KR20100113562A - Linear generator - Google Patents

Linear generator Download PDF

Info

Publication number
KR20100113562A
KR20100113562A KR1020107017881A KR20107017881A KR20100113562A KR 20100113562 A KR20100113562 A KR 20100113562A KR 1020107017881 A KR1020107017881 A KR 1020107017881A KR 20107017881 A KR20107017881 A KR 20107017881A KR 20100113562 A KR20100113562 A KR 20100113562A
Authority
KR
South Korea
Prior art keywords
fluid pressure
piston
cylinder
pressure chamber
permanent magnet
Prior art date
Application number
KR1020107017881A
Other languages
Korean (ko)
Other versions
KR101540347B1 (en
Inventor
다카이쓰 고바야시
Original Assignee
다카이쓰 고바야시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다카이쓰 고바야시 filed Critical 다카이쓰 고바야시
Publication of KR20100113562A publication Critical patent/KR20100113562A/en
Application granted granted Critical
Publication of KR101540347B1 publication Critical patent/KR101540347B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • H02K7/1884Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts structurally associated with free piston engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B71/00Free-piston engines; Engines without rotary main shaft
    • F02B71/04Adaptations of such engines for special use; Combinations of such engines with apparatus driven thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • F02B63/041Linear electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

본 발명은 발전 장치의 구조의 간소화와 경량화를 달성하고, 양호한 효율의 발전을 안정적으로 얻을 수 있는 리니어 발전 장치를 제공한다. 실린더(1)의 좌측단벽(2)에 접하는 좌측 유체압실(4) 내의 유체압과 실린더(1)의 우측단벽에 접하는 우측 유체압실(5)의 유체압을 실린더(1) 내의 피스톤(6)에 교대로 인가하여 피스톤(6)을 축선 방향으로 왕복 이동시키는 유체압 실린더 구조를 가지고, 피스톤(6)의 좌측 유체압실(4)에 접하는 좌수압면(左受壓面)과 우측 유체압실(5)에 접하는 우수압면(右受壓面) 사이에 영구 자석 대역(9)을 형성하고, 실린더(1)의 좌측단벽과 우측단벽(2, 3) 사이의 통벽에 좌측 유체압실 및 우측 유체압실(4, 5)에 걸친 기전 코일 대역(11)을 형성하고, 영구 자석 대역(9)을 가지는 피스톤(6)의 축선 방향으로의 왕복 이동에 의해 기전 코일 대역(11)에 있어서의 발전을 유기하는 구성으로 한 리니어 발전 장치이다.The present invention provides a linear power generation apparatus which can achieve the simplification and the weight reduction of the structure of the power generation apparatus and can stably obtain the generation of good efficiency. The fluid pressure in the left fluid pressure chamber 4 in contact with the left end wall 2 of the cylinder 1 and the fluid pressure in the right fluid pressure chamber 5 in contact with the right end wall of the cylinder 1 are connected to the piston 6 in the cylinder 1. And a hydraulic pressure cylinder structure in which the piston 6 is reciprocally moved in the axial direction, alternately applied to the left hydraulic pressure surface and the right hydraulic pressure chamber in contact with the left fluid pressure chamber 4 of the piston 6. 5, a permanent magnet zone 9 is formed between the superior pressure surface in contact with the superior pressure surface, and the left fluid pressure chamber and the right fluid pressure chamber are formed in the passage wall between the left end wall and the right end wall 2, 3 of the cylinder 1; The electromotive coil zone 11 which spans (4, 5) is formed, and generation | occurrence | production of the electromotive coil zone 11 is induced by reciprocating movement of the piston 6 which has the permanent magnet zone 9 to the axial direction. It is a linear power generation apparatus made into the structure.

Figure P1020107017881
Figure P1020107017881

Description

리니어 발전 장치{LINEAR GENERATOR}Linear Power Generator {LINEAR GENERATOR}

본 발명은 유체압 실린더를 구성하는 피스톤과 실린더 사이에 있어서 발전을 유기(誘起)하도록 한 리니어 발전 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear power generation apparatus configured to induce power generation between a piston and a cylinder constituting a hydraulic cylinder.

특허 문헌 1은 프리 피스톤 엔진(유체압 실린더)과, 리니어 발전기가 협동하여 발전하는 발전 장치를 개시하고 있다.Patent document 1 discloses a power generation apparatus in which a free piston engine (fluid pressure cylinder) and a linear generator generate power in cooperation.

상기 발전 장치를 구성하는 프리 피스톤 엔진(유체압 실린더)은, 자동차 엔진의 실린더 구조와 마찬가지로, 실린더의 일단에만 연소실(유체압실)을 구비한 단일 연소실형 실린더이며, 상기 단일 연소실에서의 연료의 연소 폭발에 의해 발생하는 유체압으로 피스톤을 한쪽 방향으로만 이동시키고, 상기 리니어 발전기를 전동기로서 구동함으로써 피스톤을 다른 쪽 방향으로 이동시켜 프리 피스톤 엔진의 흡기 행정과 압축 행정과 배기 행정을 행하게 하여, 상기 프리 피스톤 엔진의 연소 폭발 시에 상기 리니어 발전기로부터 발전 출력을 인출하는 구조를 가지고 있다.The free piston engine (fluid pressure cylinder) constituting the power generator is a single combustion chamber type cylinder having a combustion chamber (fluid pressure chamber) at one end of the cylinder, similar to the cylinder structure of an automobile engine, and combustion of fuel in the single combustion chamber. The piston is moved in one direction only by the fluid pressure generated by the explosion, and the linear generator is driven as an electric motor to move the piston in the other direction so that the intake stroke, compression stroke and exhaust stroke of the free piston engine are performed. It has a structure which draws out power generation output from the said linear generator at the time of combustion explosion of an engine.

일본 특허출원 공개번호 2005-318708호 공보Japanese Patent Application Publication No. 2005-318708

상기 특허 문헌 1에 따른 리니어 발전 장치는 단일 연소실형 실린더로 이루어지는 프리 피스톤 엔진(유체압 실린더)의 연소 폭발과, 리니어 발전기의 전동기로서의 기능이 협동하여 프리 피스톤 엔진의 피스톤을 축선 방향으로 왕복 이동하도록 하여, 리니어 발전기의 코일을 전동기와 발전기의 요소로서 겸용하는 구조이며, 이것을 제어하는 제어 장치와 합쳐져서, 구조가 복잡하고, 또한 비용이 높아지는 문제점을 가지고 있다.The linear power generation device according to Patent Document 1 is designed such that a combustion explosion of a free piston engine (fluid pressure cylinder) consisting of a single combustion chamber cylinder and a function as an electric motor of the linear generator cooperate to reciprocate the piston of the free piston engine in the axial direction. In other words, the coil of the linear generator is used as both an electric motor and a generator, and combined with a control device for controlling the coil, the structure is complicated and the cost is high.

또한, 피스톤의 일방향으로의 이동을 연소 폭발에 의해 행하고, 다른 방향으로의 이동을 전동기에 의해 행하므로, 발전 효율이 뒤떨어지는 문제점을 가지고 있다.In addition, since the piston moves in one direction by combustion explosion and in the other direction by an electric motor, there is a problem of inferior power generation efficiency.

또한, 프리 피스톤 엔진과 리니어 발전기를 직렬로 접속하는 구조이므로 길이가 길고 크기가 커져서, 과대한 점유 공간을 필요로 한다.In addition, since the free piston engine and the linear generator are connected in series, the length is long and the size is large, and an excessive occupied space is required.

본 발명은 유체압 실린더를 구성하는 피스톤과 실린더 사이에 있어서 발전을 유기하도록 한, 상기 문제점을 해결하는 리니어 발전 장치를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention provides a linear power generation apparatus that solves the above problems by causing generation of power generation between a piston and a cylinder constituting a fluid pressure cylinder.

요약하여 설명하면 본 발명에 따른 리니어 발전 장치는, 실린더의 좌측단벽과 접하는 좌측 유체압실 내의 유체압과 실린더의 우측단벽과 접하는 우측 유체압실 내의 유체압을 실린더 내의 피스톤에 교대로 인가하여 상기 피스톤을 축선 방향으로 왕복 이동시키는 유체압 실린더 구조를 가지고, 상기 피스톤의 상기 좌측 유체압실과 접하는 좌수압면(左受壓面)과 상기 우측 유체압실과 접하는 우수압면(右受壓面) 사이에 영구 자석 대역을 형성하고, 상기 실린더의 좌측단벽면 및 우측단벽면 사이의 통벽에 상기 좌측 유체압실 및 우측 유체압실에 이르는 기전 코일 대역을 형성하고, 상기 영구 자석 대역을 가지는 피스톤의 축선 방향으로의 왕복 이동에 의해 상기 기전 코일 대역에서의 발전을 유기하는 구성을 가진다.In summary, the linear power generation apparatus according to the present invention alternately applies the fluid pressure in the left fluid pressure chamber in contact with the left end wall of the cylinder and the fluid pressure in the right fluid pressure chamber in contact with the right end wall of the cylinder to the piston in the cylinder. It has a fluid pressure cylinder structure which reciprocates in an axial direction, and has a permanent magnet between a left hydraulic pressure surface in contact with the left fluid pressure chamber of the piston and an even pressure surface in contact with the right fluid pressure chamber. Forming a zone, and forming a mechanism coil zone leading to the left fluid pressure chamber and the right fluid pressure chamber in the passage wall between the left end wall surface and the right end wall surface of the cylinder, and reciprocating movement in the axial direction of the piston having the permanent magnet zone. This structure has a configuration of inducing power generation in the above-described electromotive coil band.

상기 좌측 유체압실 및 우측 유체압실은 연소실을 구성하고, 상기 연소실에서의 연료의 연소 폭발에 의한 유체압으로 상기 피스톤을 축선 방향으로 이동시키는 구성으로 한다.The left fluid pressure chamber and the right fluid pressure chamber constitute a combustion chamber, and are configured to move the piston in the axial direction by the fluid pressure caused by the combustion explosion of the fuel in the combustion chamber.

또는, 상기 좌측 유체압실 및 우측 유체압실 내에 외부로부터 교대로 고압 유체를 공급하고, 상기 고압 유체의 유체압으로 상기 피스톤을 축선 방향으로 이동시키는 구성으로 한다.Alternatively, a high pressure fluid is alternately supplied from the outside into the left fluid pressure chamber and the right fluid pressure chamber, and the piston is moved in the axial direction by the fluid pressure of the high pressure fluid.

상기 피스톤은 통형의 영구 자석으로 형성하고, 상기 통형 피스톤의 통공의 양단 개구면을 수압단판(受壓端板)으로 폐쇄하고, 상기 수압단판으로 유체압을 수압(受壓)하도록 구성한다.The piston is formed of a cylindrical permanent magnet, and the openings at both ends of the through hole of the cylindrical piston are closed by a hydraulic pressure end plate, and the hydraulic pressure end pressure is applied to the hydraulic end plate.

상기 통형 피스톤은 영구 자석으로 이루어지는 단일통체(單一筒體)로 형성되거나, 또는 복수개의 영구 자석으로 이루어지는 링 또는 단통체(短筒體)를 각각 적층하여 상기 통형 피스톤을 형성한다.The cylindrical piston is formed by a single cylinder made of permanent magnets, or a ring or single cylinder made of a plurality of permanent magnets is laminated respectively to form the cylindrical piston.

본 발명에 의하면, 실린더 양단의 좌측 유체압실, 우측 유체압실의 유체 압을 교대로 인가하여 피스톤을 왕복 이동하도록 하는 유체압 실린더의 구조를 기본 구조로서 채용하면서, 상기 유체압 실린더를 구성하는 피스톤과 실린더 사이에 있어서 발전을 유기할 수 있고, 발전 장치의 구조의 간소화와 소형 경량화를 달성할 수 있고, 효율이 양호한 발전을 안정적으로 얻을 수 있다.According to the present invention, a piston constituting the fluid pressure cylinder is employed while adopting a structure of a fluid pressure cylinder that reciprocates the piston by alternately applying the fluid pressures of the left fluid pressure chamber and the right fluid pressure chamber at both ends of the cylinder. The power generation can be induced between the cylinders, the structure of the power generation device can be simplified, the size and the weight can be reduced, and the power generation with good efficiency can be stably obtained.

또한, 피스톤을 통형으로 하고, 수압단판에 의해 유체압을 수압 피스톤의 이동을 얻는 구조에 의해, 상기 피스톤의 경량화를 달성하고, 원활한 왕복 이동과 효율이 양호한 발전을 유기할 수 있다.In addition, the piston is cylindrical and the hydraulic pressure plate allows the hydraulic pressure to move the hydraulic piston, thereby achieving a lighter weight of the piston, and achieving smooth reciprocation and efficient power generation.

또한, 상기 수압단판에 의해 상기 피스톤의 영구 자석을 충격이나 열로부터 효과적으로 보호할 수 있다.In addition, the hydraulic end plate can effectively protect the permanent magnet of the piston from impact and heat.

도 1은 본 발명에 따른 리니어 발전 장치의 피스톤(영구 자석 통체)을 영구 자석으로 이루어지는 단일통체에 의해 형성한 예를 나타내는 단면도이다.
도 2는 상기 리니어 발전 장치의 피스톤(영구 자석 통체)을 영구 자석으로 이루어지는 단통체의 적층에 의해 형성한 예를 나타내는 단면도이다.
도 3은 상기 리니어 발전 장치의 피스톤(영구 자석 통체)을 영구 자석으로 이루어지는 링의 적층에 의해 형성한 예를 나타내는 단면도이다.
도 4는 상기 리니어 발전 장치의 피스톤(영구 자석 포스트 몸)을 영구 자석으로 이루어지는 단주체(短柱體)에 의해 형성한 예를 나타내는 단면도이다.
도 5는 전술한 각 예시의 리니어 발전 장치에 있어서 고정 영구 자석 통체와 고정 통형 요크를 설치한 예를 나타내는 단면도이다.
도 6a는 연료의 연소 폭발에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제1 동작을 나타낸 단면도이다.
도 6b는 연료의 연소 폭발에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제2 동작을 나타낸 단면도이다.
도 6c는 연료의 연소 폭발에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제3 동작을 나타낸 단면도이다.
도 6d는 연료의 연소 폭발에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제4 동작을 나타낸 단면도이다.
도 7a는 외부로부터 공급하는 고압 유체에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제1 동작을 나타낸 단면도이다.
도 7b는 외부로부터 공급하는 고압 유체에 의해 피스톤을 구동하게 하는 리니어 발전 장치의 제2 동작을 나타낸 단면도이다.
BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the example in which the piston (permanent magnet cylinder) of the linear power generation apparatus which concerns on this invention was formed by the single cylinder which consists of permanent magnets.
It is sectional drawing which shows the example in which the piston (permanent magnet cylinder) of the said linear power generation apparatus was formed by laminating | stacking the single cylinder which consists of permanent magnets.
It is sectional drawing which shows the example in which the piston (permanent magnet cylinder) of the said linear power generation apparatus was formed by laminating | stacking the ring which consists of permanent magnets.
It is sectional drawing which shows the example in which the piston (permanent magnet post body) of the said linear power generation apparatus was formed by the unit main body which consists of permanent magnets.
It is sectional drawing which shows the example which provided the fixed permanent magnet cylinder and the fixed cylindrical yoke in the linear power generation apparatus of each example mentioned above.
6A is a cross-sectional view showing a first operation of the linear power generation device for driving the piston by combustion explosion of fuel.
FIG. 6B is a cross-sectional view illustrating a second operation of the linear power generation apparatus for driving the piston by combustion explosion of fuel. FIG.
FIG. 6C is a cross-sectional view illustrating a third operation of the linear power generation device for driving the piston by combustion explosion of fuel. FIG.
6D is a cross-sectional view showing a fourth operation of the linear power generation device for driving the piston by combustion explosion of fuel.
FIG. 7A is a cross-sectional view showing a first operation of the linear power generation device for driving the piston by a high pressure fluid supplied from the outside. FIG.
FIG. 7B is a cross-sectional view illustrating a second operation of the linear power generation device for driving the piston by the high pressure fluid supplied from the outside. FIG.

이하 본 발명을 실시하기 위한 최선의 형태를 도 1 내지 도 7에 따라 설명한다.Best Mode for Carrying Out the Invention The best mode for carrying out the present invention will now be described with reference to Figs.

본 발명에 따른 리니어 발전 장치는, 실린더(1)의 좌측단벽(2)에 접하는 좌측 유체압실(4) 내의 유체압과, 실린더(1)의 우측단벽(3)에 접하는 우측 유체압실(5) 내의 유체압을 실린더(1) 내의 피스톤(프리 피스톤)(6)에 교대로 인가하여 피스톤(6)을 축선 방향으로 왕복 이동시키는 유체압 실린더 구조를 가진다.The linear power generation device according to the present invention includes a fluid pressure in the left fluid pressure chamber 4 in contact with the left end wall 2 of the cylinder 1, and a right fluid pressure chamber 5 in contact with the right end wall 3 of the cylinder 1. It has a fluid pressure cylinder structure which alternately applies the fluid pressure inside to the piston (free piston) 6 in the cylinder 1 to reciprocate the piston 6 in the axial direction.

실린더(1)는 좌측단과 우측단이 단벽(2, 3)에 의해 폐쇄된 진원통형(眞圓筒형)의 양단 폐쇄형 통체로 이루어지고, 내부에 축선 방향으로 이동 가능한 피스톤(프리 피스톤)(6)을 가지고, 실린더(1)의 좌측단 통벽과 피스톤(6)과 좌측단벽(2) 사이에 좌측 유체압실(4)을 구획하고, 실린더(1)의 우측단 통벽과 피스톤(6)과 우측단벽(3) 사이에 우측 유체압실(5)을 구획하고 있다.The cylinder (1) is a piston (free piston) which is made of a closed cylinder of both ends of a round cylinder type in which the left end and the right end are closed by the end walls 2 and 3, and are movable in the axial direction. 6), the left fluid pressure chamber 4 is partitioned between the left end cylindrical wall of the cylinder 1 and the piston 6 and the left end wall 2, and the right end cylindrical wall and the piston 6 of the cylinder 1 The right fluid pressure chamber 5 is partitioned between the right end walls 3.

본 발명에 따른 리니어 발전 장치는 상기 유체압 실린더 구조를 취하면서, 피스톤(6)의 좌측 유체압실(4)에 접하는 좌수압면(7)과 우측 유체압실(5)에 접하는 우수압면(8) 사이에 영구 자석 대역(9)을 형성하고, 실린더(1)의 좌우 단벽(2, 3) 사이의 통벽에 좌측 유체압실 및 우측 유체압실(4, 5)에 이르는 기전 코일 대역(11)을 형성하고, 영구 자석 대역(9)을 가지는 피스톤(6)의 축선 방향으로의 왕복 이동에 의해 기전 코일 대역(11)에서의 발전을 유기하는 구성을 가진다.The linear power generation device according to the present invention takes the above-described hydraulic pressure cylinder structure, while the left hydraulic pressure surface 7 in contact with the left fluid pressure chamber 4 of the piston 6 and the superior pressure surface 8 in contact with the right fluid pressure chamber 5. The permanent magnet zone 9 is formed therebetween, and the electromotive coil zone 11 that extends to the left fluid pressure chamber and the right fluid pressure chamber 4, 5 is formed in the barrel wall between the left and right end walls 2, 3 of the cylinder 1. In addition, the piston 6 having the permanent magnet zone 9 has a configuration in which power generation in the electromotive coil zone 11 is induced by reciprocating movement in the axial direction.

좌측 유체압실 및 우측 유체압실(4, 5)은 연소실을 구성하고, 상기 연소실에서의 연료의 연소 폭발에 의한 유체압으로 피스톤(6)을 축선 방향으로 이동하는 구성으로 한다.The left fluid pressure chamber and the right fluid pressure chambers 4 and 5 constitute the combustion chamber and move the piston 6 in the axial direction by the fluid pressure caused by the combustion explosion of the fuel in the combustion chamber.

또는, 좌측 유체압실 및 우측 유체압실(4, 5) 내로 외부로부터 교대로 고압 유체(20, 20´)를 공급하고, 고압 유체(20, 20´)의 유체압으로 피스톤(6)을 축선 방향으로 이동하는 구성으로 한다.Alternatively, the high pressure fluids 20 and 20 'are alternately supplied from the outside into the left fluid pressure chambers and the right fluid pressure chambers 4 and 5, and the piston 6 is moved in the axial direction by the fluid pressure of the high pressure fluids 20 and 20'. Let's move to the configuration.

도 1, 도 2 및 도 3에 나타낸 바와 같이, 피스톤(6)은 영구 자석 통체(6´)로 형성되고, 영구 자석 통체(6´)의 통공(13)의 양단 개구면을 수압단판(14)으로 폐쇄하고, 수압단판(14)으로 유체압을 수압할 수 있도록 구성한다.As shown in FIG. 1, FIG. 2, and FIG. 3, the piston 6 is formed with the permanent magnet cylinder 6 ', and the hydraulic end plate 14 has the opening surface at both ends of the through hole 13 of the permanent magnet cylinder 6'. ), And the hydraulic pressure plate 14 is configured to receive the hydraulic pressure.

구체예로서 도 1은 단일 통체(6a)로 이루어지는 영구 자석 통체(6´)로 통형 피스톤(6)을 형성한 예를 나타내고, 영구 자석 통체(6´)를 통형 요크(10)에 외삽(外揷)하고, 양단 개구면을 수압단판(14)으로 폐쇄한 피스톤 구조로 한다.As a specific example, FIG. 1 shows an example in which the cylindrical piston 6 is formed of a permanent magnet cylinder 6 'composed of a single cylinder 6a, and the permanent magnet cylinder 6' is extrapolated to the cylindrical yoke 10. V) and a piston structure in which both end faces are closed by the hydraulic end plate 14.

