KR20100047012A - Bake-hardenable steel sheet and method for producing the same - Google Patents

Bake-hardenable steel sheet and method for producing the same Download PDF

Info

Publication number
KR20100047012A
KR20100047012A KR1020080106084A KR20080106084A KR20100047012A KR 20100047012 A KR20100047012 A KR 20100047012A KR 1020080106084 A KR1020080106084 A KR 1020080106084A KR 20080106084 A KR20080106084 A KR 20080106084A KR 20100047012 A KR20100047012 A KR 20100047012A
Authority
KR
South Korea
Prior art keywords
heating
carbon
weight
steel sheet
hardening
Prior art date
Application number
KR1020080106084A
Other languages
Korean (ko)
Other versions
KR101062131B1 (en
Inventor
강춘구
나광수
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020080106084A priority Critical patent/KR101062131B1/en
Publication of KR20100047012A publication Critical patent/KR20100047012A/en
Application granted granted Critical
Publication of KR101062131B1 publication Critical patent/KR101062131B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: A baking hardness steel sheet and a manufacturing method thereof are provided to generate the minute carbon nitride by performing a multi stage heat maintenance process before a hot milling process. CONSTITUTION: A baking hardness steel sheet is made of carbon 0.0015~0.0030 weight%, manganese 0.1~0.3 weight%, silicon 0.02~0.05 weight%, niobium 0.008~0.015 weight%, titanium 0.003~0.008 weight%, phosphorus 0.01~0.06 weight%, aluminum 0.03~0.07 weight%, nitrogen 0.003~0.005 weight%, boron 0.0005~0.0020 weight%, and sulfur less than 0.006 weight.

Description

소부경화강판 및 그 제조방법{Bake-hardenable steel sheet and method for producing the same}Bake-hardenable steel sheet and method for producing the same

본 발명은 소부경화강판 및 그 제조방법에 관한 것으로, 더욱 상세하게는 다단가열을 적용한 소부경화강판 및 그 제조방법에 관한 것이다.The present invention relates to a hardened hardened steel sheet and a method for manufacturing the same, and more particularly, to a hardened hardened steel sheet and a method of manufacturing the same by applying multi-stage heating.

자동차용 외판재로 사용되고 있는 소부경화강은 다양한 형상에 대한 고객의 지속적인 요구로 성형 전, 우수한 성형성 및 형상 동결성이 필요하며, 최종 제품인 자동차는 외부에서 가해진 힘에 소성변형이 발생하지 않는 내덴트성이 요구된다. 소부경화강은 성형 전, 낮는 항복강도와 우수한 성형성으로 프레스에 의한 가공이 용이하며, 도장과 소부처리 이후에는 항복강도의 증가로 우수한 내덴트 특성을 가져 자동차용 외판재로 널리 사용되는 강재이다.Beo hardened steel, which is used as an exterior material for automobiles, requires excellent formability and shape freezing property before molding due to the continuous demands of customers for various shapes, and the final product of the car does not have plastic deformation due to external applied force. Dent property is required. The hardened hardened steel is easy to be processed by press due to its low yield strength and excellent formability before forming, and it is widely used as automotive exterior plate material because it has excellent dent resistance property due to increase of yield strength after coating and baking. .

소부경화현상은 프레스 중에 생성된 전위에 도장 소부시 활성화된 고용탄소 및 질소가 고착되어 항복강도가 증가하는 현상이다. 소부경화강은 강도가 증가하면 성형성 및 연신율이 악화되는 고강도강에 비해 도장소부 전, 성형이 용이하며 최종제품에서 내덴트성이 향상되는 특성을 가짐으로써 자동차용 외판재로 매우 이상적인 재료이다.The baking hardening phenomenon is a phenomenon in which the yield strength is increased because the solid solution carbon and nitrogen which are activated at the time of coating baking are adhered to the potential generated during the press. Compared with high strength steel, which increases the strength and decreases in formability and elongation as the strength increases, the hardened hardened steel is an ideal material for automotive exterior materials because it has the characteristics of easy molding and improvement of dent resistance in the final product.

소부경화강에 고용원소가 과다하게 존재할 경우 소부경화성은 증가하나, 자연시효 현상이 증가하여 소부경화강 고유의 특성에 손실을 가져오게 된다. 종래의 연구결과에 따르면, 고용탄소를 활용한 소부경화강의 경우 입계와 입내에 존재하는 고용탄소량이 소부경화량 및 내시효성에 미치는 특성은 서로 다르다. 한국공개특허 제10-2000-0018794호에서는 소부 경화량을 높이고 안정적인 내시효특성을 확보하기 위해 입내 고용탄소량 0.0003~0007wt%와 입계 고용탄소량 0.0005~0.001wt%로 총 고용탄소량을 0.0015wt%로 제한하고 있다.Excessive employment of elements in the hardened hardened steel increases the hardened hardenable properties, but increases the natural aging phenomena resulting in loss of the characteristics of the hardened hardened steel. According to the results of the previous study, the characteristics of the grain boundary and the solid solution carbon in the grain hardening and the aging resistance are different in the case of hardly hardened steel using solid carbon. In Korean Patent Laid-Open No. 10-2000-0018794, the total dissolved carbon content is 0.0015wt% with 0.0003 ~ 0007wt% of dissolved carbon in the mouth and 0.0005 ~ 0.001wt% of grain boundary carbon in order to increase the amount of hardening of baking It is limited to%.

결정립내에 잔존하는 고용탄소는 이동이 비교적 자유롭기 때문에 가동전위와 결합하여 상온시효성에 영향을 미치나, 결정립경계나 석출물의 주변과 같이 보다 안정적인 위치에 존재하는 고용탄소는 도장 소부 처리와 같은 고온에서 활성화되어 소부경화특성에 영향을 주게 되는 것이다. 결정립이 미세화되면 입계 고용탄소량이 증가되어 상온 비시효성이 확보되면서 소부경화특성이 개선된다. 또한 미세한 석출물이 입내 및 입계에 고르게 분포되어도 고용탄소가 상온에서 안정한 상태로 유지될 수 있다.Since the solid carbon remaining in the grain is relatively free to move, it affects room temperature aging in combination with the operating potential, but the solid carbon present in a more stable position, such as grain boundaries or surroundings of precipitates, is activated at high temperatures such as coating baking. This will affect the baking hardening characteristics. As grain size becomes finer, grain-bound solid-solution carbon content is increased, and room-temperature inaging is ensured, and the baking hardening characteristic is improved. In addition, even when fine precipitates are evenly distributed in the grain and grain boundaries, the solid solution carbon may be maintained at a stable state at room temperature.

