(110)로부터 전원을 공급받는다.
일반적으로 불휘발성 메모리는 전원이 차단되더라도 데이터를 보존할 수 있지만, 데이터 처리 속도가 느리다는 단점을 갖는다. 이러한 단점을 보완하기 위해, 저장 장치(120)는 불휘발성 메모리에 저장된 데이터를 휘발성 메모리로 읽어온 다음에, 휘발성 메모리를 이용하여 데이터를 처리한다. 사용자 장치(100)는 휘발성 메모리에서 처리된 데이터를 불휘발성 메모리에 백업한다.
도 1에 도시된 사용자 장치(100)는 전류 리미터(113)로 다이오드를 사용함으로 역전류를 막을 수 있다. 그리고 사용자 장치(100)는 전류 리미터(113)로 저항기를 사용함으로 과전류로 인해 발생할 수 있는 슈퍼 커패시터의 스트레스를 줄일 수 있다.
도 4는 본 발명의 다른 실시 예에 따른 사용자 장치(user device)를 보여주 는 블록도이다. 도 4를 참조하면, 사용자 장치(200)는 보조 전원 장치(210)와 저장 장치(220)를 포함한다. 보조 전원 장치(210)는 슈퍼 커패시터(211), 전원 검출기(212), 전류 리미터(213), 단방향 소자(214), 그리고 스위치(215)를 포함한다. 여기에서, 전류 리미터(213)를 제외한 나머지 소자들의 동작은 도 1에서 설명한 바와 같다. 이하에서는 전류 리미터(213)의 구성과 동작 원리가 상세하게 설명될 것이다.
전류 리미터(213)는 슈퍼 커패시터(211)와 제 1 전원 라인(PL1) 사이에 연결된다. 도 4를 참조하면, 전류 리미터(213)는 가변 저항 회로(231)와 단방향 소자(232)를 포함한다. 가변 저항 회로(231)는 과전류를 막는데 사용되고, 단방향 소자(232)는 역전류를 막는데 사용된다. 도 4에 도시된 전류 리미터(213)는 여러 가지 소자들을 이용하여 구현할 수 있다. 도 5는 가변 저항기(Rv)와 다이오드(D)를 이용하여 전류 리미터(213a)를 구현한 예를 보여주고, 도 7은 저항기(R), PMOS 트랜지스터(P), 비교기(C), 그리고 다이오드(D)를 이용하여 전류 리미터(213b)를 구현한 예를 보여준다.
도 5를 참조하면, 전류 리미터(213a)는 제 1 전원 라인(PL1)과 슈퍼 커패시터(211) 사이에 연결되며, 가변 저항기(Rv)와 다이오드(D)를 포함한다. 가변 저항기(Rv)는 시간에 따라 저항값이 변한다. 도 6은 도 5에 도시된 가변 저항기(Rv)의 시간에 따른 저항값의 변화를 보여주는 그래프이다.
도 6을 참조하면, 가변 저항기(Rv)의 저항값은 사용자 장치(도 4 참조, 200)의 초기 동작 시에는 높고, 시간이 지나면서 낮아진다. 여기에서, 초기 동 작(initial operation)은 사용자 장치(200)가 파워 온 되고, 소정의 시간 동안에 수행된다. 초기 동작을 수행하는 데 필요한 시간(예를 들면, 13초)은 부팅 동작(booting operation)이나 ID 커맨드 교환 동작 등에 소요되는 시간이다. 초기 동작 시간은 사용자 장치의 사용 설명서에 정해진 경우가 많다.
가변 저항기(Rv)와 달리, 일반 저항기(Rc)는 시간에 관계없이 일정한 값을 갖는다. 일반 저항기(Rc)가 높은 저항값을 가지면, 슈퍼 커패시터(211)는 과전류로 인한 스트레스를 줄일 수 있다. 그러나 슈퍼 커패시터(211)를 충전하는 시간은 길어질 수 있다. 반대로 일반 저항기(Rc)가 낮으면, 충전 시간은 줄어들지만, 과전류로 인한 스트레스는 증가할 수 있다.
가변 저항기(Rv)는 일반 저항기(Rc)의 단점을 보완할 수 있다. 가변 저항기(Rv)는 초기 동작 동안에는 높은 저항값을 가지므로, 슈퍼 커패시터(211)로 흐르는 과전류를 막을 수 있다. 또한, 가변 저항기(Rv)는 초기 동작 시에 외부 전원으로부터 공급되는 전류의 대부분을 저장 장치(220)로 보내기 때문에 사용자 장치(200)의 부팅 효율을 높일 수 있다. 또한, 가변 저항기(Rv)는 시간이 지남에 따라 저항값을 낮게 함으로, 슈퍼 커패시터(211)의 충전 시간(charging time)을 줄일 수 있다.
다시 도 5를 참조하면, 다이오드(D)는 슈퍼 커패시터(211)를 충전하는 경우에는 턴 온 되고, 방전하는 경우에는 턴 오프 되는 단방향 소자이다. 다이오드(D)는 슈퍼 커패시터(211)로부터 제 1 전원 라인(PL1)으로 흐를 수 있는 역전류를 방지할 수 있다.
도 7을 참조하면, 전류 리미터(213b)는 저항기(R), PMOS 트랜지스터(P), 비교기(C), 그리고 다이오드(D)를 포함한다. 여기에서, 저항기(R)는 제 1 전원 라인(PL1)과 저항 노드(N) 사이에 연결된다. 저항기(R)는 일정한 저항값을 갖는다. 저항기(R)는 일반 저항기(도 3 참조, Rc)보다 작은 저항값을 가지며, 초기 동작 동안에 과전류를 줄여준다. 발명의 실시 예에 따라 저항기(R)는 사용되지 않을 수도 있다.
PMOS 트랜지스터(P)는 저항 노드(N)와 다이오드(D) 사이에 연결되며, 비교기(C)의 출력 값에 따라 제어된다. 비교기(C)는 기준 전압(Vref)을 입력받는 (+) 단자, 저항 노드(N)의 전압을 입력받는 (-) 단자, 그리고 출력 전압을 PMOS 트랜지스터(P)로 제공하는 출력단자를 갖는다. 다이오드(D)는 PMOS 트랜지스터(P)와 슈퍼 커패시터(211) 사이에 연결되며, 비교기(C)의 출력 전압에 따라 제어된다.
초기 동작 동안에, 대부분의 전류는 저장 장치(도 4 참조, 220)로 제공되며, 적은 양의 트리클 전류(trickle current)가 슈퍼 커패시터(211)로 제공된다. 트리클 전류는 저항 노드(N)의 레벨이 기준 전압(Vref)보다 작은 구간에서 발생한다. 즉, 저항 노드(N)의 레벨이 기준 전압(Vref)보다 작을 때, 비교기(C)의 출력 전압은 하이 레벨로 된다. 이때 PMOS 트랜지스터(P)를 통해 흐르는 소량의 트리클 전류가 슈퍼 커패시터(211)를 충전한다.
일정 시간이 지난 다음에, 저항 노드(N)의 레벨이 기준 전압(Vref)보다 높아지면, 비교기(C)의 출력 전압은 로우 레벨로 된다. 이때 PMOS 트랜지스터(P)는 턴 온 된다. PMOS 트랜지스터(P)가 턴 온 되면, 많은 양의 전류가 슈퍼 커패시터(211) 로 흐르게 된다. 이와 같은 매커니즘에 의해, 도 7에 도시된 전류 리미터(213b)는 과전류를 줄이면서 충전 시간을 빠르게 할 수 있을 뿐만 아니라, 초기 동작 동안에 부팅 효율을 높일 수 있다.
도 8은 본 발명의 또 다른 실시 예에 따른 사용자 장치(user device)를 보여주는 블록도이다. 도 8을 참조하면, 사용자 장치(300)는 보조 전원 장치(310)와 저장 장치(320)를 포함한다. 보조 전원 장치(310)는 슈퍼 커패시터(311), 전원 검출기(312), 전류 리미터(313), 단방향 소자(314), 그리고 스위치(315)를 포함한다. 여기에서, 전류 리미터(313)를 제외한 나머지 소자들의 동작은 도 1에서 설명한 바와 같다. 이하에서는 전류 리미터(313)의 구성과 동작 원리가 상세하게 설명될 것이다.
도 8을 참조하면, 전류 리미터(313)는 가변 저항 회로(331)와 단방향 소자(332) 이외에, 방전 회로(333)를 더 포함한다. 가변 저항 회로(331)는 과전류를 막는데 사용되고, 단방향 소자(332)는 역전류를 막는데 사용된다. 가변 저항 회로(331)와 단방향 소자(332)는 도 4에서 설명한 바와 같다. 이하에서는 방전 회로(333)가 상세하게 설명될 것이다.
서든 파워 오프 시에, 전원 검출기(312)는 제 1 전원 라인(PL1)의 레벨을 검출하고, 제 1 제어 신호(CTRL1)를 저장 장치(320)로 제공한다. 전원 검출기(312)가 짧은 시간 내에 제 1 전원 라인(PL1)의 레벨을 검출해야, 저장 장치(220)가 서든 파워 오프 동작을 제대로 수행할 수 있다.
하지만, 서든 파워 오프 시에, 제 1 전원 라인(PL1)에는 기생 커패시턴스가 존재할 수 있다. 기생 커패시터(PL1)는 전원 검출기(312)의 동작을 방해할 수 있다. 제 1 전원 라인(PL1)에 기생 커패시턴스가 존재하면, 전원 검출기(312)는 제 1 전원 라인(PL1)의 레벨이 갑자기 떨어진 경우에, 떨어진 전원 레벨을 정확하게 검출할 수 없게 된다. 전원 검출기(312)가 서든 파워 오프 순간을 검출하지 못하면, 서든 파워 오프 동작을 수행할 수 없게 된다.
방전 회로(333)는 제 1 전원 라인(PL1)과 접지 단자 사이에 방전 통로(discharging path)를 형성한다. 방전 회로(333)는 방전 통로를 통해 기생 커패시턴스를 제거할 수 있다. 방전 회로(333)는 여러 가지 소자를 통해 구현할 수 있다. 도 9는 전압 분배 회로를 이용하여 방전 회로를 구성한 예를 보여준다.
도 9를 참조하면, 전류 리미터(313a)는 저항기(R), PMOS 트랜지스터(P), 비교기(C), 다이오드(D), 그리고 전압 분배 회로(R1, R2)를 포함한다. 여기에서, 전압 분배 회로(R1, R2)는 분배 전압(Vdvd)을 비교기(C)의 (+) 단자로 제공한다.
초기 동작 동안에, 대부분의 전류는 저장 장치(도 8 참조, 320)로 제공되며, 적은 양의 트리클 전류(trickle current)가 슈퍼 커패시터(311)로 제공된다. 초기 동작 동안에, 트리클 전류는 저항 노드(N)의 레벨이 분배 전압(Vdvd)보다 작은 구간에서 발생한다. 즉, 저항 노드(N)의 레벨이 분배 전압(Vdvd)보다 작을 때, 비교기(C)의 출력 전압은 하이 레벨로 된다. 이때 PMOS 트랜지스터(P)를 통해 흐르는 소량의 트리클 전류가 슈퍼 커패시터(311)를 충전한다.
일정 시간이 지난 다음에, N 노드의 레벨이 분배 전압(Vdvd)보다 높아지면, 비교기(C)의 출력 전압은 로우 레벨로 된다. 이때 PMOS 트랜지스터(P)는 턴 온 된 다. PMOS 트랜지스터(P)가 턴 온 되면, 많은 양의 전류가 슈퍼 커패시터(311)로 흐르게 된다. 이와 같은 매커니즘에 의해, 도 9에 도시된 전류 리미터(313a)는 과전류를 줄이면서 충전 시간을 빠르게 할 수 있을 뿐만 아니라, 초기 동작 동안에 부팅 효율을 높일 수 있다.
본 발명의 실시 예에 따른 사용자 장치는 여러 가지 제품에 적용 또는 응용될 수 있다. 사용자 장치(user device)는 퍼스널 컴퓨터, 디지털 카메라, 캠코더, 휴대 전화, MP3, PMP, PDA 등과 같은 전자 장치들뿐만 아니라, 메모리 카드, USB 메모리, 솔리드 스테이트 드라이브(Solid State Drive, 이하 SSD라 함), 하드 디스크(HDD) 등과 같은 저장 장치로 구현될 수 있다.
도 10은 본 발명의 실시 예에 따른 사용자 장치를 SSD로 구현한 예를 보여주는 블록도이다. 도 10을 참조하면, SSD 시스템(1000)은 호스트(1100)와 SSD(1200)를 포함한다. SSD(1200)는 신호 커넥터(signal connector, 1211)를 통해 호스트(1100)와 신호를 주고 받으며, 전원 커넥터(power connector, 1221)를 통해 전원을 입력받는다. SSD(1200)는 복수의 메모리 장치(1201~120n), SSD 컨트롤러(1210), 그리고 보조 전원 장치(1220)를 포함한다.
복수의 메모리 장치(1201~120n)는 SSD(1200)의 저장 매체로서 사용된다. 복수의 메모리 장치(1201~120n)는 대용량의 저장 능력을 가지는 불휘발성 메모리 장치(NVM)로 구현될 수 있다. SSD(1200)는 주로 플래시 메모리(Flash memory)를 사용하고 있으나, 플래시 메모리 이외에도 PRAM, MRAM, ReRAM, FRAM 등의 불휘발성 메모리 장치가 사용될 수도 있다. 뿐만 아니라, SSD(1200)는 DRAM이나 SRAM과 같은 휘발성 메모리 장치로 구현될 수도 있다.
복수의 메모리 장치(1201~120n)는 복수의 채널(CH1~CHn)을 통해 SSD 컨트롤러(1210)와 연결될 수 있다. 하나의 채널에는 하나 또는 그 이상의 메모리 장치가 연결될 수 있다. 하나의 채널에 연결되는 메모리 장치들은 동일한 데이터 버스에 연결될 수 있다.
SSD 컨트롤러(1210)는 신호 커넥터(1211)를 통해 호스트(1100)와 신호(SGL)를 주고 받는다. 여기에서, 신호(SGL)에는 커맨드, 어드레스, 데이터 등이 포함될 수 있다. SSD 컨트롤러(1210)는 호스트(1100)의 커맨드에 따라 해당 메모리 장치에 데이터를 쓰거나 해당 메모리 장치로부터 데이터를 읽어낸다. SSD 컨트롤러(1210)의 내부 구성은 도 11을 참조하여 상세하게 설명된다.
보조 전원 장치(1220)는 전원 커넥터(1221)를 통해 호스트(1100)와 연결된다. 보조 전원 장치(1220)는 호스트(1100)로부터 전원(PWR)을 입력받고, 슈퍼 커패시터(도시되지 않음)를 충전할 수 있다. 한편, 보조 전원 장치(1220)는 SSD(1200) 내에 위치할 수도 있고, SSD(1200) 밖에 위치할 수도 있다. 예를 들면, 보조 전원 장치(1220)는 메인 보드에 위치하며, SSD(1200)에 보조 전원을 제공할 수도 있다. 보조 전원 장치(1220)는 초기 동작 동안에는 과전류를 줄일 수 있고, 일정 시간이 경과한 다음에는 슈퍼 커패시터의 충전 시간을 줄일 수 있다.
도 11은 도 10에 도시된 SSD 컨트롤러(1210)의 구성을 예시적으로 보여주는 블록도이다. 도 11을 참조하면, SSD 컨트롤러(1210)는 중앙 처리 장치(CPU, 1211), 호스트 인터페이스(1212), 휘발성 메모리(1213), 그리고 NVM 인터페이스(1214)를 포함한다.
중앙 처리 장치(1211)는 호스트(1100, 도 10 참조)로부터 입력된 신호(SGL)를 분석하고 처리한다. 중앙 처리 장치(1211)는 호스트 인터페이스(1212)나 NVM 인터페이스(1214)를 통해 호스트(1100)나 불휘발성 메모리(1201~120n)를 제어한다. 중앙 처리 장치(1211)는 SSD(1200)을 구동하기 위한 펌웨어에 따라서 불휘발성 메모리(1201~120n)의 동작을 제어한다.
호스트 인터페이스(1212)는 호스트(1100)의 프로토콜에 대응하여 SSD(1200)와의 인터페이싱을 제공한다. 호스트 인터페이스(1212)는 USB(Universal Serial Bus), SCSI(Small Computer System Interface), PCI express, ATA, PATA(Parallel ATA), SATA(Serial ATA), SAS(Serial Attached SCSI) 등을 이용하여 호스트(1100)와 통신할 수 있다. 또한, 호스트 인터페이스(1212)는 호스트(1100)가 SSD(1200)를 하드 디스크 드라이브(HDD)로 인식하도록 지원하는 디스크 에뮬레이션(Disk Emulation) 기능을 수행할 수 있다.
휘발성 메모리(VM, 1213)는 호스트(1100)로부터 제공되는 쓰기 데이터 또는 불휘발성 메모리로부터 읽은 데이터를 임시로 저장한다. 휘발성 메모리(1213)는 불휘발성 메모리(1201~120n)에 저장될 메타 데이터나 캐시 데이터를 저장할 수 있다. 서든 파워 오프 동작 시에, 휘발성 메모리(1213)에 저장된 메타 데이터나 캐시 데이터는 불휘발성 메모리(1201~120n)에 저장된다. 휘발성 메모리(VM, 1213)에는 DRAM, SRAM 등이 포함될 수 있다.
NVM 인터페이스(1214)는 휘발성 메모리(1213)로부터 전달된 데이터를 각각 의 채널들(CH1~CHn)로 스캐터링(Scattering)한다. 그리고 NVM 인터페이스(1214)는 불휘발성 메모리(1201~120n)로부터 읽은 데이터를 휘발성 메모리(1213)로 전달한다. 여기에서, NVM 인터페이스(1214)는 낸드 플래시 메모리의 인터페이스 방식을 사용할 수 있다. 즉, SSD 컨트롤러(1210)는 낸드 플래시 메모리 인터페이스 방식에 따라
도 12는 사용자 장치를 반도체 메모리 장치로 구현한 예를 보여주는 블록도이다. 도 12를 참조하면, 반도체 메모리 장치(2000)는 메모리 컨트롤러(2100) 및 플래시 메모리(2200)를 포함한다. 반도체 메모리 장치(2000)는 메모리 카드(예를 들면, SD, MMC 등)나 착탈 가능한 이동식 저장 장치(예를 들면, USB 메모리 등)와 같이, 휘발성 메모리 또는 불휘발성 메모리를 포함하는 저장 장치를 모두 포함한다.
도 12를 참조하면, 메모리 컨트롤러(2100)는 중앙처리장치(CPU, 2110), 호스트 인터페이스(2120), 랜덤 액세스 메모리(RAM, 2130), 플래시 인터페이스(2140), 그리고 보조 전원 장치(2150)를 포함한다. 보조 전원 장치(2150)는 메모리 컨트롤러(2100) 내에 위치할 수도 있고, 밖에 위치할 수도 있다. 보조 전원 장치(2150)는 앞의 실시 예들과 동일한 구성 및 동작 원리를 갖는다.
반도체 메모리 장치(2000)는 호스트와 연결되어 사용된다. 반도체 메모리 장치(2000)는 호스트 인터페이스(2120)를 통해 호스트와 데이터를 주고 받으며, 플래시 인터페이스(2140)를 통해 플래시 메모리(2200)와 데이터를 주고 받는다. 반도체 메모리 장치(2000)는 호스트로부터 전원을 공급받아서 내부 동작을 수행한다. 보조 전원 장치(2150)는 초기 동작 동안에는 과전류를 줄일 수 있고, 일정 시간이 경과한 다음에는 슈퍼 커패시터의 충전 시간을 줄일 수 있다.
도 13은 사용자 장치를 전자 장치로 구현한 예를 보여주는 블록도이다. 전자 장치(3000)는 퍼스널 컴퓨터(PC)로 구현되거나, 노트북 컴퓨터, 휴대폰, PDA(Personal Digital Assistant), 그리고 카메라 등과 같은 휴대용 전자 장치로 구현될 수 있다.
도 13을 참조하면, 사용자 장치(3000)는 반도체 메모리 장치(3100), 전원 장치(3200), 보조 전원 장치(3250), 중앙처리장치(3300), 램(3400), 그리고 사용자 인터페이스(3500)를 포함한다. 반도체 메모리 장치(3100)는 플래시 메모리(3110) 및 메모리 컨트롤러(3120)를 포함한다. 보조 전원 장치(3250)는 초기 동작 동안에는 과전류를 줄일 수 있고, 일정 시간이 경과한 다음에는 슈퍼 커패시터의 충전 시간을 줄일 수 있다.
도 14는 전원 관리 유닛 및 보조 전원 장치를 포함하는 전원 관리 시스템을 보여주는 블록도이다. 도 14를 참조하면, 전원 관리 시스템(4000)은 호스트(4100) 및 사용자 장치(4200)를 포함한다. 사용자 장치(4200)는 보조 전원 장치(4210), 전원 관리 유닛(4220) 그리고 저장 장치(4230)를 포함한다.
보조 전원 장치(4210)는 초기 동작 동안에는 과전류를 줄이고 부팅 효율을 높일 수 있다. 그리고 보조 전원 장치(4210)는 일정 시간이 경과한 다음에는 저항을 낮추어 슈퍼 커패시터의 충전 시간을 줄일 수 있다. 또한, 보조 전원 장치(4210)는 방전 회로를 추가로 포함함으로, 서든 파워 오프 동작에 효과적으로 대 처할 수 있다.
전원 관리 유닛(4220)은 사용자 장치(4200)의 전력 소모를 관리하기 위한 장치이다. 전원 관리 유닛(4220)은 호스트(4100)의 동작 모드(예를 들면, active, idle, standby, sleep 등)에 따라 슈퍼 커패시터의 충전량을 조절할 수 있다. 전원 관리 유닛(4220)은 동작 모드에 따라 슈퍼 커패시터의 충전량을 조절함으로, 슈퍼 커패시터의 전압 스트레스를 완화할 수 있고, 슈퍼 커패시터의 수명을 늘릴 수 있다.
전원 관리 유닛(4220)은 호스트(4100)로부터 명령(예를 들면, power management command)을 받아 슈퍼 커패시터의 충전량을 조절할 수 있다. 또한, 전원 관리 유닛(4220)은 호스트(4100)의 명령 없이, 자체적으로 전원 관리 명령을 발생하거나, 내부 컨트롤러로부터 명령을 받아 슈퍼 커패시터의 충전량을 조절할 수 있다. 전원 관리 유닛(4220)의 동작 방법은 도 15를 참조하여 상세하게 설명된다.
한편, 전원 관리 유닛(4220)은 전류 리미터의 가변 저항을 조절할 수 있다. 다시 도 4 및 5를 참조하면, 전류 리미터(213)는 가변 저항 회로를 포함한다. 도 5의 가변 저항기(Rv)는 전원 관리 유닛(4220)의 제어에 따라 저항값을 조절할 수 있다.
저장 장치(4230)는 컨트롤러(도시되지 않음) 및 저장 수단(도시되지 않음)을 포함할 수 있다. 저장 수단에는 SSD, HDD, 플래시 메모리 등이 포함될 수 있다. 저장 장치(4230)는 서든 파워 오프 동작 시에 보조 전원 장치(4210)의 보조 전원을 사용하여 서든 파워 오프 동작을 수행할 수 있다.
도 15는 도 14에 도시된 전원 관리 유닛의 동작 방법을 설명하기 위한 그래프이다. 도 15를 참조하면, 가로축은 시간(T)을 나타내고 세로축은 슈퍼 커패시터의 충전량(Q)을 나타낸다.
t0~t1 구간에서, 전원 관리 시스템(4000)이 파워 온 되면, 보조 전원 장치(4210)는 슈퍼 커패시터를 충전한다. t1~t2 구간은 사용자 장치(4200)가 정상적으로 동작하는 액티브 작업 상태(active working state) 또는 작업 상태(working state)를 나타낸다. 작업 상태에서 슈퍼 커패시터는 서든 파워 오프 동작을 충분히 수행할 수 있을 정도로 충전된다.
t2~t3 구간은 사용자 장치(4200)가 정상적으로 동작하지 않는 휴지 상태(idle state)를 나타낸다. 전원 관리 유닛(4220)은 휴지 상태에서 슈퍼 커패시터의 전하를 일부 방전함으로, 충전량을 조절할 수 있다. 전원 관리 유닛(4220)은 휴지 상태 이외에도 대기 상태(standby state)나 슬립 상태(sleep state)에서도 슈퍼 커패시터의 충전량을 조절할 수 있다. 전원 관리 유닛(4220)은 각 상태에 따라 충전량을 다르게 할 수 있다.
t3~t4 구간은 사용자 장치(4200)가 다시 작업 상태로 되는 것을 나타낸다. 전원 관리 유닛(4220)은 슈퍼 커패시터를 다시 충전함으로 서든 파워 오프 동작에 대비한다. t4~t5 구간에서, 전원 관리 시스템(4000)이 파워 오프 되면, 보조 전원 장치(4210)는 슈퍼 커패시터를 방전한다.
본 발명의 범위 또는 기술적 사상을 벗어나지 않고 본 발명의 구조가 다양하게 수정되거나 변경될 수 있음은 이 분야에 숙련된 자들에게 자명하다. 상술한 내 용을 고려하여 볼 때, 만약 본 발명의 수정 및 변경이 아래의 청구항들 및 동등물의 범주 내에 속한다면, 본 발명이 이 발명의 변경 및 수정을 포함하는 것으로 여겨진다.
도 1은 본 발명의 실시 예에 따른 사용자 장치를 보여주는 블록도이다.
도 2 및 도 3은 도 1에 도시된 전류 리미터를 예시적으로 보여주는 블록도이다.
도 4는 본 발명의 다른 실시 예에 따른 사용자 장치를 보여주는 블록도이다.
도 5는 도 4에 도시된 전류 리미터를 예시적으로 보여주는 블록도이다.
도 6은 도 5에 도시된 가변 저항기의 시간에 따른 저항값의 변화를 개략적으로 보여주는 그래프이다.
도 7은 도 4에 도시된 전류 리미터를 예시적으로 보여주는 블록도이다.
도 8은 본 발명의 또 다른 실시 예에 따른 사용자 장치를 보여주는 블록도이다.
도 9는 도 8에 도시된 전류 리미터를 예시적으로 보여주는 블록도이다.
도 10은 보조 전원 장치를 솔리드 스테이트 드라이브에 적용한 예를 보여주는 블록도이다.
도 11은 도 10에 도시된 SSD 컨트롤러를 예시적으로 보여주는 블록도이다.
도 12는 보조 전원 장치를 반도체 메모리 장치에 적용한 예를 보여주는 블록도이다.
도 13은 보조 전원 장치를 사용자 장치에 적용한 예를 보여주는 블록도이다.
도 14는 전원 관리 유닛 및 보조 전원 장치를 포함하는 전원 관리 시스템을 보여주는 블록도이다.
도 15는 도 14에 도시된 전원 관리 유닛의 동작 방법을 설명하기 위한 그래프이다.

Claims (20)

  1. 외부 전원을 입력받기 위한 전원 라인;
    외부 전원을 공급받고 보조 전원을 저장하는 전원 저장 장치; 및
    외부 전원 공급 시에 상기 전원 라인으로부터 상기 전원 저장 장치로 흐르는 과전류를 줄이기 위한 전류 리미터를 포함하되,
    상기 전류 리미터는 가변 저항 회로를 이용하여 상기 전원 저장 장치로 흐르는 전류량을 조절하는 보조 전원 장치.
  2. 제 1 항에 있어서,
    상기 가변 저항 회로는 초기 동작 동안에는 저항값을 높여서 상기 전원 저장 장치로 흐르는 과전류를 줄이고, 일정 시간이 지난 다음에는 저항값을 낮춰서 상기 전원 저장 장치의 충전 시간을 줄이는 보조 전원 장치.
  3. 제 1 항에 있어서,
    상기 전류 리미터는 상기 전원 저장 장치로부터 흐르는 역전류를 줄이기 위한 단방향 소자를 더 포함하는 보조 전원 장치.
  4. 제 3 항에 있어서,
    상기 단방향 소자는 다이오드인 것을 특징으로 하는 보조 전원 장치.
  5. 제 3 항에 있어서,
    상기 가변 저항 회로는
    상기 전원 라인과 저항 노드 사이에 연결된 저항기;
    기준 전압과 상기 저항 노드의 전압 레벨을 비교하기 위한 비교기; 및
    상기 저항 노드와 상기 단방향 소자 사이에 연결되며, 상기 비교기의 전압 비교에 따라 제어되는 PMOS 트랜지스터를 포함하는 보조 전원 장치.
  6. 제 3 항에 있어서,
    상기 전류 리미터는 상기 전원 라인의 기생 커패시터를 방전하기 위한 방전 회로를 더 포함하는 보조 전원 장치.
  7. 제 6 항에 있어서,
    상기 방전 회로는 상기 전원 라인과 접지 단자 사이에 연결되는 전압 분배 회로인 것을 특징으로 하는 보조 전원 장치.
  8. 제 7 항에 있어서,
    상기 가변 저항 회로는
    상기 전원 라인과 저항 노드 사이에 연결된 저항기;
    상기 전압 분배 회로의 분배 전압과 상기 저항 노드의 전압 레벨을 비교하기 위한 비교기; 및
    상기 저항 노드와 상기 단방향 소자 사이에 연결되며, 상기 비교기의 전압 비교에 따라 제어되는 PMOS 트랜지스터를 포함하는 보조 전원 장치.
  9. 제 1 항에 있어서,
    상기 전원 저장 장치는 슈퍼 커패시터인 것을 특징으로 하는 보조 전원 장치.
  10. 보조 전원을 제공하는 보조 전원 장치; 및
    메인 전원의 서든 파워 오프 시에, 상기 보조 전원을 입력받아 서든 파워 오프 동작을 수행하는 저장 장치를 포함하되,
    상기 보조 전원 장치는
    상기 보조 전원을 저장하기 위한 전원 저장 장치; 및
    가변 저항 회로를 이용하여 상기 전원 저장 장치로 흐르는 전류량을 조절하는 전류 리미터를 포함하는 사용자 장치.
  11. 제 10 항에 있어서,
    상기 가변 저항 회로는 초기 동작 동안에는 저항값을 높여서 상기 전원 저장 장치보다 상기 저장 장치로 흐르는 전류량이 많게 하고, 일정 시간이 지난 다음에는 저항값을 낮춰서 상기 전원 저장 장치의 충전 시간을 단축하는 사용자 장치.
  12. 제 11 항에 있어서,
    상기 전류 리미터는 상기 전원 저장 장치로부터 전원 라인으로 흐르는 역전류를 줄이기 위한 단방향 소자를 더 포함하는 사용자 장치.
  13. 제 12 항에 있어서,
    상기 가변 저항 회로는
    상기 전원 라인과 저항 노드 사이에 연결된 저항기;
    기준 전압과 상기 저항 노드의 전압 레벨을 비교하기 위한 비교기; 및
    상기 저항 노드와 상기 단방향 소자 사이에 연결되며, 상기 비교기의 전압 비교에 따라 제어되는 트랜지스터를 포함하는 사용자 장치.
  14. 제 13 항에 있어서,
    상기 전류 리미터는 상기 전원 라인의 기생 커패시터를 방전하기 위한 방전 회로를 더 포함하는 사용자 장치.
  15. 제 11 항에 있어서,
    상기 저장 장치의 전력 소모를 관리하기 위한 전원 관리 유닛을 더 포함하는 사용자 장치.
  16. 제 15 항에 있어서,
    상기 전원 관리 유닛은 상기 가변 저항 회로의 저항값을 조절하는 사용자 장치.
  17. 제 15 항에 있어서,
    상기 전원 관리 유닛은 호스트의 동작 모드에 따라 상기 전원 저장 장치의 보조 전원 양을 조절하는 사용자 장치.
  18. 제 15 항에 있어서,
    상기 전원 관리 유닛은 호스트의 명령을 받고 상기 전원 저장 장치의 보조 전원 양을 조절하는 사용자 장치.
  19. 제 11 항에 있어서,
    상기 보조 전원 장치 및 상기 저장 장치는 솔리드 스테이트 드라이브(SSD)로 구현되는 사용자 장치.
  20. 제 11 항에 있어서,
    상기 보조 전원 장치 및 상기 저장 장치는 이동식 저장 장치로 구현되는 사용자 장치.
KR1020090035617A 2008-12-09 2009-04-23 보조 전원 장치 및 그것을 포함하는 사용자 장치 KR101599835B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090035617A KR101599835B1 (ko) 2009-04-23 2009-04-23 보조 전원 장치 및 그것을 포함하는 사용자 장치
US12/654,035 US8806271B2 (en) 2008-12-09 2009-12-08 Auxiliary power supply and user device including the same
US14/337,882 US9626259B2 (en) 2008-12-09 2014-07-22 Auxiliary power supply and user device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090035617A KR101599835B1 (ko) 2009-04-23 2009-04-23 보조 전원 장치 및 그것을 포함하는 사용자 장치

Publications (2)

Publication Number Publication Date
KR20100116940A true KR20100116940A (ko) 2010-11-02
KR101599835B1 KR101599835B1 (ko) 2016-03-15

Family

ID=43403727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035617A KR101599835B1 (ko) 2008-12-09 2009-04-23 보조 전원 장치 및 그것을 포함하는 사용자 장치

Country Status (1)

Country Link
KR (1) KR101599835B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140062554A (ko) * 2012-11-12 2014-05-26 삼성전자주식회사 메모리 컨트롤러 및 그것을 포함하는 사용자 시스템
KR20140079134A (ko) * 2012-12-18 2014-06-26 삼성전자주식회사 보조 전원 장치 및 그것을 포함하는 사용자 시스템
KR20150044089A (ko) * 2013-10-15 2015-04-24 삼성전자주식회사 보조 전원 공급 장치 및 그를 채용한 전자 시스템
KR20150141239A (ko) * 2014-06-09 2015-12-18 삼성전자주식회사 보조 전원 장치 및 그것을 포함하는 불휘발성 메모리 시스템
US9819346B2 (en) 2015-10-20 2017-11-14 Lsis Co., Ltd. PLC system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147199B1 (ko) * 1995-04-27 1998-09-15 문정환 Ic 메모리 카드의 메모리 ic 전원공급 방법 및 회로
KR20050112539A (ko) * 2004-05-27 2005-12-01 주식회사 스카이텔레텍 가변저항부를 구비한 충전장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0147199B1 (ko) * 1995-04-27 1998-09-15 문정환 Ic 메모리 카드의 메모리 ic 전원공급 방법 및 회로
KR20050112539A (ko) * 2004-05-27 2005-12-01 주식회사 스카이텔레텍 가변저항부를 구비한 충전장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140062554A (ko) * 2012-11-12 2014-05-26 삼성전자주식회사 메모리 컨트롤러 및 그것을 포함하는 사용자 시스템
KR20140079134A (ko) * 2012-12-18 2014-06-26 삼성전자주식회사 보조 전원 장치 및 그것을 포함하는 사용자 시스템
US9013944B2 (en) 2012-12-18 2015-04-21 Samsung Electronics Co., Ltd. Auxiliary power device and user system including the same
KR20150044089A (ko) * 2013-10-15 2015-04-24 삼성전자주식회사 보조 전원 공급 장치 및 그를 채용한 전자 시스템
KR20150141239A (ko) * 2014-06-09 2015-12-18 삼성전자주식회사 보조 전원 장치 및 그것을 포함하는 불휘발성 메모리 시스템
US9819346B2 (en) 2015-10-20 2017-11-14 Lsis Co., Ltd. PLC system

Also Published As

Publication number Publication date
KR101599835B1 (ko) 2016-03-15

Similar Documents

Publication Publication Date Title
US9626259B2 (en) Auxiliary power supply and user device including the same
US11216323B2 (en) Solid state memory system with low power error correction mechanism and method of operation thereof
KR101777376B1 (ko) 데이터 저장 장치 및 그것의 구동 방법
US8745421B2 (en) Devices for control of the operation of data storage devices using solid-state memory based on a discharge of an amount of stored energy indicative of power providing capabilities
KR20110015273A (ko) 보조 전원 장치를 포함하는 사용자 장치
US9235245B2 (en) Startup performance and power isolation
KR102351660B1 (ko) 전력 관리 메커니즘을 갖는 솔리드 스테이트 메모리 시스템 및 그것의 동작 방법
US10254817B2 (en) Memory system
US20100332858A1 (en) Systems, methods and devices for regulation or isolation of backup power in memory devices
US9165667B2 (en) Electronic device with solid state drive and associated control method
US9575527B2 (en) Power delivery circuitry
US9122636B2 (en) Hard power fail architecture
KR101599835B1 (ko) 보조 전원 장치 및 그것을 포함하는 사용자 장치
KR20150141239A (ko) 보조 전원 장치 및 그것을 포함하는 불휘발성 메모리 시스템
US9013944B2 (en) Auxiliary power device and user system including the same
US20150135008A1 (en) Simulated Power Failure and Data Hardening
KR101503873B1 (ko) 보조 전원 장치 및 그것을 포함하는 사용자 장치
US20220209573A1 (en) Auxiliary power management device and electronic system including the same
KR101777810B1 (ko) 보조 전원 장치 및 그것을 포함하는 사용자 장치
US9323637B2 (en) Power sequencing and data hardening architecture
CN112783806B (zh) 一种ssd数据存储下电控制装置及方法
KR101183163B1 (ko) 보조 전원 장치 및 그것을 포함하는 사용자 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20200131

Year of fee payment: 5