KR20100053679A - Microreactor and liquid phase chemical reaction method using the microreactor - Google Patents

Microreactor and liquid phase chemical reaction method using the microreactor Download PDF

Info

Publication number
KR20100053679A
KR20100053679A KR1020107007390A KR20107007390A KR20100053679A KR 20100053679 A KR20100053679 A KR 20100053679A KR 1020107007390 A KR1020107007390 A KR 1020107007390A KR 20107007390 A KR20107007390 A KR 20107007390A KR 20100053679 A KR20100053679 A KR 20100053679A
Authority
KR
South Korea
Prior art keywords
microreactor
microchamber
raw material
reaction
chemical reaction
Prior art date
Application number
KR1020107007390A
Other languages
Korean (ko)
Other versions
KR101182621B1 (en
Inventor
일형 류
마사아키 사토
다카히로 사가에
겐이치 하야시
Original Assignee
닛뽕소다 가부시키가이샤
고리츠다이가쿠호징 오사카후리츠다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛뽕소다 가부시키가이샤, 고리츠다이가쿠호징 오사카후리츠다이가쿠 filed Critical 닛뽕소다 가부시키가이샤
Publication of KR20100053679A publication Critical patent/KR20100053679A/en
Application granted granted Critical
Publication of KR101182621B1 publication Critical patent/KR101182621B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/275Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of hydrocarbons and halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/13Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups
    • C07C205/14Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms
    • C07C205/16Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by hydroxy groups having nitro groups and hydroxy groups bound to acyclic carbon atoms of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Micromachines (AREA)

Abstract

This invention provides a microreactor comprising a microchamber including a raw material introduction port and a product discharge port, and a liquid phase chemical reaction method using the microreactor. The microreactor is characterized in that solid catalysts are packed, in the microchamber, so as to align in a line in the longitudinal direction of the microchamber.

Description

마이크로 리액터, 및 마이크로 리액터를 이용한 액상 화학 반응 방법 {MICROREACTOR AND LIQUID PHASE CHEMICAL REACTION METHOD USING THE MICROREACTOR}Micro Reactor, and Liquid Chemical Reaction Method Using Micro Reactor {MICROREACTOR AND LIQUID PHASE CHEMICAL REACTION METHOD USING THE MICROREACTOR}

본 발명은 마이크로 리액터, 및 마이크로 리액터를 이용한 액상 화학 반응 방법에 관한 것이다. 보다 상세하게는, 본 발명은 고율로 화학 반응시킬 수 있는 마이크로 리액터, 및 마이크로 리액터를 이용한 고수율의 액상 화학 반응 방법에 관한 것이다.The present invention relates to a microreactor and a liquid phase chemical reaction method using the microreactor. More specifically, the present invention relates to a microreactor capable of chemically reacting at a high rate, and a high yield liquid phase chemical reaction method using the microreactor.

본원은 2007년 10월 12일에 일본에 출원된 일본 특허출원 2007-267148호에 기초하여 우선권을 주장하고, 그 내용을 여기에 원용한다.This application claims priority based on Japanese Patent Application No. 2007-267148 for which it applied to Japan on October 12, 2007, and uses the content here.

마이크로 리액터는, 1 변당 1 ㎜ 이하의 크기의 공간 (마이크로 채널) 에서 화학 반응을 실시하는 플로우형 반응 장치이다. 마이크로 리액터는, 종래의 큰 스케일의 반응 장치에 비해 열 교환 효율이 높으므로, 발열 반응에 있어서의 열 제거가 신속하여, 온도 분포의 편향이 잘 발생하지 않는다. 또, 공업 과정으로 스케일 업하는 경우에는, 마이크로 채널의 수를 늘림으로써 대응하므로, 공업 생산으로의 확장이 용이하다.A micro reactor is a flow type reaction apparatus which performs chemical reaction in the space (micro channel) of the size of 1 mm or less per side. Since the microreactor has a high heat exchange efficiency compared with the conventional large scale reaction apparatus, heat removal in exothermic reaction is quick and the deflection of temperature distribution does not produce easily. In addition, when scale-up in an industrial process, it responds by increasing the number of microchannels, and it is easy to expand to industrial production.

마이크로 리액터는, 예를 들어, 평평한 기판에 포토리소그래피법 등에 의해 유로가 되는 홈을 형성하고, 그 홈이 형성된 기판에, 원료 도입구와 생성물 배출구를 갖는 평판으로 뚜껑을 덮음으로써 제조된다 (특허문헌 1 등). 유로는 그 형상에 따라 T 자형, J 자형, Y 자형, 사이클론형, 필러형 등으로 분류되어 있다. 그리고, 그 유로가 수평이 되도록 마이크로 리액터는 설치되고, 그 수평 유로 (마이크로 챔버) 내에서 화학 반응시킨다.A microreactor is manufactured by forming the groove | channel which becomes a flow path in a flat board | substrate by the photolithographic method etc., for example, and covering the lid | cover with the flat plate which has a raw material introduction port and a product discharge port on the board | substrate with which the groove was formed (patent document 1). Etc). The flow paths are classified into T-shape, J-shape, Y-shape, cyclone, filler and the like according to their shape. And a micro reactor is provided so that the flow path may be horizontal and chemically reacts in the horizontal flow path (micro chamber).

한편, 기상 화학 반응에 있어서의 마이크로 리액터의 이용은 역사가 길고, 많은 연구가 이루어지고 있다. 그러나, 액상 화학 반응에 대한 마이크로 리액터의 이용은 아직 역사가 짧고, 과제도 많다. 예를 들어, 마이크로 리액터에 의한 액상 화학 반응에서는 압력 손실이 크고, 클로깅을 일으키는 경우가 있다. 또, 반응에 의해 기체가 발생하는 반응계에서는, 기체가 내용물을 밀어내기 때문에 상정한 반응 시간을 확보할 수 없게 되거나, 기체가 촉매 표면에 부착되어 액체 원료와 촉매의 접촉을 저해하거나 하여, 반응률을 높일 수 없는 경우가 있었다.On the other hand, the use of microreactors in gas phase chemical reactions has a long history and many studies have been conducted. However, the use of microreactors for liquid phase chemical reactions has a long history and many challenges. For example, in the liquid phase chemical reaction by a microreactor, pressure loss is large and clogging may occur. In addition, in a reaction system in which gas is generated by the reaction, an assumed reaction time cannot be secured because the gas pushes out the contents, or a gas adheres to the surface of the catalyst to inhibit contact between the liquid raw material and the catalyst, thereby reducing the reaction rate. There was a case where it could not be increased.