종래 슬라브 재가열 공정은 목표온도를 설정하여 균일가열을 실시하고 열간압연을 실시하며, 극저탄소강 및 소부경화강의 경우에는 1200℃ 이상의 고온으로 재가열하여 균일한 재질을 확보하고, 석출물을 완전히 재용해시키는 과정으로 재가열을 실시하였으나, 만족할 만한 소부경화강을 얻지 못하였다는 문제점이 있었다.In the conventional slab reheating process, the target temperature is set to perform uniform heating and hot rolling. In the case of the ultra low carbon steel and the hardened hardened steel, the reheating is performed at a high temperature of 1200 ° C or higher to secure a uniform material and completely dissolve the precipitate. Although reheating was performed as a process, there was a problem in that satisfactory hardening hardening steel was not obtained.

본 발명은 상기한 바와 같은 문제점을 고려하여 발명된 것으로서, 본 발명의 목적은 합금원소를 조절하는 한편 다단 가열유지를 적용하여 소부경화능과 내시효성, 성형성과 연신율이 우수한 소부경화강판 및 그 제조방법을 제공하는데 있다.The present invention has been invented in view of the above problems, and the object of the present invention is to control the alloying elements while applying multi-stage heating and maintaining the hardening hardening ability and aging resistance, moldability and elongation excellent hardening steel sheet and its manufacture To provide a method.

상기한 바와 같은 목적을 달성하기 위한 본 발명에 의한 소부경화강판은, 탄소(C) 0.0015~0.0030wt%, 망간(Mn) 0.1~0.3wt%, 실리콘(Si) 0.02~0.05wt%, 니오븀(Nb) 0.008~0.015wt%, 티타늄(Ti) 0.003~0.008wt%, 인(P) 0.01~0.06wt%, 알루미늄(Al) 0.03~0.07wt%, 질소(N) 0.003~0.005wt%, 보론(B) 0.0005~0.0020wt% 황(S) 0.006wt% 이하 및 잔부 철(Fe)의 합금조성을 가진다. The bake hardened steel sheet according to the present invention for achieving the above object, carbon (C) 0.0015 ~ 0.0030wt%, manganese (Mn) 0.1 ~ 0.3wt%, silicon (Si) 0.02-0.05wt%, niobium ( Nb) 0.008 ~ 0.015wt%, Titanium (Ti) 0.003 ~ 0.008wt%, Phosphorus (P) 0.01 ~ 0.06wt%, Aluminum (Al) 0.03-0.07wt%, Nitrogen (N) 0.003-0.005wt%, Boron ( B) 0.0005 ~ 0.0020wt% Sulfur (S) has an alloy composition of 0.006wt% or less and the balance iron (Fe).

본 발명에 의한 소부경화강판의 제조방법은, 탄소(C) 0.0015~0.0030wt%, 망간(Mn) 0.1~0.3wt%, 실리콘(Si) 0.02~0.05wt%, 니오븀(Nb) 0.008~0.015wt%, 티타늄(Ti) 0.003~0.008wt%, 인(P) 0.01~0.06wt%, 알루미늄(Al) 0.03~0.07wt%, 질소(N) 0.003~0.005wt%, 보론(B) 0.0005~0.0020wt%, 황(S) 0.006wt% 이하 및 잔부 철(Fe)의 합금조성을 가지는 강슬라브를, 1130 ~ 1250℃의 온도범위에서 3단으로 가열유지하는 단계를 거친 후, 880~930℃의 온도범위에서 열간압연을 마무리하여, 600~750℃에서 권취한다.The method for producing a hardened hardened steel sheet according to the present invention includes carbon (C) 0.0015 to 0.0030 wt%, manganese (Mn) 0.1 to 0.3 wt%, silicon (Si) 0.02 to 0.05 wt%, and niobium (Nb) 0.008 to 0.015 wt %, Ti (Ti) 0.003 ~ 0.008wt%, Phosphorus (P) 0.01 ~ 0.06wt%, Aluminum (Al) 0.03 ~ 0.07wt%, Nitrogen (N) 0.003-0.005wt%, Boron (B) 0.0005 ~ 0.0020wt %, Sulfur (S) 0.006wt% or less and steel slab having an alloy composition of the balance iron (Fe), after heating and maintaining in three stages in the temperature range of 1130 ~ 1250 ℃, temperature range of 880 ~ 930 ℃ Hot rolling is finished at, and wound up at 600 ~ 750 ℃.

상기 3단으로 가열유지하는 단계는, 1130~1160℃에서 30분~1시간 가열유지하는 제1가열유지단계와, 상기 제1가열유지단계 후 1180~1250℃에서 30분~1시간 가열 유지하는 제2가열유지단계와, 상기 제2가열유지단계후 1130~1180℃에서 30분~1시간 가열유지하는 제3가열유지단계로 이루어진다.The step of maintaining the heating in three stages, the first heating maintenance step of maintaining the heating for 30 minutes to 1 hour at 1130 ~ 1160 ℃, and the heating and maintaining at 1180 ~ 1250 ℃ 30 minutes to 1 hour after the first heating maintenance step A second heating maintenance step and a third heating maintenance step of maintaining the heating for 30 minutes to 1 hour at 1130 ~ 1180 ℃ after the second heating maintenance step.

상기 열간압연 후에는, 압하율 70~80%로 냉간압연하고, 780~880℃에서 소둔한 후, 압하율 0.8~1.2%로 조질압연한다. After the hot rolling, cold rolling at a reduction ratio of 70 to 80%, annealing at 780 to 880 ° C, and temper rolling at a reduction ratio of 0.8 to 1.2%.

본 발명에 의한 소부경화강판 및 그 제조방법에 의하면, 합금원소를 조절하는 한편 다단 가열유지를 적용하여 소부경화능과 내시효성, 성형성과 연신율이 우수한 소부경화강판을 얻을 수 있다.According to the present part hardened steel sheet and the manufacturing method thereof, by controlling the alloying elements and by applying a multi-stage heating maintenance, it is possible to obtain a hardened hardened steel sheet having excellent hardening hardening ability, age resistance, formability and elongation.

이하 본 발명에 의한 소부경화강판 및 그 제조방법의 바람직한 실시예를 상세하게 설명한다.Hereinafter, the preferred embodiments of the hardened hardened steel sheet according to the present invention and a manufacturing method thereof will be described in detail.