또한, 도 2는 영구 자석으로 이루어지는 복수개의 단통체(6c)를 일체로 또한 동일 축심에 적층한 구조의 영구 자석 통체(6´)로 통형 피스톤(6)을 형성한 예를 나타내고, 영구 자석 통체(6´)를 통형 요크(10)에 외삽하고, 양단 개구면을 수압단판(14)으로 폐쇄한 피스톤 구조로 한다.FIG. 2 shows an example in which the cylindrical piston 6 is formed of a permanent magnet cylinder 6 'having a structure in which a plurality of end cylinders 6c made of permanent magnets are integrally stacked on the same axis. (6 ') is extrapolated to the cylindrical yoke 10, and the opening structure of both ends is closed by the hydraulic end plate 14, and it is set as the piston structure.

또한, 도 3은 영구 자석으로 이루어지는 복수개의 링(6b)을 일체로 또한 동일 축심에 적층한 구조의 영구 자석 통체(6´)로 통형 피스톤(6)을 형성한 예를 나타내고, 영구 자석 통체(6´)를 통형 요크(10)에 외삽하고, 양단 개구면을 수압단판(14)으로 폐쇄한 피스톤 구조로 한다.3 shows an example in which the cylindrical piston 6 is formed of a permanent magnet cylinder 6 'having a structure in which a plurality of rings 6b made of permanent magnets are integrally laminated at the same axis, and the permanent magnet cylinder ( 6 ') is extrapolated to the cylindrical yoke 10, and a piston structure in which both end faces are closed by the hydraulic end plate 14 is used.

또한, 도 4는 영구 자석으로 이루어지는 복수개의 중실(solid) 구조의 단주체(6d)를 일체로 또한 동일 축심에 적층한 구조의 영구 자석 기둥체(柱體)(6˝)로 피스톤(6)을 형성한 예를 나타내고, 양 단면에 수압단판(14)을 설치한 피스톤 구조로 한다.In addition, FIG. 4 shows the piston 6 as a permanent magnet columnar body having a structure in which a plurality of solid main bodies 6d made of permanent magnets are integrally laminated at the same axis. An example in which the pressure-sensitive plate is formed is shown, and the piston structure in which the hydraulic pressure end plates 14 are provided on both end surfaces is shown.

링(6b) 또는 단통체(6c)를 적층 구조로 한 경우에는 링(6b) 또는 단통체(6c)의 적층 수의 증감에 의해 피스톤(6)[영구 자석 대역(9)]의 길이를 증감시킬 수 있다.In the case where the ring 6b or the single cylinder 6c is laminated, the length of the piston 6 (permanent magnet zone 9) is increased or decreased by increasing or decreasing the number of laminated rings of the ring 6b or the single cylinder 6c. You can.

바람직하게는, 도 1 내지 도 4에서 설명한 수압단판(14)을 세라믹판, 섬유 판, 석재판, 콘크리트판, 카본판, 금속판 등으로 이루어지는 내열판으로 형성한다.Preferably, the hydraulic end plate 14 described in FIGS. 1 to 4 is formed of a heat-resistant plate made of a ceramic plate, a fiber plate, a stone plate, a concrete plate, a carbon plate, a metal plate, or the like.

또한, 영구 자석 통체(6´) 및 영구 자석 기둥체(6˝)의 양단 외주면에 실린더(1)의 내주면과의 기밀 봉쇄를 도모하는 환형 시일(15)을 설치한다. 또는, 영구 자석 통체(6´)로 이루어지는 통형 피스톤(6)의 양단 개구면을 폐쇄하는 수압단판(14)의 외주면에 환형 시일(15)을 설치한다.Moreover, the annular seal 15 which aims at airtight sealing with the inner peripheral surface of the cylinder 1 is provided in the outer peripheral surfaces of both ends of the permanent magnet cylinder 6 'and the permanent magnet pillar 6'. Or the annular seal 15 is provided in the outer peripheral surface of the hydraulic end plate 14 which closes the opening surface of the both ends of the cylindrical piston 6 which consists of a permanent magnet cylinder 6 '.

영구 자석 통체(6´) 및 영구 자석 기둥체(6˝)의 극성은 기지(旣知)의 전자 유도 원리에 따라, 영구 자석의 자력선이 기전 코일 대역(11)의 기전 코일에 대하여 효과적으로 작용하는 배치로 한다.The polarity of the permanent magnet cylinder 6 ′ and the permanent magnet pillar 6 은 is based on a known electromagnetic induction principle, in which magnetic force lines of the permanent magnet effectively act on the electromechanical coil of the electromechanical coil zone 11. It is decided to arrange.

예를 들면, 도 1에 나타내는 영구 자석 통체(6´)의 내주부를 N극(또는 S극)으로 하고, 외주부를 S극(또는 N극)으로 한다.For example, the inner peripheral part of the permanent magnet cylinder 6 'shown in FIG. 1 is made into an N pole (or S pole), and an outer peripheral part is made into an S pole (or N pole).

마찬가지로 도 2, 도 3에 나타낸 바와 같이, 단통체(6c) 또는 링(6b)을 적층하여 영구 자석 통체(6´)를 형성하는 경우에도, 단통체(6c)와 링(6b)의 내주부를 N극(또는 S극)으로 하고, 외주부를 S극(또는 N극)으로 할 수 있다.Similarly, as shown in FIGS. 2 and 3, even when the single cylinder 6c or the ring 6b is laminated to form the permanent magnet cylinder 6 ', the inner circumferential portion of the single cylinder 6c and the ring 6b is formed. It can be set to N pole (or S pole), and an outer peripheral part can be set as S pole (or N pole).

도 3은 구체예로서 외주부를 N극, 내주부를 S극으로 한 링(6b)과, 외주부를 S극, 내주부를 N극으로 한 링(6b)를 축선 방향으로 교대로 적층하여, 영구 자석 통체(6´)를 구성한 경우를 나타내고 있다. 도 2의 복수개의 단통체(6c)를 적층하여 영구 자석 통체(6´)를 형성한 경우도 극성을 교대로 하여 단통체(6c)를 적층할 수 있다.Fig. 3 shows, as a specific example, a ring 6b having the outer circumferential portion as the N pole and the inner circumferential portion as the S pole, and a ring 6b having the outer circumferential portion as the S pole and the inner circumferential portion as the N pole alternately stacked in the axial direction. The case where the magnetic cylinder 6 'is comprised is shown. Even when the plurality of end cylinders 6c of FIG. 2 are laminated to form the permanent magnet cylinder 6 ', the end cylinders 6c can be laminated with alternating polarities.

또한, 도 4는 심부(芯部)에 S극을 가지고 외주부에 N극을 가지는 단주체(6d)와, 심부에 N극을 가지고 외주부에 S극을 가지는 단주체(6d)를 축선 방향으로 적층한 경우를 나타내고 있다.Fig. 4 shows an axial stack of a monolith 6d having an S pole in the core and an N pole in the outer circumference, and a 6d monolith having an N pole in the core and an S pole in the outer circumference. One case is shown.

기전 코일 대역(11)을 형성하는 기전 코일은 전술한 각 예시의 극 배치에 따라 복수개의 단위 기전 코일 군으로 형성하는 경우를 포함한다.The electromotive coil forming the electromotive coil zone 11 includes a case of forming a plurality of unit electromotive coil groups according to the pole arrangement of each example described above.

물론 영구 자석 통체(6´)와 영구 자석 기둥체(6˝)를 형성하는 모든 단통체(6c) 또는 링(6b) 또는 단주체(6d)를 외주부에 있어서 동일 극으로 하고, 내주부에 있어서 동일 극이 되도록 적층 구조로 할 수 있다.Of course, all the end cylinders 6c or rings 6b or 6d forming the permanent magnet cylinder 6 'and the permanent magnet pillar 6' are made the same pole in the outer circumference, and in the inner circumference. It can be set as a laminated structure so that it may become the same pole.

도 5는 영구 자석 통체(6´)[또는 영구 자석 기둥체(6˝)]로 피스톤(6)을 구성하는 수단을 채용하면서, 실린더(1)에 기전 코일 대역(11)의 외주면을 환형으로 포위하는 고정 영구 자석 통체(1´)를 설치하고, 기전 코일에 의한 발전을 보다 효율적으로 행하게 하도록 한 실시예를 나타내고 있다.FIG. 5 shows an annular outer circumferential surface of the electromotive coil zone 11 in the cylinder 1 while adopting a means for constituting the piston 6 with the permanent magnet cylinder 6 '(or the permanent magnet pillar 6'). The embodiment which provided the fixed permanent magnet cylinder 1 'which surrounds, and made it generate | occur | produce more efficiently by the electromotive coil is shown.

도 5는 또한, 고정 영구 자석 통체(1´)의 외주면을 환형으로 포위하는 고정 통형 요크(16)를 설치한 실시예를 나타내고 있다.FIG. 5 also shows an embodiment in which a fixed cylindrical yoke 16 is provided which annularly surrounds the outer circumferential surface of the fixed permanent magnet cylinder 1 '.

고정 영구 자석 통체(1´)와, 고정 영구 자석 통체(1´)를 포위하는 고정 통형 요크(16)와, 피스톤(6)을 구성하는 영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)와, 영구 자석 통체(6´)를 외삽하는 통형 요크(10)는 협동하여 발전 효율을 높인다.Permanent magnet cylinder (6 ') or permanent magnet pillar (6) constituting the fixed permanent magnet cylinder (1'), fixed cylindrical yoke (16) surrounding the fixed permanent magnet cylinder (1 '), and the piston (6). I) and the cylindrical yoke 10 for extrapolating the permanent magnet cylinder 6 'cooperate to increase the power generation efficiency.

예시로서 도 5에 나타낸 바와 같이, 다수의 영구 자석 링(1a)을 적층하여 고정 영구 자석 통체(1´)를 형성하고, 통체(1)´로 기전 코일 대역(11)의 기전 코일을 환형으로 포위하고, 또한 기전 코일 대역(11)을 통하여 피스톤(6)을 구성하는 영구 자석 통체(6´)를 환형으로 포위한다.As an example, as shown in Fig. 5, a plurality of permanent magnet rings 1a are stacked to form a fixed permanent magnet cylinder 1 ', and the cylinder coil 1 of the electromechanical coil zone 11 is formed in an annular shape. It encloses and surrounds the permanent magnet cylinder 6 'which comprises the piston 6 through the electromechanical coil zone 11 in an annular shape.

환언하면, 기전 코일 대역(11)의 기전 코일의 내주면과 외주면에 영구 자석 통체(6´, 1´)를 배치하고, 양쪽 영구 자석 통체(6´, 1´) 사이에 기전 코일이 협재(狹在)된 구조로 한다.In other words, the permanent magnet cylinders 6 'and 1' are disposed on the inner and outer circumferential surfaces of the electromechanical coil of the electromechanical coil zone 11, and the mechanical coil is sandwiched between both permanent magnet cylinders 6 'and 1'. It has a structured.

고정 영구 자석 통체(1´)를 구성하는 영구 자석 링(1a)과, 피스톤(6)을 구성하는 영구 자석 링(6b)은, 예를 들면, 도 3, 도 5에 나타낸 바와 같이, 인접하는 링(1a, 6b)이 서로 반대 극성으로 되도록 각각 적층한다.The permanent magnet ring 1a constituting the fixed permanent magnet cylinder 1 'and the permanent magnet ring 6b constituting the piston 6 are adjacent to each other, as shown in FIGS. 3 and 5, for example. The rings 1a and 6b are laminated so as to be opposite polarities to each other.

도 2에 나타내는 단통체(6c)로 영구 자석 통체(6´)[피스톤(6)]를 형성한 경우도, 복수개의 영구 자석 단통체를 적층하여 고정 영구 자석 통체(1´)를 형성하고, 통체(1´)로 피스톤(6)을 구성하는 영구 자석 통체(6´)를 환형으로 포위하고, 예를 들면, 통체(1´와 6´)에서의 인접하는 단통체가 서로 반대 극성으로 되도록 배치한 구성을 채용할 수 있다.Also when the permanent magnet cylinder 6 '(piston 6) is formed of the single cylinder 6c shown in FIG. 2, a plurality of permanent magnet cylinders are laminated to form a fixed permanent magnet cylinder 1', The permanent magnet cylinder 6 'constituting the piston 6 with the cylinder 1' is enclosed in an annular shape, for example, so that adjacent single cylinders in the cylinders 1 'and 6' are of opposite polarities. One configuration can be adopted.

도 1 내지 도 4의 각 예 시에 있어서 기전 코일 대역(11)을 포위하는 고정 영구 자석 통체(1´)를 설치할 수 있고, 고정 영구 자석 통체(1´)를 설치한 경우에는, 피스톤(6)을 구성하는 영구 자석 통체(6´)를 얇게 하고, 마찬가지로 피스톤 영구 자석 기둥체(6˝)를 소경(小徑)으로 하여, 피스톤(6)의 경량화를 더욱 도모할 수 있다.In each example of FIGS. 1-4, the fixed permanent magnet cylinder 1 'surrounding the electromotive coil zone 11 can be provided, and when the fixed permanent magnet cylinder 1' is provided, the piston 6 ), The permanent magnet cylinder 6 'constituting the) is thinned, and the piston permanent magnet pillar 6' is made small in diameter, and the piston 6 can be further reduced in weight.

전술한 바와 같이, 좌측 유체압실 및 우측 유체압실(4, 5)이 연소실을 구성하는 경우, 예를 들면, 좌우단벽(2, 3)에 점화 플러그(19)를 설치하고, 좌우단벽(2, 3) 또는 실린더(1)의 좌우 단통벽에 연료 분사 밸브(17)를 설치하고, 예를 들면, 좌우단벽(2, 3) 또는 좌우단통벽 또는 실린더 통벽의 중간부에 배기 밸브(18)를 설치한다.As described above, when the left fluid pressure chamber and the right fluid pressure chambers 4 and 5 constitute the combustion chamber, for example, the spark plugs 19 are provided on the left and right end walls 2 and 3, and the left and right end walls 2, 3) Alternatively, the fuel injection valve 17 is provided on the left and right end cylinder walls of the cylinder 1, and for example, the exhaust valve 18 is provided in the middle part of the left and right end walls 2, 3 or the left and right end cylinder walls or the cylinder cylinder wall. Install.

이하, 도 6a 내지 도 6d에 따라, 좌우 유체압실(4, 5)이 좌우 연소실을 구성하는 경우의 동작을 설명한다.6A to 6D, the operation when the left and right fluid pressure chambers 4 and 5 constitute the left and right combustion chambers will be described.

도 6a, 도 6b에 나타낸 바와 같이, 좌측 점화 플러그(19)에 의해 연료 분사 밸브(17)를 통해 공급된 좌측 연소실(4) 내의 압축 연료의 연소 폭발에 의해, 수압단판(14)의 좌수압면(7)에 유체압을 부여하여, 피스톤(6)[영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)]을 축선 상에서 우측으로 이동시킨다.6A and 6B, the left hydraulic pressure of the hydraulic end plate 14 is caused by the combustion explosion of the compressed fuel in the left combustion chamber 4 supplied through the fuel injection valve 17 by the left spark plug 19. A fluid pressure is applied to the surface 7 to move the piston 6 (permanent magnet cylinder 6 'or permanent magnet column 6') to the right on the axis.

도 6c, 도 6d에 나타낸 바와 같이, 피스톤(6)이 전술한 우측 이동에 의해, 우측 연소실(5) 내에 우측 연료 분사 밸브(17)를 통해서 분사된 연료(기체와의 혼합 기체)를 압축하고, 우측 점화 플러그(19)로 점화하고, 우측 연소실(5) 내에 있어서 압축 연료를 연소 폭발하게 하고, 수압단판(14)의 우수압면(8)에 유체압을 부여하여, 피스톤(6)[영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)]을 축선 상에서 좌측으로 이동시킨다.As shown in FIGS. 6C and 6D, the piston 6 compresses the fuel (mixed gas with the gas) injected through the right fuel injection valve 17 into the right combustion chamber 5 by the above-described right movement. Ignition with the right spark plug 19 causes combustion fuel to combust and explode in the right combustion chamber 5, impart a fluid pressure to the superior pressure surface 8 of the hydraulic end plate 14, and the piston 6 (permanent). The magnet cylinder 6 'or the permanent magnet pillar 6' is moved to the left on the axis.

좌우 연소실(4, 5) 내의 연소 폭발에 의해 발생한 유체(연소 기체)(20)는 피스톤(6)의 왕복 이동에 수반하여 배기 밸브(18)를 통해 배기된다.The fluid (combustion gas) 20 generated by the combustion explosion in the left and right combustion chambers 4 and 5 is exhausted through the exhaust valve 18 with the reciprocating movement of the piston 6.

이상의 동작을 반복함으로써, 피스톤(6)을 형성하는 영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)[영구 자석 대역(9)]가 반복적으로 왕복 이동하여, 기전 코일 대역(11)에서의 발전을 유기한다.By repeating the above operation, the permanent magnet cylinder 6 'or the permanent magnet pillar 6' (permanent magnet zone 9) forming the piston 6 is repeatedly reciprocated to move the electromotive coil band 11. Inspire development in

다음으로, 도 7a, 도 7b에 따라 좌측 유체압실, 우측 유체압실(4, 5)에 외부로부터 고압 유체를 공급하여 피스톤(6)을 왕복 이동하도록 하는 실시예에 대하여 설명한다. 여기서 고압 유체(20´)는 에어, 스팀 외에, 각종 가스 기체를 사용할 수 있다.Next, an embodiment in which the high pressure fluid is supplied to the left fluid pressure chambers and the right fluid pressure chambers 4 and 5 from the outside according to FIGS. 7A and 7B to reciprocate the piston 6 will be described. The high-pressure fluid 20 'may use various gas gases in addition to air and steam.

예를 들면, 좌우단벽(2, 3)에 유체 공급 밸브(21)와 배기 밸브(22)를 설치하고, 도 7a에 나타낸 바와 같이, 좌측 유체압실(4) 내에 좌측 유체 공급 밸브(21)를 통해 고압 유체(20´)를 공급하고, 고압 유체(20´)의 유체압을 수압단판(14)의 좌수압면(7)에 부여하여 피스톤(6)[영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)]을 축선 상에서 우측으로 이동시킨다.For example, the fluid supply valve 21 and the exhaust valve 22 are provided in the left and right end walls 2 and 3, and as shown in FIG. 7A, the left fluid supply valve 21 is provided in the left fluid pressure chamber 4. The high pressure fluid 20 'is supplied through the air, and the fluid pressure of the high pressure fluid 20' is applied to the left hydraulic pressure surface 7 of the hydraulic end plate 14 so that the piston 6 (permanent magnet cylinder 6 'or permanent Magnet post body 6 '] is moved to the right on the axis.

다음으로, 도 7b에 나타낸 바와 같이, 피스톤(6)이 상기 우측 이동의 종단(終端)에 도달했을 때, 우측 유체압실(5) 내에 우측 유체 공급 밸브(21)를 통하여 고압 유체(20´)를 공급하고, 고압 유체(20´)의 유체압을 수압단판(14)의 우수압면(8)에 부여하여 피스톤(6)[영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)]을 축선 상에서 좌측으로 이동시킨다.Next, as shown in FIG. 7B, when the piston 6 reaches the end of the rightward movement, the high-pressure fluid 20 ′ is passed through the right fluid supply valve 21 in the right fluid pressure chamber 5. And supply the fluid pressure of the high pressure fluid 20 'to the superior pressure surface 8 of the hydraulic end plate 14, thereby providing a piston 6 (permanent magnet barrel 6' or permanent magnet column 6 '). Move to the left on the axis.

이상의 동작을 반복함으로써, 피스톤(6)을 형성하는 영구 자석 통체(6´) 또는 영구 자석 기둥체(6˝)[영구 자석 대역(9)]가 반복적으로 왕복 이동하여, 기전 코일 대역(11)에서의 발전을 유기한다.By repeating the above operation, the permanent magnet cylinder 6 'or the permanent magnet pillar 6' (permanent magnet zone 9) forming the piston 6 is repeatedly reciprocated to move the electromotive coil band 11. Inspire development in

1: 실린더 1´: 고정 영구 자석 통체
1a: 영구 자석 링 2: 좌측단벽
3: 우측단벽 4: 좌측 유체압실
5: 우측 유체압실 6: 피스톤
6´: 영구 자석 통체 6˝: 영구 자석 기둥체
6a: 단일 통체 6b: 링
6c: 단통체 6d: 단주체
7: 좌수압면 8: 우수압면
9: 영구 자석 대역 10: 통형 요크
11: 기전 코일 대역 13: 통공
14: 수압단판 15: 환형 시일
16: 고정통형 요크 17: 연료 분사 밸브
18: 배기 밸브 19: 점화 플러그
20: 유체(연소 기체) 20´: 고압 유체
21: 유체 공급 밸브 22: 배기 밸브
1: cylinder 1´: fixed permanent magnet cylinder
1a: permanent magnet ring 2: left end wall
3: right end wall 4: left fluid pressure chamber
5: right fluid chamber 6: piston
6´: Permanent magnet cylinder 6˝: Permanent magnet pillar
6a: single cylinder 6b: ring
6c: monolith 6d: monolith
7: Left hydraulic pressure side 8: Storm pressure side
9: permanent magnet band 10: cylindrical yoke
11: mechanical coil band 13: through hole
14: hydraulic end plate 15: annular seal
16: fixed cylinder yoke 17: fuel injection valve
18: exhaust valve 19: spark plug
20: Fluid (combustion gas) 20´: High pressure fluid
21: fluid supply valve 22: exhaust valve

Claims (5)

실린더의 좌측단벽에 접하는 좌측 유체압실 내의 유체압과 상기 실린더의 우측단벽에 접하는 우측 유체압실 내의 유체압을 실린더 내의 피스톤에 교대로 인가하여 상기 피스톤을 축선 방향으로 왕복 이동시키는 유체압 실린더 구조를 가지고,
상기 피스톤의 상기 좌측 유체압실에 접하는 좌수압면(左受壓面)과 상기 우측 유체압실에 접하는 우수압면(右受壓面) 사이에 영구 자석 대역을 형성하고, 상기 실린더의 좌측단벽면 및 우측단벽면 사이의 통벽에 상기 좌측 유체압실 및 상기 우측 유체압실에 이르는 기전 코일 대역을 형성하고, 상기 영구 자석 대역을 가지는 피스톤의 축선 방향으로의 왕복 이동에 의해 상기 기전 코일 대역에서의 발전을 유기(誘起)하는 구성으로 한,
리니어 발전 장치.
It has a fluid pressure cylinder structure for reciprocating the piston in the axial direction by applying the fluid pressure in the left fluid pressure chamber in contact with the left end wall of the cylinder and the fluid pressure in the right fluid pressure chamber in contact with the right end wall of the cylinder alternately to the piston in the cylinder. ,
A permanent magnet zone is formed between the left hydraulic pressure surface in contact with the left fluid pressure chamber of the piston and the superior pressure surface in contact with the right fluid pressure chamber, and the left end wall surface and the right side of the cylinder are formed. A mechanism coil zone reaching the left fluid pressure chamber and the right fluid pressure chamber is formed in the wall between the end wall surfaces, and generation of electricity in the mechanism coil zone is induced by reciprocating movement in the axial direction of the piston having the permanent magnet zone. 구성) configuration
Linear power generation device.
제1항에 있어서,
상기 좌측 유체압실 및 상기 우측 유체압실은 연소실을 구성하고, 상기 연소실에서의 연료의 연소 폭발에 의한 유체압으로 상기 피스톤을 축선 방향으로 이동시키는 구성인, 리니어 발전 장치.
The method of claim 1,
And the left fluid pressure chamber and the right fluid pressure chamber constitute a combustion chamber, and are configured to move the piston in the axial direction by fluid pressure caused by combustion explosion of fuel in the combustion chamber.
제1항에 있어서,
상기 좌측 유체압실 및 상기 우측 유체압실 내에 외부로부터 교대로 고압 유체를 공급하고, 상기 고압 유체의 유체압으로 상기 피스톤을 축선 방향으로 이동시키는 구성인, 리니어 발전 장치.
The method of claim 1,
And a high pressure fluid alternately supplied from the outside into the left fluid pressure chamber and the right fluid pressure chamber, and move the piston in the axial direction by the fluid pressure of the high pressure fluid.
제1항 내지 제3항 중 어느 한 항에 있어서,
상기 피스톤을 통형으로 하고, 통형의 상기 피스톤의 통공(筒孔)의 양단 개구면을 유체압을 수압(受壓)하는 수압단판(受壓端板)으로 폐쇄한, 리니어 발전 장치.
4. The method according to any one of claims 1 to 3,
The linear power generation device which made the said piston cylindrical and closed the opening surface of the both ends of the through-hole of the said cylindrical piston by the hydraulic pressure end plate which hydraulic-pressure-pressures.
제4항에 있어서,
영구 자석으로 이루어지는 복수개의 링 또는 복수개의 단통체(短筒體)를 적층하여 통형 피스톤을 형성한, 리니어 발전 장치.
The method of claim 4, wherein
A linear power generation apparatus in which a plurality of rings made of permanent magnets or a plurality of end cylinders are stacked to form a cylindrical piston.
KR1020107017881A 2008-02-07 2009-01-27 Linear generator KR101540347B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2008-027923 2008-02-07
JP2008027923A JP4415133B2 (en) 2008-02-07 2008-02-07 Linear generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020157009732A Division KR101876256B1 (en) 2008-02-07 2009-01-27 Linear generator

Publications (2)

Publication Number Publication Date
KR20100113562A true KR20100113562A (en) 2010-10-21
KR101540347B1 KR101540347B1 (en) 2015-08-06

Family

ID=40952048

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157009732A KR101876256B1 (en) 2008-02-07 2009-01-27 Linear generator
KR1020107017881A KR101540347B1 (en) 2008-02-07 2009-01-27 Linear generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157009732A KR101876256B1 (en) 2008-02-07 2009-01-27 Linear generator

Country Status (16)

Country Link
US (2) US8610320B2 (en)
EP (2) EP2242168B1 (en)
JP (1) JP4415133B2 (en)
KR (2) KR101876256B1 (en)
CN (2) CN103023207B (en)
AU (1) AU2009211787B2 (en)
BR (2) BRPI0905732B1 (en)
ES (2) ES2808073T3 (en)
HK (1) HK1182538A1 (en)
MX (1) MX2010008481A (en)
PH (1) PH12013501444A1 (en)
PL (2) PL2242168T3 (en)
PT (2) PT3460967T (en)
RU (2) RU2453970C2 (en)
TR (1) TR201903774T4 (en)
WO (1) WO2009098970A1 (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457213B (en) * 2009-12-21 2014-10-21 Kun Ta Lee Impact generator and impact testing platform
GB2476496A (en) * 2009-12-24 2011-06-29 Libertine Fpe Ltd Piston for an engine generator, eg a free piston engine
JP4886873B2 (en) * 2010-04-05 2012-02-29 隆逸 小林 Linear generator
GB2479926B (en) * 2010-04-30 2016-05-11 Atherton Nigel Electricity generator
GB201021406D0 (en) * 2010-12-17 2011-01-26 Libertine Fpe Ltd Free piston engine generator
JP5637028B2 (en) * 2011-03-22 2014-12-10 スミダコーポレーション株式会社 Vibration generator
DE102011103169B4 (en) * 2011-06-01 2017-03-02 Gerhard Kirstein Electromagnetic drive, propulsion system and their use
US9887610B2 (en) * 2011-07-07 2018-02-06 University Of Utah Research Foundation Flexible devices, systems, and methods for harvesting energy
CN102297068B (en) * 2011-07-25 2013-03-20 深圳大学 Wave power generating set
US8907505B2 (en) * 2011-08-03 2014-12-09 Energy Harvesters Llc Method and apparatus for generating electrical energy
GB2488850B (en) 2011-08-10 2013-12-11 Libertine Fpe Ltd Piston for a free piston engine generator
GB2494217B (en) * 2012-01-19 2014-10-08 Libertine Fpe Ltd A linear electrical machine with a piston and axially segmented cylinder
JP5809996B2 (en) * 2012-02-10 2015-11-11 隆逸 小林 Linear generator
US9343931B2 (en) 2012-04-06 2016-05-17 David Deak Electrical generator with rotational gaussian surface magnet and stationary coil
CN102761229A (en) * 2012-07-03 2012-10-31 同济大学 Power generation device of deceleration strip
JP5444587B2 (en) * 2012-08-02 2014-03-19 有限会社 加納 Linear power generation system using exhaust pressure
CN102969864B (en) * 2012-10-26 2016-06-08 安徽工程大学 A kind of TRT utilizing straight reciprocating motion to generate electricity
JP2014093837A (en) * 2012-11-01 2014-05-19 Haruhiko Shirai Power generating device using magnetic powder, etc.
US9097240B1 (en) * 2013-01-28 2015-08-04 David Philip Langmann Fluid pressure based power generation system
AT514221B1 (en) * 2013-04-19 2015-05-15 Alexander Dipl Ing Dr Techn Schneider Compressed air storage power plant with induction pump
CN103334795A (en) * 2013-07-17 2013-10-02 北京工业大学 Free stroke piston expander generation device utilizing high pressure gas to output electric energy
US9673683B2 (en) * 2014-11-07 2017-06-06 David Deak, SR. Reciprocating magnet electrical generator
SE541880C2 (en) * 2015-01-19 2020-01-02 Noditech Ab Device in a heating cycle for the conversion of heat into electrical energy
GB2541485B (en) * 2016-04-14 2017-08-23 Libertine Fpe Ltd Actuator module
ES2691568B1 (en) * 2017-01-26 2019-09-26 Talleres Nunez Sierra S L Linear motion electric generator motor
GB2558677A (en) * 2017-02-06 2018-07-18 Libertine Fpe Ltd Linear electrical machine
CN106640410A (en) * 2017-02-09 2017-05-10 桂林航天工业学院 Radiating device of Stirling engine
CN111819770B (en) * 2017-10-30 2023-09-19 威能科技有限责任公司 Magnetic momentum transfer type generator
CN111788388B (en) * 2017-12-21 2022-09-30 西米股份公司 Mass displacement mechanism between a pair of balance points and electric pump or electric valve having such a displacement mechanism
CN108494216B (en) * 2018-04-17 2019-11-15 南京理工大学 A kind of the two-pass linear motion generator and its electricity-generating method of recoil-explosion driving
JP2021531724A (en) * 2018-07-24 2021-11-18 メインスプリング エナジー, インコーポレイテッド Linear electromagnetic machine
US11050652B2 (en) 2018-11-01 2021-06-29 Microsoft Technology Licensing, Llc Link fault isolation using latencies
US11499536B2 (en) * 2019-01-25 2022-11-15 Rensselaer Polytechnic Institute Cylindrical magnetic coupling with alternating polarity
RU2707266C1 (en) * 2019-06-19 2019-11-26 Глеб Германович Кравцов Gas-kinetic transformer "parotrans"
US20210257896A1 (en) * 2020-02-17 2021-08-19 Dan Haronian Movement and Vibration energy harvesting
CN113545968A (en) * 2020-04-24 2021-10-26 人类工程株式会社 Energy collecting device utilizing electromagnetic induction and intelligent walking stick
US11705788B2 (en) * 2020-09-02 2023-07-18 Michael Robert Maurice Electromagnetic drive unit with hingeably movable coil around magnet with resilient band holding coil to magnet
CN113090495B (en) * 2021-03-30 2022-11-29 中国科学院力学研究所 Piston type expansion compressor based on electromagnetic induction and application method and system
US11936269B2 (en) * 2021-09-22 2024-03-19 Apple Inc. Haptic engine based on angular resonant actuator with pivot axis and mass center that differ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206609A (en) * 1962-04-09 1965-09-14 Herbert G Dawes Reciprocating engine-generator
US4454426A (en) * 1981-08-17 1984-06-12 New Process Industries, Inc. Linear electromagnetic machine
DE3139357C2 (en) * 1981-10-02 1984-02-02 Zuv "Progress", Sofija Process for generating electricity in a cyclical combustion process
DE3224723A1 (en) * 1982-07-02 1984-01-05 Wolfgang 8501 Oberasbach Täuber Free-piston internal combustion engine with generator
JPH03273858A (en) * 1990-03-20 1991-12-05 Aisin Seiki Co Ltd Linear generator
SU1800079A1 (en) * 1990-06-05 1993-03-07 Ivan I Bille Free-piston two-stroke engine-electric generator
JPH05176501A (en) * 1991-12-25 1993-07-13 Honda Motor Co Ltd Reciprocating vibration generator
RU2141570C1 (en) * 1994-06-09 1999-11-20 Андреа Ригацци Пьер Line electricity generator
US5788003A (en) * 1996-01-29 1998-08-04 Spiers; Kent Electrically powered motor vehicle with linear electric generator
WO1999018649A1 (en) * 1997-10-04 1999-04-15 Z & D Limited Linear motor compressor
US6199519B1 (en) * 1998-06-25 2001-03-13 Sandia Corporation Free-piston engine
SE523182C2 (en) * 1999-12-22 2004-03-30 Abb Ab Device comprising a control unit, an electromagnetic energy converter comprising an internal combustion engine with a mechanically free movable piston, use of the device and vehicles comprising said device
JP2002125357A (en) * 2000-10-16 2002-04-26 Yamatake Corp Power supply apparatus and system employing the apparatus
WO2003049263A1 (en) * 2001-12-03 2003-06-12 Shinko Electric Co., Ltd. Linear actuator
US7082909B2 (en) * 2002-04-25 2006-08-01 Deutsches Zentrum Fur Luft- Und Raumfahrt E.V. Free-piston device with electric linear drive
US6936937B2 (en) * 2002-06-14 2005-08-30 Sunyen Co., Ltd. Linear electric generator having an improved magnet and coil structure, and method of manufacture
US7076950B2 (en) * 2003-04-14 2006-07-18 Clean Energy, Inc. Internal explosion engine and generator using non-combustible gases
JP4155101B2 (en) * 2003-05-16 2008-09-24 松下電工株式会社 Vibration type linear actuator and electric toothbrush using the same
US7679227B2 (en) * 2004-01-28 2010-03-16 Resonator As Working machine with an electromagnetic converter
JP2005318708A (en) * 2004-04-28 2005-11-10 Shikoku Res Inst Inc Free piston generator
US20070108850A1 (en) * 2005-11-17 2007-05-17 Tiax Llc Linear electrical machine for electric power generation or motive drive
US7318506B1 (en) * 2006-09-19 2008-01-15 Vladimir Meic Free piston engine with linear power generator system

Also Published As

Publication number Publication date
MX2010008481A (en) 2010-08-23
JP2009189185A (en) 2009-08-20
CN103023207A (en) 2013-04-03
HK1182538A1 (en) 2013-11-29
BRPI0905732B1 (en) 2019-04-09
RU2517712C2 (en) 2014-05-27
BR122018074488B1 (en) 2019-08-20
PH12013501444B1 (en) 2014-08-27
EP2242168A1 (en) 2010-10-20
EP3460967A1 (en) 2019-03-27
PH12013501444A1 (en) 2014-08-27
CN101803160A (en) 2010-08-11
RU2453970C2 (en) 2012-06-20
CN101803160B (en) 2013-02-13
ES2808073T3 (en) 2021-02-25
RU2010137107A (en) 2012-03-20
BRPI0905732A2 (en) 2015-07-14
KR20150045536A (en) 2015-04-28
PL3460967T3 (en) 2020-10-19
AU2009211787B2 (en) 2013-02-07
US20100277012A1 (en) 2010-11-04
AU2009211787A1 (en) 2009-08-13
WO2009098970A1 (en) 2009-08-13
PT2242168T (en) 2019-03-27
CN103023207B (en) 2015-08-26
KR101876256B1 (en) 2018-08-02
US8610320B2 (en) 2013-12-17
EP3460967B1 (en) 2020-05-13
US20130088018A1 (en) 2013-04-11
US8680724B2 (en) 2014-03-25
EP2242168B1 (en) 2019-01-09
ES2718749T3 (en) 2019-07-04
PL2242168T3 (en) 2019-06-28
PT3460967T (en) 2020-07-22
RU2012107442A (en) 2013-09-10
JP4415133B2 (en) 2010-02-17
EP2242168A4 (en) 2016-11-09
TR201903774T4 (en) 2019-04-22
KR101540347B1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
KR101540347B1 (en) Linear generator
US6532916B2 (en) Opposed piston linearly oscillating power unit
JP2005155345A (en) Free-piston engine and generating equipment using the same
CN1788141A (en) Internal explosion engine and generator using non-combustible gases
US10072567B2 (en) Linear electrical machine/generator with segmented stator for free piston engine generator
KR20130054242A (en) Linear power generator
US20120255434A1 (en) Piston
JP4615607B2 (en) Linear generator
JP2020045903A (en) engine
AU2013200963B2 (en) Linear generator having a fluid pressure cylinder structure
US20140174396A1 (en) Piston
WO2020075742A1 (en) Engine
JP2014111916A (en) Free-piston engine-driven linear power generator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180723

Year of fee payment: 4