화학 반응기 내에서의 촉매와 반응 원료의 접촉 면적을 크게 하기 위해, 비표면적이 큰 촉매가 일반적으로 사용된다. 예를 들어, 화학 반응기의 내경보다 작은 크기의 입자 형상 담체에 금속 촉매를 담지시킨 것을 들 수 있다. 그런데, 마이크로 챔버 내에 입자 형상의 고체 촉매를 충전시키고 액상 반응을 실시하면, 채널링 (촉매 충전층에 굵은 유로가 예기치 않게 생겨, 그 유로에만 원료액이 흐르고 유로 이외의 곳에 원료액이 흐르지 않게 되는 현상) 이 일어나, 반응 원료와 촉매의 접촉 면적이 설계값보다 작아져, 반응률이 낮아지는 경우가 있었다.In order to increase the contact area of the catalyst and the reaction raw material in the chemical reactor, a catalyst having a large specific surface area is generally used. For example, what supported the metal catalyst on the particulate-form carrier of the size smaller than the inner diameter of a chemical reactor is mentioned. However, when a solid catalyst having a particulate form is charged into a microchamber and subjected to liquid phase reaction, channeling (a thick flow path unexpectedly occurs in the catalyst packed layer, the raw material liquid flows only in the flow path, and the raw material liquid does not flow outside the flow path. ), The contact area between the reaction raw material and the catalyst was smaller than the design value, and the reaction rate was sometimes lowered.

일본 공개특허공보 2007-136345호Japanese Unexamined Patent Publication No. 2007-136345

본 발명의 목적은 고율로 화학 반응시킬 수 있는 마이크로 리액터, 및 마이크로 리액터를 이용한 고수율의 액상 화학 반응 방법을 제공하는 것에 있다.An object of the present invention is to provide a microreactor capable of chemically reacting at a high rate, and a high yield liquid phase chemical reaction method using the microreactor.

본 발명자는 상기 목적을 달성하기 위해 예의 검토한 결과, 마이크로 챔버 중에 고체 촉매를 챔버 길이 방향으로 일렬로 배열하여 충전시켜 이루어지는 마이크로 리액터를 사용하여 화학 반응을 실시하면, 반응률이 높아지는 것을 알아냈다. 본 발명은 이 지견에 기초하여 더욱 검토한 결과 완성된 것이다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said objective, when the chemical reaction was performed using the micro reactor which makes the micro chamber arrange | position and fill a solid catalyst in a line in the chamber longitudinal direction, it discovered that the reaction rate becomes high. The present invention has been completed based on further findings.

즉, 본 발명은 이하의 양태를 포함한다.That is, this invention includes the following aspects.

(1) 원료 도입구 및 생성물 배출구를 구비한 마이크로 챔버를 포함하여 이루어지고, 그 마이크로 챔버 중에 고체 촉매를 그 마이크로 챔버의 길이 방향으로 일렬로 배열하여 충전시키는 것을 특징으로 하는 마이크로 리액터.(1) A microreactor comprising a microchamber including a raw material inlet and a product outlet, wherein the microchamber is filled with a solid catalyst in a line in the longitudinal direction of the microchamber.

(2) 상기 고체 촉매가 펠릿 형상, 태블릿 형상 또는 원반 형상인 것을 특징으로 하는 (1) 에 기재된 마이크로 리액터.(2) The microreactor according to (1), wherein the solid catalyst is pellet-shaped, tablet-shaped, or disk-shaped.

(3) 상기 고체 촉매가 펠릿 형상, 태블릿 형상 또는 원반 형상의 담체에, 천이 금속 원소 및/또는 산, 또는 천이 금속 원소 및/또는 염기를 함유하는 촉매를 담지시켜 이루어지는 것을 특징으로 하는 (1) 의 마이크로 리액터.(3) The solid catalyst is formed by supporting a catalyst containing a transition metal element and / or an acid or a transition metal element and / or a base on a pellet, tablet or disc-shaped carrier. (1) Micro reactor.

(4) (1) ∼ (3) 중 어느 것에 기재된 마이크로 리액터를 사용하는 액상 화학 반응 방법으로서, 원료 도입구로부터 액체상 원료를 마이크로 챔버에 도입하고, 마이크로 챔버 내에서 화학 반응시켜 생성물을 얻고, 상기 마이크로 리액터의 생성물 배출구로부터 그 생성물을 배출시키는 액상 화학 반응 방법.(4) A liquid phase chemical reaction method using the microreactor according to any one of (1) to (3), wherein a liquid phase raw material is introduced into a microchamber from a raw material inlet, and chemically reacted in a microchamber to obtain a product. A liquid chemical reaction method for discharging the product from the product outlet of the microreactor.

(5) 상기 생성물이 기체상 생성물을 포함하는 것을 특징으로 하는 (4) 의 액상 화학 반응 방법.(5) The liquid phase chemical reaction method of (4), wherein the product contains a gaseous product.

본 발명의 마이크로 리액터를 사용하면, 고율로 화학 반응을 실시할 수 있다. 본 발명의 마이크로 리액터를 사용하여 액상 화학 반응을 실시하면, 생성물을 고수율로 얻을 수 있다. 본 발명의 마이크로 리액터에서는, 예기치 못한 채널링이 잘 발생되지 않게 되어, 원료와 고체 촉매의 접촉 면적이 설계값대로 되므로, 마이크로 리액터의 설계가 용이해진다.When the microreactor of the present invention is used, chemical reaction can be performed at a high rate. When the liquid phase chemical reaction is carried out using the microreactor of the present invention, the product can be obtained in high yield. In the microreactor of the present invention, unexpected channeling is less likely to occur, and the contact area between the raw material and the solid catalyst is in accordance with the design value, thereby facilitating the design of the microreactor.