본 발명은, 합금원소를 조절하고, 다단(3단)으로 가열유지한 후 열간압연함으로써, 소부경화능과 내시효성, 성형성과 연신율이 우수한 소부경화강판을 제조한다.According to the present invention, a bake hardened steel sheet having excellent bake hardenability, age resistance, formability and elongation is produced by adjusting the alloying element, heating and maintaining it in multiple stages (three stages) and hot rolling.

본 발명의 구체적인 합금 조성은, 탄소(C) 0.0015~0.0030wt%, 망간(Mn) 0.1~0.3wt%, 실리콘(Si) 0.02~0.05wt%, 니오븀(Nb) 0.008~0.015wt%, 티타늄(Ti) 0.003~0.008wt%, 인(P) 0.01~0.06wt%, 알루미늄(Al) 0.03~0.07wt%, 질소(N) 0.003~0.005wt%, 보론(B) 0.0005~0.0020wt%, 황(S) 0.006wt% 이하 및 잔부 철(Fe) 및 기타 불가피하게 포함되는 불순물로 이루어진다. Specific alloy composition of the present invention, carbon (C) 0.0015 ~ 0.0030wt%, manganese (Mn) 0.1 ~ 0.3wt%, silicon (Si) 0.02 ~ 0.05 wt%, niobium (Nb) 0.008 ~ 0.015 wt%, titanium ( Ti) 0.003 to 0.008 wt%, phosphorus (P) 0.01 to 0.06 wt%, aluminum (Al) 0.03 to 0.07 wt%, nitrogen (N) 0.003 to 0.005 wt%, boron (B) 0.0005 to 0.0020 wt%, sulfur ( S) 0.006 wt% or less and the balance of iron (Fe) and other inevitable impurities.

상기 합금원소들의 기능과 함유량을 자세히 설명하면 다음과 같다.Referring to the function and content of the alloying elements in detail as follows.

탄소(C): 0.0015~0.0030wt%Carbon (C): 0.0015 ~ 0.0030wt%

탄소는 함께 소부경화를 발생시키는 중요한 원소이며 자연시효를 제어하기 위해 그 함량의 제어가 필수적인 원소이다. 탄소함량에 따라 성형성이 저하되거나 자연시효가 가속화되기도 하므로 니오븀(Nb), 티타늄(Ti) 등의 강한 탄질화물 형성원소를 첨가하여 고용질소를 제어하는데 그 함량이 높을수록 고가의 합금원소 첨가가 필요하게 되어 원가 절감 및 소부경화성, 내시효성 확보를 위해 탄소함량을 0.0015~0.0030wt%로 제한한다. 이 성분범위는 극저탄소강의 제조공정에서 적중률이 높은 탄소함량 범위로 탄소함량에 의한 소부경화강 제조실패율을 감소시킬 수 있는 범위이다.Carbon is an important element that causes hardening and together, it is essential to control the content of natural aging. Depending on the carbon content, the formability may be degraded or natural aging may be accelerated. Therefore, strong carbonitride-forming elements such as niobium (Nb) and titanium (Ti) are added to control solid solution nitrogen, and the higher the content, the more expensive alloying elements are added. As necessary, the carbon content is limited to 0.0015 ~ 0.0030wt% in order to reduce cost, secure hardening and aging resistance. This component range is a range that can reduce the failure rate of hardening hardened steel by carbon content in the carbon content range of high hit rate in the manufacturing process of ultra low carbon steel.

망간(Mn) 0.1~0.3wt%Manganese (Mn) 0.1 ~ 0.3wt%

망간은 강 중의 황과 결합하여 MnS를 석출시켜 FeS의 생성에 의한 열간 취성을 방지하며, 연성의 손상없이 입자를 미세화시킨다. 망간의 양이 증가하면 Mn-C Dipole 형성에 의해 성형성 및 소부경화성이 열화되고, MnS 석출물의 조대화가 발생하며, 또한 Cementite 형성을 가속화시켜 고용탄소량을 줄임으로써 소부경화성을 열화시키기도 한다. 용융도금 강판 제조시에는 소둔공정에서 MnO와 같은 산화물이 표면에 다량 생성되어 도금 밀착성을 열화시키고, 줄무늬의 도금결함들이 다량 발생하여 외판재로써 표면품질을 저하시키므로 0.1~0.3%로 그 함량을 제한한다.Manganese binds to sulfur in the steel to precipitate MnS to prevent hot brittleness due to the formation of FeS and to refine the particles without ductile damage. Increasing the amount of manganese deteriorates moldability and hardening hardenability by Mn-C dipole formation, coarsening of MnS precipitates, and also accelerates hardening hardening by reducing the amount of solid carbon by accelerating the cementite formation. When manufacturing hot-dip steel sheet, a large amount of oxides such as MnO are formed on the surface in the annealing process, which degrades the adhesion of the plating, and a large amount of plating defects occur to deteriorate the surface quality as the outer plate material. Therefore, the content is limited to 0.1 to 0.3%. do.

실리콘(Si): 0.02~0.05wt%Silicon (Si): 0.02 ~ 0.05wt%

실리콘(Si)은 고용강화 원소로서 강의 청정화에 기여하며, 적정 망간을 첨가하는 강에 첨가되면 용접시 용융금속의 유동성을 향상시켜 용접부 내 개재물 잔류 를 최대한 감소시키고 항복비와 강도 및 연신율의 균형을 저해하지 않으면서 강도를 향상시킨다. 또한, 실리콘은 페라이트내 탄소의 확산속도를 느리게 하여 탄화물의 성장을 억제하고 페라이트를 안정화하여 연신율을 향상시킨다. Silicon (Si) is a solid solution strengthening element, which contributes to the cleanliness of steel, and when added to steel with the addition of appropriate manganese, it improves the fluidity of molten metal during welding, reducing the inclusions in the weld as much as possible and balancing the yield ratio, strength and elongation. Improves strength without inhibiting In addition, silicon slows the diffusion rate of carbon in the ferrite, inhibits the growth of carbides and stabilizes the ferrite to improve the elongation.

하지만 실리콘(Si)은 과다 첨가시 도금성 및 적스케일로 인한 표면 결함을 발생시키고, 도금부착성을 저하시켜 미도금 및 도금 박리현상 등의 문제점이 발생시키므로 0.02~0.05wt%로 그 함량을 제한한다. However, since silicon (Si) causes surface defects due to plating property and red scale when excessively added, and decreases the adhesion of plating, problems such as unplating and plating peeling occur, so the content is limited to 0.02 ~ 0.05wt%. do.

니오븀(Nb): 0.008~0.015wt%Niobium (Nb): 0.008 to 0.015 wt%

니오븀은 강력한 탄질화물 형성원소로서, 열간압연시 강 중에 존재하는 탄소 및 질소와 미세한 석출물을 형성하여 생성 이후 결정립 성장을 억제하는 효과를 나타낸다. 일반적으로 결정립 미세화 효과는 강도향상, 2차 가공취성을 억제하는 효과를 보인다. 소부경화성 및 내시효성 향상에는 결정립 미세화가 효과적으로 작용하는데, 소부경화강에서는 일정량의 고용탄소가 필요하므로 필요에 의해 고용탄소를 잔류 혹은 재용해시키기 위해 Nb/C(원자비)를 고려하여 그 함량을 제어하는 것이 중요하다. 니오븀은 그 함량의 제어가 용이한 강종 중 하나로 본 발명에서는 Nb/C(원자비)를 제어하여 총 고용탄소량을 0.006~0.0015wt%로 조절하기 위해 그 함량을 0.008~0.015wt%로 제한한다.Niobium is a strong carbonitride-forming element, which forms fine precipitates with carbon and nitrogen present in steel during hot rolling, thereby suppressing grain growth after production. In general, the grain refinement effect shows the effect of improving the strength and suppressing the secondary work brittleness. Grain refinement acts effectively to improve the hardening hardening and aging resistance.In the hardening hardening steel, a certain amount of solid solution carbon is required, so that the content of Nb / C (atomic ratio) should be considered in order to retain or re-dissolve the solid solution carbon when necessary. It is important to control. Niobium is one of steel grades with easy control of its content. In the present invention, Nb / C (atomic ratio) is controlled to limit the content to 0.008 to 0.015 wt% in order to adjust the total dissolved carbon content to 0.006 to 0.0015 wt%. .

티타늄(Ti) : 0.003~0.008wt%Titanium (Ti): 0.003 ~ 0.008wt%

티타늄은 고온에서 질소(N)와 함께 질화물을 형성하거나 열간압연과정에서 탄화물을 형성하는 강력한 탄질화물 원소로서, 본 발명에서는 슬라브 재가열 과정에서 TiC, TiN 형태로 생성되어 열간압연시 결정립 크기를 미세하게 하고, 최종재 에 잔류하여 최종재의 재질을 향상시키는 역할을 한다. 그 함량이 0.008%보다 많으면 재가열 과정에서 석출물의 조대화가 발생하므로 그 함량을 0.003~0.008wt%로 제한한다. Titanium is a strong carbonitride element that forms nitride with nitrogen (N) at high temperature or carbides during hot rolling. In the present invention, titanium is formed in the form of TiC and TiN during slab reheating to finely grain size during hot rolling. It remains in the final material and serves to improve the material of the final material. If the content is more than 0.008%, coarsening of precipitates occurs during reheating, so the content is limited to 0.003 to 0.008 wt%.

인(P) : 0.01 ~0.06wt%Phosphorus (P): 0.01 ~ 0.06wt%

인(P)은 고용강화효과가 가장 큰 치환형 합금원소로서, 면내 이방성을 개선하고 강도를 향상시키는 역할을 하며 탄소와의 자리 경쟁으로 인이 첨가될수록 탄소에 의한 소부경화성이 증가하게 된다. 또한 인의 첨가에 의해 결정립 사이즈가 감소하므로 결정립 사이즈 감소에 따른 소부경화성, 내시효성의 향상을 기대할 수 있다. 그러나 인의 함량이 증가하면 2차 가공 취성이 발생하므로 그 함량을 0.01~0.06wt%로 제한한다. Phosphorus (P) is the substitution type alloy element having the largest solid solution strengthening effect, and serves to improve in-plane anisotropy and strength, and as the phosphorus is added to the spot competition with carbon, the bake hardenability by carbon increases. In addition, since the grain size decreases due to the addition of phosphorus, it is expected to improve the hardening hardening resistance and aging resistance according to the grain size reduction. However, if the content of phosphorus increases secondary brittleness occurs, the content is limited to 0.01 ~ 0.06wt%.

황(S) 0.006wt% 이하Sulfur (S) 0.006wt% or less

황은 강의 제조시 불가피하게 함유되는 원소로 인성 및 용접성을 저해하고, 유화물계(MnS) 비금속 개재물을 증가시켜 크랙 등의 발생을 야기한다. 특히, 황은 과다첨가시 조대한 개재물을 증가시켜 피로특성을 열화하므로 0.006wt% 이하의 범위로 규제한다.Sulfur is an element that is inevitably contained in the production of steel, inhibits toughness and weldability, and increases the sulfide-based (MnS) non-metallic inclusions, causing cracking and the like. In particular, sulfur is regulated in the range of 0.006wt% or less because it increases the coarse inclusions to deteriorate the fatigue characteristics.

알루미늄(Al): 0.03~0.07wt%Aluminum (Al): 0.03 ~ 0.07wt%

알루미늄은 주로 탈산제로 사용되는 원소이다. 열간압연시 질소(N)와 질화물(AlN)을 석출하여 결정립 억제효과를 보인다. 0.03%이하에서는 상기 탈산효과를 얻기 힘들다. 그 첨가량이 증가할 경우 결정립 미세화로 강도 확보에 도움이 되나 0.07wt%이상 첨가시 제강 연주 조업시 개재물이 과다 형성되며, 도금 표면에 불량 이 발생할 가능성이 증가하게 된다. 따라서 그 함량을 0.03~0.07wt%로 제한한다.Aluminum is an element mainly used as a deoxidizer. Nitrogen (N) and nitride (AlN) are precipitated during hot rolling to show grain restraining effect. Below 0.03%, it is difficult to obtain the deoxidation effect. If the added amount is increased, it helps to secure the strength by refining grains, but when it is added more than 0.07wt%, the inclusions are excessively formed during steelmaking operation, and the possibility of defects on the plating surface increases. Therefore, the content is limited to 0.03 to 0.07wt%.

질소(N) 0.003~0.005wt% 이하Nitrogen (N) 0.003 ~ 0.005wt% or less

질소는 탄소와 함께 소부경화성 및 시효현상을 일으키는 합금원소로서, 탄소에 비하여 소부경화 향상 능력이 크지만 연신율 및 성형성의 열화 및 시효현상 역시 급속히 증가하고, 항복점 연신 발생구간이 급속히 증가하여 소부경화 용도로 적용이 어려운 합금원소이다. 또한 그 함량이 많으면 질화물의 크기가 급속히 증가하고, 성형성이 저하되므로 그 함량을 0.003~0.005wt%로 제한한다. 본 발명에서는 티타늄과 함께 석출현상을 일으키는 합금원소로 사용된다.Nitrogen is an alloying element that causes quench hardening and aging with carbon.It has a greater ability to enhance quench hardening than carbon, but deterioration and aging of elongation and formability also increase rapidly, and the yield point extension zone rapidly increases. It is an alloy element that is difficult to apply. In addition, if the content is large, the size of the nitride rapidly increases and moldability is reduced, so the content is limited to 0.003 to 0.005wt%. In the present invention, it is used as an alloying element causing precipitation phenomenon together with titanium.

보론(B) 0.0005~0.0020wt%Boron (B) 0.0005 ~ 0.0020wt%

보론은 첨가량 대비 효과가 큰 합금원소로서, 인(P) 첨가강의 2차 가공취성을 억제한다. 또한 탄소와 친밀성이 높고 입계에 존재하는 비율이 높아 탄소가 입계를 통해 확산되는 효과를 높여주며 탄소에 의한 소부경화 특성을 향상시켜 준다. 하지만 일정량 이상 첨가시 그 재질의 열화가 발생하므로 그 함량을 0.0005~0.0020wt%로 제한한다. Boron is an alloying element having a large effect compared to the amount of addition, and suppresses secondary work brittleness of phosphorus (P) -added steel. In addition, it has high affinity with carbon and high ratio at the grain boundary, which enhances the effect of carbon diffusion through the grain boundary and improves the hardening characteristic by carbon. However, when a certain amount or more is added, the material deteriorates, so its content is limited to 0.0005 ~ 0.0020wt%.

본 발명의 강판은 상기 성분들을 함유하고, 나머지는 실질적으로 철(Fe) 및 불가피한 원소들이며, 원료, 자재, 제조설비 등의 상황에 따라 함유되는 원소로서 불가피한 불순물의 미세량 혼입도 허용된다. The steel sheet of the present invention contains the above components, and the rest are substantially iron (Fe) and unavoidable elements, and fine amounts of inevitable impurities are also allowed as elements contained according to the situation of raw materials, materials, manufacturing facilities, and the like.

상기한 바와 같은 조성을 갖는 슬라브는 제강공정을 통해 용강을 얻은 다음에 주괴 또는 연속주조공정을 통해 제조되며, 여기서는 다단 가열유지공정과 열간압연 및 권취공정을 거쳐 강판 형태로 제조된 후에, 냉간압연 및 소둔과정을 거치 고 조질압연하는 아래의 공정을 거치게 된다. The slab having the composition as described above is obtained by ingot or continuous casting process after obtaining the molten steel through the steelmaking process, where it is manufactured in the form of steel sheet through the multi-stage heating and holding process, hot rolling and winding process, cold rolling and Through the annealing process and temper rolling, the following process is carried out.

각 공정은 아래와 같다. Each process is as follows.

[다단 가열유지 공정][Multistage heating maintenance process]

슬라브를 다단으로 재가열 유지하는 공정으로서, 슬라브 탄질화물을 형성하는 합금원소의 성분비와 함께 온도구간 1130~1160℃에서 30분~1시간 가열유지하는 제1가열유지단계와, 상기 제1가열유지단계 후 1180~1250℃에서 30분~1시간 가열유지하는 제2가열유지단계와, 상기 제2가열유지단계후 1130~1180℃에서 30분~1시간 가열유지하는 제3가열유지단계로 이루어진다.A process for reheating and maintaining a slab in multiple stages, the first heating holding step of maintaining heating at a temperature section of 1130 to 1160 ° C. for 30 minutes to 1 hour together with the component ratio of the alloying elements forming slab carbonitride, and the first heating holding step After the second heating maintenance step of maintaining the heating for 30 minutes ~ 1 hour at 1180 ~ 1250 ℃, and the third heating maintenance step of maintaining the heating for 30 minutes ~ 1 hour at 1130 ~ 1180 ℃ after the second heating maintenance step.

제1가열유지단계에서는 미세한 TiN을 형성시키고, 제2가열유지단계에서는 균일한 오스테나이트 조직을 형성하는 한편 TiN을 제외한 탄질화물을 완전히 재용해시키며, 제3가열유지단계에서는 미세한 NbC 및 TiC를 석출시킨다. In the first heating maintenance step, fine TiN is formed, in the second heating maintenance step, a uniform austenite structure is formed, while carbonitrides other than TiN are completely dissolved, and in the third heating maintenance step, fine NbC and TiC are precipitated. Let's do it.

도1은 일반적인 슬라브 재가열(1200℃, 2시간 균일가열)과 다단 가열유지를 통한 슬라브 재가열(1150℃→1200℃→1150℃ 다단가열)후 급냉한 후 TEM으로 석출물을 관찰한 사진이다. 도1에 나타난 바와 같이 다단 가열유지공정을 통해 열연공정 전에 강 중에 미세한 탄질화물을 생성시킬 수 있다. FIG. 1 is a photograph of a precipitate observed by TEM after quenching after slab reheating (1150 ° C. → 1200 ° C. → 1150 ° C. multistage heating) through general slab reheating (1200 ° C., 2 hours uniform heating) and multistage heating holding. As shown in FIG. 1, the fine carbonitride may be generated in the steel before the hot rolling process through the multi-stage heating and maintaining process.

[열간압연 및 권취 공정][Hot Rolling and Winding Process]

다단 가열유지공정을 거친 슬라브는 830~930℃ 온도범위에서 열간압연을 마무리한다. 열간압연의 사상압연 온도가 너무 높을 경우 최종재의 결정립 크기가 상승해 강도 열화가 발생하므로 그 온도를 930℃이하로 제한하며, 온도가 너무 낮을 경우 판재의 폭두께별로 불균일 미세조직이 발생하여 면내 이방성이 증가하고 성형 성 등 열화가 발생하므로 그 온도를 880℃이상으로 제한한다. The slab, which has undergone a multi-stage heating and maintenance process, is finished hot rolling in the temperature range of 830 ~ 930 ℃. If the filament rolling temperature of hot rolling is too high, the grain size of the final material rises and strength deterioration occurs. Therefore, limit the temperature to 930 ℃ or less.If the temperature is too low, uneven microstructure is generated by the width of the plate, resulting in in-plane anisotropy. This increases and deteriorates such as moldability, so the temperature is limited to 880 ° C or higher.

열간압연을 마무리후, 600~750℃에서 권취하게 되는데, 권취온도가 750℃이 상일 경우 이상결정립자 성장이나 과도한 결정립자 성장으로 최종재의 성형성, 강도 열화가 발생하므로 권취온도를 600~750℃로 제한한다.After finishing hot rolling, it is wound up at 600 ~ 750 ℃. If the coiling temperature is higher than 750 ℃, abnormality of grain growth or excessive grain growth causes deterioration of formability and strength of final material. Limited to

[냉간압연, 소둔 및 조질압연 공정][Cold rolling, annealing and temper rolling process]

열간압연 후 권취된 강판은 냉간압연을 거치게 되는데, 냉간압연시 합하율이 중가할수록 최종재의 결정립 크기가 감소하고 <110>//RD 압연집합조직이 발달하여 소둔 이후 성형성을 최적화시키는 {111}//ND 재결정 집합조직이 발달하게 된다. 실제 공정상 생산성의 문제와 압연부하의 문제가 발생하므로 그 압하율을 70~80%로 제한한다. The steel sheet wound after hot rolling is subjected to cold rolling. As the combined ratio of cold rolling increases, the grain size of the final material decreases, and the <110> // RD rolling aggregate structure is developed to optimize moldability after annealing. // ND recrystallization aggregates develop. In practice, problems of productivity and rolling load occur, so the reduction ratio is limited to 70 to 80%.

냉간압연재의 경우 압연시 변형상태가 압연재의 두께층에 따라 다르게 작용하기 때문에 재결정시 구동력이 압연재의 두께별로 다르게 분포한다. 이때 소둔온도가 너무 낮으면 압연재의 두께 층에 따라 불균일한 미세조직과 집합조직이 발달하므로 면내이방성이 증가하고, 프레스 성형시 불균일 변형으로 인한 요철무늬의 표면결함이 발생할 수 있다. 또한 재결정 조직의 발달이 제한되어 성형성 및 연성 열화가 발생하므로 780℃이상에서 소둔을 실시한다. 소둔온도가 높아지면 NbC석출물의 재용해에 의해 소부경화능이 증가하고 {111}//ND 결정립자의 성장으로 성형성이 증가하나, 너무 높을 경우 비정상적인 결정립 성장과 두께 층에 따른 불균일 미세조직의 발달로 그 재질이 열화되며, 고온에서의 소둔으로 인한 판재에 작용하는 장력(Tension)과 고온소둔 장비(버너 등)의 증설이 문제가 되므로 880℃이하로 제 한한다.In the case of cold rolled material, the deformation state during rolling acts differently depending on the thickness of the rolled material. In this case, if the annealing temperature is too low, the in-plane anisotropy increases due to the development of uneven microstructures and aggregates depending on the thickness of the rolled material, and may cause surface defects of the uneven pattern due to uneven deformation during press molding. In addition, since the development of the recrystallized structure is limited to formability and ductile deterioration occurs, annealing is performed at 780 ℃ or more. If the annealing temperature is increased, the hardening hardening capacity is increased by re-dissolution of NbC precipitates, and the moldability is increased by the growth of {111} // ND grains. However, if the annealing temperature is too high, it is caused by abnormal grain growth and development of uneven microstructure according to the thickness layer. The material is deteriorated, and the tension applied to the plate due to the annealing at high temperature and the expansion of the high temperature annealing equipment (burner, etc.) are problematic, so it is limited to 880 ° C. or less.

소둔 이후 소부경화성 및 내시효성 향상, 고용원소에 의한 항복점 연신현상을 제거하기 위해 조질압연을 실시하는 데, 문헌정보와 확인실험 결과에 따라 0.8~1.2%의 범위에서 조질압연을 행하는 것이 바람직하다.After annealing, temper rolling is carried out to improve the hardening and aging resistance of the bake, and to remove the yield point stretching caused by the employment element. It is preferable to perform the temper rolling in the range of 0.8 to 1.2% according to the literature information and the test results.

상기 소둔 이후에는 조질압연하기 전에 450~550℃의 온도범위에서 합금화 용융도금을 실시할 수도 있다.After the annealing, before the temper rolling, the alloy may be hot dip galvanized in the temperature range of 450 ~ 550 ℃.

상기 제조방법을 통해, 인장강도가 350MPa 이상, 소성이방성 지수(Lankford Value : R값)가 1.6이상, 도장 소부시 소부경화량이 30MPa이상, 인공시효처리시 시효지수(Aging Index)가 30MPa 이하, 항복점 연신이 0.2%이하, 최종재의 항복강도가 300MPa인 소부경화강의 제조가 가능하다.Through the above manufacturing method, the tensile strength is 350MPa or more, the plastic anisotropy index (R value) is 1.6 or more, the baking hardening amount is 30MPa or more, the Aging Index is 30MPa or less during artificial aging treatment, the yield point It is possible to produce a hardened hardened steel having an elongation of 0.2% or less and a yield strength of the final material of 300 MPa.

표 1은 본 발명의 발명예를 비교예와 비교한 성분비를 나타낸 것이다. Table 1 shows the component ratio which compared the invention example of this invention with the comparative example.

구분 division 화학성분(wt%, 잔부Fe)Chemical composition (wt%, balance Fe) 비고 Remarks CC MnMn SiSi NbNb TiTi PP AlAl NN BB SS 비교예1Comparative Example 1 0.00240.0024 0.340.34 0.030.03 0.00100.0010 -- 0.020.02 0.040.04 0.00440.0044 0.00100.0010 0.0050.005 발명예Inventive Example 0.00250.0025 0.350.35 0.040.04 0.00110.0011 0.00450.0045 0.020.02 0.050.05 0.00390.0039 0.00150.0015 0.0060.006 비교예2Comparative Example 2 0.00260.0026 0.330.33 0.030.03 0.00120.0012 0.01000.0100 0.020.02 0.040.04 0.00390.0039 0.00100.0010 0.0050.005

비교예1은 0.0012%가량의 고용탄소를 잔류시키기 위해 Nb만 0.001%를 목표로 첨가한 성분계이며, 발명예1은 본 발명의 최적화된 조건을 만족하는 성분계이며, 비교예2는 Ti를 본 발명의 범위를 초과하도록 첨가한 성분계이다.Comparative Example 1 is a component system in which only Nb is added to target 0.001% in order to retain about 0.0012% of solid solution carbon, and Inventive Example 1 is a component system satisfying the optimized conditions of the present invention, and Comparative Example 2 relates to Ti according to the present invention. It is the component system added so that it might exceed the range of.

상기 성분을 가지는 슬라브를 제조하여 다음과 같은 조건의 공정을 통하여 제조한 시편의 기계적 성질을 측정한 결과를 표2에 함께 나타내었다.Table 2 shows the results of measuring the mechanical properties of the specimen prepared by the slab having the above components through the process of the following conditions.

구분 division 가열, 압연 및 열처리조건Heating, rolling and heat treatment conditions 기계적 성질Mechanical properties 비고 Remarks 가열 조건 ℃, HrHeating condition ℃, Hr 압연 마무리온도 ℃Rolling finish temperature ℃ 권취 온도 ℃Winding temperature ℃ 냉연 압하율 (%)Cold rolling reduction rate (%) 소둔 온도 ℃Annealing temperature ℃ 인장 강도 (Mpa)Tensile strength (Mpa) 항복 강도 (MPa)Yield strength (MPa) r값r value BH (MPa)BH (MPa) AI (MPa)AI (MPa) 연신율 (%) Elongation (%) 비교예1Comparative Example 1 1230, 21230, 2 900900 640640 7575 840840 346346 214214 1.911.91 25.125.1 19.719.7 4343 비교예1Comparative Example 1 다단가열Multi-stage heating 900900 640640 7575 840840 351351 220220 1.951.95 32.332.3 21.221.2 4343 발명예Inventive Example 1230, 21230, 2 900900 640640 7575 840840 352352 216216 2.012.01 24.224.2 18.318.3 4444 발명예Inventive Example 다단가열Multi-stage heating 900900 640640 7575 840840 362362 235235 2.222.22 43.543.5 18.118.1 4646 비교예2Comparative Example 2 1230, 2 1230, 2 900900 640640 7575 840840 354354 215215 2.142.14 13.413.4 4.74.7 4747 비교예2Comparative Example 2 다단 가열Multi-stage heating 900900 640640 7575 840840 365365 228228 2.092.09 19.119.1 11.511.5 4848

상기 표2의 가열조건에서 다단가열은 상기 다단가열유지공정의 3단계 가열유지단계이며, 온도 및 유지시간은 중간치를 취한 값이다. r값은 소성이방성 지수를 나타내고, BH는 도장 소부시 소부경화량을 나타내며, AI는 인공시효처리시 시효지수를 나타낸다. In the heating conditions shown in Table 2, the multi-stage heating is a three-stage heating holding step of the multistage heating holding step, and the temperature and the holding time are values obtained by taking an intermediate value. The r value represents the plastic anisotropy index, the BH represents the baking hardening amount during coating baking, and the AI represents the aging index during artificial aging treatment.

비교예1을 보면, 일반 재가열방법을 적용한 경우보다 다단가열을 적용한 경우에 소부경화량 및 성형성, 강도에서 더욱 높은 재질특성을 보이고 있다. 이는 다단 가열로 생성된 미세한 NbC 탄화물의 영향으로 열간압연과 냉연소둔과정에서 결정립 사이즈를 감소시켰기 때문으로 보인다.In Comparative Example 1, when the multi-stage heating is applied than when the general reheating method is applied, the material properties are higher in the hardening amount, formability, and strength. This may be due to the reduction of grain size during hot rolling and cold annealing due to the influence of fine NbC carbides produced by multi-stage heating.

발명예를 보면, 일반 재가열방법을 적용한 비교예1과 큰 차이점이 발견되지 않았으나, 다단가열을 적용한 경우 재질특성이 매우 향상됨을 알 수 있다. 이는 NbC 탄화물 이외에도 제1가열유지단계에서 발생한 미세한 TiN이 열간압연과 냉연소둔과정에서 결정립 성장을 방해했기 때문으로 보인다.Looking at the invention example, a significant difference was not found with Comparative Example 1 to which the general reheating method was applied, but it can be seen that the material properties are greatly improved when the multistage heating is applied. This may be due to the fact that in addition to NbC carbide, fine TiN generated in the first heating maintenance step prevented grain growth during hot rolling and cold rolling annealing.

비교예2는 Ti를 본발명의 성분계이상으로 첨가한 경우이다. Ti가 본 발명의 범위를 초과하게 되면 TiN이 급격히 성장하여 큰 효과를 보이지 못하는 것으로 보인다.Comparative Example 2 is a case where Ti is added beyond the component system of the present invention. When Ti exceeds the range of the present invention, TiN seems to grow rapidly and does not show a great effect.

본 발명의 다단가열방법은 Ti, Nb, V등의 탄질화물을 이용하는 극저탄소가(IF)강의 제조시에도 적용이 가능하다. The multi-stage heating method of the present invention can be applied to the production of ultra low carbon (IF) steel using carbonitrides such as Ti, Nb, and V.

도1은 일반적인 슬라브 재가열과 다단 가열유지를 통한 슬라브 재가열후 급냉한 후 TEM으로 석출물을 관찰한 사진이다.Figure 1 is a photograph of the precipitate observed by TEM after quenching after slab reheating through the general slab reheating and multistage heating holding.

Claims (4)

탄소(C) 0.0015~0.0030wt%, 망간(Mn) 0.1~0.3wt%, 실리콘(Si) 0.02~0.05wt%, 니오븀(Nb) 0.008~0.015wt%, 티타늄(Ti) 0.003~0.008wt%, 인(P) 0.01~0.06wt%, 알루미늄(Al) 0.03~0.07wt%, 질소(N) 0.003~0.005wt%, 보론(B) 0.0005~0.0020wt% 황(S) 0.006wt% 이하 및 잔부 철(Fe)의 합금조성을 가지는 것을 특징으로 하는 소부경화강판.0.0015 ~ 0.0030wt% carbon (C), 0.1 ~ 0.3wt% manganese (Mn), 0.02-0.05wt% silicon (Si), 0.008 ~ 0.015wt% niobium (Nb), 0.003-0.008wt% titanium (Ti), Phosphorus (P) 0.01 ~ 0.06wt%, Aluminum (Al) 0.03 ~ 0.07wt%, Nitrogen (N) 0.003 ~ 0.005wt%, Boron (B) 0.0005 ~ 0.0020wt% Sulfur (S) 0.006wt% or less and balance iron A hardened steel sheet characterized by having an alloy composition of (Fe). 탄소(C) 0.0015~0.0030wt%, 망간(Mn) 0.1~0.3wt%, 실리콘(Si) 0.02~0.05wt%, 니오븀(Nb) 0.008~0.015wt%, 티타늄(Ti) 0.003~0.008wt%, 인(P) 0.01~0.06wt%, 알루미늄(Al) 0.03~0.07wt%, 질소(N) 0.003~0.005wt%, 보론(B) 0.0005~0.0020wt%, 황(S) 0.006wt% 이하 및 잔부 철(Fe)의 합금조성을 가지는 강슬라브를, 0.0015 ~ 0.0030wt% carbon (C), 0.1 ~ 0.3wt% manganese (Mn), 0.02-0.05wt% silicon (Si), 0.008 ~ 0.015wt% niobium (Nb), 0.003-0.008wt% titanium (Ti), Phosphorus (P) 0.01 ~ 0.06wt%, Aluminum (Al) 0.03 ~ 0.07wt%, Nitrogen (N) 0.003 ~ 0.005wt%, Boron (B) 0.0005 ~ 0.0020wt%, Sulfur (S) 0.006wt% or less and balance Steel slab having an alloy composition of iron (Fe), 1130 ~ 1250℃의 온도범위에서 3단으로 가열유지하는 단계를 거친 후, 880~930℃의 온도범위에서 열간압연을 마무리하여, 600~750℃에서 권취하는 것을 특징으로 하는 소부경화강판의 제조방법.After the step of maintaining the heating in three stages in the temperature range of 1130 ~ 1250 ℃, finish the hot rolling in the temperature range of 880 ~ 930 ℃, winding method at 600 ~ 750 ℃ . 청구항 2에 있어서, The method according to claim 2, 상기 3단으로 가열유지하는 단계는, The step of maintaining the heating in three stages, 1130~1160℃에서 30분~1시간 가열유지하는 제1가열유지단계와, A first heating maintenance step of maintaining heating at 1130-1160 ° C. for 30 minutes to 1 hour, 상기 제1가열유지단계 후 1180~1250℃에서 30분~1시간 가열유지하는 제2가열 유지단계와, A second heating maintenance step of maintaining heating at 1180 to 1250 ° C. for 30 minutes to 1 hour after the first heating maintenance step; 상기 제2가열유지단계후 1130~1180℃에서 30분~1시간 가열유지하는 제3가열유지단계로 이루어지는 것을 특징으로 하는 소부경화강판의 제조방법.Method of producing a hardened hardened steel sheet, characterized in that the third heating holding step consisting of maintaining the heating for 30 minutes to 1 hour at 1130 ~ 1180 ℃ after the second heating holding step. 청구항 2 또는 청구항 3에 있어서, The method according to claim 2 or 3, 상기 열간압연 후에는, 압하율 70~80%로 냉간압연하고, 780~880℃에서 소둔한 후, 압하율 0.8~1.2%로 조질압연하는 것을 특징으로 하는 소부경화강판의 제조방법.After the hot rolling, cold rolling at a reduction ratio of 70 to 80%, annealing at 780 to 880 ° C., and then temper rolling at a reduction ratio of 0.8 to 1.2%.
KR1020080106084A 2008-10-28 2008-10-28 Beo hardened steel sheet and manufacturing method KR101062131B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080106084A KR101062131B1 (en) 2008-10-28 2008-10-28 Beo hardened steel sheet and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080106084A KR101062131B1 (en) 2008-10-28 2008-10-28 Beo hardened steel sheet and manufacturing method

Publications (2)

Publication Number Publication Date
KR20100047012A true KR20100047012A (en) 2010-05-07
KR101062131B1 KR101062131B1 (en) 2011-09-02

Family

ID=42274194

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080106084A KR101062131B1 (en) 2008-10-28 2008-10-28 Beo hardened steel sheet and manufacturing method

Country Status (1)

Country Link
KR (1) KR101062131B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290350B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 Steel sheet and method of manufacturing the steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290350B1 (en) * 2011-06-28 2013-07-26 현대제철 주식회사 Steel sheet and method of manufacturing the steel sheet

Also Published As

Publication number Publication date
KR101062131B1 (en) 2011-09-02

Similar Documents

Publication Publication Date Title
KR101348857B1 (en) High-strength bake-hardening cold-rolled steel sheet and method for manufacturing same
KR100742955B1 (en) Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR20100071296A (en) High strength hot-rolled steel sheet having exceelent impact resistance and paintability and method for manufacturing the same
KR101938073B1 (en) Steel for hot stamping and manufacturing method thoereof
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
KR102469278B1 (en) Steel material for hot press forming, hot pressed member and manufacturing method theerof
KR20150075306A (en) Ultra-high strength hot-rolled steel sheet with excellent in bending workability, and method for producing the same
KR101030898B1 (en) solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same
KR101620750B1 (en) Composition structure steel sheet with superior formability and method for manufacturing the same
KR101726139B1 (en) Hot press forming parts having superior ductility and impact toughness and method for manufacturing the same
KR100957965B1 (en) High Strength Hot Rolled Steel Sheet for Hot Forming with Reduced Cracking in Cooling and Coiling and Manufacturing Method Thereof
KR101630977B1 (en) High strength hot rolled steel sheet having excellent formability and method for manufacturing the same
KR101062131B1 (en) Beo hardened steel sheet and manufacturing method
KR20220071035A (en) Ultra high strength cold rolled steel sheet treated by softening heat process and method of manufacturing the same
KR101105055B1 (en) Bake-hardenable cold rolled steel sheet having excellent resistance to second work embrittleness and high strength, and method of manufacturing the same
KR101957601B1 (en) Cold rolled steel sheet and method of manufacturing the same
KR101130013B1 (en) High strenth hot rolled steel sheet, and method for manufacturing the same
KR101143139B1 (en) Cold Rolled Steel Sheet and Hot-dip Zinc Plated Steel Sheet with Superior Press Formability and Bake Hardenability and Method for Manufacturing the Steel Sheets
KR101129944B1 (en) Bake-Hardenable Steel Sheet and Method for Manufacturing the Same
KR101076082B1 (en) Hot-rolled steel sheet having ultra-high strength, and method for producing the same
JP2021502480A (en) Ultra-high-strength, high-ductility steel sheet with excellent cold formability and its manufacturing method
KR20200062428A (en) Cold rolled galvanized steel sheet and method of manufacturing the same
KR101053345B1 (en) High strength cold rolled steel sheet with excellent surface and hardening properties and its manufacturing method
KR100470640B1 (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
KR101344549B1 (en) Cold-rolled steel sheet and method of manufacturing the cold-rolled steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140730

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee