KR20100114401A - Method for fabrication of conductive film using sputtering and conductive film - Google Patents

Method for fabrication of conductive film using sputtering and conductive film Download PDF

Info

Publication number
KR20100114401A
KR20100114401A KR1020090032914A KR20090032914A KR20100114401A KR 20100114401 A KR20100114401 A KR 20100114401A KR 1020090032914 A KR1020090032914 A KR 1020090032914A KR 20090032914 A KR20090032914 A KR 20090032914A KR 20100114401 A KR20100114401 A KR 20100114401A
Authority
KR
South Korea
Prior art keywords
conductive film
carbon nanotube
substrate
film
metal
Prior art date
Application number
KR1020090032914A
Other languages
Korean (ko)
Other versions
KR101006456B1 (en
Inventor
이현정
황선나
오경아
김준경
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020090032914A priority Critical patent/KR101006456B1/en
Publication of KR20100114401A publication Critical patent/KR20100114401A/en
Application granted granted Critical
Publication of KR101006456B1 publication Critical patent/KR101006456B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

PURPOSE: A conductive film and a method for manufacturing the same are provided to simply form the conductive film by using a sputtering process. CONSTITUTION: A carbon nano tube is dispersed in solvents. A conductive film(100) includes a metal layer(130) deposited to cover one side of a carbon nano tube layer. A substrate(110) is made of light transmitting materials. The metal layer is made of gold, silver, copper, palladium, nickel, or platinum.

Description

금속 스퍼터링을 이용한 전도성필름 제조방법 및 전도성필름{METHOD FOR FABRICATION OF CONDUCTIVE FILM USING SPUTTERING AND CONDUCTIVE FILM}TECHNICAL FOR FABRICATION OF CONDUCTIVE FILM USING SPUTTERING AND CONDUCTIVE FILM}

본 발명은 광투과성을 구비하는 전도성필름의 전기전도도를 향상시키는 방법, 전도성필름을 제조하는 방법 및 전도성필름에 관한 것이다.The present invention relates to a method for improving the electrical conductivity of a conductive film having light transmittance, a method for producing a conductive film, and a conductive film.

전도성필름(Conductive film)은 기능성 광학필름의 일종으로 가정용 기기, 산업용 기기 및 사무용 기기 등에 널리 사용되고 있다. Conductive film is a kind of functional optical film and is widely used in home appliances, industrial equipment, and office equipment.

오늘날, 광투과성을 띠는 투명 전도성필름(Transparent conductive film)은 태양전지 및 각종 디스플레이(PDP, LCD, OLED) 등 투명성과 저항이 낮은 두 가지 목적을 동시에 필요로 하는 소자에 폭 넓게 사용되고 있다. 일반적으로 투명 전도성필름으로 산화인듐주석(Indium Tin Oxide: ITO)이 많이 사용되었으나, 이는 고가일 뿐 아니라, 강도 및 강성이 약하며, 기판과의 열팽창계수 차에 의한 열변형으로 인해 전기적 특성이 변하는 문제점을 나타내고 있다. Today, a transparent conductive film having a light transmissive property is widely used in devices that simultaneously require two purposes of low transparency and low resistance, such as solar cells and various displays (PDP, LCD, OLED). Generally, indium tin oxide (ITO) has been used as a transparent conductive film, but it is not only expensive, but also has low strength and stiffness. Indicates.

이에 따라, 새로운 소재를 이용하여 광투과성은 유지되면서도 전기전도도가 향상된 전도성필름의 제조 방법이 고려될 수 있다.Accordingly, a method of manufacturing a conductive film having improved electrical conductivity while maintaining light transmittance using a new material may be considered.

본 발명의 일 목적은 종래와 다른 형태의 투명 전도성필름 제조방법 및 전도성필름을 제공하기 위한 것이다.One object of the present invention is to provide a transparent conductive film manufacturing method and a conductive film of a different form from the prior art.

본 발명의 다른 일 목적은 전기전도도가 향상된 투명 전도성필름을 제공하기 위한 것이다.Another object of the present invention is to provide a transparent conductive film with improved electrical conductivity.

이와 같은 본 발명의 일 목적을 달성하기 위하여, 본 발명의 일실시예에 따르는 전도성필름 제조방법은 분산 단계, 형성 단계 및 증착 단계를 포함한다. 분산 단계는 탄소나노튜브를 용매에 분산시킨다. 형성 단계는 분산액을 기판의 일면에 코팅하여 탄소나노튜브층을 형성한다. 증착 단계는 금속 스퍼터링을 통하여 탄소나노튜브층의 일면에 금속막을 증착한다.In order to achieve one object of the present invention, a conductive film manufacturing method according to an embodiment of the present invention includes a dispersion step, a forming step and a deposition step. The dispersing step disperses the carbon nanotubes in a solvent. In the forming step, the dispersion is coated on one surface of the substrate to form a carbon nanotube layer. In the deposition step, a metal film is deposited on one surface of the carbon nanotube layer through metal sputtering.

