KR20100091953A - 가스 압축 시스템 및 이의 용량 조절 방법 - Google Patents

가스 압축 시스템 및 이의 용량 조절 방법 Download PDF

Info

Publication number
KR20100091953A
KR20100091953A KR1020107009572A KR20107009572A KR20100091953A KR 20100091953 A KR20100091953 A KR 20100091953A KR 1020107009572 A KR1020107009572 A KR 1020107009572A KR 20107009572 A KR20107009572 A KR 20107009572A KR 20100091953 A KR20100091953 A KR 20100091953A
Authority
KR
South Korea
Prior art keywords
compressor
diffuser
speed
gas compression
adjusting
Prior art date
Application number
KR1020107009572A
Other languages
English (en)
Other versions
KR101470862B1 (ko
Inventor
스티븐 트렌트 썸머
제이알 존 트레비노
플로린 이안쿠
루디 챠빌
에릭 존 스미더
Original Assignee
존슨 컨트롤스 테크놀러지 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 존슨 컨트롤스 테크놀러지 컴퍼니 filed Critical 존슨 컨트롤스 테크놀러지 컴퍼니
Publication of KR20100091953A publication Critical patent/KR20100091953A/ko
Application granted granted Critical
Publication of KR101470862B1 publication Critical patent/KR101470862B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0246Surge control by varying geometry within the pumps, e.g. by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0261Surge control by varying driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0284Conjoint control of two or more different functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/46Fluid-guiding means, e.g. diffusers adjustable
    • F04D29/462Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps
    • F04D29/464Fluid-guiding means, e.g. diffusers adjustable especially adapted for elastic fluid pumps adjusting flow cross-section, otherwise than by using adjustable stator blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 시스템 내에서 스톨 및 서지 조건을 방지하기 위해 예정된 범위 내에서 원하는 파라미터를 유지하도록 압축기를 통해 가스의 흐름이 자동적으로 조절되는 HVAC, 냉각 또는 액체 냉각시스템(100)의 원심형 가스 압축기(108)의 조절 장치에 관한 것이다. 압축기에서 가변 결합구조 확산기(119)는 압축기 임펠러 휠(201)의 방출 시 냉매 가스 흐름을 조절한다. 이러한 배치는 질량흐름을 감소시키고, 흐름-감소 스톨을 저감/제거하고, 부분 하중 조건에서 압축기의 작동효율을 증가시킨다. 상기 가변 속도 구동(VSD)(120)과 조합된 가변 결합구조 확산기 조절은 부분적인 시스템 하중에서 압축기의 효율을 증가시키고, 원심형 압축기의 입구에서 예비-회전 날개의 필요를 제거한다.

Description

가스 압축 시스템 및 이의 용량 조절 방법{CONTROL SYSTEM}
본 발명은 하나 또는 그 이상의 단(Stage)을 갖는 원심형 압축기의 용량 조절 시스템에 관한 것으로서, 더욱 상세하게는 가변 결합구조 확산기(VGD;variable geometry diffuser)를 갖는 압축기의 용량 조절 시스템에 관한 것이다. 냉각시스템에서 용량(capacity)은 냉각 능력을 말하고, 다른 가스 압축 시스템에서 용량은 체적유량(volumetric flow)를 말한다.
액체 냉각기, 냉각 또는 가열, 환기, 공기조화 및 냉각(HVAC & R) 및 가스 압축과 같은 냉각 시스템에 사용되는 종래의 원심형 압축기에서, 예비-회전 날개(PRV;pre-rotation vane) 또는 입구 가이드가 냉각 시스템의 냉각 용량을 조절하기 위해 요구되었다. 증발기에서 압축기로의 입구에서 하나 또는 그 이상의 PRV는 압축기의 냉매 흐름을 조절한다. 액튜에이터는 압축기의 냉매양을 증가시킴으로써 시스템의 냉각용량을 증가시키기 위해 PRV를 개방하는데 사용된다. 유사하게는, 상기 액튜에이터는 압축기의 냉매양을 줄여 시스템의 냉각용량을 감소시키기 위해 PRV를 닫는데 사용된다.
VGD는 원심형 압축기의 확산기 영역에서 회전 스톨(Stall)을 조절하기 위해 사용된다. 상기 VGD의 일구현예는 본 발명의 출원인에게 허여된 넨스티엘(Nenstiel)의 미국특허번호 6,872,050호에 설명되고, 여기서는 참고문헌에 포함된다. VGD는 측정된 신호의 수준이 예정된 문턱값(Threshold)이하로 떨어질 때까지 원심형 압축기의 확산기 통로로 연장된다. 그 결과 간격과 공중 소리 레벨에서 대응하는 강하 및 스톨이 제거된다. 시간 또는 조건의 변화 후에, 스톨의 조건이 탐지됨을 상기 측정된 신호의 레벨이 표시할 때까지 상기 확산기 갭은 단계적으로 또는 점진적으로 증가하면서 다시 개방된다.
스톨 및 서지 조건은 압축기의 극단적인 작동상태를 나타내는 다른 물리적인 현상이다. 스톨은 압축기의 하나 또는 그 이상의 구성요소에서 국부적인 흐름의 분리이고, 임펠러의 회전 진동수보다 적은 기초 진동수에서 방출 압력의 방해에 의해 발생된다. 원심형 압축기의 회전 스톨은 확산기에 두드러지게 위치하고, VGD에 의해 제거될 수 있다. 이와 반대로, 서지(surge)는 압축된 가스 시스템에서 시스템의 넓은 불안정성이다. 압축기에서 주요 흐름은 순간적으로 역방향으로 바뀌고, 상기 서지는 더 낮은 진동수, 큰 압력 변동에 의해 더욱 발생된다.
VGD는 압축된 가스의 출구 유로인 확산기 갭을 차지하기 위해 움직일 수 있는 링을 포함한다. 상기 VGD는 링이 최대 가스 흐름을 허용하기 위해 출구유로에서 완전히 빠지도록 후퇴된 위치에서, 상기 링이 출구 유로의 부분을 차지하도록 연장된 위치로 이동함으로써, 가스 흐름의 일부를 제한할 수 있다. 상기 링은 원심형 압축기에서 스톨 조건의 탐지에 근거하여 작동될 수 있다. 상기 가변 결합구조 확산기는 임박한 스톨을 탐지하기 위해 교차하는 구성요소의 방출압력을 측정하는 탐침자(Probe) 또는 센서와 조합되어 사용된다. 상기 측정된 파라미터는 측정된 파라미터에 근거한 임박한 스톨을 탐지하기 위해 프로그램된 컨트롤러에 전송된다. 상기 컨트롤러는 그 다음 스톨을 제거하고 결과적으로 서지를 회피하기 위해 가변 결합구조 확산기를 활성화하는 것이 필요할 때를 결정한다. 따라서, 가변 결합구조 확산기는 스톨 회피, 서지 회피 및 이러한 조건들과 동반되는 잡음 저감의 잇점을 제공한다.
원심형 압축기 내의 확산기 시스템의 부분처럼, 회전 임펠러의 하류에서의 정압을 회복하기 위한 많은 선택이 있다. 상기 확산기는 1차적으로 냉매 속도의 접선방향 구성요소를 저감하고 2차적으로 냉매 속도의 반경방향 구성요소를 저감할 책임이 있다. 상기 냉매 속도가 감소될 때, 정압은 증가한다. 성능이 중요한 곳에서 1차적인 목적은 최소의 전체 압력 손실로 정압을 회복하는 것이다.
원심형 압축기에서 통상의 확산기는 날개가 없는, 날개가 있는(에어 포일, 웨지(wedge), 고강도 또는 저강도), 파이프, 터널 및 채널 또는 이들 종류의 조합을 포함한다. 확산기의 각 종류는 장점과 단점이 있다. 예를 들면, 날개없는 확산기는 임펠러의 고압측에 날개가 없는 두개의 벽으로 구성된다. 날개없는 확산기 내에서 정압의 회복은 확산기에 걸쳐 유입되는 속도 조건, 반경비 및 폭 사이에 알려진 관계의 결과이다.
PRV, 임펠러의 저압측에서 가이드 날개, 예비-소용돌이 날개 등, 가변 속도 구동, 핫 바이패스, 가변 확산기 날개 및 흡입 스로틀 밸브를 포함하여, 용량 조절을 위해 다양한 방법이 개별적으로 그리고 조합되어 적용된다. 이러한 용량 조절 방법의 각각은 장점 및 한계를 제공한다. 가장 흔히 이용되는 용량 조절 방법은 PRV, 핫 가스 바이패스 및 가변 속도 구동(Variable speed drive)을 포함한다.
일구현예로서, 가스 압축 시스템의 용량 조절 방법이 개시된다. 상기 가스 압축 시스템은 냉매루프에 의해 연결된 압축기, 냉매 응축기, 및 증발기를 포함한다. 상기 방법은 압축기의 방출시 확산기를 제공하는 단계; 가스 압축 시스템의 하중의 대표값을 감지하는 단계; 가스 압축 시스템의 용량을 조절하기 위해 시스템 압력 미분을 결정하는 단계를 포함한다.
다른 구현예로서, 가스 압축 시스템은 냉매 루프에 의해 연결된 압축기, 냉매 응축기, 및 증발기를 포함한다. 상기 가스 압축 시스템은 압축기의 방출에 배치되는 확산기를 포함한다. 상기 확산기는 압축기로부터 냉매의 흐름을 조절하도록 배치된다. 중심 컨트롤 패널 가스 압축 시스템은 용량 조절 시스템을 포함한다. 상기 용량 조절 시스템은 배출되는 액체 온도 및 시스템 압력 미분에 응답하여 가스 압축시스템의 용량을 조절하기 위해 확산기의 위치를 조정하도록 배치된다.
여기서 설명된 구현예의 어떤 장점은 HVAC & R 시스템의 구성요소 및 제어의 복잡성을 줄이기 위해 원형심 압축기에서 PRV의 제거; 및 가변 결합구조 확산기를 이용한 냉각 시스템에서 작동용량의 감소, 부분 하중에서 시스템의 효율을 향상시키기 위해 가변속도구동(VSD;variable speed drive)의 조합 또는 이것만을 포함한다.
도 1은 가변 결합구조 확산기가 적용될 수 있는 예시적인 HVAC & R을 도시한다.
도 2는 본 발명에서 사용되는 원심형 압축기 및 가변 결합구조 확산기의 일부 단면을 도시한다.
도 3은 시스템 헤드 압력과 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 4는 냉각수 온도와 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 5는 응축기 물의 온도와 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 6a는 시스템 용량과 가변 결합구조 확산기의 위치와 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 6b는 압축기 속도와 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 7은 안티-스톨 탐지와 관련된 HVAC & R 제어시스템의 부분 개략도이다.
도 8은 냉각 유닛의 제어시스템의 대표 개략도이다.
도 9는 저강도 날개의 확산기를 도시한다.
본 발명이 적용될 수 있는 일반적인 에이치브이씨 앤 알(HVAC & R) 냉각시스템(100)은 도 1에 의해 예시된다. 예를 들면 에이치브이씨 앤 알 또는 액체 냉각시스템(100)에서 원심형 가스 압축기(108)용 에이치브이씨 앤 알 시스템(100)은 이하에서 설명된다. 압축기(108)는 단일 또는 다단 원심 압축기일 수 있다. 압축기를 통한 냉매가스의 흐름은 예정된 범위 내에서 원하는 파라미터를 유지하고 시스템(100) 내에서 스톨(stall) 및 서지(surge) 조건을 방지하기 위해 자동적으로 조절된다. 상기 압축기(108)의 각 단에서 VGD(119)는 상기 압축기 임펠러 휠(201)의 배출에서 냉매가스의 흐름을 조절한다(도 2 참조). 상기 VGD(119)의 배치는 질량 흐름을 감소시키고, 흐름-감소 스톨을 저감하거나 제거하고, 부분 하중 조건에서 작동할 때 압축기(108)의 작동 효율을 증가시킨다. 가변 속도 구동(VSD)(120)과 함께 가변형 확산기(Variable geomentry diffuser)를 이용한 용량 조절은 부분 시스템의 하중에서 압축기(108)의 효율을 증가시키고, 압축기(108)의 입구에서 PRV를 위한 필요를 제거한다. 다른 실시예에서, VGD(119)는 다단 압축기에서 하나 또는 그 이상의 단의 배출로부터 제거될 수 있다.
도시한 바와 같이, HVAC & R 냉각 시스템(100)은 압축기(108), 응축기(112), 물 냉각기 또는 증발기(126), 및 컨트롤 패널(140)을 포함한다. 컨트롤 패널(140)은 아날로그-디지털(A/D) 컨버터(148), 마이크로프로세서(150), 비휘발성 메모리(144), 및 인터페이스 보드(146)를 포함한다. 상기 컨트롤 패널(140)의 작동은 이하에서 더욱 상세하게 설명될 것이다.
압축기(108)는 냉매 증기를 압축하고 상기 증기를 배출라인(113)을 통해 응축기(112)에 전달한다. 압축기(108)를 구동하면, 시스템(100)은 모터 또는 압축기(108)용 구동 메카니즘(152)을 포함한다. 상기 "모터"란 용어는 압축기(108)용 구동 메카니즘에 관한 것으로 사용되지만, 상기 "모터"란 용어가 모터에 한정되지 않고 가변 속도 구동 및 모터 스타터와 같은 모터(152)의 구동과 관련하여 사용될 수 있는 어떤 구성요소를 포함하는 것으로 의도된다고 이해되어야 한다. 본 발명의 바람직한 실시예에서 상기 구동 메카니즘 또는 모터(152)는 전기 모터, VSD(120) 및 관련된 구성요소이다. 그러나, 증기 또는 가스터빈 또는 엔진과 같은 다른 구동 메카니즘(114)과 가변속도 컨트롤러와 같은 관련된 구성요소는 압축기(108)를 구동하기 위해 사용될 수 있다.
압축기(108)에 의해 응축기(112)에 전달된 상기 냉매 증기는 유체, 예를 들면 공기 또는 물에 의해 열교환 관계를 갖고, 상기 유체에 의해 열교환한 결과 상변화 하여 냉매액체로 된다. 상기 응축기(112)에서 응축된 액체냉매는 팽창장치(22)를 거쳐 증발기(126)로 흐른다. 팽창 장치(22)는 고온가스 바이패스 밸브(HGV)(134)와 병렬로 연결될 수 있다. 플래시 가스절약기(Gas economizer) 또는 중간냉각기(132)는 응축기(116) 및 증발기(126) 사이에 연결될 수 있다. 절약기(132)는 냉매 플래시 가스를 증발기(126)와 응축기(116) 사이의 압력에서 응축기에 유도한다. 중간 압력 냉매 가스의 유도는 열역학 싸이클의 효율을 향상시킨다. 바람직한 구현예로서, 상기 응축기(112)에서 냉매 증기는 물에 의해 열교환되고, 이 물은 냉각타워(122)와 연결된 열교환기(116)를 통해 흐른다. 응축기(112)에서 냉매 증기는 열교환기(116)에서 물과 열교환함으로써 상 변화하여 냉매 액체로 된다.
증발기(126)는 바람직하게는 냉각하중(130)과 연결된 공급라인(128S)과 리턴라인(128R)을 갖는 열교환기(128)를 포함할 수 있다. 상기 열교환기(128)는 증발기(126) 내에 복수의 튜브다발을 포함할 수 있다. 물 또는 어떤 다른 적절한 2차 액체, 예를 들면 에틸렌, 칼슘 클로라이드 브라인 또는 솔듐 클로라이드 브라인이 될 수 있는 2차 액체는 리턴라인(128R)을 통해 증발기(126)에 유입되고, 공급라인(128S)을 통해 증발기(126)에서 배출된다. 증발기(126) 내에서 액체냉매는 열교환기(128)에서 2차 액체와 열교환하여 열교환기(128)의 2차 액체의 온도를 냉각시킨다. 증발기(126)에서 액체 냉매는 열교환기(128)에서 2차 액체와 열교환함으로써 상변화하여 냉매 증기로 된다. 증발기(126) 내의 증기 냉매는 증발기(126)에서 배출되고 흡입 라인(123)에 의해 압축기(108)로 리턴되어 한 싸이클이 완료된다. 시스템(100)이 바람직한 구현예에 따른 응축기(112) 및 증발기(126)에 의해 설명되었지만, 응축기(112) 및 증발기(126)에서의 냉매의 적절한 상 변화가 이루어진다면 응축기(112) 및 증발기(126)의 어떠한 적절한 배치도 시스템(100)에서 사용될 수 있다고 이해될 것이다.
컨트롤 패널(140)은 시스템(100)으로부터 입력신호를 받기 위해 A/D 컨버터(148)를 가지며 시스템(100)의 성능을 나타낸다. 예를 들면, 컨트롤 패널(140)에 의해 받은 입력신호는 증발기(126)에서 배출되는 냉각 액체의 온도, 증발기(1126) 및 응축기(112)에서의 냉매 압력 및 압축기 배출통로에서 음향 또는 소리의 압력을 포함한다. 컨트롤 패널(140)은 시스템(100)의 작동을 조절하기 위해 인터페이스 보드(146)를 통해 시스템(100)의 구성들에 신호를 전송하여 통신한다. 예를 들면, 컨트롤 패널(140)은 선택적인 핫 바이패스 밸브(134)의 위치를 조절하고, 만약 존재한다면 VGD(119)에서 확산링(210)의 위치를 조절하기 위해 신호를 전송할 수 있다.
컨트롤 패널(140)은 컨트롤 알고리즘을 사용하여 시스템(100)의 작동을 조절하고, 본 명세서의 목적을 위해 스톨 및 서지 조건이 없는 시스템 및 압축기의 안정성을 유지하기 위해 특정한 압축기의 조건에 응답함으로써, VGD(119)에서 확산링(210)을 언제 연장 및 후퇴시킬 지를 결정한다. 추가적으로, 컨트롤 패널(140)은 컨트롤 알고리즘을 사용하여 만약 존재한다면 시스템 및 압축기의 안정성을 유지하기 위해 특정한 압축기의 조건에 응답함으로써 상기 핫 가스 바이패스밸브(HGV)(134)를 개폐한다. 일구현예로서, 상기 컨트롤 알고리즘은 마이크로프로세서(150)에 의해 수행될 수 있는 일련의 지시를 갖는 비활성 메모리(144)에 저장된 컴퓨터 프로그램일 수 있다. 상기 컨트롤 알고리즘은 컴퓨터 프로그램에서 구현되고, 마이크로프로세서(150)에 의해 수행되지만, 상기 컨트롤 알고리즘이 디지털 및/또는 아날로그 하드웨어를 이용하여 구현되고 수행될 수 있다는 것이 당업자에게 이해될 것이다. 하드웨어가 알고리즘을 수행하기 위해 사용된다면, 컨트롤 패널(140)의 대응하는 구성은 필요한 구성요소들을 구체화하고 더이상 필요없는 어떤 구성요소, 예를 들면 A/D 컨버터(148)를 제거하기 위해 변화될 수 있다.
컨트롤 패널(140)은 다양한 센서 및 냉각시스템의 제어장치와 통신하기 위해 아나로그-디지털(A/D) 및 디지털-아날로그(D/A) 컨버터(148), 마이크로프로세서(150), 비활성메모리 또는 다른 메모리 장치(144) 및 인터페이스 보드(146)를 포함할 수 있다. 게다가, 컨트롤 패널(140)은 사용자가 컨트롤 패널(140)과 상호작용하는 것을 허용하기 위해 사용자 인터페이스(194)를 포함하거나 이에 연결될 수 있다. 상기 사용자는 사용자 인터페이스(194)를 통해 컨트롤 패널(140)에 명령을 입력하고 선택할 수 있다. 게다가, 사용자 인터페이스(194)는 컨트롤 패널(140)로부터 냉각시스템(100)의 작동상태에 관한 메시지 및 정보를 사용자에게 보여줄 수 있다. 사용자 인터페이스(194)는 냉각시스템(100) 또는 컨트롤 패널(140)에 장착되는 것처럼 컨트롤 패널(140)에 국부적으로 위치될 수 있고, 또는 냉각시스템(100)에서 따로 떨어진 제어부에 위치하는 것처럼 컨트롤 패널(140)에서 멀리 위치할 수 있다.
마이크로프로세서(150)는 압축기(108), VSD(120), 응축기(112) 및 냉각시스템(100)의 다른 구성요소들을 포함하는 냉각시스템(100)을 제어하기 위해 단일의 중심 제어 알고리즘 또는 제어시스템을 사용하거나 실행시킬 수 있다. 일 구현예로서, 상기 제어시스템은 마이크로프로세서(150)에 의해 실행가능한 일련의 지시를 갖는 컴퓨터 프로그램 또는 소프트웨어일 수 있다. 다른 구현예로서, 상기 제어시스템은 당업자에 의해 디지털 및/또는 아날로그 하드웨어를 이용하여 구현되고 실행될 수 있다. 또 다른 구현예로서, 컨트롤 패널(140)은 다수의 컨트롤러를 포함하고, 상기 컨트롤러는 각각 분리된 기능을 수행하고, 컨트롤 패널(140)의 출력을 결정하는 중심 컨트롤러를 갖는다. 하드웨어가 제어 알고리즘을 실행하기 위해 사용된다면, 컨트롤 패널(140)의 상응하는 구성은 필요한 구성을 포함하고 더이상 필요하지 않은 어떤 구성도 제거하기 위해 변화될 수 있다.
냉각시스템(100)의 컨트롤 패널(140)은 냉각시스템(100)의 구성요소로부터 많은 다른 센서 입력을 받을 수 있다. 컨트롤 패널(140)에 대한 센서 입력의 몇가지 예가 아래에서 제공되지만, 컨트롤 패널(140)은 냉각시스템(100)의 구성요소로부터 어떠한 바람직한 또는 적절한 센서 입력을 받을 수 있다. 압축기(108)에 관한 컨트롤 패널(140)에의 몇가지 입력은 압축기의 출구 온도 센서, 압축기의 오일온도센서, 압축기의 오일 입구 압력센서 및 VGD 위치센서로부터 받는다.
컨트롤 패널(140)에서 마이크로프로세서(150)에 의해 실행되는 상기 중심 제어 알고리즘은 바람직하게는 VSD(120)를 거쳐 모터(152)의 속력을 제어하기 위해 제어 프로그램 또는 알고리즘의 용량을 포함함으로써, 압축기(108)로부터 바람직한 용량을 발생시켜 냉각하중을 만족시키기 위해 압축기(108)의 속력을 포함한다. 상기 용량 제어프로그램은 바람직하게는 증발기(126)에서 배출되는 냉각액체의 온도에 직접적으로 응답하여 자동적으로 모터(152) 및 압축기(108)의 바람직한 속도를 결정할 수 있고, 상기 온도는 냉각시스템(100)에서 요구되는 냉각하중의 표시이다. 원하는 속도를 결정한 후, 컨트롤 패널(140)은 VSD(120)에 제어신호를 보내거나 전송함으로써, 모터(152)의 속도를 제어할 수 있다. 또 다른 구현예로서, 모터(152)는 고정된 속도, 고정된 전압 및 주파수에서 작동될 수 있고, VSD(120)로부터 동력을 받지 않을 수 있다.
상기 용량 제어 프로그램은 예정된 범위내에서 냉각시스템(100)의 선택된 파라미터를 유지하기 위해 구성될 수 있다. 이러한 파라미터는 발동기 속도, 냉각 액체의 출구온도, 발동기의 동력 출력 및 최소 압축기 속도 및 가변 결합구조 확산기 위치를 위한 안티-서지 한계를 포함한다. 상기 용량 제어프로그램은 시스템의 냉각하중의 변화에 따라 모터(152) 및 압축기(108) 속도를 변화시키고 지속적으로 모니터하기 위해 여기에서 설명된 다양한 작동 파라미터를 모니터링 하는 센서로부터 지속적인 피드백을 받을 수 있다. 즉, 냉각 시스템(100)이 추가로 또는 감소된 냉각용량을 요구하는 것처럼, 냉각기(100)에서 압축기(108)의 작동 파라미터들이 새로운 냉각 용량 요구에 따라 상응하게 업데이트되거나 변경된다. 최고 작동 효율을 유지하기 위해 압축기(108)의 작동속도가 제어알고리즘의 용량에 의해 자주 변화되거나 조정될 수 있다. 더우기, 시스템 하중 요구와 별개로, 용량 제어프로그램은 또한 냉각시스템(100)에서 냉매의 부피측정 유동률을 최적화하고 압축기(108)의 합성효율을 최대화하기 위해 차별적인 냉각 시스템 압력을 지속적으로 모니터할 수 있다.
모터(152)는 가변속도로 구동될 수 있는 유도(Induction) 모터(152)일 수 있다. 유도 모터(152)는 2극, 4극 또는 6극을 포함한 어떠한 적절한 극 배치를 포함할 수 있다. 유도모터(152)는 하중, 예를 들면 도 1에 도시한 압축기(108)를 구동하는데 사용된다. 또 다른 구현예로서 모터(152)는 영구자석 회전자를 갖는 동기모터일 수 있다. 일구현예로서, 상기 시스템(100) 및 용량 제어방법은 냉각시스템의 압축기를 구동하는데 사용된다.
도 2는 본 명세서의 예시적인 구현예에 따른 압축기(108)의 부분 단면도를 도시한다. 압축기(108)는 냉매 증기를 압축하는 임펠러(201)를 포함한다. 상기 압축된 증기는 그리고나서 확산기(diffuser)(119)를 통과한다. 확산기(119)는 바람직하게는 가변 결합구조를 갖는 날개없는 방사형 확산기이다. 가변 결합구조 확산기(VGD;variable geometry diffuser)(119)는 냉매증기의 통과를 위해 확산판(206)과 노즐 베이스 판(208) 사이에 형성된 확산공간(204)을 갖는다. 노즐 베이스판(208)은 확산링(210)을 갖도록 구성된다. 확산링(210)은 확산공간 또는 통로(202)를 통해 지나가는 냉매증기의 속도를 제어하기 위해 사용된다. 확산링(210)은 상기 통로를 통해 흐르는 증기의 속도를 증가시키기 위해 확산기 통로(202)로 연장될 수 있고, 상기 통로를 통해 흐르는 증기의 속도를 감소시키기 위해 확산기 통로(202)에서 후퇴될 수 있다. 확산링(210)은 가변 결합구조의 VGD(119)를 제공하기 위해 액튜에니터(650)(도 6a 참조)에 의해 구동되는 조정 메카니즘(212)을 이용하여 연장되고 후퇴될 수 있다. 한 종류의 VGD(119)의 구성요소 및 작동의 더욱 상세한 설명은 가변 결합구조 확산 메카니즘의 제목으로 2002년 12월 6일에 출원된 미국 특허출원번호 10/313,364에 개시되어 있고, 상기 특허는 여기서 참조문헌으로 포함된다. 그러나, 어떠한 적절한 VGD(119)도 본 발명에 사용될 수 있는 것으로 이해되어야 한다. 또한, 하나 이상의 VGD(119)는 임펠러 또는 임펠러들(201)을 위해 냉매의 흐름을 제어하기 위해 사용될 있고, 이에 따라 압축기(108)의 용량을 조절할 수 있다. VGD(119)는 상기 냉매 흐름이 실질적으로 압축기(108)로부터 방해받지 않는 실질적으로 개방된 위치와 상기 압축기(108)의 밖으로 나온 냉매 흐름이 제한되는 실질적으로 막힌 위치 사이의 어떤 위치에도 위치할 수 있다. VGD(119)가 막힌 위치에 있을 때 압축기(108)에서 나온 냉매의 흐름을 완전히 막을 수 없을 수도 있다는 것이 이해되어야 한다. 조정 메카니즘(212)은 분리된 단계에서 연속적으로 또는 증가적으로 확산기 갭을 개폐할 수 있다.
상기 용량 제어 장치는 안티 서지 수단을 제공하도록 근본적으로 지배될 수 있다. 하나의 구현예로서, 상기 용량 제어 프로그램은 모터(152)(및 압축기(108))의 속도와, 증발기(126)에서 배출된 냉약 액체 온도(LCLT)의 변화에 따라 핫 가스 바이패스 밸브(134)의 위치를 제어할 수 있다. 도 4-7은 본 발명의 일 구현예에 따른 용량제어 프로그램의 용량 제어과정을 도시한다. 도 4는 시스템의 헤드 압력 가변(C_SYSTEM HEAD)와 VGD(119) 위치 제어 알고리즘(602)(예를 들면 도 6a 참조)을 결정하기 위해 제어를 감지하는 시스템의 헤드 압력을 일반적으로 도시한다. 블록 402에서 상기 시스템은 증발기 압력을 감지하고, 블록 404에서 상기 시스템은 응축기 압력을 감지한다. 블록 406에서는 블록 402로부터 받은 증발기 압력값이 블록 404의 응축기 압력으로부터 감해진다. 상기 증발기 압력값과 블록 404의 응축기 압력값 사이의 차이가 시스템의 헤드 압력을 발생시킨다. 시스템의 헤드 압력은 또한 포화 온도 조건에서 차이 처럼 다른 방법에 의해 정의될 수 있다. 상기 파라미터의 관심은 예를 들면 가스 또는 냉매의 질량 흐름이다. 가스/냉매의 질량 흐름은 또한 온도의 아날로그이거나 적절한 기구를 이용하여 직접 측정될 수 있다. 시스템의 헤드 또는 차별적인 압력은 질량 흐름의 유사한 파라미터 표시이다. 가스/냉매의 질량흐름은 온도에 유사하거나, 또는 적절한 기구를 이용하여 직접 측정될 수 있다.
상기 응축기 압력은 또한 비례적인/필수의/2차적인(PID;proportional/integral/derivative) 방출 보조수동장치(discharge override)를 위해 설정 포인트 값, 예를 들면 180 psi으로 블록 408에 입력된다. 유사하게는, 상기 증발기 압력은 블록 412에서 PID 비례적인 필수의 2차적인 방출 보조수동장치에 설정 포인트 값, 예를 들면 28 psi로 입력된다. 블록 408로부터 출력신호와 블록 412로부터 출력신호는 낮은 셀렉터 릴레이(LSR)에 입력되고, LSR은 두개의 변수 중 더 낮은 값을 심볼(B)에 의해 지시된 것처럼 도 4에서 다음 제어 과정 다이어그램에 보낸다.
다음 도 4 & 5를 참조하면, LSR(416)의 출력신호는 또 하나의 LSR(502)에 입력된다. 상기 시스템에서 배출되는 냉각된 물의 온도는 블록 508에서 감지된다. 상기 감지된 냉각수온은 블록 510에서 프로세스 변수(PV)로 PID 냉각수온 조절에 입력된다. 상기 냉각수온은 시간간격,예를 들면 조절 사용자(515)로부터 생기는 냉각수온의 설정포인트 당 화씨온도(℉)에서 예정된 변화율로 온도를 조절하기 위해 블록 512에서 설정포인트 제어 출력과 비교된다.
PID 컨트롤러(510)로부터 냉각수온의 제어변수 출력(511)은 두개의 입력값 중 더 낮은 값을 선택하여 더 낮을 값을 출력값으로 내보내는 낮은 셀렉트 릴레이(LSR)(504)에 입력된다. LSR(504)에 두번째 입력은 PID 가열 온도조절(514)로부터 받고, 가열 온도조절(514)은 배출되는 응축기온도(513)와 가열 설정포인트 경사율(516)로부터 결정된다. 가열 설정포인트 경사율(516)은 응축기 물 설정포인트 입력(517)을 받는다. 냉각수 PID 컨트롤러(510)와 가열 온도 제어(513) 중 더 낮은 갓은 LSR(502)에 입력된다. LSR(502)는 LSR(504)의 출력값과 블록 B 418의 시스템 헤드 압력을 나타내는 두번째 입력과 비교한다. LSR(502)은 블록 418과 LSR(504)에서 두개의 입력값 중 더 낮은 값을 선택하고, 선택된 값은 LSR(506)에 입력한다. LSR(506)은 PID 컨트롤러(530)로부터 로드 리미트 출력을 나타내는 두번째 입력을 받는다. PID 컨트롤러(530)는 LSR(506)에 입력되는 로드 리미트값(536)을 결정하기 위해 로드 리미트 설정포인트(534)와, 모터 전부하중의 백분율로서 모터하중(532)을 비교한다. LSR(506)은 입력값(502,536) 중 더 작은 값을 컴퓨팅 릴레이(CR)(540)에 입력한다. CR(540)은 냉각시스템(100) 용량의 3가지 작동범위를 결정하는데 사용된다. 도 3~7의 구현예에서, 용량 제어 장치는 3개의 로딩 범위를 갖도록 고려될 수 있다. 낮은 용량의 로딩 범위에서 시스템 용량은 HGV(134)에 의해 조절되고; 중간 용량의 로딩범위에서 시스템 용량은 VGD(119)에 의해 조절되며, 고 용량 로딩범위에서 시스템 용량은 압축기 속도에 의해 조절된다. 상기 예시적인 구현예는 3개의 용량 제어 장치로 보여지나, 약간의 범위로 분류될 수 있다. 용량 제어 방법은 상대 효율에 근거하여 언로드된 용량값에 가장 가까운 범위의 서브 구간에 할당된다. 예시적인 구현예서 HGV는 가장 효율적이지 못한 용량 제어방법에 대응한다. 가장 효율적인 용량 제어방법은 로드된 용량값과 관련된 용량범위의 서브 구간에 할당되고, 상기 예시적인 구현에서 용량값은 속도 조절이고, 왜냐하면 일반적으로 용량 조절의 가장 효율적인 방법으로 고려된다. 예시적인 구현예로서, 상기 중간 범위는 가장 많이 언로드되고 가장 많이 로드되는 것을 나타내는 범위 사이에서 용량 로딩 범위의 중심 서브 구간이다. 상기 VGD는 중간 용량 로딩 범위에서 용량을 조절하기 위해 할당된다. 상기 압축기 시스템은 완전히 언로드된 것에서 완전히 로드된 것까지 하중 면에서 증가함에 따라, 용량 장치는 분리된 전체 범위에 따라 순차적으로 적용될 수 있다. 압축기 속도 설정포인트를 언로딩하거나 로딩할 때, VGD 위치 및 HGV 위치가 연속적으로 결정되고 압축기 시스템에 부과된 하중을 공급하기 위해 효율적인 작동을 얻을 수 있도록 조정된다. 안티-서지(anti-surge) 또는 안티-스톨(anti-stall) 알고리즘(예를 들면, 알고리즘 1 및 알고리즘 2 참조)에 의해 불안정한 것으로 정의되는 어떤 구간도 피하거나 넘어야할 불안정한 범위로 생각될 수 있고, 상기 압축기는 작동범위에 들어가지 못하게 하고, 전체구간의 다음 서브구간은 LSR4의 전체 알고리즘 상류부에 의해 명령을 받는 것처럼 시스템의 로딩 또는 언로딩을 만족시키기 위해 채용된다.
도 6a를 참조하면, 첫번째 리미트 릴레이(542)는 경로 620을 선택하고, 리미트 릴레이(542)의 출력값을 컴퓨팅 릴레이(CR)(622)에 입력한다. CR(622)은 높은 셀렉트 릴레이(HSR)(624)에 입력하기 위해 용량 범위값의 백분율을 계산한다. HSR(624)은 CR(622) 및 핫 가스 밸브(HGV) 램프(RAMP)(626)로부터 용량 범위 출력 중 더 높은 값을 선택하고, 그것은 시간 간격당 백분율 변화를 제한한다. CR(622)로부터 용량 범위 출력과, HSR(624)로부터 램프(626) 또는 변화 제한 알고리즘의 HGV 율 중 더 큰 값이 HGV(625)에 입력된다.
상기 제어 개요의 가변 결합구조 확산기 용량 제어부(600)는 파선에 의해 지시된다. CR(612)은 100%~200% 범위의 용량 신호(610)를 받는다. CR(612)은 경로 610으로부터 입력값에서 100을 뺌으로써(Input-100), 범위를 정상화하거나 재설계하여 100%~200%의 범위를 나타낸다. LSR(614)은 그 다음 첫째 입력에서 CR(612)의 출력과, 두번째 입력에서 가변 결합구조 확산기 램프 범위(615)를 받고, LSR(614)은 제1 및 제2입력신호 중 더 낮은 값을 선택하여 선택된 값을 LSR(616)에 입력한다. LSR(616)에서 두개의 LSR(614) 값 중 더 낮은 값이 출력되고, 안티-스톨 컨트롤러(710)의 출력신호(715)(예를 들면 도 7 참조)가 선택되고, 상기 선택된 값은 HSR(618)에 입력된다. HSR(618)은 LSR(616)의 출력과, 박스 602와 최소의 안티-서지 위치를 계산하는 리미트 스위치(603)의 출력을 받는다. 상기 최소 안티-서지 위치는 박스 602의 알고리즘 1을 적용함으로써 발생된다. 박스 602에 적용된 알고리즘은 다음과 같다.
Figure pct00001
[알고리즘 1]
알고리즘 1은 1과 100% 사이의 백분율값처럼 필요한 시스템 용량 Y를 결정한다. 여기서;
PD = 시스템의 실제적인 헤드 압력
PD1 = 최대 시스템 헤드 압력
PD2 = 최소 시스템 헤드 압력
MVP1 = 최소 가변 결합구조 확산기의 높은 헤드 압력
MVP2 = 최소 가변 결합구조 확산기의 낮은 헤드 압력
알고리즘 1은 안티-서지 위치를 계산하는 방법이고, 일례로 제공되지만, 본 명세서는 상기 안티-서지 위치를 계산하는 특별한 방법에 한정되지 않는다. 상기 시스템의 실제적인 헤드 압력은 도 3에 관하여 설명된 바와 같이 결정되고, 알고리즘 602에 입력된다.
HSR(618)로 돌아가면, 알고리즘 602의 필요한 시스템 용량은 LSR(616)의 출력과 비교된다. LSR(616)의 출력은 안티-스톨 제어신호(715) 또는 시스템 용량의 요구 신호 중 더 낮은 값을 나타낸다. 리미트 스위치(603) 및 LSR(616) 중 더 높은 값은 위치 컨트롤러(640)를 통해 가변 결합구조 확산기 모터를 제어하기 위해 적용된다. 일 구현예로서, 위치 컨트롤러(640)는 가변 결합구조 확산기의 펄스폭변조(PWM) 위치 컨트롤러이다. 위치 컨트롤러(640)는 블록 644에서 결정되는 현재의 가변 결합구조 확산기 위치의 기준 입력에 근거한 출력 신호를 결정한다.
전술한 바와 같이, 도 3 내지 7에서 설명된 제어 개요는 압력 상에서 보조수동장치 제한, 요구 제한, 안티-서지 제어, 및 초기 스톨 회피 제어를 조건으로 압축기 시스템의 필수적인 용량 조절을 제공한다. 상기 압축기 시스템의 용량 조절은 PRV의 필요없이 VGD(119)의 사용으로 완성된다. 도 4를 참조하면 LSR4(506)의 결과는 예정된 아날로그 값 범위에 의해 나타내지는 것처럼 냉각기를 언로드하거나 로드하기 위해 명령을 제공한다. 이러한 범위의 일 극단에서 상기 명령은 완전히 언로드되고, 이러한 범위의 타 극단에서 완전히 로드된다. 상기 컴퓨팅 릴레이(540), 리미트 스위치(542), 리미트 스위치(544) 및 리미트 스위치(546)의 조합의 구현은 아날로그 값의 범위를 예정된 서브구간으로 나누는데 사용되고, 하나의 서브구간은 도 4에 관한 성기 설명처럼 각 용량 제어장치를 위한 것이다. 컴퓨팅 릴레이(632)는 정상화된 신호를 HSR(634)에 보낸다. HSR(634)은 제2입력신호를 받고, 박스 632로부터 최소 속도의 설정포인트 Y를 나타내는다. 상기 최소 속도 설정포인트 Y는 박스 638에서 다음과 같은 알고리즘 2의 적용에 의해 결정된다:
Figure pct00002
[알고리즘 2]
알고리즘 2는 안티-서지 계산용 최소속도 Y를 결정하고, 여기서:
SPD1 = 시스템 헤드 압력의 최대값
SPD2 = 시스템 헤드 압력의 최소값
MSP1 = 높은 헤드 압력의 최소 속도
MSP2 = 낮은 헤드 압력의 최소 속도
압축기(108)의 최소 회전속도는 압축기(108)의 헤드 압력 요구조건을 나타내는 차별적인 압력에 의해 정의되고, 압축기(108)의 회전속도와 비교되며, 질량 흐름을 전부 개방된 확산기 틈새로 나타낸다. 압축기(108)의 각각의 주어진 헤드 압력 요구를 위해, 서지 조건이 압축기(108)에서 발생하는 것을 방지하기 위해 필요한 대응하는 최소회전속도가 있다. 알고리즘 2는 압축기(108)를 위해 안티-서지 로직의 예시적인 구현을 나타낸다. 전술한 상기 파라미터는 경험적으로 또는 알고리즘 2와 유사한 서지 탐지 알고리즘에 의해 결정될 수 있다. 다른 서지 탐지 알고리즘은 당업자에게 알려져 있고, 그것은 알고리즘 2를 대신할 수 있다.
최소의 가스 흐름이 또한 방출 확산기 갭(202)의 차단 시 고려될 수 있다. 각각의 헤드 압력 요구에 있어서, 확산기가 압축기(108)의 임펠러 휠(201)을 통해 지나는 예정된 질량 흐름을 제어하기 위해 필요한 대응하는 최소의 개구 또는 틈새폭이 있다. 만약 상기 확산기 폭이 너무 크면, 확산기가 압축기(108)를 통해 질량 흐름을 방해함으로써, 압축기(108)에 서지를 발생시킬 것이다. 알고리즘 2는 안티-서지 알고리즘(602)(도 6a)의 예시적인 구현예이다.
제로(0)와 전체 모터 속도의 100% 사이의 백분율로서 상기 압축기 모터 속도는 컴퓨팅 릴레이(CR)(632)로부터 속도범위 백분율 출력과 비교되고, 두개의 백분율 중 더 높은 백분율이 가변 속도 구동(VSD)에 입력되고, 상기 가변속도구동은 압축기 구동모터의 속도에 따라 조정한다. 도 6의 구현예에 도시한 것처럼, CR(632)로부터 속도 백분율 출력과 CR(636)의 안티-서지 속도값 출력 중 더 큰 값을 나타내는 HSR(634)의 출력은 CR(635)에 적용된다. CR(635)은 입력값을 CR(634)에서 제로로부터 모터의 최고속도인 100%까지의 범위의 비례적인 신호로 변환하고, 블록 637에서 속도 설정포인트를 출력한다. 상기 블록 637로부터 속도 설정포인트 신호는 압축기 모터 속도를 조절하기 위해 VSD에 입력된다. 선택적인 셀렉터 스위치(639)는 HSR(634) 및 CR(635) 사이에 연결되어 수동적인 속도 설정포인트 선택을 허용한다.
다음 도 7을 참조하면, 안티-스톨 제어유닛(700)은 방출 스톨 압력센서(712)를 포함한다. 센서(712)로부터 신호는 가변 결합구조 확산기 스톨 탐지기 보드(714)에 적용될 수 있고, 상기 방출 압력을 나타내는 신호가 처리되고, 프로세스 변수로서 안티-스톨 직접-작용(DIR;Direct-Acting) 컨트롤러(710)에 입력된다. 스톨 탐지기 보드(714)는 컨트롤 패널(140) 안에 포함되거나 컨트롤 패널(140)과 데이터 통신되는 별개의 독립 모듈에 포함될 수 있다. 실제적인 방출 압력이 한세트의 스톨관련 파라미터를 발생시키기 위해 처리되고, 상기 파라미터는 한세트의 스톨관련 설정포인트 값(713)과 비교되고, 포함되지만 다음에 제한되지 않는다: 노이즈 전압 데드밴드(deadband), 시작 위치, 최대 및 최소 제어변수(CV), 탐침율(Probe rate), 대기시간, 반응 램프, 및 신호 설정포인트 스톨문턱값.
안티-스톨 알고리즘은 일반적으로 도 7에서 구체화된다. 스톨 언로드 신호(715)는 안티-스톨 컨트롤러(710)로부터 출력된다. 높은 노이즈 조건이 상기한 스톨 파라미터의 결과로 탐지될 때 안티-스톨 알고리즘은 언로드 알고리즘처럼 압축기 제어 개요로 완성된다. 스톨 언로드 신호(715)는 HSR(618)에서 상기 알고리즘 1에 의해 분리된다. 복수의 설정포인트(713)는 컨트롤러(710)에 삽입되고, 가변 결합구조 확산기 노이즈 데드밴드, 가변 결합구조 확산기 조사율, 대기시간, 반응/램프율 최대 CV 및 최소 CV를 포함하나 이에 한정되지 않는다.
또 다른 구현예로서, 용량 조절 시스템은 증기터빈을 이용하여 압축기(108)를 구동하는데 사용된다. 상기 증기 터빈은 압축기(108)를 구동하도록 양자택일의 발동기(114)를 제공하기 위해 도 1에 도시된 VSD(120)와 모터(152)를 대체할 수 있다. 통상 "증기 터빈에 의해 구동되는 냉각 유닛을 위한 통합 적응 용량 제어"라는 명칭으로 등록된 미국특허번호 7,328,587호는 여기서 참고문헌으로 포함되고, 압축기에 제공된 냉매의 흐름을 제어함으로써 압축기 용량을 조절할 수 있는 하나 또는 그이상의 PRV 또는 입구 가이드 날개를 갖는 증기 터빈으로 구동되는 냉각 유닛을 개시한다. 증기터빈으로 구동되는 냉각시스템은 PRV를 제거하기 위해 변경되고, VGD(119)를 포함하고, 도 3 내지 7과 관련하여 상기 설명된 것처럼 제어들을 포함한다.
도 1에 도시된 구현예에서, 핫 가스 바이패스 연결(133) 및 HGV(134)는 냉매 응축기(116)와 증발기(126)를 연결하고, 팽창 장치(22)를 우회시킨다. 또 다른 구현예에서, 핫 가스 바이패스 연결(133) 및 핫 가스 바이패스 밸브(134)는 압축기 흡입라인(123)과 압축기 배출라인(113)을 연결한다. 핫 가스 바이패스 밸브(134)는 바람직하게는 압축기(108)의 배출라인(113)에서 냉매 응축기(116)와 증발기(126)를 거쳐 압축기(108)의 흡입라인(123)으로 재순환시키기 위해 압축기용 재순환 라인으로 사용된다. 핫 가스 바이패스 밸브(134)는 냉매 흐름이 본질적으로 막히지 않은 실질적으로 개방된 위치와, 냉매 흐름이 제한되는 실질적으로 밀폐된 위치 사이의 어떤 위치에도 적용될 수 있다. 핫 가스 바이패스 밸브(134)는 연속적인 방식 또는 계단식 또는 증가하는 방식으로 개폐될 수 있다. 핫 가스 바이패스 밸브(134)의 개방은 서지 조건이 압축기(108)에서 발생하지 못하게 하기 위해 압축기 흡입에 공급된 냉매가스의 양을 증가시킬 수 있다.
도 8은 냉각시스템(100)의 제어시스템(140)의 구현에 따른 개략도를 보여주고, 추가적인 입력을 완성하고 발동기(114)의 작동을 제어하기 위해 변경된다. 도 8에 도시한 바와 같이, 컨트롤 패널(140)은 냉각 시스템(100)의 다양한 센서와 제어장치들과 통신하기 위해 아날로그-디지털(A/D)컨버터(148) 및 디지털-아날로그(D/A) 컨버터(149), 마이크로프로세서(150), 비활성메모리 또는 다른 메모리 장치(144) 및 인터페이스 보드(146)를 포함할 수 있다. 게다가, 컨트롤 패널(140)은 사용자가 컨트롤 패널(140)과 상호작용하는 것을 허용하도록 사용자 인터페이스(194)를 포함하거나 이에 연결될 수 있다. 상기 사용자는 사용자 인터페이스(194)를 통해 컨트롤 패널(140)에 명령을 선택 및 입력할 수 있다. 게다가, 사용자 인터페이스(194)는 냉각시스템(100)의 작동상태에 관하여 컨트롤 패널(140)로부터 메시지 및 정보를 사용자에게 표시한다. 사용자 인터페이스(194)는 냉각시스템(100) 또는 컨트롤 패널(140)에 장착되는 것처럼 컨트롤 패널(140)에 국부적으로 위치할 수 있고, 또는 다른 대안으로 사용자 인터페이스(194)는 냉각시스템(100)에서 떨어져 분리된 제어실에 위치되는 것처럼 컨트롤 패널(140)에서 멀리 떨어져 위치할 수 있다.
마이크로프로세서(150)는 압축기(108), 발동기(114) 및 냉각시스템(100)의 다른 구성요소를 포함하는 냉각시스템(100)을 제어하기 위해 단일의 또는 중심 제어 알고리즘 또는 제어시스템을 사용하거나 실행할 수 있다. 일 구현예로서, 상기 제어시스템은 마이크로프로세서(150)에 의해 실행가능한 일련의 지시를 갖는 소프트웨어 또는 컴퓨터 프로그램일 수 있다. 다른 구현예로서, 상기 제어시스템은 당업자에 의해 디지털 및/또는 아날로그 하드웨어를 이용하여 구체화되거나 실행될 수 있다. 또 다른 구현예로서, 컨트롤 패널(140)은 다수의 컨트롤러를 포함할 수 있고, 각각의 컨트롤러는 분리된 기능을 수행하고, 컨트롤 패널(140)의 출력을 결정하는 중심 컨트롤러를 갖는다. 하드웨어가 제어 알고리즘을 실행하기 위해 사용된다면, 컨트롤 패널(140)의 통신 구성이 필요한 구성요소를 포함하고 더이상 필요없는 어떤 구성요소도 제거하기 위해 변화될 수 있다.
냉각시스템(100)의 컨트롤 패널(140)은 냉각시스템(100)의 구성요소로부터 많은 다른 센서 입력을 받을 수 있다. 컨트롤 패널(140)에 보내는 센서 입력의 몇가지 예는 아래에 제공되나 제어 시스템이 냉각 시스템(100)의 구성요소로부터 어떠한 바람직한 또는 적절한 센서 입력을 받을 수 있는 것이 이해되어야 한다. 압축기(108)에 관한 컨트롤 패널(140)에의 몇가지 입력은 압축기 출구 온도센서, 압축 오일 온도센서, 압축기 오일 입구 압력센서 및 가변 결합구조 확산기 위치센서로부터 올 수 있다.
냉매 응축기(112)에 관한 컨트롤 패널(140)에의 몇가지 입력은 유입되는 냉매 응축기 물의 온도센서, 배출되는 응축기 물의 온도센서, 냉매 액체 온도센서, 냉매 응축기 압력센서, 서브쿨러 냉매 액체 수위센서, 및 냉매 응축기 물의 유동센서로부터 올 수 있다. 증발기(128)에 관한 컨트롤 패널(140)에의 몇가지 입력은 배출되는 냉각 액체의 온도센서, 리턴되는 냉각 액체의 온도센서, 증발기 냉매 증기의 압력센서, 냉매 액체의 온도센서 및 냉각수의 유동센서로부터 올 수 있다. 게다가, 컨트롤러(140)에의 다른 입력은 서모스탯 또는 다른 온도조절장치로부터 HVAC&R 요구 입력을 포함한다.
더우기, 냉각시스템(100)의 컨트롤 패널(140)은 냉각시스템(100)의 구성요소를 위해 많은 다른 제어신호를 공급 또는 발생시킬 수 있다. 컨트롤패널(140)로부터 제어신호의 몇가지 예가 아래에 제공되나, 컨트롤 패널(140)이 냉각시스템(100)의 구성요소를 위한 어떠한 바람직한 또는 적절한 제어신호를 제공할 수 있다는 것이 이해되어야 한다. 컨트롤 패널(140)로부터 몇가지 제어신호는 압축기 오일 히터 제어신호, 가변 속도 오일펌프 제어신호, 핫 가스 바이패스 밸브 제어신호, 서브쿨러 냉매 액체의 수위제어신호, 가변 결합구조 확산기 위치제어신호를 포함할 수 있다. 게다가, 기술자가 셧다운(Shut down) 명령을 사용자 인터페이스(194)에 입력하거나, 이상이 메모리 장치에 기록된 미리 선택된 파라미터로부터 탐지될 때 컨트롤패널(140)은 발동기(114)를 막기 위해 신호를 보낼 수 있다.
또한 중심 제어 알고리즘은 냉각시스템(100)의 시동과 일상적인 작동 중 냉각시스템(100)을 위한 다양한 작동 파라미터의 모니터링 기능을 컨트롤 패널(140)에 제공하는 다른 알고리즘 및/또는 소프트웨어를 포함한다. 어떠한 바람직하지 못한 작동 파라미터가 냉각시스템(100)을 셧다운시키기 위해 로직 기능을 갖는 컨트롤 패널(140)에 프로그램될 수 있다. 또한, 상기 중심 제어 알고리즘은 냉각시스템(100)의 많은 작동파라미터를 위해 미리 선택된 제한을 갖고, 기술자가 수동적으로 냉각시스템(100)을 이러한 제한 외측으로 작동시키지 못하게 할 수 있다.
바람직한 구현예로서, 용량 제어 프로그램은 증발기(126)로부터 배출되는 냉각 액체 온도(LCLT)의 변화에 따라 핫 가스 바이패스 밸브(134)의 위치 및 VSD(119)의 위치, 압축기(108)의 속도를 조절할 수 있다. 도 3-7은 본 발명의 용량 제어 프로그램을 위한 용량 제어 과정의 일 구현예를 도시한다.
도 9를 참조하면, 또 다른 구현예에서 날개가 있는 확산기는 더 높은 압축기 효율을 제공하고, 추가적인 용량 조절을 제공하기 위해 가변 속도 조절과 VGD(119)의 조합으로 사용될 수 있다. 임페러(201)의 저압측에 위치한 PRV와 달리, 날개가 있는 확산기가 임펠러(201)의 고압측에 위치한다. 고압측에서 날개가 없는 원심 압축기가 날개없는 확산기 압축기로 언급된다. 날개가 있는 확산기(174)는 도 9에 도시된다.
상기 출원이 도면에서 도시되거나 다음 설명에서 제공된 방법론 또는 상세한 설명에 한정되지 않는 것으로 이해되어야 한다. 또한 여기서 채용된 어구 및 용어가 설명을 위한 것이고 한정하는 것으로 생각되어서는 아니된다. 상기 개시된 구현예가 특별히 HVAC&R 냉각 시스템의 압축기 용량조절, 프로세스가 주어진 온도 또는 다른 조건에서 냉각 액체 또는 가스를 요구하는 프로세스 장치을 언급하지만, VGD(119)는 압축기(108)의 용량을 조절하기 위해 채용될 수 있다.
단지 본 발명의 어떤 특징 및 구현예가 설명되고 도시되었지만, 많은 변경예 및 변화가 청구항에서 인용된 주제의 잇점 및 새로운 교훈에서 실질적으로 벗어나지 않고 당해기술분야(예를 들면 크기, 치수, 구조, 형상 및 다양한 요소의 비례, 파라미터의 값(예를 들면, 온도 및 압력 등), 장착구조, 재료의 사용, 색깔, 방향 등)에서 당업자에게 발생할 수 있다. 따라서, 첨부된 청구항이 본 발명의 진정한 정신 안에 포함되는 상기한 변화 및 변경을 모두 포함하는 것으로 의도된다는 것으로 이해되어야 한다. 더우기, 예시적인 구현예의 정확한 설명을 제공하기 위한 노력에서, 실제적인 구현의 모든 특징들이 설명되지 않을 수 있다(즉, 본 발명을 실시하는 현재까지 고안된 최상의 모드와 무관하거나, 청구된 발명을 실행하는 것과 무관한). 어떤 공학 또는 설계 프로젝트 처럼 어떠한 실제적인 구현의 발전에서 수많은 수행을 위해 특별히 결정될 수 있는 것으로 평가되어야 한다. 상기 발전을 위한 노력이 복잡하고 시간을 소비하지만, 그럼에도 불구하고 지나친 실험이 없이 이러한 명세서의 잇점을 갖는 보통의 기술을 위해 제조, 설계의 일상적인 보증이 된다.

Claims (27)

  1. 냉매 루프에 의해 연결된 압축기, 냉매 응축기, 및 증발기를 포함하는 가스 압축 시스템의 용량 조절 방법에 있어서,
    압축기의 방출에서 확산기를 제공하는 단계;
    가스 압축 시스템의 하중의 대표값을 감지하는 단계;
    가스 압축 시스템의 시스템 압력 미분을 결정하는 단계;
    상기 가스 압축 시스템의 용량을 조절하기 위해 감지된 하중값과 결정된 시스템 압력 미분에 따라 확산기의 위치를 조절하는 단계:를 포함하여 이루어지는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  2. 청구항 1에 있어서, 상기 압축기를 구동하기 위해 가변속도로 조절가능하게 작동시킬 수 있는 발동기를 제공하는 단계와,
    상기 감지된 하중값과 결정된 시스템 압력 미분에 따라 발동기의 속도를 조절하는 단계를 더 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  3. 청구항 2에 있어서, 상기 가스 압축 시스템의의 고압측과 가스 압축시스템의 저압측 사이의 냉매 흐름을 조절하기 위한 핫 가스 바이패스 밸브를 제공하는 단계; 및
    상기 가스 압축 시스템의 용량을 조절하기 위해 감지된 하중값과 결정된 시스템 압력 미분에 따라 핫 가스 바이패스 밸브를 조절하는 단계를 더 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  4. 청구항 3에 있어서, 상기 발동기의 속도를 조절하는 단계는 원하는 시스템 하중 조건을 유지하기 위해 압축기의 속도를 조절하는 것을 포함하고;
    상기 확산기의 위치를 조절하는 단계는 시스템 압력 미분에 근거하는 예정된 최소위치에 확산기를 배치하는 것을 포함하고; 및
    상기 핫 가스 바이패스 밸브를 조절하는 단계는 밀폐된 위치에 핫 가스 바이패스 밸브를 배치하는 것을 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  5. 청구항 3에 있어서, 복수의 가스 압축 시스템의 작동 파라미터 표시의 서지 조건 또는 초기 스톨 조건을 감지하는 단계;
    서지 조건 또는 초기 스톨 조건의 시작을 탐지하는 단계; 및
    상기 서지 조건 또는 초기 스톨 조건의 시작을 탐지하는 것에 응답하고, 상기 응답을 감지된 하중과 결정된 시스템 압력 미분으로 분리하는 단계를 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  6. 청구항 4에 있어서, 상기 확산기의 예정된 최소 위치는 압축기가 서지조건에서 작동하지 못하게 하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  7. 청구항 3에 있어서, 상기 발동기의 속도를 조절하는 단계는 시스템 압력 미분에 근거하는 예정된 최소 속도에서 압축기를 작동시키는 것을 포함하고;
    상기 확산기의 위치를 조절하는 단계는 원하는 시스템 하중 조건을 유지하기 위해 확산기의 위치를 조정하는 것을 포함하고; 및
    상기 핫 가스 바이패스 밸브를 조절하는 단계는 밀폐된 위치에 핫 가스 바이패스 밸브를 배치하는 것을 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  8. 청구항 4에 있어서, 상기 발동기의 예정된 최소 속도는 압축기가 서지조건에서 작동하지 못하게 하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  9. 청구항 3에 있어서,
    상기 발동기의 속도를 조절하는 단계는 시스템 압력 미분에 근거하여 압축기를 예정된 최소 속도에서 작동시키는 것을 포함하고;
    상기 확산기의 위치를 조절하는 단계는 시스템 압력 미분에 근거하여 확산기를 예정된 최소 위치에 배치하는 것을 포함하고; 및
    상기 핫 가스 바이패스 밸브를 조절하는 단계는 원하는 시스템 하중 조건을 유지하기 위해 핫 가스 바이패스 밸브의 위치를 조정하는 것을 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  10. 청구항 2에 있어서, 상기 확산기의 위치를 조절하는 단계는:
    예정된 시스템 압력 미분에 따라 확산기를 위해 최소 위치를 결정하고, 상기 확산기를 위해 예정된 최소위치는 압축기가 서지 조건에서 작동하지 못하게 하고; 및
    가변 결합구조 확산기의 위치를 상기 예정된 최소 위치에 설정하기 위해 확산기에 제어신호를 보내는 단계를 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  11. 청구항 1에 있어서, 상기 압축기의 속도를 조절하는 단계는:
    예정된 시스템 압력 미분에 따라 압축기의 최소 속도를 결정하고, 상기 결정된 압축기의 최소 속도가 압축기로 하여금 서지조건에서 작동하지 못하게 하고; 및
    상기 압축기의 속도를 상기 결정된 최소 속도에 설정하기 위해 압축기에 제어신호를 보내는 단계를 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  12. 청구항 1에 있어서, 상기 가스 압축 시스템의 하중의 대표값을 감지하는 단계는 증발기로부터 배출되는 냉각 액체 온도를 결정하는 단계를 포함하는 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  13. 청구항 1에 있어서, 상기 시스템 압력 미분을 결정하는 단계는:
    응축기 압력을 측정하고;
    증발기 압력을 측정하고; 및
    상기 시스템 압력 미분을 결정하기 위해 상기 측정된 응축기 압력에서 상기 측정된 증발기 압력을 빼는 단계를 포함하는 가스 압축 시스템의 용량 조절 방법.
  14. 청구항 2에 있어서, 상기 발동기는 증기 터빈인 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  15. 청구항 2에 있어서, 상기 발동기는 가변 속도 구동에 의해 동력이 공급되는 모터인 것을 특징으로 하는 가스 압축 시스템의 용량 조절 방법.
  16. 냉매루프에 의해 연결되는 압축기, 냉매 응축기, 및 증발기를 갖는 가스 압축 시스템에 있어서,
    상기 압축기의 방출시 배치되고 압축기로부터 냉매의 흐름을 조절하기 위해 구성된 확산기; 및
    배출되는 냉각 액체의 온도와 시스템 압력 미분에 따라 가스 압축 시스템의 용량을 조절하기 위해 확산기의 위치를 조정하도록 구성된 용량 조절 시스템을 갖는 중심 컨트롤 패널 가스 압축 시스템을 포함하는 가스 압축 시스템.
  17. 청구항 16에 있어서, 배출되는 냉각 액체 온도와 시스템 미분 압력에 따라 압축기의 속도를 조절하도록 구성된 용량 조절 시스템을 더 포함하는 것을 특징으로 하는 가스 압축 시스템.
  18. 청구항 17에 있어서,
    상기 가스 압축 시스템의 고압측과 상기 압축 시스템의 저압측 사이에 냉매 흐름을 조절하는 핫 가스 바이패스 밸브; 및
    배출되는 냉각 액체의 온도 및 시스템 압력 미분에 따라 가스 압축 시스템의 용량을 조절하기 위해 핫 가스 바이패스 밸브의 위치를 조절하도록 구성된 용량 조절 시스템을 더 포함하는 것을 특징으로 하는 가스 압축 시스템.
  19. 청구항 18에 있어서, 상기 조절 시스템은 서지 조건 또는 초기 스톨 조건의 시작을 탐지하고; 및
    서지 조건 또는 초기 스톨 조건을 감지하는 것에 응답하여 상기 응답을 냉각 액체 온도 및 결정된 시스템 압력 미분으로 분리하도록 더 구성된 것을 특징으로 하는 가스 압축 시스템.
  20. 청구항 18에서, 상기 용량 조절 시스템은 확산기, 핫 가스 바이패스 밸브 및 압축기의 속도를 조절하여 압축기로 하여금 서지 조건에서 작동하지 못하게 하도록 구성된 것을 특징으로 하는 가스 압축 시스템.
  21. 청구항 18에 있어서, 상기 용량 조절 시스템은 가스 압축 시스템의 용량을 조절하기 위해 핫 가스 바이패스 조절 모드, 확산기 조절 모드, 또는 터빈 속도 조절 모드 중 하나로 작동하도록 구성된 것을 특징으로 하는 가스 압축 시스템.
  22. 청구항 21에 있어서, 상기 핫 가스 바이패스 모드는 예정된 최소 터빈 속도 및 예정된 최소 확산기 위치에서 작동하는 것을 포함하고;
    상기 확산기 조절 모드는 밀폐된 핫 가스 바이패스 밸브에 의해 예정된 최소 터빈 속도에서 작동하는 것을 포함하고; 및
    상기 터빈 속도 조절 모드는 밀폐된 핫 가스 바이패스 밸브에 의해 예정된 최소 확산기 위치에서 작동하는 것을 포함하는 것을 특징으로 하는 가스 압축 시스템.
  23. 청구항 16에 있어서, 상기 확산기는 날개를 더 포함하는 것을 특징으로 하는 가스 압축 시스템.
  24. 청구항 23에 있어서, 상기 날개는 낮은 강도 및 높은 강도의 날개 중 하나로부터 선택된 것을 특징으로 하는 가스 압축 시스템.
  25. 청구항 17에 있어서, 증기 루프에 의해 연결된 증기 터빈과 증기 응축기를 더 포함하고, 상기 압축기는 증기 터빈에 의해 구동되는 것을 특징으로 하는 가스 압축 시스템.
  26. 청구항 16에 있어서, 상기 압축기의 속도를 가변시키기 위해 조절가능한 가변 속도 구동을 더 포함하는 것을 특징으로 하는 가스 압축 시스템.
  27. 청구항 16에 있어서, 상기 압축기는 다단 압축기를 포함하고, 상기 다단 압축기의 각 단은 여기에 배치된 방출 확산기를 포함하는 것을 특징으로 하는 가스 압축 시스템.
KR1020107009572A 2007-10-31 2008-10-30 가스 압축 시스템 및 이의 용량 조절 방법 KR101470862B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US98407307P 2007-10-31 2007-10-31
US60/984,073 2007-10-31

Publications (2)

Publication Number Publication Date
KR20100091953A true KR20100091953A (ko) 2010-08-19
KR101470862B1 KR101470862B1 (ko) 2014-12-09

Family

ID=40297735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107009572A KR101470862B1 (ko) 2007-10-31 2008-10-30 가스 압축 시스템 및 이의 용량 조절 방법

Country Status (7)

Country Link
US (1) US8567207B2 (ko)
EP (1) EP2215365B1 (ko)
JP (1) JP5465673B2 (ko)
KR (1) KR101470862B1 (ko)
CN (2) CN101842599B (ko)
TW (2) TWI452208B (ko)
WO (1) WO2009058975A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8463441B2 (en) 2002-12-09 2013-06-11 Hudson Technologies, Inc. Method and apparatus for optimizing refrigeration systems
JP5176574B2 (ja) * 2008-02-06 2013-04-03 株式会社Ihi ターボ圧縮機及び冷凍機
US8291720B2 (en) * 2009-02-02 2012-10-23 Optimum Energy, Llc Sequencing of variable speed compressors in a chilled liquid cooling system for improved energy efficiency
CN102803736B (zh) * 2009-06-05 2016-04-13 江森自控科技公司 控制系统
CN101995126B (zh) * 2009-10-20 2014-11-05 约翰逊控制技术公司 用于控制冷水机组的控制器和计算机化生成的方法及一种三维浪涌图的应用
WO2011049891A1 (en) * 2009-10-21 2011-04-28 Carrier Corporation Centrifugal compressor part load control algorithm for improved performance
JP2011102674A (ja) * 2009-11-11 2011-05-26 Mitsubishi Electric Corp 空気調和機
KR101534518B1 (ko) * 2010-03-08 2015-07-07 존슨 컨트롤스 테크놀러지 컴퍼니 영구자석 동기모터를 제어하기 위한 방법 및 장치
KR102035103B1 (ko) 2010-05-27 2019-10-22 존슨 컨트롤스 테크놀러지 컴퍼니 냉각탑을 채용한 냉각장치를 위한 써모싸이폰 냉각기
US10941770B2 (en) * 2010-07-20 2021-03-09 Trane International Inc. Variable capacity screw compressor and method
US9217592B2 (en) * 2010-11-17 2015-12-22 Johnson Controls Technology Company Method and apparatus for variable refrigerant chiller operation
AU2010365829A1 (en) * 2010-12-22 2013-05-23 Danfoss A/S Variable-speed oil-free refrigerant centrifugal compressor with variable geometry diffuser
WO2012127667A1 (ja) * 2011-03-23 2012-09-27 トヨタ自動車株式会社 遠心圧縮機
JP4924855B1 (ja) * 2011-07-22 2012-04-25 三浦工業株式会社 圧縮機台数制御システム
CN103814261B (zh) * 2011-09-14 2016-06-15 丹佛斯公司 离心压缩机的扩散器控制
EP2705255B1 (en) * 2011-12-01 2017-09-20 Carrier Corporation Surge prevention during startup of a chiller compressor
JP2013209902A (ja) * 2012-03-30 2013-10-10 Anest Iwata Corp 圧縮気体供給ユニット、圧縮気体供給装置及びこれらの制御方法
US10458690B2 (en) * 2012-04-30 2019-10-29 Johnson Controls Technology Company Control system
US9702365B2 (en) * 2012-05-31 2017-07-11 Praxair Technology, Inc. Anti-surge speed control
US9002532B2 (en) 2012-06-26 2015-04-07 Johnson Controls Technology Company Systems and methods for controlling a chiller plant for a building
US9097447B2 (en) 2012-07-25 2015-08-04 Johnson Controls Technology Company Methods and controllers for providing a surge map for the monitoring and control of chillers
EP2906885B1 (en) 2012-10-09 2019-10-02 Carrier Corporation Centrifugal compressor inlet guide vane control
US8931288B2 (en) * 2012-10-19 2015-01-13 Lennox Industries Inc. Pressure regulation of an air conditioner
EP2839167B1 (en) * 2012-11-09 2017-02-08 Johnson Controls Technology Company Variable geometry diffuser having extended travel and control method thereof
CN105074360B (zh) 2012-12-04 2017-12-26 特灵国际有限公司 冷却器容量控制设备、方法和系统
JP5738262B2 (ja) * 2012-12-04 2015-06-17 三菱重工コンプレッサ株式会社 圧縮機制御装置、圧縮機システムおよび圧縮機制御方法
CN105026855B (zh) * 2013-01-25 2017-03-15 特灵国际有限公司 对叶轮失速引起的控制不稳进行检测和恢复的方法和系统
WO2014117013A1 (en) * 2013-01-25 2014-07-31 Trane International Inc. Methods and systems for controlling a chiller system having a centrifugal compressor with a variable speed drive
US9157446B2 (en) 2013-01-31 2015-10-13 Danfoss A/S Centrifugal compressor with extended operating range
US9322341B2 (en) * 2013-03-12 2016-04-26 Pratt & Whitney Canada Corp. System and method for engine transient power response
US9797640B2 (en) * 2013-03-15 2017-10-24 Daikin Applied Americas Inc. Refrigerating apparatus and corresponding control device
US20140260380A1 (en) * 2013-03-15 2014-09-18 Energy Recovery Systems Inc. Compressor control for heat transfer system
WO2015030723A1 (en) 2013-08-27 2015-03-05 Danfoss Turbocor Compressors B.V. Compressor including flow control and electromagnetic actuator
US9382911B2 (en) * 2013-11-14 2016-07-05 Danfoss A/S Two-stage centrifugal compressor with extended range and capacity control features
ES2965756T3 (es) * 2013-12-03 2024-04-16 Flowserve Man Co Bomba difusora giratoria
EP3080527B1 (en) * 2013-12-12 2022-05-04 Johnson Controls Tyco IP Holdings LLP Steam turbine driven centrifugal heat pump
EP3108188B1 (en) 2014-02-17 2020-08-12 Carrier Corporation Vapour compression system
JP2017506307A (ja) 2014-02-20 2017-03-02 ダンフォス・エイ/エス 遠心圧縮機用の制御システム及び方法
US10240838B2 (en) * 2014-08-29 2019-03-26 Emerson Climate Technologies, Inc. Variable speed compressor control with sound-controlled defrost mode
GB2531029B (en) * 2014-10-07 2020-11-18 Cummins Ltd Compressor and turbocharger
US10519958B2 (en) * 2014-10-31 2019-12-31 Trane International Inc. Systems and methods to provide lubricant to a bearing
US11686517B2 (en) 2014-11-14 2023-06-27 Carrier Corporation On board chiller capacity calculation
US20160178262A1 (en) * 2014-12-18 2016-06-23 Clearesult Consulting, Inc. Method and system for pre-cooling
US10952349B2 (en) 2015-01-30 2021-03-16 Hewlett Packard Enterprise Development Lp Scalable coolant distribution unit
KR102162346B1 (ko) 2015-09-08 2020-10-07 한국조선해양 주식회사 가스 압축 공급 장치
RU2018115537A (ru) 2015-11-09 2019-12-09 Кэрриер Корпорейшн Двухкомпрессорная холодильная установка
US20170191718A1 (en) * 2016-01-06 2017-07-06 Johnson Controls Technology Company Vapor compression system
CN105571181B (zh) * 2016-01-12 2017-11-28 珠海格力电器股份有限公司 一种变频离心式冷水机组及其控制调节方法
US10113553B2 (en) 2016-01-12 2018-10-30 Daikin Applied Americas Inc. Centrifugal compressor with hot gas injection
US10962016B2 (en) 2016-02-04 2021-03-30 Danfoss A/S Active surge control in centrifugal compressors using microjet injection
CN106218355A (zh) * 2016-08-24 2016-12-14 常州市武进南夏墅苏南锻造有限公司 空调的热气旁路阀
WO2018047264A1 (ja) * 2016-09-08 2018-03-15 三菱電機株式会社 冷凍サイクル装置
WO2018078491A1 (en) * 2016-10-25 2018-05-03 Atlas Copco Airpower, Naamloze Vennootschap Controller unit for controlling the speed of a motor driving an oil injected compressor and method of controlling said speed
BE1024700B1 (nl) 2016-10-25 2018-06-01 Atlas Copco Airpower Naamloze Vennootschap Regelaar voor het regelen van de snelheid van een motor die een oliegeïnjecteerde compressor aandrijft en werkwijze voor het regelen van die snelheid
TWI607185B (zh) 2016-12-09 2017-12-01 財團法人工業技術研究院 離心式壓縮機之調變機構
CN110603382A (zh) * 2017-03-09 2019-12-20 江森自控科技公司 用于压缩机的收集器
US10801510B2 (en) * 2017-04-24 2020-10-13 Lennox Industries Inc. Method and apparatus for pressure equalization in rotary compressors
US10989210B2 (en) 2017-07-10 2021-04-27 Praxair Technology, Inc. Anti-surge speed control for two or more compressors
US11204187B2 (en) * 2017-07-14 2021-12-21 Danfoss A/S Mixed model compressor
KR102651716B1 (ko) 2017-09-25 2024-03-28 존슨 컨트롤스 테크놀러지 컴퍼니 소형의 가변 기하학적 구조의 디퓨저 메커니즘
US10838441B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with modulating device demand control
US10838440B2 (en) 2017-11-28 2020-11-17 Johnson Controls Technology Company Multistage HVAC system with discrete device selection prioritization
CN117490299A (zh) 2018-05-30 2024-02-02 江森自控泰科知识产权控股有限责任合伙公司 以输入功率或马达电流控制进行的冷却器抽吸流量限制
CN110701839B (zh) 2018-07-09 2023-04-21 开利公司 冷机站管理装置和方法、计算机存储介质以及冷机站
US10844860B2 (en) * 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve
WO2021003080A1 (en) * 2019-07-01 2021-01-07 Carrier Corporation Surge protection for a multistage compressor
TWI692584B (zh) 2019-11-05 2020-05-01 財團法人工業技術研究院 離心式壓縮機
CN112983846A (zh) 2019-12-02 2021-06-18 开利公司 离心压缩机和运行离心压缩机的方法
DE102019135317A1 (de) * 2019-12-19 2021-06-24 Efficient Energy Gmbh Wärmepumpe mit effizientem diffusor
WO2021167613A1 (en) 2020-02-20 2021-08-26 Danfoss A/S Axial magnetic bearing for centrifugal refrigerant compressor
US11732942B2 (en) * 2020-02-28 2023-08-22 Johnson Controls Tyco IP Holdings LLP Building system with automatic chiller anti-surge control
US11391289B2 (en) 2020-04-30 2022-07-19 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
US11536277B2 (en) * 2020-04-30 2022-12-27 Trane International Inc. Interstage capacity control valve with side stream flow distribution and flow regulation for multi-stage centrifugal compressors
KR102654165B1 (ko) * 2020-07-28 2024-04-02 세메스 주식회사 물품 반송 시스템에서 물품 반송 차량의 전력을 관리하기 위한 장치 및 방법
KR20220050573A (ko) * 2020-10-16 2022-04-25 엘지전자 주식회사 칠러 시스템 및 그 동작 방법
CN112815572A (zh) * 2021-01-18 2021-05-18 中科广能能源研究院(重庆)有限公司 一种燃气热泵空调系统及快速制热和防液压缩控制方法
US20220282736A1 (en) * 2021-03-08 2022-09-08 Macroair Technologies, Inc. System and kit for attachment to a support structure of a control panel for a high-volume low speed fan
CN115707916A (zh) * 2021-08-20 2023-02-21 开利公司 具有整体式过冷器的离心式冷却器上的膨胀控制系统
CN113959126B (zh) * 2021-09-16 2023-07-18 青岛海尔空调电子有限公司 用于制冷设备的控制方法、装置、设备及存储介质
US11841026B2 (en) 2021-11-03 2023-12-12 Trane International Inc. Compressor interstage throttle, and method of operating therof
CN114413548B (zh) * 2021-12-21 2022-11-11 珠海格力电器股份有限公司 一种变频离心式冷水机组及其控制方法和存储介质
CN114326404B (zh) * 2021-12-30 2024-01-23 中国航发控制系统研究所 基于低选-高选架构的航空发动机超限保护控制律设计方法
US11946678B2 (en) * 2022-01-27 2024-04-02 Copeland Lp System and method for extending the operating range of a dynamic compressor

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3648479A (en) * 1970-09-28 1972-03-14 Westinghouse Electric Corp Refrigeration system with multiple centrifugal compressors and load balancing control
JPS4731205Y1 (ko) * 1970-10-12 1972-09-19
US3727406A (en) * 1972-01-06 1973-04-17 Thermo Electron Corp Throttle valve
JPS5476703A (en) 1977-11-30 1979-06-19 Toshiba Corp Controller of steam turbine
US4270361A (en) * 1979-03-14 1981-06-02 Barge Michael A Energy management controller for centrifugal water chiller
US4306417A (en) * 1979-11-28 1981-12-22 Westinghouse Electric Corp. Multiple boiler steam blending control system for an electric power plant
US4378194A (en) * 1980-10-02 1983-03-29 Carrier Corporation Centrifugal compressor
US4503684A (en) * 1983-12-19 1985-03-12 Carrier Corporation Control apparatus for centrifugal compressor
US4616483A (en) * 1985-04-29 1986-10-14 Carrier Corporation Diffuser wall control
US4843824A (en) * 1986-03-10 1989-07-04 Dorothy P. Mushines System for converting heat to kinetic energy
US5146764A (en) * 1990-07-25 1992-09-15 York International Corporation System and method for controlling a variable geometry diffuser to minimize noise
JP2593578B2 (ja) * 1990-10-18 1997-03-26 株式会社東芝 コンバインドサイクル発電プラント
JP3110205B2 (ja) * 1993-04-28 2000-11-20 株式会社日立製作所 遠心圧縮機及び羽根付ディフューザ
IL109967A (en) * 1993-06-15 1997-07-13 Multistack Int Ltd Compressor
US6050083A (en) * 1995-04-24 2000-04-18 Meckler; Milton Gas turbine and steam turbine powered chiller system
US5746062A (en) * 1996-04-11 1998-05-05 York International Corporation Methods and apparatuses for detecting surge in centrifugal compressors
US5669225A (en) * 1996-06-27 1997-09-23 York International Corporation Variable speed control of a centrifugal chiller using fuzzy logic
TW402666B (en) * 1997-08-06 2000-08-21 Carrier Corp Drive positioning mechanism, centrifugal compressor, and backlash adjustment mechanism
US6202431B1 (en) * 1999-01-15 2001-03-20 York International Corporation Adaptive hot gas bypass control for centrifugal chillers
US6427646B2 (en) * 2000-01-27 2002-08-06 Walbro Corporation Small engine fuel injection system
JP2002048098A (ja) * 2000-08-02 2002-02-15 Mitsubishi Heavy Ind Ltd ターボ圧縮機および冷凍機
JP2002139623A (ja) * 2000-11-01 2002-05-17 Nitto Denko Corp 光学シート、偏光板及び液晶表示装置
JP4699597B2 (ja) * 2000-11-10 2011-06-15 カルソニックカンセイ株式会社 モード切換型冷凍システム制御装置及び制御方法
KR100667599B1 (ko) * 2002-08-23 2007-01-16 요크 인터내셔널 코포레이션 원심압축기의 회전실속 검출 방법, 그 보정 방법 및 보정 장치
US7174716B2 (en) * 2002-11-13 2007-02-13 Utc Power Llc Organic rankine cycle waste heat applications
US7254949B2 (en) * 2002-11-13 2007-08-14 Utc Power Corporation Turbine with vaned nozzles
US6872050B2 (en) * 2002-12-06 2005-03-29 York International Corporation Variable geometry diffuser mechanism
US7356999B2 (en) * 2003-10-10 2008-04-15 York International Corporation System and method for stability control in a centrifugal compressor
US7241398B2 (en) * 2004-01-14 2007-07-10 E.I. Du Pont De Nemours And Company 1,1,1,3,3,-pentafluorobutane refrigerant or heat transfer fluid compositions comprising hydrofluorocarbon and uses thereof
US7328587B2 (en) * 2004-01-23 2008-02-12 York International Corporation Integrated adaptive capacity control for a steam turbine powered chiller unit
US7421854B2 (en) * 2004-01-23 2008-09-09 York International Corporation Automatic start/stop sequencing controls for a steam turbine powered chiller unit
US7421853B2 (en) * 2004-01-23 2008-09-09 York International Corporation Enhanced manual start/stop sequencing controls for a stream turbine powered chiller unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260513B2 (en) 2013-06-27 2019-04-16 Mitsubishi Hitachi Power Systems, Ltd. Corrected RPM calculation method for finding a corrected RPM of a compressor using a sound velocity of an inlet gas sucked into the compressor, and RPM of the compressor, and a reference state quantity

Also Published As

Publication number Publication date
EP2215365A1 (en) 2010-08-11
EP2215365B1 (en) 2017-01-18
CN101842599A (zh) 2010-09-22
CN101842599B (zh) 2014-01-29
CN103759482A (zh) 2014-04-30
US20110048046A1 (en) 2011-03-03
TW200933037A (en) 2009-08-01
JP2011502227A (ja) 2011-01-20
US8567207B2 (en) 2013-10-29
WO2009058975A1 (en) 2009-05-07
TWI437167B (zh) 2014-05-11
CN103759482B (zh) 2016-04-20
TW201414926A (zh) 2014-04-16
JP5465673B2 (ja) 2014-04-09
KR101470862B1 (ko) 2014-12-09
TWI452208B (zh) 2014-09-11

Similar Documents

Publication Publication Date Title
KR101470862B1 (ko) 가스 압축 시스템 및 이의 용량 조절 방법
JP5865549B2 (ja) 制御システム
KR100824945B1 (ko) 증기 터빈 구동형 냉각 유니트를 위한 통합 적응성 용량제어
TWI468592B (zh) 控制系統
US20100263391A1 (en) Control Device for HVAC Systems with Inlet and Outlet Flow Control Devices
US7421854B2 (en) Automatic start/stop sequencing controls for a steam turbine powered chiller unit
EP3164648B1 (en) Refrigerant cooling for variable speed drive
EP3356681B1 (en) Centrifugal compressor with flow regulation and surge prevention by axially shifting the impeller
US20070271938A1 (en) Automated inlet steam supply valve controls for a steam turbine powered chiller unit
WO2009012310A1 (en) Control system
JP2011241760A (ja) 電動圧縮機、熱源機およびその制御方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181122

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191126

Year of fee payment: 6