도 1 은 본 발명의 마이크로 리액터의 일례를 나타내는 개념도이다.
도 2 는 본 발명의 마이크로 리액터의 별례를 나타내는 개념도이다.
도 3 은 고체 촉매를 랜덤하게 충전시켰을 때의 마이크로 리액터를 나타내는 개념도이다.
도 4 는 원료 공급 장치를 구비한 마이크로 리액터의 일례를 나타내는 개념도이다.
1 is a conceptual diagram illustrating an example of the microreactor of the present invention.
2 is a conceptual diagram showing another example of the microreactor of the present invention.
3 is a conceptual diagram illustrating a micro reactor when a solid catalyst is randomly charged.
4 is a conceptual diagram illustrating an example of a microreactor provided with a raw material supply device.

본 실시양태에서는, 유리 직관을 마이크로 챔버로서 사용하고, 유리 직관 중에 고체 촉매 (C1 또는 C2) 를 도 1 또는 도 2 와 같이 일렬로 배열하여 충전시키고, 유리관과 고체 촉매 사이에 마이크로 채널을 형성하고, 원료 화합물을 유리 직관의 일단으로부터 공급하여 반응시키고, 목적으로 하는 생성물을 유리 직관의 타단으로부터 발출하였다. 본 발명의 마이크로 리액터에 의해 얻어지는 생성물은, 기체상의 부생성물을 포함해도 된다.In this embodiment, a glass straight tube is used as the microchamber, and the solid catalyst (C1 or C2) is filled in a straight line as shown in FIG. 1 or 2 in the glass straight tube, and a microchannel is formed between the glass tube and the solid catalyst. The raw material compound was supplied from one end of the glass straight tube to react, and the desired product was extracted from the other end of the glass straight tube. The product obtained by the microreactor of the present invention may contain a gaseous by-product.

본 발명의 마이크로 리액터에 적합한 반응 온도는 특별히 한정되지 않고, 실시되는 화학 반응에 따라 적절히 선택할 수 있는데, 구체적으로는 25 ∼ 250 ℃ 의 범위를 예시할 수 있고, 바람직하게는 100 ∼ 200 ℃ 의 범위를 예시할 수 있다. 이 온도 범위로 함으로써 반응 속도의 컨트롤이 용이해진다.Although the reaction temperature suitable for the microreactor of this invention is not specifically limited, Although it can select suitably according to the chemical reaction performed, Specifically, the range of 25-250 degreeC can be illustrated, Preferably it is the range of 100-200 degreeC Can be illustrated. By setting it as this temperature range, control of reaction rate becomes easy.

본 발명의 마이크로 리액터는, 원료 도입구 및 생성물 배출구를 구비한 마이크로 챔버를 포함하여 이루어지고, 그 마이크로 챔버 중에 고체 촉매를 그 마이크로 챔버의 길이 방향으로 일렬로 배열하여 충전시켜 이루어지는 것이다.The microreactor of the present invention comprises a microchamber including a raw material inlet and a product outlet, and is filled with a solid catalyst arranged in a line in the longitudinal direction of the microchamber.

본 발명에 있어서, 마이크로 챔버는, 종래의 마이크로 리액터의 마이크로 챔버와 동일한 것이 사용된다. 예를 들어, 유리관 ; 유로가 되는 홈을 형성한 기판에 평판으로 뚜껑을 덮은 것 ; 등을 들 수 있다. 마이크로 챔버의 적어도 일단에 원료 도입구가 형성되고, 타단에 생성물 배출구가 형성되어 있으며, 그 원료 도입구로부터 원료를 공급하고, 그 생성물 배출구로부터 생성물을 취출한다.In the present invention, the same one as the microchamber of the conventional microreactor is used as the microchamber. For example, glass tubes; Covering a lid with a flat plate on the board | substrate which formed the groove used as a flow path; Etc. can be mentioned. A raw material inlet is formed at at least one end of the microchamber, and a product outlet is formed at the other end, the raw material is supplied from the raw material inlet, and the product is taken out from the product outlet.

마이크로 챔버는, 화학 반응에 제공하는 원료의 수, 종류에 따라 적절한 유로 레이아웃으로 할 수 있다. 예를 들어, Y 자 형상 또는 T 자 형상의 유로를 갖는 마이크로 챔버를 준비하고, 2 개의 도입구로부터 2 종의 원료를 각각 도입하고, 유로 합류부에서 상기 2 종의 원료를 혼합하여 반응시킬 수 있다. 또, 일방의 도입구로부터 원료를 도입하고, 다른 일방의 도입구로부터 균일계 촉매를 도입하고, 유로 합류부에서 상기 원료와 촉매를 혼합하여 반응시킬 수 있다. 도입되는 원료는, 액체상의 것, 기체상의 것 중 어느 것이어도 되지만, 본 발명의 마이크로 리액터의 특장을 끌어내기 위해 액체상의 것을 원료로 하는 것이 바람직하다.The microchamber can be made into an appropriate flow path layout depending on the number and type of raw materials provided to the chemical reaction. For example, a microchamber having a Y-shaped or T-shaped flow path may be prepared, two kinds of raw materials may be introduced from two inlets, and the two kinds of raw materials may be mixed and reacted at the flow path confluence unit. have. Moreover, a raw material can be introduced from one inlet, a homogeneous catalyst can be introduced from the other inlet, and the said raw material and a catalyst can be mixed and reacted in a flow path confluence part. The raw material to be introduced may be either a liquid phase or a gaseous phase, but it is preferable to use a liquid phase as a raw material in order to draw out the features of the microreactor of the present invention.

마이크로 챔버의 용적은 특별히 한정되지 않으며, 1 변이 약 10 ㎛ ∼ 약 5000 ㎛ 인 것이 바람직하다. 또 고체 촉매를 충전시킨 후에 형성되는 마이크로 채널의 1 변은 약 1 ㎛ ∼ 약 1000 ㎛ 가 되는 것이 바람직하다. 마이크로 채널의 1 변이 지나치게 작으면, 압력 손실이 높아져 원료를 공급하는 것이 곤란해진다. 반대로 지나치게 크면, 열교환 효율이 저하되고, 온도 분포 등이 발생하게 되어 마이크로 리액터의 특장이 줄어든다. 마이크로 챔버의 유로 길이는 특별히 한정되지 않지만, 10 ∼ 300 ㎝ 인 것이 바람직하다.The volume of the microchamber is not particularly limited, and one side is preferably about 10 µm to about 5000 µm. Moreover, it is preferable that one side of the microchannel formed after filling a solid catalyst will be about 1 micrometer-about 1000 micrometers. If one side of the microchannel is too small, the pressure loss becomes high and it becomes difficult to supply the raw material. On the contrary, when too big | large, heat exchange efficiency will fall, temperature distribution etc. will generate | occur | produce, and the micro reactor will reduce the special feature. Although the flow path length of a microchamber is not specifically limited, It is preferable that it is 10-300 cm.

본 발명의 마이크로 리액터는, 마이크로 챔버 내에 고체 촉매가 충전되어 있다.In the microreactor of the present invention, a solid catalyst is filled in the microchamber.

고체 촉매는 촉매의 분말을 굳힌 것이어도 되고, 촉매를 담체에 담지시켜 이루어지는 담지 촉매여도 된다.The solid catalyst may be a solidified powder of the catalyst or a supported catalyst formed by supporting the catalyst on a carrier.

촉매는 화학 반응의 종류에 따라 적절히 선택할 수 있다. 대표적인 것으로서, 천이 금속 원소 및/또는 산, 또는 천이 금속 원소 및/또는 염기를 함유하는 촉매를 들 수 있다.The catalyst can be appropriately selected depending on the type of chemical reaction. Typical examples include catalysts containing transition metal elements and / or acids, or transition metal elements and / or bases.

천이 금속 원소로는, 탄탈, 몰리브덴, 텅스텐, 루테늄, 오스뮴, 팔라듐, 니켈, 철, 코발트, 크롬, 로듐, 이리듐, 백금, 금, 은, 구리, 티타늄, 니오브 등을 들 수 있다.Examples of the transition metal elements include tantalum, molybdenum, tungsten, ruthenium, osmium, palladium, nickel, iron, cobalt, chromium, rhodium, iridium, platinum, gold, silver, copper, titanium, niobium, and the like.

산 또는 염기를 함유하는 촉매로는, 예를 들어, 실리카-알루미나 복합 산화물, 제올라이트, Nb2O5-MoO3 복합 산화물, Nb2O5·nH2O, 프로톤형 강산성 비즈 형상 불소 함유 수지, 티타니아-실리카 복합 산화물 등의 산 촉매 ; 마그네슘디알콕사이드, 산화마그네슘, 산화칼슘, 나트륨알콕사이드 등의 염기 촉매를 들 수 있다.Examples of the catalyst containing an acid or a base include silica-alumina complex oxides, zeolites, Nb 2 O 5 —MoO 3 complex oxides, Nb 2 O 5 nH 2 O, proton-type strong acid bead-like fluorine-containing resins, Acid catalysts such as titania-silica composite oxides; And base catalysts such as magnesium dialkoxide, magnesium oxide, calcium oxide and sodium alkoxide.

담체로는, 카본, 실리카, 실리카-알루미나, 알루미나, 규조토, 탄산칼슘, 탄산아연, 탄산바륨, 황산바륨, 탄산스트론튬 등을 들 수 있다. 또 담체의 형상은 한정되지 않고, 예를 들어, 펠릿 형상, 태블릿 형상, 원반 형상, 구 형상, 링 형상, 메시 형상, 허니컴 형상, 부정 (不定) 형상 등을 들 수 있다. 이들 중 펠릿 형상, 태블릿 형상 또는 원반 형상을 이루는 것이 바람직하다. 고체 촉매의 크기는, 고체 촉매가 마이크로 챔버의 길이 방향으로 일렬로 배열되도록, 마이크로 챔버의 내경에 따라 적절히 선택할 수 있다. 고체 촉매의 크기가 마이크로 챔버의 내경에 대하여 지나치게 작아지면, 고체 촉매가 2 이상의 열로 배열되게 되므로, 고체 촉매의 크기는 마이크로 챔버 내경의 70 % 이상의 크기인 것이 바람직하다. 또한, 「일렬로 배열된다」는 것은, 똑바로 일렬로 배열되어 있는 것에 한정되지 않고, 지그재그 등과 같이 구부러져 일렬로 배열되어 있어도 된다.Examples of the carrier include carbon, silica, silica-alumina, alumina, diatomaceous earth, calcium carbonate, zinc carbonate, barium carbonate, barium sulfate, strontium carbonate and the like. Moreover, the shape of a support | carrier is not limited, For example, a pellet shape, a tablet shape, disk shape, spherical shape, ring shape, mesh shape, honeycomb shape, indefinite shape, etc. are mentioned. It is preferable to form a pellet shape, a tablet shape, or disk shape among these. The size of the solid catalyst can be appropriately selected according to the inner diameter of the microchamber so that the solid catalysts are arranged in a line in the longitudinal direction of the microchamber. If the size of the solid catalyst becomes too small with respect to the inner diameter of the microchamber, the solid catalyst is arranged in two or more rows, so the size of the solid catalyst is preferably at least 70% of the inner diameter of the microchamber. In addition, "arranged in a line" is not limited to being arranged in a straight line, and may be arranged in a line by bending like a zigzag.

고체 촉매는, 마이크로 챔버 내에 마이크로 챔버의 길이 방향으로 일렬로 배열되어 충전된다. 예를 들어, 도 1 과 같이, 펠릿 형상 (원기둥 형상) 의 고체 촉매 (C1) 를 원기둥의 높이 방향을 마이크로 챔버 (R1) 의 길이 방향에 맞추어, 일렬로 배열하여 충전시킨 것 ; 도 2 와 같이, 구 형상의 고체 촉매 (C2) 를 마이크로 챔버 (R2) 의 길이 방향으로 가지런히 하여, 일렬로 배열하여 충전시킨 것 등을 들 수 있다. 이와 같이 일렬로 배열함으로써, 원료는 고체 촉매와 마이크로 챔버 내벽의 간극 공간 (마이크로 채널) 을 주로 통과하게 된다. 그 결과, 예기치 못한 채널링이 잘 발생하지 않게 되어, 원료와 고체 촉매의 접촉 면적이 설계값대로 되므로, 마이크로 리액터의 설계가 용이해진다. 상기 마이크로 채널이 유리관을 따라 똑바른 경우에는, 액상 화학 반응에 의해 기체가 생성된 경우에도 그 생성 기체가 생성물 배출구로 밀려 나오기 쉽다. 또, 마이크로 챔버의 내벽에 촉매를 담지 고정시킴으로써, 원료가 접촉하는 촉매를, 일렬로 배열한 고체 촉매와 내벽에 담지된 촉매의 양방으로 할 수 있으므로, 반응 효율을 더욱 높일 수 있다.The solid catalysts are arranged in a line in the longitudinal direction of the microchamber and filled in the microchamber. For example, as shown in FIG. 1, the pellet-shaped (cylindrical) solid catalyst C1 was aligned and filled in line with the height direction of the cylinder in the longitudinal direction of the microchamber R1; As shown in FIG. 2, the spherical solid catalyst C2 is aligned in the longitudinal direction of the microchamber R2, and is arranged in a line and filled. By arranging in this manner, the raw materials mainly pass through the gap space (micro channel) between the solid catalyst and the inner wall of the microchamber. As a result, unexpected channeling is less likely to occur, and the contact area between the raw material and the solid catalyst is as designed, so that the design of the microreactor becomes easy. When the microchannel is straight along the glass tube, the product gas is likely to be pushed out to the product outlet even when gas is generated by the liquid phase chemical reaction. Moreover, by carrying and fixing the catalyst on the inner wall of the microchamber, the catalyst contacted by the raw material can be made both of the solid catalyst arranged in a line and the catalyst supported on the inner wall, so that the reaction efficiency can be further increased.

촉매의 사용량은 특별히 한정되지 않고, 원료 (반응 기질) 의 공급량에 따라 적절히 선택할 수 있는데, 통상적으로 반응 기질에 대하여 0.01 ∼ 100 ㏖% 의 범위이며, 바람직하게는 0.1 ∼ 50 ㏖% 의 범위이고, 보다 바람직하게는 0.1 ∼ 10 ㏖% 의 범위이다.Although the usage-amount of a catalyst is not specifically limited, Although it can select suitably according to the supply amount of a raw material (reaction substrate), it is normally the range of 0.01-100 mol% with respect to a reaction substrate, Preferably it is the range of 0.1-50 mol%, More preferably, it is 0.1-10 mol% of range.

또한, 마이크로 리액터에는 마이크로 챔버에 원료를 공급하기 위한 장치, 예를 들어 펌프 등이 구비되어 있는 것이 바람직하다. 원료 공급 장치는 공급이 율동 (律動) (펄스) 이 되지 않는 것이 바람직하다. 정상적인 송액을 위해 전기 침투류 (Electro Osmotic Flow) 를 이용할 수도 있다.Moreover, it is preferable that the microreactor is equipped with the apparatus for supplying a raw material to a microchamber, for example, a pump. It is preferable that a raw material supply apparatus does not become a movement (pulse). Electro Osmotic Flow can also be used for normal delivery.

본 발명에서는, 원료를 그대로 마이크로 리액터에 공급해도 되고, 물, 메탄올, 이소프로필에테르, 벤젠, 헥산 등의 용매에 용해시켜 마이크로 리액터에 공급해도 된다.In this invention, a raw material may be supplied as it is to a micro reactor, may be dissolved in solvents, such as water, methanol, isopropyl ether, benzene, and hexane, and may be supplied to a micro reactor.

원료의 1 시간당 공급량 (유속) 은 촉매의 양에 따라 적절히 선택할 수 있으며, 통상적으로는 0.1 ∼ 500 ㎖/h 의 범위에서 선택할 수 있는데, 바람직하게는 0.5 ∼ 50 ㎖/h 의 범위이고, 보다 바람직하게는 1.0 ∼ 5 ㎖/h 의 범위이다.The feed amount (flow rate) per hour of the raw material can be appropriately selected depending on the amount of the catalyst, and can be usually selected in the range of 0.1 to 500 ml / h, preferably in the range of 0.5 to 50 ml / h, more preferably. Preferably it is the range of 1.0-5 ml / h.

또, 원료의 1 시간당 공급량은 촉매 1 m㏖ 당의 접촉량으로서, 1 ∼ 1000 m㏖/h 로 하는 것이 바람직하고, 10 ∼ 160 m㏖/h 로 하는 것이 보다 바람직하다.Moreover, it is preferable to set it as 1-1000 mmol / h as a contact amount per 1 mol of catalysts, and, as for 1 hour of supply of a raw material, it is more preferable to set it as 10-160 mmol / h.

실시예Example

다음으로, 실시예를 나타내어 본 발명을 보다 상세하게 설명한다. 또한, 본 발명은 이들 실시예에 한정되지 않는다.Next, an Example is shown and this invention is demonstrated in detail. In addition, this invention is not limited to these Examples.

반응은 도 4 에 나타내는 장치를 사용하여 실시하였다. 마이크로 리액터 (도 4 중, MICROREACTOR 로서 기재) 는, 내경 4 ㎜ 의 스테인리스제 튜브에 직경 3 ㎜, 길이 3.5 ㎜ 의 촉매를 담지시킨 펠릿을 길이 방향으로 일렬로 충전시킨 것을 사용하였다. 펠릿은 알루미나의 표면에 0.5 중량% 의 팔라듐을 담지시킨 것 (NE 케미캣사 제조) 을 사용하였다.Reaction was performed using the apparatus shown in FIG. The microreactor (it described as MICROREACTOR in FIG. 4) used what packed the pellet which carried the catalyst of diameter 3mm and the length 3.5mm in the stainless steel tube of internal diameter 4mm in a line in the longitudinal direction. The pellet used what carried 0.5 weight% palladium on the surface of an alumina (made by NE Chemicat Co., Ltd.).

실시예 1Example 1

마이크로 리액터에는, 펠릿을 2150 ㎎ (1 개 50 ㎎ 의 펠릿을 43 개, 담지된 팔라듐이 반응 기질에 대하여 0.85 ㏖% 상당) 충전시킨 전체 길이 150 ㎜ 의 튜브를 사용하였다. 요오드벤젠 4.1 g (20 m㏖), 페닐아세틸렌 2.0 g (20 m㏖) 을 N,N-디메틸아세트아미드 3 ㎖ 에 용해시킨 용액을 가스타이트 실린지에 충전시키고, 온도 100 ℃ 에서 1.0 ㎖/h 의 유속으로 체류 시간 30 분으로 설정하여 반응을 실시하였다. 얻어진 반응액을 고속 액체 크로마토그래피로 분석한 결과, 정량적으로 생성물이 얻어졌음을 확인할 수 있었다.As the microreactor, a tube having a total length of 150 mm filled with 2150 mg of pellets (43 pellets of 50 mg pellets and 0.85 mol% of supported palladium relative to the reaction substrate) was used. A solution obtained by dissolving 4.1 g (20 mmol) of iodine benzene and 2.0 g (20 mmol) of phenylacetylene in 3 mL of N, N-dimethylacetamide was charged into a gastite syringe, and the solution was charged at 1.0 mL / h at a temperature of 100 ° C. The reaction was carried out at a flow rate of 30 minutes. As a result of analyzing the obtained reaction liquid by high performance liquid chromatography, it was confirmed that the product was obtained quantitatively.

실시예 2Example 2

마이크로 리액터에는, 펠릿을 2150 ㎎ (1 개 50 ㎎ 의 펠릿을 43 개, 담지된 팔라듐이 반응 기질에 대하여 0.85 ㏖% 상당) 충전시킨 전체 길이 150 ㎜ 의 튜브를 사용하였다. 요오드벤젠 4.1 g (20 m㏖), 아크릴산메틸에스테르 2.1 g (24 m㏖), 트리에틸아민 3.4 g (34 m㏖) 을 N-메틸피롤리돈 3 ㎖ 에 용해시킨 용액을 가스타이트 실린지에 충전시키고, 온도 120 ℃ 에서, 표 1 에 나타내는 각 유속, 각 체류 시간으로 설정하여 반응을 실시하였다. 얻어진 반응액을 고속 액체 크로마토그래피로 분석한 결과를 표 1 에 나타낸다.As the microreactor, a tube having a total length of 150 mm filled with 2150 mg of pellets (43 pellets of 50 mg pellets and 0.85 mol% of supported palladium relative to the reaction substrate) was used. A gastight syringe was charged with a solution of 4.1 g (20 mmol) of iodine benzene, 2.1 g (24 mmol) of methyl acrylate, and 3.4 g (34 mmol) of triethylamine in 3 ml of N-methylpyrrolidone. The reaction was carried out at a temperature of 120 ° C., set at each flow rate and residence time shown in Table 1. Table 1 shows the results of analyzing the obtained reaction solution by high performance liquid chromatography.

Figure pct00001
Figure pct00001

실시예 3Example 3

마이크로 리액터에는, 펠릿을 3600 ㎎ (1 개 50 ㎎ 의 펠릿을 72 개, 담지된 팔라듐이 반응 기질에 대하여 0.85 ㏖% 상당) 충전시킨 전체 길이 250 ㎜ 의 튜브를 사용하였다. 벤즈알데히드 2.1 g (20 m㏖), 니트로메탄 1.2 g (20 m㏖) 의 혼합물을 가스타이트 실린지에 충전시키고, 온도 60 ℃ 에서 2.2 ㎖/h 의 유속으로 체류 시간 1 시간으로 설정하여 반응을 실시하였다. 얻어진 반응액을 감압 농축시키고, 1H-NMR 에 의해 생성물을 확인한 결과, 18 % 의 전화율로 거의 정량적으로 목적물인 2-니트로-1-페닐-에탄올을 얻었다.As the micro reactor, a tube having a total length of 250 mm filled with 3600 mg of pellets (72 pellets of 50 mg of one pellet and 0.85 mol% of supported palladium relative to the reaction substrate) was used. A mixture of benzaldehyde 2.1 g (20 mmol) and nitromethane 1.2 g (20 mmol) was charged in a gastite syringe, and the reaction was carried out at a temperature of 60 ° C at a flow rate of 2.2 ml / h for 1 hour. . The obtained reaction liquid was concentrated under reduced pressure, and the product was confirmed by 1 H-NMR to give 2-nitro-1-phenyl-ethanol which was the target product almost quantitatively at a conversion rate of 18%.

실시예 4Example 4

마이크로 리액터에는, 펠릿을 3600 ㎎ (1 개 50 ㎎ 의 펠릿을 72 개, 담지된 팔라듐이 반응 기질에 대하여 3.38 ㏖% 상당) 충전시킨 전체 길이 250 ㎜ 의 튜브를 사용하였다. 페닐아세틸렌 528 ㎎ (5 m㏖), 알릴브로마이드 5 ㎖ (페닐아세틸렌에 대하여 12 배 ㏖ 당량) 의 혼합물을 가스타이트 실린지에 충전시키고, 실온에서 1.1 ㎖/h 의 유속으로 체류 시간 2 시간으로 설정하여 반응을 실시하였다. 얻어진 반응액을 가스 크로마토그래피로 분석한 결과, 반응 전화율 43 %, 수율 약 90 % 로 목적물인 1-브로모-1-페닐-1,3-부타디엔과 1-브로모-2-페닐-1-부텐의 혼합물을 얻었다.As the microreactor, a tube having a total length of 250 mm filled with 3600 mg of pellets (72 pellets of one 50 mg and 3.38 mol% of supported palladium relative to the reaction substrate) was used. A mixture of 528 mg (5 mmol) of phenylacetylene and 5 ml of allyl bromide (12 times mol equivalent to phenylacetylene) was charged into a gastite syringe, and the residence time was set at a flow rate of 1.1 ml / h at room temperature for 2 hours. The reaction was carried out. As a result of analyzing the obtained reaction liquid by gas chromatography, 1-bromo-1-phenyl-1,3-butadiene and 1-bromo-2-phenyl-1- which are target objects at a reaction conversion rate of 43% and a yield of about 90%. A mixture of butenes was obtained.

비교예 1Comparative Example 1

마이크로 리액터에는, 0.5 중량% 의 팔라듐을 담지시킨 알루미나 분말 (담지된 Pd 가 반응 기질에 대하여 0.85 ㏖% 상당량) 을 충전시킨 전체 길이 100 ㎜ 의 튜브를 사용하였다. 실시예 1 과 동일하게 요오드벤젠 4.1 g (20 m㏖), 페닐아세틸렌 2.0 g (20 m㏖) 을 N,N-디메틸아세트아미드 3 ㎖ 에 용해시킨 용액을 가스타이트 실린지에 충전시키고, 온도 100 ℃ 에서 0.1 ㎖/h 의 유속으로 체류 시간 40 분으로 설정하여 반응을 실시하였다. 얻어진 반응액을 고속 액체 크로마토그래피로 분석한 결과, 정량적으로 생성물이 얻어졌음을 확인할 수 있었다. 그러나, 유속을 0.1 ㎖/h 이상으로 한 결과, 압손이 커져 유속을 높일 수 없었다.As the micro reactor, a tube having a total length of 100 mm filled with alumina powder (supported Pd was 0.85 mol% equivalent to the reaction substrate) loaded with 0.5% by weight of palladium was used. In the same manner as in Example 1, a solution obtained by dissolving 4.1 g (20 mmol) of iodinebenzene and 2.0 g (20 mmol) of phenylacetylene in 3 ml of N, N-dimethylacetamide was charged into a gastite syringe, and the temperature was 100 ° C. The reaction was carried out at a flow rate of 0.1 mL / h at a residence time of 40 minutes. As a result of analyzing the obtained reaction liquid by high performance liquid chromatography, it was confirmed that the product was obtained quantitatively. However, as a result of setting the flow rate to 0.1 ml / h or more, the pressure loss increased, and the flow velocity could not be increased.

상기 실시예 1 ∼ 4 및 비교예 1 로부터, 고체 촉매를 랜덤하게 충전시킨 마이크로 리액터 (비교예 1) 에 비해, 고체 촉매를 일렬로 배열하여 충전시켜 이루어지는 마이크로 리액터 (실시예 1 ∼ 4) 쪽이, 압손이 적어 유속을 높일 수 있고, 고효율로 화학 반응시킬 수 있음을 알 수 있었다.Compared to the microreactor (Comparative Example 1) in which the solid catalyst was randomly charged from the above Examples 1 to 4 and Comparative Example 1, the microreactor (Examples 1 to 4) formed by arranging and filling the solid catalysts in a row It can be seen that the pressure loss is small, so that the flow rate can be increased and the chemical reaction can be performed at high efficiency.

본 발명의 마이크로 리액터를 사용하면, 압손이 적어 유속을 높일 수 있고, 따라서 고효율로 화학 반응을 실시할 수 있다. 또, 본 발명의 마이크로 리액터를 사용하여 액상 화학 반응을 실시하면, 생성물을 고수율로 얻을 수 있다. 또한, 본 발명의 마이크로 리액터에서는, 예기치 못한 채널링이 잘 발생하지 않게 되어, 원료와 고체 촉매의 접촉 면적이 설계값대로 되므로, 마이크로 리액터의 설계가 용이해져 산업상 유용하다.When the microreactor of the present invention is used, the pressure loss is small and the flow rate can be increased, so that the chemical reaction can be performed with high efficiency. In addition, when the liquid phase chemical reaction is carried out using the microreactor of the present invention, the product can be obtained in high yield. In addition, in the microreactor of the present invention, unexpected channeling is less likely to occur, and the contact area between the raw material and the solid catalyst is in accordance with the design value, which facilitates the design of the microreactor and is industrially useful.

R1, R2, R3 : 마이크로 챔버
C1, C2 : 고체 촉매
In : 원료 도입구
Out : 생성물 배출구
R1, R2, R3: Micro Chamber
C1, C2: solid catalyst
In: Raw material introduction port
Out: Product outlet

Claims (5)

원료 도입구 및 생성물 배출구를 구비한 마이크로 챔버를 포함하여 이루어지고, 그 마이크로 챔버 중에 고체 촉매를 그 마이크로 챔버의 길이 방향으로 일렬로 배열하여 충전시키는 것을 특징으로 하는 마이크로 리액터.And a microchamber having a raw material inlet and a product outlet, wherein the microchamber is filled with the solid catalyst in a line in the longitudinal direction of the microchamber. 제 1 항에 있어서,
상기 고체 촉매가 펠릿 형상, 태블릿 형상 또는 원반 형상인 것을 특징으로 하는 마이크로 리액터.
The method of claim 1,
And the solid catalyst is pellet-shaped, tablet-shaped, or disk-shaped.
제 1 항에 있어서,
상기 고체 촉매가 펠릿 형상, 태블릿 형상 또는 원반 형상의 담체에, 천이 금속 원소 및/또는 산, 또는 천이 금속 원소 및/또는 염기를 함유하는 촉매를 담지시켜 이루어지는 것을 특징으로 하는 마이크로 리액터.
The method of claim 1,
A microreactor, wherein the solid catalyst is formed by supporting a catalyst containing a transition metal element and / or an acid, or a transition metal element and / or a base on a pellet, tablet, or disc-shaped carrier.
제 1 항 내지 제 3 항 중 어느 한 항에 기재된 마이크로 리액터를 사용하는 액상 화학 반응 방법으로서, 원료 도입구로부터 액체상 원료를 마이크로 챔버에 도입하고, 마이크로 챔버 내에서 화학 반응시켜 생성물을 얻고, 상기 마이크로 리액터의 생성물 배출구로부터 그 생성물을 배출시키는 액상 화학 반응 방법.A liquid phase chemical reaction method using the microreactor according to any one of claims 1 to 3, wherein a liquid phase raw material is introduced into a microchamber from a raw material inlet, and chemically reacted in a microchamber to obtain a product. A liquid chemical reaction method for discharging the product from the product outlet of the reactor. 제 4 항에 있어서,
상기 생성물이 기체상 생성물을 포함하는 것을 특징으로 하는 액상 화학 반응 방법.


The method of claim 4, wherein
Wherein said product comprises a gaseous product.


KR1020107007390A 2007-10-12 2008-10-10 Microreactor and liquid phase chemical reaction method using the microreactor KR101182621B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007267148 2007-10-12
JPJP-P-2007-267148 2007-10-12
PCT/JP2008/068480 WO2009048141A1 (en) 2007-10-12 2008-10-10 Microreactor and liquid phase chemical reaction method using the microreactor

Publications (2)

Publication Number Publication Date
KR20100053679A true KR20100053679A (en) 2010-05-20
KR101182621B1 KR101182621B1 (en) 2012-09-14

Family

ID=40549285

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107007390A KR101182621B1 (en) 2007-10-12 2008-10-10 Microreactor and liquid phase chemical reaction method using the microreactor

Country Status (6)

Country Link
US (1) US8609034B2 (en)
EP (1) EP2206550B1 (en)
JP (1) JP5598952B2 (en)
KR (1) KR101182621B1 (en)
CN (1) CN101820995B (en)
WO (1) WO2009048141A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574340B2 (en) 2011-02-27 2013-11-05 Board Of Trustees Of The University Of Alabama Methods for preparing and using metal and/or metal oxide porous materials
US9233366B2 (en) * 2012-10-16 2016-01-12 Board Of Trustees Of The University Of Alabama Catalysis by metal nanoparticles dispersed within a hierarchically porous carbon material
JP6168009B2 (en) * 2014-07-31 2017-07-26 トヨタ自動車株式会社 Method for producing core-shell catalyst
WO2016031526A1 (en) * 2014-08-29 2016-03-03 公立大学法人大阪府立大学 Oxidation reactor and process for producing oxide
CN106573858A (en) * 2014-08-29 2017-04-19 株式会社大赛璐 Oxidation reactor and production method for oxide
US10195587B2 (en) 2016-03-04 2019-02-05 The Board Of Trustees Of The University Of Alabama Synthesis of hierarchically porous monoliths by a co-gelation method
CN107311867A (en) * 2017-08-09 2017-11-03 山东万图高分子材料股份有限公司 A kind of preparation method of citrate
CN111250010B (en) * 2020-01-20 2021-09-24 山东大学 Catalyst carrier and micro-channel continuous flow reactor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549556A (en) * 1968-07-26 1970-12-22 Catalysts & Chem Inc Spherical methanation catalysts
JPS608243B2 (en) 1981-07-07 1985-03-01 三井化学株式会社 Liquid phase reaction method using a tubular reactor
JPS608242B2 (en) 1981-07-07 1985-03-01 三井化学株式会社 Liquid phase reaction method
GB9723260D0 (en) 1997-11-05 1998-01-07 British Nuclear Fuels Plc A method of performing a chemical reaction
JP2004105864A (en) 2002-09-19 2004-04-08 Hitachi Ltd Method, catalyst and equipment for decomposing halogenated aromatic hydrocarbon
US7029647B2 (en) 2004-01-27 2006-04-18 Velocys, Inc. Process for producing hydrogen peroxide using microchannel technology
JP4605391B2 (en) * 2004-01-30 2011-01-05 独立行政法人科学技術振興機構 Contact reaction method using microreactor
JP4580664B2 (en) * 2004-03-01 2010-11-17 大日本印刷株式会社 Microreactor and manufacturing method thereof
JP4991102B2 (en) 2004-12-22 2012-08-01 パナソニック株式会社 Microreactor
JP4778710B2 (en) * 2005-01-14 2011-09-21 宇部興産株式会社 Coupling reaction using a flow reactor packed with palladium catalyst
JP5038619B2 (en) 2005-11-18 2012-10-03 大日本印刷株式会社 Microreactor and manufacturing method thereof

Also Published As

Publication number Publication date
EP2206550A4 (en) 2012-02-22
KR101182621B1 (en) 2012-09-14
JPWO2009048141A1 (en) 2011-02-24
US8609034B2 (en) 2013-12-17
CN101820995B (en) 2015-07-15
CN101820995A (en) 2010-09-01
WO2009048141A1 (en) 2009-04-16
US20100210876A1 (en) 2010-08-19
EP2206550B1 (en) 2016-11-30
JP5598952B2 (en) 2014-10-01
EP2206550A1 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
KR101182621B1 (en) Microreactor and liquid phase chemical reaction method using the microreactor
US7663008B2 (en) Method of catalytic reaction using micro-reactor
KR100339285B1 (en) Use of a monolith catalyst for the hydrogenation of dinitrotoluene to toluenediamine
CA2347443C (en) Retrofit reactor including gas/liquid ejector and monolith catalyst
US8961892B2 (en) Device for carrying out chemical reactions under homogenous and heterogenous conditions
EP1287884A2 (en) Monolith catalytic reactor coupled to static mixer
JP4354341B2 (en) Reactor
JP2007197396A (en) Method for producing tertiary amine
US20100189633A1 (en) Method for producing chlorine by gas phase oxidation
Yube et al. Selective oxidation of phenol with hydrogen peroxide using two types of catalytic microreactor
CN111804267A (en) Continuous reaction equipment and application thereof
JP4994692B2 (en) Method for producing tertiary amine
CN111068747B (en) Catalyst for preparing isopropylbenzene by hydrogenolysis and application thereof
JP4975409B2 (en) Method for producing tertiary amine
JP6963050B2 (en) Method for producing 2-cyclohexylcyclohexanol
US20090093655A1 (en) Method and device for producing aromatic amines by heterogeneous catalyzed hydration
JP2007069164A (en) Reaction apparatus constituted of microcapillary and method of catalytic hydrogenation using the same
US9102587B2 (en) Method for producing 2-(isopropylamino)ethanol
US20090028780A1 (en) Method and device for producing chlorine by gas phase oxidation in a cool wall reactor
US9381489B2 (en) Device useful for hydrogenation reactions (I)
MXPA00003700A (en) Continuous method for producing aromatic amines

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170825

Year of fee payment: 6