본 발명의 다른 측면에 따르면, 용매는 엔-메틸피롤리돈(NMP, N-methyl-2-pyrrolidone), 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF), 사이클로헥사논, 에틸알콜, 물 및 클로로벤젠 중 적어도 하나이다. According to another aspect of the present invention, the solvent is N-methylpyrrolidone (NMP, N-methyl-2-pyrrolidone), dimethylacetamide (DMAc), dimethylformamide (DMF), cyclohexanone, ethyl alcohol, water And chlorobenzene.

본 발명의 또 다른 측면에 따르면, 전도성필름 제조방법은 절단 및 산과 화학반응 중 적어도 하나를 통하여 탄소나노튜브를 전처리하는 단계를 포함한다. 전도성필름 제조방법은 기판이 친수성 또는 소수성이 되도록 표면을 화학적으로 처리하는 단계를 포함할 수 있다.According to another aspect of the invention, the method for producing a conductive film includes the step of pretreating the carbon nanotubes through at least one of cutting and acid and chemical reaction. The conductive film manufacturing method may include chemically treating the surface so that the substrate is hydrophilic or hydrophobic.

본 발명의 또 다른 측면에 따르면, 금속막은 0.1 내지 100 나노미터(nm)의 두께로 형성된다. 금속은 금, 은, 구리, 팔라듐, 니켈 및 플라티늄 중 적어도 하나가 될 수 있다.According to another aspect of the invention, the metal film is formed to a thickness of 0.1 to 100 nanometers (nm). The metal may be at least one of gold, silver, copper, palladium, nickel and platinum.

본 발명의 또 다른 측면에 따르면, 형성 단계는 진공 여과(vacuum filtration)법, 자기조립(self-assembly)법, 랭뮤어-블로제트(Langmuir-Blodgett)법, 용액캐스팅(solution casting)법, 바코팅(bar coating)법, 침지코팅(dip coating)법, 스핀코팅(spin coating)법, 분사코팅(spray coating)법 및 롤투롤(roll-to-roll)법 중 어느 하나에 의하여 탄소나노튜브층을 형성한다.According to another aspect of the invention, the forming step is a vacuum filtration method, self-assembly method, Langmuir-Blodgett method, solution casting method, bar Carbon nanotube layer by any one of bar coating method, dip coating method, spin coating method, spray coating method and roll-to-roll method To form.

또한, 본 발명의 다른 일실시예에 따르는 전도성필름 제조방법은 향상 단계, 분산 단계, 형성 단계 및 증착 단계를 포함한다. 향상 단계는 물리적으로 절단하거나 산화처리를 통하여 탄소나노튜브의 용매 친화도를 향상시킨다. 분산 단계는 탄소나노튜브를 용매에 분산시킨다. 형성 단계는 분산액을 기판에 코팅하여 탄소나노튜브 필름을 형성한다. 증착 단계는 금속 스퍼터링을 통하여 탄소나노튜브 필름의 일면에 금속막을 증착한다.In addition, the conductive film manufacturing method according to another embodiment of the present invention includes an enhancement step, a dispersion step, a forming step and a deposition step. The enhancement step improves the solvent affinity of the carbon nanotubes through physical cleavage or oxidation. The dispersing step disperses the carbon nanotubes in a solvent. In the forming step, the dispersion is coated on the substrate to form a carbon nanotube film. In the deposition step, a metal film is deposited on one surface of the carbon nanotube film through metal sputtering.

또한 상기한 과제를 실현하기 위하여 본 발명은 전도성필름을 제공한다. 상기 전도성필름은 광투과성 기판, 탄소나노튜브층 및 금속막을 포함하다. 탄소나노튜브층은 기판의 일면에 탄소나노튜브 분산액의 코팅에 의하여 형성된다. 금속막은 탄소나노튜브층의 일면을 덮도록 탄소나노튜브층에 증착된다. 탄소나노튜브는 단층벽(single wall), 이중층벽(double wall) 및 다층벽(multi wall) 탄소나노튜브 중 적어도 하나로 이루어질 수 있다. 광투과성 기판은 유리, 수정(quartz), 합성수지 및 고분자물질 중 적어도 하나로 형성될 수 있다.In addition, the present invention provides a conductive film in order to realize the above object. The conductive film includes a light transmissive substrate, a carbon nanotube layer, and a metal film. The carbon nanotube layer is formed by coating a carbon nanotube dispersion on one surface of the substrate. The metal film is deposited on the carbon nanotube layer to cover one surface of the carbon nanotube layer. The carbon nanotubes may be formed of at least one of a single wall, a double wall, and a multi wall carbon nanotube. The light transmissive substrate may be formed of at least one of glass, quartz, synthetic resin, and polymer material.

상기와 같이 구성되는 본 발명에 관련된 전도성필름 제조방법 및 전도성필름은 스퍼터링을 통하여 보다 간단한 공정으로 전도성필름을 형성할 수 있다. 또한 이를 통하여 광투과성을 유지하면서 전기 전도도가 향상된 전도성필름이 구현된다.The conductive film manufacturing method and conductive film according to the present invention configured as described above can form a conductive film in a simpler process through sputtering. In addition, a conductive film having improved electrical conductivity is realized while maintaining light transmittance.

이하, 본 발명에 관련된 전도성필름 제조방법 및 전도성필름에 대하여 도면을 참조하여 보다 상세하게 설명한다. 본 명세서에서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일·유사한 참조번호를 부여하고, 그 설명은 처음 설명으로 갈음한다. 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Hereinafter, a method for manufacturing a conductive film and a conductive film according to the present invention will be described in more detail with reference to the accompanying drawings. In the present specification, the same or similar reference numerals are assigned to the same or similar configurations in different embodiments, and the description thereof is replaced with the first description. As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise.

도 1은 본 발명과 관련한 전도성필름(100)의 일 실시예를 나타내는 단면도이다.1 is a cross-sectional view showing an embodiment of a conductive film 100 according to the present invention.

본 도면을 참조하면, 전도성필름(100)은 광투과성 기판(110), 탄소나노튜브층(CNT layer, Carbon nanotube layer, 120) 및 금속막(130)을 포함한다.Referring to the figure, the conductive film 100 includes a light transmissive substrate 110, a carbon nanotube layer (CNT layer, Carbon nanotube layer, 120) and a metal film 130.

기판(110)은 광투과성 재질로 형성되며, 유리, 수정(quartz), 합성수지 및 고분자물질 중 적어도 하나로 형성될 수 있다. 기판(110)은 박막으로 형성될 수 있다.The substrate 110 may be formed of a light transmissive material, and may be formed of at least one of glass, quartz, synthetic resin, and polymer material. The substrate 110 may be formed of a thin film.

기판(110)의 일면에 탄소나노튜브 분산액의 코팅에 의하여 탄소나노튜브층(120)이 형성된다.The carbon nanotube layer 120 is formed by coating a carbon nanotube dispersion on one surface of the substrate 110.

탄소나노튜브는 단층벽(single wall), 이중층벽(double wall) 및 다층벽(multi wall) 탄소나노튜브 중 적어도 하나로 이루어질 수 있다. 다층벽 탄소나노튜브는 얇은 다층벽(thin multiwall) 탄소나노튜브를 포함할 수 있다.The carbon nanotubes may be formed of at least one of a single wall, a double wall, and a multi wall carbon nanotube. The multi-walled carbon nanotubes may include thin multiwall carbon nanotubes.

탄소나노튜브층의 일면에는 금속막(130)이 증착된다. 상기 증착은 금속 스퍼터링에 의하여 이루어지며, 금속이 탄소나노튜브층을 덮도록 형성된다.The metal film 130 is deposited on one surface of the carbon nanotube layer. The deposition is performed by metal sputtering, and the metal is formed to cover the carbon nanotube layer.

금속막(130)은 금, 은, 구리, 팔라듐, 니켈 및 플라티늄 중 적어도 하나로 형성된다. 금속막(130)은 0.1 내지 100 나노미터(nm)의 두께로 형성될 수 있다. 상기 금속막(130)의 두께는 스퍼터링을 통하여 구현 가능하고, 전도성필름(100)의 광투과성의 정도(이하 '투명도'라 한다)를 현저히 저하시키지 않는 크기이다. 이를 통하여 투명도를 유지하면서 전기 전도도가 향상된 전도성필름(100)이 구현된다.The metal film 130 is formed of at least one of gold, silver, copper, palladium, nickel, and platinum. The metal film 130 may be formed to a thickness of 0.1 to 100 nanometers (nm). The thickness of the metal film 130 may be implemented through sputtering and does not significantly reduce the degree of light transmittance (hereinafter referred to as 'transparency') of the conductive film 100. Through this, the conductive film 100 having improved electrical conductivity is realized while maintaining transparency.

이하, 도 1의 전도성필름(100)을 구현할 수 있는 전도성필름의 제조방법에 대하여 설명한다. 도 2는 본 발명과 관련한 전도성필름 제조방법의 일 실시예를 나타내는 흐름도이다.Hereinafter, a method of manufacturing a conductive film that can implement the conductive film 100 of FIG. 1 will be described. 2 is a flow chart showing an embodiment of a conductive film manufacturing method related to the present invention.

먼저, 기판의 표면을 화학적으로 처리하고(S10), 탄소나노튜브를 전처리한다(S20).First, the surface of the substrate is chemically treated (S10), and carbon nanotubes are pretreated (S20).

화학처리 단계(S10)는 기판이 친수성 또는 소수성이 되도록 표면을 화학적으로 처리한다. 기판은 광투과성 재질로 형성되며, 유리, 수정(quartz), 합성수지 및 고분자물질 중 적어도 하나로 형성될 수 있다.The chemical treatment step S10 chemically treats the surface such that the substrate is hydrophilic or hydrophobic. The substrate is formed of a light transmissive material, and may be formed of at least one of glass, quartz, synthetic resin, and polymer material.

화학처리 단계(S10)를 예를 들어 설명한다. 광투과성 폴리에틸렌(PET, polyethylene)의 재질로 형성된 판 형태의 기판을 약 1.5 x 5 cm2의 크기로 재단한다. 상기 기판을 2노르말 수산화나트륨 용액에 담가 약 70℃에서 약 30분동안 반응시킨다. 그 후 상기 기판을 세척한 다음, 자연 건조시킨다. 이를 통하여 상기 기판은 친수성 표면을 구비하게 된다.The chemical treatment step S10 will be described by way of example. A plate-shaped substrate formed of a material of polyethylene (PET) is cut to a size of about 1.5 x 5 cm 2. The substrate was immersed in 2 normal sodium hydroxide solution and reacted at about 70 ° C. for about 30 minutes. The substrate is then washed and then naturally dried. This allows the substrate to have a hydrophilic surface.

전처리 단계(S20)는 절단 및 산과 화학반응 중 적어도 하나를 통하여 탄소나노튜브를 전처리한다.In the pretreatment step (S20), the carbon nanotubes are pretreated through at least one of cutting and acid and chemical reaction.

전처리 단계(S20)를, 예를 들어 설명한다. 탄소나노튜브 400mg을 부피비가 3:1인 황산과 질산 혼합 용액에서 1시간 동안 교반하여 절단한다. 증류수로 희석하여 탄소나노튜브 현탁액을 형성하고, 상기 탄소나노튜브 현탁액을 인공 불소 중합체(PTFE, polytetrafluoroethylene) 멤브레인으로 여과한 다음 동결건조기에 건조시킨다. 이를 통하여 탄소나노튜브는 카르복실기가 노출된 상태로 절단된다.The preprocessing step S20 will be described by way of example. 400 mg of carbon nanotubes are cut by stirring for 1 hour in a sulfuric acid and nitric acid mixed solution having a volume ratio of 3: 1. Dilution with distilled water to form a carbon nanotube suspension, the carbon nanotube suspension is filtered through an artificial fluoropolymer (PTFE, polytetrafluoroethylene) membrane and then dried in a lyophilizer. Through this, the carbon nanotubes are cut in the state where the carboxyl group is exposed.

다음은, 탄소나노튜브를 용매에 분산시킨다(S100).Next, the carbon nanotubes are dispersed in a solvent (S100).

용매는 엔-메틸피롤리돈(NMP, N-methyl-2-pyrrolidone), 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF), 사이클로헥사논, 에틸알콜, 물 및 클로로벤젠 중 적어도 하나가 될 수 있다.The solvent may be at least one of N-methylpyrrolidone (NMP, N-methyl-2-pyrrolidone), dimethylacetamide (DMAc), dimethylformamide (DMF), cyclohexanone, ethyl alcohol, water and chlorobenzene. Can be.

분산 단계(S100)을 예를 들어 설명하면, 탄소나노튜브 0.01중량%을 디메틸포름아마이드(DMF) 용매에 넣은 후, 소니케이터에서 10시간 동안 분산시킨다.For example, the dispersing step (S100) is described. After dispersing 0.01 wt% of carbon nanotubes in a dimethylformamide (DMF) solvent, the dispersant is dispersed in a sonicator for 10 hours.

다음은, 분산액을 기판의 일면에 코팅하여 탄소나노튜브층을 형성한다(S200).Next, the dispersion is coated on one surface of the substrate to form a carbon nanotube layer (S200).

형성 단계(S200)는 진공 여과(vacuum filtration)법, 자기조립(self-assembly)법, 랭뮤어-블로제트(Langmuir-Blodgett)법, 용액캐스팅(solution casting)법, 바코팅(bar coating)법, 침지코팅(dip coating)법, 스핀코팅(spin coating)법, 분사코팅(spray coating)법 및 롤투롤(roll-to-roll)법 중 어느 하나에 의하여 기판상에 탄소나노튜브층을 형성한다.Formation step (S200) is a vacuum filtration method, self-assembly method, Langmuir-Blodgett method, solution casting method, bar coating method A carbon nanotube layer on the substrate by any one of a dip coating method, a spin coating method, a spray coating method, and a roll-to-roll method. .

형성 단계(S200)를 예를 들어 설명하면, 친수성 처리된 기판 위에 탄소나노튜브 분산액 0.1mL 정도를 떨어뜨린 후, 자연건조 또는 진공오븐을 통하여 디메틸포름아마이드 용매를 증발시킨다.Referring to the formation step (S200), for example, after dropping about 0.1mL of the carbon nanotube dispersion on the hydrophilic substrate, the dimethylformamide solvent is evaporated through natural drying or vacuum oven.

형성 단계(S200)를 통하여 탄소나노튜브층이 형성되면, 금속 스퍼터링을 통하여 탄소나노튜브층의 일면에 금속막을 증착한다(S300).When the carbon nanotube layer is formed through the forming step (S200), a metal film is deposited on one surface of the carbon nanotube layer through metal sputtering (S300).

금속은 금, 은, 구리, 팔라듐, 니켈 및 플라티늄 중 적어도 하나가 될 수 있고, 금속막은 0.1 내지 100 나노미터(nm)의 두께로 형성될 수 있다.The metal may be at least one of gold, silver, copper, palladium, nickel and platinum, and the metal film may be formed to a thickness of 0.1 to 100 nanometers (nm).

증착 단계(S300)를 예를 들어 설명하면, 탄소나노튜브층의 표면에 약 10초 동안 스퍼터링하여 백금 박막을 증착시킨다. For example, the deposition step S300 will be described. The platinum thin film is deposited by sputtering the surface of the carbon nanotube layer for about 10 seconds.

금속 스퍼터링에 이용되는 플라즈마 중의 하전 입자나 높은 운동에너지를 가지는 스퍼터 입자는 탄소나노튜브층에 손상을 입히지 않으므로 전도성필름의 제조에 대한 생산성이 향상될 수 있다.Since charged particles in the plasma used for metal sputtering or sputter particles having high kinetic energy do not damage the carbon nanotube layer, productivity for manufacturing a conductive film may be improved.

도 3은 본 발명과 관련한 전도성필름 제조방법의 다른 일 실시예를 나타내는 흐름도이다.Figure 3 is a flow chart showing another embodiment of the conductive film manufacturing method related to the present invention.

도 3을 참조하면, 전도성필름 제조방법은 친화도 향상단계(A100), 분산 단 계(A200), 필름 형성단계(A300) 및 증착 단계(A400)을 포함한다.Referring to FIG. 3, the method for manufacturing a conductive film includes an affinity improving step (A100), a dispersion step (A200), a film forming step (A300), and a deposition step (A400).

친화도 향상단계(A100)는 물리적으로 절단하거나 산화처리를 통하여 탄소나노튜브의 용매 친화도를 향상시킨다. 상기 물리적 절단은, 예를 들어 탄소나노튜브에 초음파를 가하는 방법으로 구현될 수 있다. 상기 산화처리는, 예를 들어 탄소나노튜브를 카르복실기가 노출된 상태로 산화시킬 수 있다.The affinity improvement step (A100) improves the solvent affinity of carbon nanotubes through physical cutting or oxidation treatment. The physical cutting may be implemented by, for example, applying ultrasonic waves to carbon nanotubes. The oxidation treatment may, for example, oxidize the carbon nanotubes in a state where the carboxyl group is exposed.

분산 단계(A200)는 탄소나노튜브를 용매에 분산시키고, 필름 형성단계(A300)는 분산액을 기판에 코팅하여 탄소나노튜브 필름을 형성한다. 다음은, 금속 스퍼터링을 통하여 탄소나노튜브 필름의 일면에 금속막을 증착한다(A400).The dispersing step (A200) disperses the carbon nanotubes in a solvent, and the film forming step (A300) forms a carbon nanotube film by coating the dispersion on a substrate. Next, a metal film is deposited on one surface of the carbon nanotube film through metal sputtering (A400).

만약 탄소나노튜브나 금속박막만으로 전도성필름을 형성한다면, 일정 수준의 전기전도도를 구현하기 위하여 과량의 탄소나노튜브 또는 일정 두께이상의 금속층이 필요하게 되어, 일정 수준의 투명도를 확보하는데 어려움이 있다. 이에 따라, 탄소나노튜브 필름의 일면에 스퍼터링을 통하여 박막의 금속막을 형성하면, 기판의 재질 및 형태에 관계없이 탄소나노튜브 필름에 쉽게 금속막을 형성시킬 수 있다. 이를 통하여 투명도의 손실은 없으면서 전기전도도는 향상되어 전도성필름의 설계 및 제조 공차가 증가될 수 있다.If the conductive film is formed using only carbon nanotubes or metal thin films, an excessive amount of carbon nanotubes or a metal layer having a predetermined thickness is required to realize a certain level of electrical conductivity, thereby making it difficult to secure a certain level of transparency. Accordingly, when a thin metal film is formed on one surface of the carbon nanotube film through sputtering, the metal film can be easily formed on the carbon nanotube film regardless of the material and shape of the substrate. Through this, electrical conductivity is improved without loss of transparency, and the design and manufacturing tolerances of the conductive film can be increased.

도 4a 및 도 4b는 각각 도 2 또는 도 3의 전도성필름 제조방법에 의하여 제조된 전도성필름의 면저항 및 투명도 측정결과를 나타내는 그래프들이다.4A and 4B are graphs showing the results of measuring sheet resistance and transparency of the conductive film manufactured by the method of manufacturing the conductive film of FIG. 2 or 3, respectively.

도 4a는 4포-포인트 프로브(four-point probe)방법에 의해 면저항(Surface resistance)을 측정한 그래프이고, 도 4b는 자외선-가시광선-근적외선 분광광도계(UV-Vis-NIR spectrophotometer)를 이용하여 투명도(transmittance)를 측정한 그 래프이다. 4A is a graph of surface resistance measured by a four-point probe method, and FIG. 4B is a UV-Vis-NIR spectrophotometer. It is a graph measuring the transparency.

도 4a를 참조하면, 스퍼터링 전후에 따라 면저항은 약 8 kohm/sq 가 감소함에 비해, 도 4b를 참조하면, 스퍼터링 전후에 따라 투명도는 약 3% 가 감소하였다. 이를 통하여 스퍼터링을 통하여 투명도는 유지되면서도 전기전도도는 향상되는 전도성필름이 구현됨을 알 수 있다.Referring to FIG. 4A, the sheet resistance decreased by about 8 kohm / sq before and after sputtering. Referring to FIG. 4B, the transparency decreased by about 3% before and after sputtering. Through this, it can be seen that the conductive film is improved through the sputtering while the electrical conductivity is maintained.

상기와 같은 본 발명에 관련된 전도성필름 제조방법 및 전도성필름은 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The conductive film manufacturing method and the conductive film related to the present invention as described above is not limited to the configuration and method of the embodiments described above, the embodiments are all or part of each embodiment selectively so that various modifications can be made It may be configured in combination.

도 1은 본 발명과 관련한 전도성필름의 일 실시예를 나타내는 단면도.1 is a cross-sectional view showing an embodiment of a conductive film according to the present invention.

도 2는 본 발명과 관련한 전도성필름 제조방법의 일 실시예를 나타내는 흐름도.Figure 2 is a flow chart showing an embodiment of a conductive film manufacturing method related to the present invention.

도 3은 본 발명과 관련한 전도성필름 제조방법의 다른 일 실시예를 나타내는 흐름도.Figure 3 is a flow chart showing another embodiment of the conductive film manufacturing method related to the present invention.

도 4a 및 도 4b는 각각 도 2 또는 도 3의 전도성필름 제조방법에 의하여 제조된 전도성필름의 면저항 및 투명도 측정결과를 나타내는 그래프들.Figures 4a and 4b are graphs showing the results of measuring the sheet resistance and transparency of the conductive film produced by the conductive film manufacturing method of Figure 2 or 3, respectively.

Claims (13)

탄소나노튜브를 용매에 분산시키는 단계;Dispersing carbon nanotubes in a solvent; 상기 분산액을 기판의 일면에 코팅하여 탄소나노튜브층을 형성하는 단계; 및Coating the dispersion on one surface of a substrate to form a carbon nanotube layer; And 금속 스퍼터링을 통하여 상기 탄소나노튜브층의 일면에 금속막을 증착하는 단계를 포함하는 전도성필름 제조방법.Conductive film manufacturing method comprising the step of depositing a metal film on one surface of the carbon nanotube layer through metal sputtering. 제1항에 있어서,The method of claim 1, 절단 및 산과 화학반응 중 적어도 하나를 통하여 탄소나노튜브를 전처리하는 단계를 더 포함하는 전도성필름 제조방법.A method of manufacturing a conductive film further comprising the step of pretreating carbon nanotubes through at least one of cutting and acid and chemical reaction. 제1항에 있어서,The method of claim 1, 상기 용매는 엔-메틸피롤리돈(NMP, N-methyl-2-pyrrolidone), 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF), 사이클로헥사논, 에틸알콜, 물 및 클로로벤젠 중 적어도 하나인 것을 특징으로 하는 전도성필름 제조방법.The solvent is at least one of N-methylpyrrolidone (NMP, N-methyl-2-pyrrolidone), dimethylacetamide (DMAc), dimethylformamide (DMF), cyclohexanone, ethyl alcohol, water and chlorobenzene Method for producing a conductive film, characterized in that. 제1항에 있어서,The method of claim 1, 상기 금속은 금, 은, 구리, 팔라듐, 니켈 및 플라티늄 중 적어도 하나인 것을 특징으로 하는 전도성필름 제조방법.The metal is a conductive film production method, characterized in that at least one of gold, silver, copper, palladium, nickel and platinum. 제1항에 있어서,The method of claim 1, 상기 금속막은 0.1 내지 100 나노미터(nm)의 두께로 형성되는 것을 특징으로 하는 전도성필름 제조방법.The metal film is a conductive film manufacturing method, characterized in that formed in a thickness of 0.1 to 100 nanometers (nm). 제1항에 있어서,The method of claim 1, 상기 형성 단계는,The forming step, 진공 여과(vacuum filtration)법, 자기조립(self-assembly)법, 랭뮤어-블로제트(Langmuir-Blodgett)법, 용액캐스팅(solution casting)법, 바코팅(bar coating)법, 침지코팅(dip coating)법, 스핀코팅(spin coating)법, 분사코팅(spray coating)법 및 롤투롤(roll-to-roll)법 중 어느 하나에 의하여 상기 탄소나노튜브층을 형성하는 것을 특징으로 하는 전도성필름 제조방법.Vacuum filtration, self-assembly method, Langmuir-Blodgett method, solution casting method, bar coating method, dip coating method ), A method of manufacturing a conductive film, characterized in that the carbon nanotube layer is formed by any one of a spin coating method, a spray coating method and a roll-to-roll method. . 제1항에 있어서,The method of claim 1, 상기 기판이 친수성 또는 소수성이 되도록 표면을 화학적으로 처리하는 단계를 더 포함하는 전도성필름 제조방법.And chemically treating the surface of the substrate so that the substrate is hydrophilic or hydrophobic. 광투과성 기판;Light transmissive substrates; 상기 기판의 일면에 탄소나노튜브 분산액의 코팅에 의하여 형성되는 탄소나노튜브층; 및A carbon nanotube layer formed by coating a carbon nanotube dispersion on one surface of the substrate; And 상기 탄소나노튜브층의 일면을 덮도록 증착되는 금속막을 포함하는 전도성필 름.A conductive film comprising a metal film deposited to cover one surface of the carbon nanotube layer. 제8항에 있어서,The method of claim 8, 상기 탄소나노튜브는 단층벽(single wall), 이중층벽(double wall) 및 다층벽(multi wall) 탄소나노튜브 중 적어도 하나로 이루어진 것을 특징으로 하는 전도성필름.The carbon nanotubes are made of at least one of a single wall, a double wall and a multiwall carbon nanotube. 제8항에 있어서,The method of claim 8, 상기 금속막은 금, 은, 구리, 팔라듐, 니켈 및 플라티늄 중 적어도 하나로 형성되는 것을 특징으로 하는 전도성필름.The metal film is formed of at least one of gold, silver, copper, palladium, nickel and platinum. 제8항에 있어서,The method of claim 8, 상기 금속막은 0.1 내지 100 나노미터(nm)의 두께로 형성되는 것을 특징으로 하는 전도성필름.The metal film is a conductive film, characterized in that formed in a thickness of 0.1 to 100 nanometers (nm). 제8항에 있어서,The method of claim 8, 상기 광투과성 기판은 유리, 수정(quartz), 합성수지 및 고분자물질 중 적어도 하나로 형성되는 것을 특징으로 하는 전도성필름.The light transmissive substrate is a conductive film, characterized in that formed of at least one of glass, quartz, synthetic resin and polymer material. 물리적으로 절단하거나 산화처리를 통하여 탄소나노튜브의 용매 친화도를 향 상시키는 단계;Improving the solvent affinity of the carbon nanotubes by physically cleaving or oxidizing; 상기 탄소나노튜브를 용매에 분산시키는 단계;Dispersing the carbon nanotubes in a solvent; 상기 분산액을 기판에 코팅하여 탄소나노튜브 필름을 형성하는 단계; 및Coating the dispersion on a substrate to form a carbon nanotube film; And 금속 스퍼터링을 통하여 상기 탄소나노튜브 필름의 일면에 금속막을 증착하는 단계를 포함하는 전도성필름 제조방법.Conductive film manufacturing method comprising the step of depositing a metal film on one surface of the carbon nanotube film through metal sputtering.
KR1020090032914A 2009-04-15 2009-04-15 Method for fabrication of conductive film using sputtering and conductive film KR101006456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090032914A KR101006456B1 (en) 2009-04-15 2009-04-15 Method for fabrication of conductive film using sputtering and conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090032914A KR101006456B1 (en) 2009-04-15 2009-04-15 Method for fabrication of conductive film using sputtering and conductive film

Publications (2)

Publication Number Publication Date
KR20100114401A true KR20100114401A (en) 2010-10-25
KR101006456B1 KR101006456B1 (en) 2011-01-06

Family

ID=43133610

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090032914A KR101006456B1 (en) 2009-04-15 2009-04-15 Method for fabrication of conductive film using sputtering and conductive film

Country Status (1)

Country Link
KR (1) KR101006456B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447478B1 (en) * 2013-07-12 2014-10-06 (주)바이오니아 Ceramic paste using CNT or CNT-metal composition and conductive film including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102372136B1 (en) * 2020-01-20 2022-03-08 전남대학교산학협력단 Manufacturing method of Nickel-palladium carbon nanotube microcomposite, electromagnetic wave shielding agent using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040000977A (en) * 2002-06-26 2004-01-07 엘지.필립스 엘시디 주식회사 Apparatus of inspection for liquid crystal display
KR20040000364A (en) * 2003-09-30 2004-01-03 원태영 System and method for managing material database of lcd simulation
KR200400977Y1 (en) 2005-06-25 2005-11-15 조인셋 주식회사 Anisotropic Conductive Film
KR200400364Y1 (en) 2005-08-12 2005-11-03 나노캠텍주식회사 Anti-static release film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447478B1 (en) * 2013-07-12 2014-10-06 (주)바이오니아 Ceramic paste using CNT or CNT-metal composition and conductive film including the same
WO2015005665A1 (en) * 2013-07-12 2015-01-15 (주)바이오니아 Ceramic paste composition using carbon nanotube or carbon nanotube-metal complex, and conductive film containing same
US10249404B2 (en) 2013-07-12 2019-04-02 Bioneer Corporation Ceramic paste composition using carbon nanotube or carbon nanotube-metal complex, and conductive film containing same

Also Published As

Publication number Publication date
KR101006456B1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Zhu et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires
Kaskela et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique
Zhou et al. Copper mesh templated by breath-figure polymer films as flexible transparent electrodes for organic photovoltaic devices
KR101009442B1 (en) Method for fabrication of conductive film using conductive frame and conductive film
KR101091744B1 (en) Method for fabrication of conductive film using metal wire and conductive film
Cho et al. Highly efficient and stable flexible perovskite solar cells enabled by using plasma-polymerized-fluorocarbon antireflection layer
CN106057359B (en) A kind of preparation method of embedded more orientation metal nano wire transparent conductive films
Chang et al. Ionogel/Copper grid composites for high-performance, ultra-stable flexible transparent electrodes
Qiu et al. Trilayer nanomesh films with tunable wettability as highly transparent, flexible, and recyclable electrodes
KR20110073296A (en) Metal-carbon hybrid nanostructure film and preparing method of the same
US20170133527A1 (en) Method for the preparation of a transparent and conductive auto-supported silver nanowire film and applications thereof
WO2018040955A1 (en) Preparation of chemical grafting-modified pet/nano silver wire transparent conductive film
Kiruthika et al. Fabrication of oxidation-resistant metal wire network-based transparent electrodes by a spray-roll coating process
WO2016029586A1 (en) Method for manufacturing flexible transparent conducting composite film
KR101682501B1 (en) Transparant electrode containing silver nanowire-patterned layer and graphene layer, and manufacturing method thereof
Zhang et al. Improved performance by SiO2 hollow nanospheres for silver nanowire-based flexible transparent conductive films
Yu et al. Self-assembled reduced graphene oxide/polyacrylamide conductive composite films
Kou et al. Large-area and uniform transparent electrodes fabricated by polymethylmethacrylate-assisted spin-coating of silver nanowires on rigid and flexible substrates
Zheng et al. Flexible silver nanowire transparent conductive films prepared by an electrostatic adsorption self-assembly process
Park et al. Green nanoarchitectonics for next generation electronics devices: Patterning of conductive nanowires on regenerated cellulose substrates
KR101190206B1 (en) Transparent Conductors and Method of Preparing Same
KR101006456B1 (en) Method for fabrication of conductive film using sputtering and conductive film
EP3294543B1 (en) Carbon nanotube based hybrid films for mechanical reinforcement of multilayered, transparent-conductive, laminar stacks
KR20110071539A (en) Transparent conductors and method of preparing same
Kwon et al. Uniform silver nanowire patterned electrode on robust PEN substrate using poly (2-hydroxyethyl methacrylate) underlayer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee