KR20100103654A - 증기 압축 시스템 - Google Patents

증기 압축 시스템 Download PDF

Info

Publication number
KR20100103654A
KR20100103654A KR1020107016917A KR20107016917A KR20100103654A KR 20100103654 A KR20100103654 A KR 20100103654A KR 1020107016917 A KR1020107016917 A KR 1020107016917A KR 20107016917 A KR20107016917 A KR 20107016917A KR 20100103654 A KR20100103654 A KR 20100103654A
Authority
KR
South Korea
Prior art keywords
compressor
capacity
operating condition
leaving
monitored
Prior art date
Application number
KR1020107016917A
Other languages
English (en)
Other versions
KR101689525B1 (ko
Inventor
앤드류 엠. 웰치
Original Assignee
존슨 컨트롤스 테크놀러지 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 존슨 컨트롤스 테크놀러지 컴퍼니 filed Critical 존슨 컨트롤스 테크놀러지 컴퍼니
Publication of KR20100103654A publication Critical patent/KR20100103654A/ko
Application granted granted Critical
Publication of KR101689525B1 publication Critical patent/KR101689525B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21174Temperatures of an evaporator of the refrigerant at the inlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

증기 압축 시스템(13)의 작동을 제어하기 위한 방법 및 장치가 개시되어 있는데, 그 방법은 증기 압축 시스템(13)의 하나 이상의 성분 조건을 모니터링하는 단계와, 소정의 세트포인트를 하나 이상의 성분 조건에 비교하는 단계와, 그리고 상기 소정의 세트포인트와 상기 하나 이상의 성분 조건 간의 비교에 반응하여 증기 압축 시스템(13)의 제 1 압축기(18) 또는 제 2 압축기(20) 중 하나이상을 로딩하거나 언로딩하는 단계를 포함한다.

Description

증기 압축 시스템{Vapor compression system}
관련출원의 상호참조
본 출원은 "절약형 증기 압축 시스템(Economized vapor compression system}"이라는 발명의 명칭으로 2007년 12월 28일자로 출원된 미국 임시 출원 제 61/071,338 호의 우선권 주장 출원이다.
본 출원은 일반적으로 증기 압축 시스템에 관한 것이다. 특히, 본 출원은 절약형 증기 압축 시스템에서 중간 압력을 조절하기 위한 장치 및 방법에 관한 것이다.
증기 압축 시스템은 압축기에 의해서 압축되어 응축기로 보내지는 냉매 가스를 포함할 수 있으며, 응축기에서 냉매 가스는 다른 유체, 예를 들어 공기나 물과 열교환을 하여 액체로 응축된다. 응축기로부터 배출된 액체 냉매는 팽창장치를 통과하여 증발기로 보내지고, 증발기에서 액체 냉매는 다른 유체, 예를 들어 공기나 물과 열교환을 하여 기체로 증발된다. 냉매 가스는 증발기로부터 압축기로 복귀할 수 있고 이러한 사이클이 반복된다.
절약기 회로들은 절약기 회로들을 구비하지 않은 다른 시스템들과 비교했을 때 증가된 냉각 용량, 효율 그리고 성능을 제공하도록 증기 압축 시스템에 이용될 수 있다. 하나 이상의 추가적인 팽창장치를 이용하는 절약기 회로는 응축기의 하류에 통합될 수 있다. 하나의 팽창장치를 이용하는 시스템에 있어서, 제 1 팽창장치는 응축기 압력으로부터 상기 응축기 압력과 증발기 압력의 사이에 있는 중간 압력으로 냉매를 팽창시킬 수 있고, 그 결과 냉매의 일부가 증기로 순간적으로 방출하는 플래싱(flashing) 현상이 생긴다. 순간적으로 방출된(flashed) 증기 냉매는 다시 압축기로 제공될 수 있다. 제 1 팽창장치로부터 배출되는 중간압력의 잔여 액체 냉매는 엔탈피가 낮다. 제 2 팽창장치는 낮아진 엔탈피의 액체 냉매를 중간압력에서 증발기 압력으로 팽창시킬 수 있다. 그러면, 냉매는 낮아진 엔탈피로 증발기로 들어갈 수 있고, 이에 의해서 냉매가 응축기로부터 직접적으로 팽창하는 비-절약형 시스템에 비해서 절약 회로들을 구비한 증기 압축 시스템의 냉각 용량이 증가한다.
절약형 증기 압축 시스템은 플래시 탱크와 추가적인 팽창장치를 또한 포함할 수 있다. 플래시 탱크 절약기 회로들에 있어서, 제 1 팽창장치는 플래시 탱크의 상류에 제공된다. 액체 냉매는 제 1 팽창장치를 통해서 유동하여 플래시 탱크 내로 들어간다. 플래시 탱크에 들어갈 때, 액체 냉매는 상당한 압력 강하를 경험하며, 냉매의 적어도 일부는 급격히 팽창하거나 또는 "순간적으로 방출(flashes)"되고 액상으로부터 중간압력의 기상으로 변환된다. 소정의 잔여 액체 냉매는 제 2 팽창장치 상류의 주 냉매 라인으로의 복귀를 위해서 플래시 탱크의 바닥에 모인다. 증기 냉매는 플래시 탱크로부터 압축기에 대한 흡입구나 압축의 증간 스테이지를 통해서 압축기로 복귀한다. 압축기로부터 플래시 탱크로 복귀한 냉매 가스가 중간 압력을 가지므로, 냉매 가스는 압축을 덜 필요로 하게 되고, 이에 의해서 전체적인 시스템 효율이 증가하게 된다.
플래시 탱크 절약기로부터 압축기 흡입구로 또는 다단 압축기에서 압축의 중간 스테이지로 가스 냉매를 도입하는 것은 문제가 있다. 제 1 스테이지 압축기는 증발기로부터 나오는 유동을 취급하게 되고, 반면에 높은 스테이지 압축기는 절약기로부터 배출되는 유동 뿐만아니라 제 1 스테이지 압축기로부터 배출되는 유동을 취급하게 된다. 종래의 시스템에 있어서, 절약기 작동조건들은 전체적인 시스템 상태들이나 작동 지점에 의해서 좌우될 수 있고, 이에 의해서 절약기 작동압력과 유량의 독립적인 조절이 방해를 받게 된다. 그러한 독립적인 조절 없이, 절약기와 제 2 스테이지 압축기는 특별한 작동 조건들에 대하여 설계되어야만 한다. 또한, 증발기와 응축기 사이의 압력 수준으로 압축기를 작동시키기 위한 기계적인 장치나 방법이 존재하지 않기 때문에, 단지 단일 스테이지 압축기를 구비한 장치에서 절약기 회로로부터 기상 냉매를 도입하는 것은 문제가 있다.
본 발명은 절약형 증기 압축 시스템에서 중간 압력을 조절하기 위한 장치 및 방법을 제공하고자 한 것이다.
본 발명은 제 1 압축기, 응축기 및 증발기를 포함하는 제 1 유체 회로를 제공하는 단계와 그리고 상기 제 1 유체 회로로부터 유체를 수용하도록 응축기와 증발기 사이에서 제 1 유체 회로에 연결된 제 2 유체 회로를 제공하는 단계를 포함하는 증기 압축 시스템의 작동방법에 관한 것이다. 제 2 유체 회로는 제 1 유체 회로로부터 유체를 수용하도록 구성되고 위치된 베셀(vessel)과 이 베셀로부터 증기를 수용하여 압축된 증기를 제 1 유체 회로로 배출하도록 구성되고 위치된 제 2 압축기를 포함한다. 상기 방법은 제 1 유체 회로의 다수의 작동 매개변수들을 모니터링하는 단계와, 모니터링된 다수의 작동 매개변수들에 기초하여 베셀에 대한 작동 조건 세트포인트를 계산하는 단계와, 그리고 계산된 작동 조건 세트포인트에 대응하는 베셀의 작동 조건을 모니터링하는 단계를 더 포함한다. 또한 상기 방법은 계산된 작동 조건 세트포인트를 모니터링된 작동 조건에 비교하는 단계와, 그리고 계산된 작동 조건 세트포인트와 모니터링된 작동 조건의 비교에 반응하여 제 2 압축기의 용량을 조정하는 단계를 더 포함한다.
본 발명은 또한 응축기, 베셀, 증발기, 및 제 1 냉매 라인 그리고 상기 베셀의 출력과 상기 제 1 냉매 라인을 연결하는 제 2 냉매 라인에 의해서 연결된 제 1 압축기를 포함하는 증기 압축 시스템에 관한 것이다. 증기 압축 시스템은 상기 베셀의 출력을 수용하도록 구성되고 위치된 제 2 압축기, 상기 베셀의 작동 매개변수를 대표하는 값을 측정하도록 구성되고 위치된 센서, 그리고 측정된 값에 반응하여 상기 제 2 압축기의 용량을 조정하도록 구성된 제어 알고리즘을 포함하는 컨트롤러를 더 포함한다.
본 발명은 또한 증기 압축 시스템의 작동 방법에 관한 것이다. 이 방법은 제 1 압축기, 응축기 및 증발기를 포함하는 제 1 유체 회로를 제공하는 단계와, 상기 제 1 유체 회로로부터 유체를 수용하도록 상기 응축기와 상기 증발기 사이에서 제 1 유체 회로에 연결된 제 2 유체 회로를 제공하는 단계를 포함한다. 제 2 유체 회로는 제 1 유체 회로로부터 유체를 수용하도록 구성되고 위치된 베셀과 이 베셀로부터 증기를 수용하여 압축된 증기를 제 1 유체 회로로 배출하도록 구성되고 위치된 제 2 압축기를 포함한다. 상기 방법은 또한 증발기에서 냉각 유체 온도를 모니터링하는 단계와, 냉각 유체 온도 세트포인트를 모니터링하는 단계와, 그리고 모니터링된 냉각 유체 온도와 냉각 유체 온도 세트포인트를 비교하는 단계를 더 포함한다. 상기 방법은 모니터링된 냉각 유체 온도가 냉각 유체 온도 세트포인트보다 작거나 혹은 같은 것에 반응하여 제 1 압축기의 용량을 감소시키는 단계와, 제 1 압축기가 최대 용량으로 작동하는지의 여부를 결정하는 단계와, 제 1 압축기가 최대 용량 이하로 작동하는지의 여부 결정과 모니터링된 냉각 유체 온도가 냉각 유체 온도 세트포인트보다 큰 것에 반응하여 제 1 압축기의 용량을 증가시키는 단계와, 그리고 제 1 압축기가 최대 용량으로 작동하는지의 여부 결정과 모니터링된 냉각 유체 온도가 냉각 유체 온도 세트포인트보다 큰 것에 반응하여 제 2 압축기의 용량을 증가시키는 단계를 더 포함한다.
본 발명에 따르면, 절약형 증기 압축 시스템에서 중간 압력을 용이하게 조절할 수 있다.
도 1은 상업적 환경에서 가열, 통기 및 공기조화 시스템의 바람직한 실시 예를 나타낸 도면이다.
도 2는 증기 압축 시스템의 바람직한 실시 예를 도식적으로 나타낸 도면이다.
도 3은 증기 압축 시스템의 다른 바람직한 실시 예를 도식적으로 나타낸 도면이다.
도 4는 증기 압축 시스템의 다른 바람직한 실시 예를 도식적으로 나타낸 도면이다.
도 5는 증기 압축 시스템의 다른 바람직한 실시 예를 도식적으로 나타낸 도면이다.
도 6은 증기 압축 시스템의 작동과정의 바람직한 실시 예를 보여주는 흐름도이다.
도 7은 증기 압축 시스템의 작동과정의 바람직한 실시 예를 보여주는 흐름도이다.
도 8은 증기 압축 시스템의 작동과정의 바람직한 실시 예를 보여주는 흐름도이다.
도 9A 및 9B는 증기 압축 시스템의 작동과정의 바람직한 실시 예를 보여주는 흐름도이다.
도 1을 참조하면, 통상적인 상업적 목적의 빌딩(11)용 난방, 통기 및 공기조화(HVAC) 시스템(10)의 예시적 환경이 도시되어 있다. HVAC 시스템(10)은 빌딩의 냉방에 사용되는 냉각 액체를 공급하도록 지하실 유닛에 통합된 증기 압축 시스템(13)을 포함할 것이다. HVAC 시스템(10)은 또한 빌딩(11)을 난방하도록 사용될 가열된 액체를 공급하는 보일러(15)와, 빌딩(11)을 통해서 공기를 순환시키는 공기 배분 시스템을 포함할 것이다. 공기 배분 시스템은 공기 회수 덕트(17), 공기 공급 덕트(19) 및 에어 핸들러(21)를 포함할 것이다. 에어 핸들러(21)는 도관(23)에 의해서 보일러(15)와 증기 압축 시스템(13)에 연결된 열교환기(도시되지 않음)를 포함할 것이다. 에어 핸들러(21)에서 열교환기는 HVAC 시스템(10)의 작동 모드에 따라서 보일러(15)로부터 가열된 액체를 수용하거나 증기 압축 시스템(13)으로부터 냉각된 액체를 수용할 것이다. HVAC 시스템(10)은 빌딩(11)의 각 층에 별도의 에어 핸들러(21)를 구비하고 있는 것으로 도시되어 있다. 몇몇 에어 핸들러들(21)은 단층을 서비스하거나, 또는 하나의 에어 핸들러가 하나의 플로어 이상을 서비스할 것이다.
도 2 및 도 3을 참조하면, 증기 압축 시스템(13)이 도식적으로 도시되어 있다. 도 3을 참조하면, AC 공급원(102)은 하나 이상의 모터(106)로 동력을 인가하는 하나 이상의 변속 드라이브(VSDs)(104)로 동력을 공급한다. 모터(들)(106)은 압축된 냉매가스를 응축기(12)로 공급하는 대응 압축기(18,20)를 구동하도록 사용될 수 있다. 바람직한 실시 예에 있어서, 압축기(18)는 주 압축기로 사용될 수 있고, 압축기(20)는 보조 압축기로 사용될 수 있다. 다른 바람직한 실시 예에 있어서, 압축기(18)는 고단 압축기가 될 수 있고, 압축기(20)는 저단 압축기가 될 수 있다. 다른 바람직한 실시 예에 있어서, 압축기(20)는 주 압축기로 사용될 수 있고, 압축기(18)는 보조 압축기로 사용될 수 있다.
압축기(18,20)의 출력 용량은 압축기(18,20)의 작동 속도를 기초할 것이며, 작동 속도는 VSD(104)에 의해서 구동되는 모터(106)의 출력 속도에 의존한다. 예를 들면, 모터들은 스위치드 리럭턴스(SR) 모터, 유도 전동기, 전자 정류 영구자석 모터(ECM) 또는 다른 적당한 모터 타입이 될 수 있다. 다른 실시 예에 있어서, 증기나 가스 터빈 또는 엔진과 같은 다른 구동 기구들 및 그와 연관된 부품들이 압축기들을 구동하는데 사용될 수 있다.
도 2 및 3을 다시 참조하면, 압축기(18)로부터 배출되는 압축된 기상 냉매는 응축기(12)에서 액체 냉매로 응축될 수 있다. 압축기(18)에 의해서 응축기(12)로 운반된 냉매 증기는 예를 들어 공기나 물과 같은 유체와 열교환을 하고 유체와의 열교환의 결과로서 냉매 액체로 상변화를 겪게 된다. 도 3에 도시된 바와 같이, 응축기(12)는 액체 냉매에 대한 과냉각기(108)를 또한 포함할 것이다. 시스템(13)에서 사용될 냉매들의 몇몇 예들은 하이드로플루오로카본(HFC) 냉매들, 예를 들어 R-410A, R-407, R-134a, 이산화탄소(CO2), (R-744), 암모니아, NH3, (R-717) 및 다른 적당한 형태의 냉매일 것이다.
응축기(12)는 주 냉매 라인(24)에 의해서 절약기(14)에 유체 연결될 수 있다. 절약기(14)는 소정 형식의 열교환기나 냉매의 일부가 증발되는 다른 장치일 수 있다. 바람직한 실시 예에 있어서, 절약기(14)는 플래시 탱크나 베셀일 것이다. 주 냉매 라인(24)을 따라서 응축기(12)와 절약기(14) 사이에는 제 1 팽창장치(32)가 존재한다. 제 1 팽창장치(32)는 절약기(14)의 작동압력을 조정하도록 사용될 수 있다.
주 냉매 라인(24)은 절약기(14)를 증발기(16)에 연결할 수 있다. 액체 냉매는 절약기(14)를 빠져나갈 수 있고 주 냉매 라인(24)을 경유하여 증발기(16)로 들어간다. 절약기(14)로부터 증발기(16)로 운반된 액체 냉매는 응축기(12)에 대하여 사용된 동일한 형태의 유체가 되거나 그렇지 않은 다른 유체와 열교환을 할 수 있으며, 유체와의 열교환의 결과로서 냉매 증기로의 상변화를 겪게 된다. 주 냉매 라인(24)에 있는 제 2 팽창장치(34)는 절약기(14)와 증발기(16) 사이에 존재할 수 있다. 적당한 형식의 팽창장치가 제 1 팽창장치(32)와 제 2 팽창장치(34)에 대하여 사용될 것이다. 도 3에 도시된 바람직한 실시 예에 있어서, 증발기(16)는 공급라인과 복귀라인에 의해서 냉각 부하(33)에 연결될 것이다. 처리 유체, 예를 들어 물, 에틸렌 글리콜, 염화칼슘 브라인, 염화나트륨 브라인 또는 소정의 다른 적당한 액체가 복귀라인을 경유하여 증발기(16)로 들어가고 공급라인을 경유하여 증발기(16)를 빠져나간다. 증발기(16)는 처리 유체의 온도를 냉각시킨다. 증발기(16)는 다슈의 튜브들 및/또는 처리 유체를 순환시키기 위한 하나 이상의 튜브 묶음을 포함할 수 있다. 증기 냉매는 증발기(16)를 빠져나가고 사이클을 완결하도록 흡입라인에 의해서 압축기(18)로 복귀한다.
증발기(16)로부터 주 냉각 라인(24)은 기체상의 냉매를 압축기(18)로 운반할 수 있다. 압축기(18)는 증발기(16)로부터 유동하는 냉매를 고압으로 압축할 수 있고, 압축된 냉매 가스를 주 냉매 라인(24)을 경유하여 응축기(12)로 복귀시킬 수 있으며, 그 결과 시스템(13)의 주 냉매 회로가 완결된다. 바람직한 실시 예에 있어서, 압축기(18)는 비록 소정의 단단 압축기나 다단 압축기가 사용될 수 있지만, 스크루 압축기, 왕복 압축기, 원심 압축기, 회전 압축기, 스윙 링크 압축기, 스크롤 압축기, 터빈 압축기 또는 소정의 다른 적당한 압축기와 같은 단단 압축기가 될 것이다. 도 4에 도시된 바와 같이, 압축기(18)는 평행하게 배열된 둘 이상의 단단 압축기들(181,182,183)을 포함할 수 있으며, 이때 각각의 압축기는 독립적으로 제어될 수 있다.
보조 냉매 라인(22)은 절약기(14)에 유체 연결될 수 있다. 보조 냉매 라인(22)은 절약기(14)로부터 압축기(20)로 기상 냉매를 운반할 수 있다. 압축기(20)는 압축기(18)와 별개로 구분되고, 보조 냉매 라인(22)을 경유하여 절약기(14)를 떠나는 냉매를 압축하도록 기여할 수 있다. 바람직한 실시 예에 있어서, 비록 평행한 다중의 압축기들의 뱅크가 제공될지라도, 압축기(20)는 단단 압축기, 예를 들어 스크루 압축기, 원심 압축기 또는 다른 단단 압축기이다. 그런데, 압축기(18)와 마찬가지로, 소정 개수의 단들을 갖는 소정 형식의 압축기가 압축기(20)로서 사용될 수 있다. 압축기(20)는 절약기(14)를 떠나는 기상 냉매를 고압으로 압축할 수 있고, 이어서 압축된 기상 냉매는 압축기(18)를 떠나는 냉매와 결합할 수 있다. 압축기(20)로부터 보조 냉매 라인(22)은 압축기(18) 이후의 어떤 지점이 될 수 있고 응축기(12) 전 또는 응축기(12) 지점이 될 수 있는 공통 배출부(26)에서 주 냉매 라인(24)으로 다시 연결될 수 있고, 그 결과 시스템(13)의 절약된 냉매 회로가 완결된다. 압축기(20)로부터의 배출압력은 압축기(18)로부터의 배출압력과 실질적으로 같다. 압축기(20)의 역회전을 일으키는 압축기(18)로부터 압축기(20)로의 냉매 가스의 소정 유동을 방지하도록 체크밸브나 다른 유사한 형식의 밸브가 압축기(20)의 하류에 통합될 수 있다.
도 2를 참조하면, 압축기(20) 및 제 1 팽창장치(32)와 전자 연결되는 컨트롤러(50)가 자동화 제어를 제공할 수 있다. 컨트롤러(50)는 압력, 포화 온도, 유량 및 모니터링 하기를 원하는 다른 특성들에서의 변화를 모니터하도록 시스템(13)을 통해서 위치된 다수의 센서들과 일방향 커뮤니케이션 관계를 맺을 수 있다. 컨트롤러(50)는 적어도 마이크로프로세서와 메모리장치를 포함할 수 있다. 마이크로프로세서는 시스템(13)에서 측정된 변화들에 반응하도록 구성되고, 컨트롤러(50)는 절약기 작동압력을 선택된 작동압력으로 조정하도록 압축기(20)의 용량 제어기구로 제어신호를 송신한다. 압축기 용량 제어는 주어진 압축기 형식에 유용한 소정 방법에 의해서 수행될 것이다. 컨트롤러(50)는 시스템 작동 조건 변화들을 예측하여 시스템 팽창장치들(32,34)로 제어 신호들을 또한 송신한다. 컨트롤러(50)는 냉각 시스템(13)의 작동을 제어하기 위해 아날로그 디지털(A/D) 변환기, 비휘발성 메모리 및 인터페이스 보드를 또한 포함할 수 있다. 컨트롤러(50)는 시스템(13)의 작동을 제어하도록 제어 알고리즘을 실행할 수 있다. 제어 알고리즘은 컴퓨터 프로그램에서 구현될 수 있고, 마이크로프로세서에 의해서 실행될 수 있으며, 및/또는 적당한 디지털 및/또는 아날로그 하드웨어를 사용하여 실행되고 수행될 수 있다. 만일 하드웨어가 제어 알고리즘을 실행하도록 사용되면, 컨트롤러(50)의 대응하는 구성이 필수적인 요소들을 통합하고 더 이상 필요가 없는 소정 요소들을 제거하도록 변화될 수 있다. 다른 바람직한 실시 예에 있어서, 컨트롤러(50)는 도 3 내지 도 5에 도시된 시스템들과 함께 사용될 것이다.
절약기(14)는 소정의 원하는 압력으로 작동할 것이다. 절약기(14)는 응축기 압력을 나타내는 고압으로부터 증발기 압력을 나타내는 저압의 작동 압력의 가능한 범위인 소정 압력범위 내의 압력으로 작동할 것이다. 그 범위는 다수의 요소들에 의존할 것이며, 이 요소들의 일부는 냉매의 형식과 압축기 및 그에 연관된 작동 특성들의 형식과 같이 영구적이거나 반영구적인 반면, 다른 요소들은 전체 시스템의 특정 작동조건들이나 부하를 기초하여 변한다.
도 5를 참조하면, 압축기(18)와 압축기(20)는 독립적으로 제어될 수 있다. 절약기(14)를 떠나는 기상 냉매는 압축기(20)의 배출과 압축기(18)의 흡입 사이의 소정 지점에서 보조 냉매 라인(22)으로 공급될 수 있다. 절약기(14)를 떠나는 기상 냉매의 압력은 압축기(20)로부터의 배출압력과 실질적으로 같을 수 있다. 압축기(20)로부터 절약기(14)로 냉매 가스의 소정 유동을 방지하기 위해서, 체크 밸브나 다른 유사한 형식의 밸브가 절약기(14)의 하류에 통합될 수 있다.
도 6을 참조하면, 컨트롤러(50)는 압축기(18) 및/또는 압축기(20)에 대한 제어 알고리즘(200)을 실행할 수 있다. 제어 알고리즘(200)은 떠나는 냉각 액체 온도를 증발기에서 모니터링하는 단계(단계 202)와, 떠나는 냉각 액체 세트포인트를 모니터링하는 단계(단계 204)를 포함할 수 있다.제어 알고리즘(200)은 떠나는 냉각 액체 온도와 떠나는 냉각 액체 세트포인트를 비교하는 단계(단계 206)를 더 포함할 수 있다.만일 떠나는 냉각 액체 온도가 떠나는 냉각 액체 세트포인트보다 크면, 압축기가 로딩된다(단계 210). 떠나는 냉각 액체 온도와 떠나는 냉각 액체 세트포인트의 비교 결과를 기초하여 사용 압축기의 형식에 대하여 적합한 소정 방법들을 사용하여, 압축기(18) 및/또는 압축기(20)가 로딩되거나 언로딩될 수 있다. 예를 들면, 만일 압축기가 원심 압축기이면, 압축기에 대한 예비 회전 날개들, 압축기에 대한 가변 기하학적 디퓨저 및/또는 압축기에 대한 변속 드라이브를 제어함으로써, 압축기가 로딩되거나 언로딩된다.
도 7을 참조하면, 컨트롤러(50)는 압축기(18) 및/또는 압축기(20)에 대한 제어 알고리즘(300)을 실행할 수 있다. 제어 알고리즘(300)은 증발기 포화 온도를 모니터링하는 단계(단계 302)와, 응축기 포화온도를 모니터링하는 단계(단계 304)와, 그리고 응축기에서 과냉각 액체 온도를 모니터링하는 단계(단계 306)를 포함할 수 있다. 제어 알고리즘(300)은 목표 절약기 포화 온도를 계산하기 위해서(단계 312), 증발기 포화 온도, 응축기 포화온도 그리고 과냉각 액체 온도를 모니터링하는 단계(단계 310)를 또한 포함할 수 있다. 제어 알고리즘(300)은 절약기 포화 온도를 모니터링하는 단계(단계 308)와, 그리고 절약기 포화온도를 목표 절약기 포화 온도와 비교하는 단계(단계 314)를 더 포함할 수 있다. 만일 절약기 포화 온도가 목표 절약기 포화 온도보다 크면, 압축기가 로딩된다(단계 316). 만일 절약기 포화 온도가 목표 절약기 포화 온도보다 크지 않으면, 압축기가 언로딩된다(단계 318). 추가적으로, 다른 실시 예에 있어서, 압축기를 제어하기 위한 도 7의 공정이 요구를 만족시키지 못하면(예를 들어 냉각 부하가 목표 절약기 포화 온도를 기초한 유용한 냉각 용량을 초과함), 알고리즘(200)은 측정된 절약기 포화 온도가 목표 포화 온도와 같거나 또는 초과할 때까지 압축기를 제어하도록 사용될 수 있다.
바람직한 일 실시 예에 있어서, 압축기(18)는 제어 알고리즘(200)에 의해서 제어되고 압축기(20)는 제어 알고리즘(300)에 의해서 제어된다. 다른 바람직한 실시 예에 있어서, 절약기에서의 액체 준위와 세트포인트 액체 준위에 대한 액체 준위의 편차는 압축기(18) 및/또는 압축기(20)를 제어하는데 사용될 수 있고, 이때 팽창장치는 중간 작동조건을 유지하도록 제어된다. 다른 바람직한 실시 예에 있어서, 알고리즘(200,300)은 모니터링, 분석, 계산 및/또는 다른 조건들(예를 들어 압력)의 비교를 통합한다.
도 8을 참조하면, 컨트롤러(50)는 제 1 압축기(예를 들어 압축기(18))와 제 2 압축기(예를 들어 압축기(20))를 작동시키기 위한 제어 알고리즘(400)을 실행할 수 있다. 제어 알고리즘(400)은 증발기에서 떠나는 냉각 액체 온도가 떠나는 냉각 액체 세트포인트보다 큰지 아닌지의 여부를 결정하는 것을 포함할 수 있다. 그 결정은 떠나는 냉각 액체 온도를 모니터링하는 단계(단계 522)와 떠나는 냉각 액체 세트포인트를 모니터링하는 단계(단계 524)를 포함할 수 있다. 만일 떠나는 냉각 액체 온도가 떠나는 냉각 액체 세트포인트보다 크지 않으면, 제 1 압축기는 언로딩된다(단계 526). 만일 떠나는 냉각 액체 온도가 떠나는 냉각 액체 세트포인트보다 크면, 제 1 압축기가 완전히 로딩되는지의 여부에 대한 결정이 수행된다(단계 528). 만일 제 1 압축기가 완전히 로딩되지 않으면, 제 1 압축기가 로딩된다(단계 516). 만일 제 1 압축기가 완전히 로딩되면, 제 2 압축기가 로딩되고 떠나는 냉각된 액체 온도는 제 2 압축기에 의해서 조절된다(단계 530). 제 1 압축기 및/또는 제 2 압축기는 적절한 방법과 기술을 사용하여 로딩되거나 언로딩될 수 있다.
도 9A와 9B를 참조하면, 컨트롤러(50)는 제 1 압축기와 제 2 압축기를 위한 제어 알고리즘(500)을 실행할 수 있다. 제어 알고리즘(500)은 증발기 포화 온도를 모니터링하는 단계(단계 502)와, 응축기 포화 온도를 모니터링하는 단계(단계 504)와, 그리고 과냉각 액체 온도를 모니터링하는 단계(단계 506)를 포함할 수 있다. 제어 알고리즘(500)은 목표 절약기 포화 온도를 계산하기 위해서 증발기 포화 온도, 응축기 포화 온도 및 과냉각 액체 온도를 분석하는 단계를 더 포함할 수 있다. 절약기 포화 온도를 모니터링하는 단계(단계 508)와, 절약기 포화 온도를 목표 절약기 포화 온도(단계 514)와 비교하는 단계를 더 포함할 수 있다. 만일 절약기 포화 온도가 목표 절약기 포화 온도보다 크면, 제 2 압축기가 로딩되고 떠나는 냉각된 액체 온도가 제 1 압축기에 의해서 제어된다(단계 518). 만일 절약기 포화 온도가 목표 절약기 포화 온도보다 크지 않으면, 제 2 압축기가 냉각된 액체 온도를 제어하는지의 여부에 대한 결정이 수행된다(단계 515). 만일 제 2 압축기가 냉각된 액체 온도를 제어하면, 떠나는 냉각된 액체 온도가 떠나는 냉각된 액체 세트포인트 보다 큰지의 여부에 대한 결정이 수행된다(단계 520). 만일 떠나는 냉각된 액체 온도가 떠나는 냉각된 액체 세트포인트보다 크지 않으면, 제 2 압축기가 언로딩된다(단계 519). 만일 떠나는 냉각된 액체 온도가 떠나는 냉각된 액체 세트포인트보다 크면, 제 2 압축기가 로딩된다(단계 521). 만일 제 2 압축기가 냉각된 액체 온도를 제어하지 않으면, 제 2 압축기가 언로딩되고 떠나는 냉각된 액체 온도는 제 1 압축기에 의해서 조절된다(단계 517).
본 발명의 단지 어떤 특징과 실시 예들이 도시되고 설명되었지만, 특허청구범위에 기재된 주제의 새로운 기술들과 장점들로부터 벗어남이 없이 많은 변경과 수정들(예를 들어, 크기, 치수, 구조, 형상 및 여러 요소들의 비율, 매개변수들(예를 들어 온도, 압력 등)의 값, 장착 배열들, 재료, 색, 배향들의 사용 등)이 이루어질 수 있음을 해당 기술분야의 숙련된 당업자에게는 자명하다. 소정 공정이나 방법 단계들의 순서나 절차는 대안적인 실시 예들에 따라서 변하거나 또는 그 순서가 바뀔 수 있다. 그러므로, 첨부된 특허청구 범위는 본 발명의 진실한 영역 내에 있는 모든 그러한 변경 및 수정들을 모두 포괄하도록 의도된 것이다. 또한, 바람직한 실시 예들의 간결한 설명을 제공하기 위한 노력으로서, 실제적 실행의 모든 특징들이 설명되지는 않았다(예를 들어, 이것들은 본 발명을 수행하는 현재 고려된 최선의 모드와 관련이 없거나 또는 청구된 발명을 가능하게 하는 것과 관련이 없음). 그러한 실제적인 실행의 개발에 있어서 소정 엔지니어링이나 디자인 프로젝트에서와 같이, 다수의 실행상의 특정 결정들이 이루어졌다. 그러한 개발 노력은 복잡하고 시간 소모가 많으나, 그럼에도 불구하고 본 명세서의 이익을 향유하는 해당 기술분야의 숙련된 당업자에게는 지나친 실험없이 설계, 조립 및 제조의 일상적인 일이 될 것이다.

Claims (20)

  1. 증기 압축 시스템의 작동 방법으로서,
    제 1 압축기, 응축기 및 증발기를 포함하는 제 1 유체 회로를 제공하는 단계;
    상기 제 1 유체 회로로부터 유체를 수용하도록 상기 응축기와 상기 증발기 사이에서 상기 제 1 유체 회로에 연결된 제 2 유체 회로를 제공하는 단계 - 상기 제 2 유체 회로는 상기 제 1 유체 회로로부터 유체를 수용하도록 구성되고 위치된 베셀(vessel), 상기 베셀로부터 증기를 수용하여 압축된 증기를 상기 제 1 유체 회로로 배출하도록 구성되고 위치된 제 2 압축기를 포함함 -;
    상기 제 1 유체 회로의 다수의 작동 매개변수들을 모니터링하는 단계;
    모니터링된 다수의 작동 매개변수들에 기초하여 상기 베셀에 대한 작동 조건 세트포인트를 계산하는 단계; 그리고
    계산된 작동 조건 세트포인트에 대응하는 상기 베셀의 작동 조건을 모니터링하는 단계;
    계산된 작동 조건 세트포인트를 모니터링된 작동 조건에 비교하는 단계; 그리고
    계산된 작동 조건 세트포인트와 모니터링된 작동 조건의 비교에 반응하여 상기 제 2 압축기의 용량을 조정하는 단계;를 포함하는 증기 압축 시스템의 작동 방법.
  2. 제 1 항에 있어서, 작동 조건 세트포인트를 계산하는 단계는 모니터링된 다수의 작동 매개변수들을 기초하여 상기 베셀에 대한 포화 온도 세트포인트를 계산하는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  3. 제 2 항에 있어서, 다수의 작동 매개변수들을 모니터링하는 단계는,
    응축기 포화 온도를 모니터링하는 단계;
    증발기 포화 온도를 모니터링하는 단계; 그리고
    응축기 액체 온도를 모니터링하는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  4. 제 2 항에 있어서, 상기 베셀의 작동 조건을 모니터링하는 단계는 상기 베셀의 포화 온도를 모니터링하는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  5. 제 1 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는, 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 큰 것에 반응하여 상기 제 2 압축기의 용량을 증가시키는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  6. 제 1 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는, 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 같은 것에 반응하여 상기 제 2 압축기의 용량을 감소시키는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  7. 제 1 항에 있어서, 상기 제 2 압축기나 상기 제 1 압축기가 상기 증발기에서 떠나는 냉각된 유체 온도를 제어하는 지의 여부를 결정하는 단계를 더 포함하는 증기 압축 시스템의 작동 방법.
  8. 제 7 항에 있어서,
    떠나는 냉각된 유체 온도를 상기 증발기에서 모니터링하는 단계;
    떠나는 냉각된 유체 온도 세트포인트를 모니터링하는 단계; 그리고
    모니터링된 떠나는 냉각된 유체 온도를 떠나는 냉각된 유체 온도 세트포인트와 비교하는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  9. 제 8 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는, 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 혹은 같은 것, 상기 제 2 압축기가 떠나는 냉각된 유체 온도를 제어하는지의 여부를 결정하는 것, 그리고 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 큰 것에 반응하여 상기 제 2 압축기의 용량을 증가시키는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  10. 제 8 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는, 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 혹은 같은 것, 상기 제 2 압축기가 떠나는 냉각된 유체 온도를 제어하는지의 여부를 결정하는 것, 그리고 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 작거나 같은 것에 반응하여 상기 제 2 압축기의 용량을 감소시키는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  11. 제 7 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는, 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 혹은 같은 것, 상기 제 2 압축기가 떠나는 냉각된 유체 온도를 제어하는지의 여부를 결정하는 것, 그리고 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 작거나 같은 것에 반응하여 상기 제 2 압축기의 용량을 감소시키는 단계를 포함하는 증기 압축 시스템의 작동 방법.
  12. 증기 압축 시스템으로서,
    응축기, 베셀(vessel), 증발기, 및 제 1 냉매 라인에 의해서 연결된 제 1 압축기;
    상기 베셀의 출력과 상기 제 1 냉매 라인을 연결하는 제 2 냉매 라인;
    상기 베셀의 출력을 수용하도록 구성되고 위치된 제 2 압축기;
    상기 베셀의 작동 매개변수를 대표하는 값을 측정하도록 구성되고 위치된 센서; 그리고
    측정된 값에 반응하여 상기 제 2 압축기의 용량을 조정하도록 구성된 제어 알고리즘을 포함하는 컨트롤러;를 포함하는 증기 압축 시스템.
  13. 제 12 항에 있어서, 상기 제 2 압축기는 상기 제 2 냉매 라인에 위치하고, 상기 제 2 냉매 라인은 상기 제 2 압축기의 배출을 상기 제 1 압축기의 배출과 상기 응축기 사이의 위치에서 상기 제 1 냉매 라인에 연결하는 증기 압축 시스템.
  14. 제 12 항에 있어서, 상기 베셀은 플래시 탱크로 이루어진 증기 압축 시스템.
  15. 제 12 항에 있어서, 상기 제 1 압축기 또는 상기 제 2 압축기 중 하나 이상은 평행하게 연결된 다수의 압축기를 포함하는 증기 압축 시스템.
  16. 제 12 항에 있어서, 상기 제 2 냉매 라인은 상기 제 1 압축기와 상기 제 2 압축기 사이의 위치에서 상기 제 1 냉매 라인에 연결되는 증기 압축 시스템.
  17. 증기 압축 시스템의 작동 방법으로서,
    제 1 압축기, 응축기 및 증발기를 포함하는 제 1 유체 회로를 제공하는 단계;
    상기 제 1 유체 회로로부터 유체를 수용하도록 상기 응축기와 상기 증발기 사이에서 상기 제 1 유체 회로에 연결된 제 2 유체 회로를 제공하는 단계 - 상기 제 2 유체 회로는 상기 제 1 유체 회로로부터 유체를 수용하도록 구성되고 위치된 베셀, 상기 베셀로부터 증기를 수용하여 압축된 증기를 상기 제 1 유체 회로로 배출하도록 구성되고 위치된 제 2 압축기를 포함함 -;
    상기 증발기에서 떠나는 냉각된 유체 온도를 모니터링하는 단계;
    떠나는 냉각된 유체 온도 세트포인트를 모니터링하는 단계;
    모니터링된 떠나는 냉각된 유체 온도를 떠나는 냉각된 유체 온도 세트포인트와 비교하는 단계;
    모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 작거나 같은 것에 반응하여 상기 제 1 압축기의 용량을 감소시키는 단계;
    상기 제 1 압축기가 최대 용량으로 작동하는지의 여부를 결정하는 단계;
    상기 제 1 압축기가 최대 용량보다 작은 용량으로 작동하는지의 여부를 결정하는 것에 반응하고 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 큰 것에 반응하여 상기 제 1 압축기의 용량을 증가시키는 단계; 그리고
    상기 제 1 압축기가 최대 용량으로 작동하는지의 여부를 결정하는 것에 반응하고 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 큰 것에 반응하여 상기 제 1 압축기의 용량을 증가시키는 단계;를 포함하는 증기 압축 시스템의 작동 방법.
  18. 제 17 항에 있어서,
    상기 제 1 유체 회로의 다수의 작동 매개변수들을 모니터링하는 단계;
    모니터링된 다수의 작동 매개변수들에 기초하여 상기 베셀에 대한 작동 조건 세트포인트를 계산하는 단계;
    계산된 작동 조건 세트포인트에 대응하는 상기 베셀의 작동 조건을 모니터링하는 단계;
    계산된 작동 조건 세트포인트를 모니터링된 작동 조건에 비교하는 단계; 그리고
    계산된 작동 조건 세트포인트와 모니터링된 작동 조건의 비교 및 상기 제 1 압축기가 최대 용량 이하의 용량에서 작동하는지의 여부에 대한 결정에 반응하여 상기 제 2 압축기의 용량을 조정하는 단계;를 더 포함하는 증기 압축 시스템의 작동 방법.
  19. 제 18 항에 있어서, 상기 제 1 압축기가 최대 용량으로 작동하는지의 여부에 대한 결정, 모니터링된 떠나는 냉각된 유체 온도가 떠나는 냉각된 유체 온도 세트포인트보다 큰 것, 그리고 모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 같은 것에 반응하여, 상기 제 2 압축기의 용량을 감소시키는 단계를 더 포함하는 증기 압축 시스템의 작동 방법.
  20. 제 18 항에 있어서, 상기 제 2 압축기의 용량을 조정하는 단계는,
    모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 큰 것에 반응하여 상기 제 2 압축기의 용량을 증가시키는 단계; 그리고
    모니터링된 작동 조건이 계산된 작동 조건 세트포인트보다 작거나 같은 것에 반응하여 상기 제 2 압축기의 용량을 감소시키는 단계;를 포함하는 증기 압축 시스템의 작동 방법.
KR1020107016917A 2007-12-28 2008-12-29 증기 압축 시스템 KR101689525B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1733807P 2007-12-28 2007-12-28
US61/017,338 2007-12-28
PCT/US2008/088391 WO2009086493A2 (en) 2007-12-28 2008-12-29 Vapor compression system

Publications (2)

Publication Number Publication Date
KR20100103654A true KR20100103654A (ko) 2010-09-27
KR101689525B1 KR101689525B1 (ko) 2016-12-26

Family

ID=40429792

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107016917A KR101689525B1 (ko) 2007-12-28 2008-12-29 증기 압축 시스템

Country Status (6)

Country Link
US (1) US8511103B2 (ko)
EP (1) EP2232169B1 (ko)
JP (1) JP5400796B2 (ko)
KR (1) KR101689525B1 (ko)
CN (1) CN101946138B (ko)
WO (1) WO2009086493A2 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145657A1 (en) * 2009-06-19 2010-12-23 Danfoss A/S A method for determining wire connections in a vapour compression system
US9657978B2 (en) 2009-07-31 2017-05-23 Johnson Controls Technology Company Refrigerant control system for a flash tank
KR101321549B1 (ko) * 2009-11-20 2013-10-30 엘지전자 주식회사 히트 펌프
US10107536B2 (en) * 2009-12-18 2018-10-23 Carrier Corporation Transport refrigeration system and methods for same to address dynamic conditions
DK2577205T3 (en) 2010-05-27 2023-04-11 Johnson Controls Tyco IP Holdings LLP Cooling system comprising thermosyphon cooler and cooling tower and method for operating such cooling system
JP5639825B2 (ja) * 2010-09-17 2014-12-10 荏原冷熱システム株式会社 エコノマイザを備える圧縮式冷凍機とエコノマイザユニット
WO2012166338A2 (en) * 2011-05-31 2012-12-06 Carrier Corporation Hybrid compressor system and methods
JP2013061099A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp 熱交換装置および熱交換装置の制御方法
EP2906881A4 (en) * 2012-05-11 2016-04-13 Hill Phoenix Inc CO2 REFRIGERATION SYSTEM HAVING AN INTEGRATED AIR CONDITIONING MODULE
CN102878732A (zh) * 2012-09-28 2013-01-16 美意(浙江)空调设备有限公司 一种带经济器的制冷循环系统
US9903659B2 (en) 2012-12-13 2018-02-27 Carrier Corporation Low pressure chiller
US9797640B2 (en) * 2013-03-15 2017-10-24 Daikin Applied Americas Inc. Refrigerating apparatus and corresponding control device
MX367946B (es) * 2013-05-03 2019-09-11 Hill Phoenix Inc Sistemas y métodos para el control de presión en un sistema de refrigeración con co2.
EP3023712A1 (en) * 2014-11-19 2016-05-25 Danfoss A/S A method for controlling a vapour compression system with a receiver
DE102015112439A1 (de) * 2015-07-29 2017-02-02 Bitzer Kühlmaschinenbau Gmbh Kälteanlage
WO2017138419A1 (ja) * 2016-02-08 2017-08-17 パナソニックIpマネジメント株式会社 冷凍装置
CN108603696B (zh) * 2016-02-08 2020-06-12 松下知识产权经营株式会社 冷冻装置
US11125483B2 (en) 2016-06-21 2021-09-21 Hill Phoenix, Inc. Refrigeration system with condenser temperature differential setpoint control
EP3635304B1 (en) 2017-06-08 2022-03-23 Carrier Corporation Method of control for economizer of transport refrigeration units
US11796227B2 (en) 2018-05-24 2023-10-24 Hill Phoenix, Inc. Refrigeration system with oil control system
US11397032B2 (en) 2018-06-05 2022-07-26 Hill Phoenix, Inc. CO2 refrigeration system with magnetic refrigeration system cooling
US10663201B2 (en) 2018-10-23 2020-05-26 Hill Phoenix, Inc. CO2 refrigeration system with supercritical subcooling control
WO2023244819A1 (en) * 2022-06-17 2023-12-21 Johnson Controls Tyco IP Holdings LLP Compressor system for hvac&r system
WO2023244833A1 (en) * 2022-06-17 2023-12-21 Johnson Controls Tyco IP Holdings LLP Compressor system for heating, ventilation, air conditioning, and/or refrigeration system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2152649A (en) * 1984-01-11 1985-08-07 Copeland Corp Two stage compression refrigeration system
US5115644A (en) * 1979-07-31 1992-05-26 Alsenz Richard H Method and apparatus for condensing and subcooling refrigerant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5692387A (en) * 1995-04-28 1997-12-02 Altech Controls Corporation Liquid cooling of discharge gas
US5694780A (en) * 1995-12-01 1997-12-09 Alsenz; Richard H. Condensed liquid pump for compressor body cooling
US6119479A (en) * 1998-12-09 2000-09-19 Air Products And Chemicals, Inc. Dual mixed refrigerant cycle for gas liquefaction
US7600390B2 (en) * 2004-10-21 2009-10-13 Tecumseh Products Company Method and apparatus for control of carbon dioxide gas cooler pressure by use of a two-stage compressor
CN2847179Y (zh) * 2005-11-28 2006-12-13 珠海格力电器股份有限公司 一种超低温热泵空调系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5115644A (en) * 1979-07-31 1992-05-26 Alsenz Richard H Method and apparatus for condensing and subcooling refrigerant
GB2152649A (en) * 1984-01-11 1985-08-07 Copeland Corp Two stage compression refrigeration system

Also Published As

Publication number Publication date
KR101689525B1 (ko) 2016-12-26
CN101946138B (zh) 2013-06-26
CN101946138A (zh) 2011-01-12
US8511103B2 (en) 2013-08-20
JP2011508181A (ja) 2011-03-10
US20100269524A1 (en) 2010-10-28
WO2009086493A3 (en) 2009-08-27
EP2232169B1 (en) 2018-04-04
WO2009086493A2 (en) 2009-07-09
EP2232169A2 (en) 2010-09-29
JP5400796B2 (ja) 2014-01-29

Similar Documents

Publication Publication Date Title
KR101689525B1 (ko) 증기 압축 시스템
US11378314B2 (en) Air cooled chiller with heat recovery
EP2313709B1 (en) Chiller with setpoint adjustment
CN102884382B (zh) 热源侧热交换器用风扇的控制方法及空调装置
US20110162397A1 (en) Flash tank economizer cycle control
US10955179B2 (en) Redistributing refrigerant between an evaporator and a condenser of a vapor compression system
EP1046868B1 (en) Refrigeration system having a refrigeration cycle which provides optimized consumption
WO2012090579A1 (ja) 熱源システムおよびその制御方法
JP6987269B2 (ja) 冷凍サイクル装置
US7299648B2 (en) Refrigeration system of air conditioning apparatuses with bypass line between inlet and outlet of compressor
WO2020064351A1 (en) A method for controlling a vapour compression system at a reduced suction pressure
US20220333834A1 (en) Chiller system with multiple compressors
EP3628940B1 (en) A method for controlling a vapour compression system based on estimated flow
WO2023244671A1 (en) Systems and methods for controlling operation of a chiller
US20220252306A1 (en) Series flow chiller system
EP4300006A1 (en) Suction gas heat exchanger control and utilization
WO2023244833A1 (en) Compressor system for heating, ventilation, air conditioning, and/or refrigeration system
WO2009142659A1 (en) Multiple compressor chiller
JP2017201218A (ja) ヒートポンプシステム及びその制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191212

Year of fee payment: 4