KR20100043714A - Capsid protein and the gene of swine hepatitis e virus - Google Patents

Capsid protein and the gene of swine hepatitis e virus Download PDF

Info

Publication number
KR20100043714A
KR20100043714A KR1020080102883A KR20080102883A KR20100043714A KR 20100043714 A KR20100043714 A KR 20100043714A KR 1020080102883 A KR1020080102883 A KR 1020080102883A KR 20080102883 A KR20080102883 A KR 20080102883A KR 20100043714 A KR20100043714 A KR 20100043714A
Authority
KR
South Korea
Prior art keywords
hev
gene
thr
ala
leu
Prior art date
Application number
KR1020080102883A
Other languages
Korean (ko)
Other versions
KR101058486B1 (en
Inventor
최인수
이중복
박승용
송창선
송영조
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020080102883A priority Critical patent/KR101058486B1/en
Publication of KR20100043714A publication Critical patent/KR20100043714A/en
Application granted granted Critical
Publication of KR101058486B1 publication Critical patent/KR101058486B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/42Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/28011Hepeviridae
    • C12N2770/28111Hepevirus, e.g. hepatitis E virus
    • C12N2770/28141Use of virus, viral particle or viral elements as a vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A capsid protein of swine hepatitis E virus(HEV) and a gene encoding the same are provided to develop diagnosis and vaccine for HEV. CONSTITUTION: A swine hepatitis E virus(HEV) ORF2 capsid protein contains an amino acid of sequence number 7. A gene encoding the swine HEV ORF2 capsid protein ahs a sequence of sequence number 6. A vector pswHEV-capsid contains a gene encoding the protein. A transformed microorganism is obtained by introducing the vector pswHEV-capsid to host cell of bacteria, fungi, or yeast. The host cell is E.coli. The transformed microorganism is deposit number KCTC18139P.

Description

돼지 E형 간염바이러스의 capsid 단백질 및 그를 코딩하는 유전자 {Capsid Protein and the gene of Swine hepatitis E virus}Capsid Protein and the Gene of Swine Hepatitis E Virus of Porcine Hepatitis E Virus

본 발명은 돼지 E형 간염바이러스의 capsid 단백질 및 그를 코딩하는 유전자, 상기 유전자를 함유하는 벡터에 관한 것이다.The present invention relates to a capsid protein of swine hepatitis E virus, a gene encoding the same, and a vector containing the gene.

돼지 E형 간염바이러스(Swine hepatitis E virus, swHEV)는 외피를 보유하지 않는 바이러스로서 약 7.5kb의 양성가닥, 단일가닥 RNA 게놈을 가지고 있으며 계통 분류상 Hepeviridae과 및 Hepevirus 속에 속한다(Emerson et al., Virus taxonomy VIIIth report of the ICTV, 851, 2004; Tam et al., Virology, 185:120, 1991; Reyes et al., Gastroenterol Jpn, 26:142, 1991). Swine hepatitis E virus (swHEV) is a non-enveloped virus that has a positive-strand, single-stranded RNA genome of about 7.5 kb and belongs to the Hepeviridae family and Hepevirus by lineage classification (Emerson et al ., Virus taxonomy VIIIth report of the ICTV, 851, 2004; Tam et al ., Virology, 185: 120, 1991; Reyes et al ., Gastroenterol Jpn, 26: 142, 1991).

HEV의 유전자는 3개의 Open reading frame(ORF)으로 구성되어 있으며, 그 중 ORF1은 nonstructural protein을 ORF2는 capsid protein을 coding하는 것으로 알려져 있다. ORF3은 아직 그 기능이 명확하게 밝혀져 있지 않은 단백질을 coding 하는 것으로 알려져 있다(Mushahwar et al., Hepatitis E virus: Molecular biology and diagnosis. Eur J Gastroenterol Hepatol, 8:312, 1996; Reyes et al., Hepatitis E virus (HEV): The novel agent responsible for enterically-transmitted non-A, non-B hepatitis. Gastroenterol Jpn 26:142, 1991).The HEV gene consists of three open reading frames (ORFs), of which ORF1 encodes a nonstructural protein and ORF2 encodes a capsid protein. ORF3 is known to encode a protein whose function is not yet clearly identified (Mushahwar et al ., Hepatitis E virus: Molecular biology and diagnosis.Eur J Gastroenterol Hepatol, 8: 312, 1996; Reyes et al ., Hepatitis E virus (HEV): The novel agent responsible for enterically-transmitted non-A, non-B hepatitis.Gastroenterol Jpn 26: 142, 1991).

과거에는 HEV에 의한 질병이 인도, 중국 및 기타 개발도상국에서만 발생하는 것으로 인식되었다(Velaㅄzquez et al., Epidemic transmission of enterically transmitted non-A, non-B hepatitis in Mexico, 1986-1987. JAMA 263:3281, 1990). 그러나 최근 미국, 일본 및 유럽 여러 나라와 같은 선진국에서도 HEV 환자가 증가하고 있는 실정이다. 또한 우리나라의 일반 국민을 대상으로 혈청 내에 존재하는 HEV 항체를 조사하여 본 결과 약 18%에 해당하는 사람들이 HEV 항체를 보유하고 있는 것으로 확인되어 HEV가 우리나라 국민에게도 심각한 수준으로 감염되어 있다는 것이 증명 되었다(Choi et al., Identification of swine hepatitis E virus (HEV) and prevalence of anti-HEV antibodies in swine and human populations in Korea. J Clin Microbiol, 41:3602, 2003).In the past, it was recognized that diseases caused by HEV occurred only in India, China and other developing countries (Velazzquez et al. , Epidemic transmission of enterically transmitted non-A, non-B hepatitis in Mexico, 1986-1987. 263: 3281, 1990). Recently, however, the number of patients with HEV is increasing in advanced countries such as the United States, Japan, and many other European countries. In addition, the survey of HEV antibodies present in the serum of the general population of Korea showed that about 18% of people possess HEV antibodies, which proves that HEV is also seriously infected by Korean people. (Choi et al ., Identification of swine hepatitis E virus (HEV) and prevalence of anti-HEV antibodies in swine and human populations in Korea.J Clin Microbiol, 41: 3602, 2003).

1997년도에 최초로 미국에서 돼지로부터 E형 간염바이러스가 분리되었고, 사람에서 분리된 E형 간염바이러스와 유전적 연관성을 비교해본 결과 두 바이러스가 매우 유사한 핵산 및 아미노산 서열을 보유하고 있는 것으로 밝혀졌다(Meng et al., A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci USA 94: 9860, 1997).In 1997, hepatitis E virus was isolated from pigs in the United States for the first time, and genetic association with hepatitis E virus isolated from humans revealed that the two viruses possess very similar nucleic acid and amino acid sequences (Meng). et al. , A novel virus in swine is closely related to the human hepatitis E virus.Proc Natl Acad Sci USA 94: 9860, 1997).

이러한 자료를 근거로 하여 사람에서 분리된 E형 간염바이러스를 돼지에 감염시키고, 반대로 돼지에서 분리된 E형 간염바이러스를 영장류에 감염시키는 실험을 수행하여 본 결과 종간 교차감염이 발생함이 증명되었다(Meng et al., Genetic and experimental evidence for cross-species infection by swine hepatitis E virus, J Virol 72: 9714, 1998).Based on these data, experiments were conducted in which hepatitis E virus isolated from humans was infected with pigs and, conversely, hepatitis E virus isolated from pigs was infected with primates. Meng et al. , Genetic and experimental evidence for cross-species infection by swine hepatitis E virus, J Virol 72: 9714, 1998).

또한 돼지 및 소와 같은 가축과 개 등의 애완동물뿐만 아니라 야생 들쥐 및 집쥐들의 혈청 내에 E형 간염바이러스에 대한 항체가 매우 높게 존재하는 것이 확인되어 대부분의 동물이 이미 HEV에 감염되어 있음이 밝혀짐에 따라서 E형 간염바이러스가 동물을 통하여 사람에게 전파될 가능성이 매우 높은 것으로 인식되고 있다(Arankalle et al., Prevalence of anti-hepatitis E virus antibodies in different Indian animal species, J Viral Hepat 8:223, 2001; Vitral et al., Serological evidence of hepatitis E virus infection in different animal species from the Southeast of Brazil, Mem Inst Oswaldo Cruz 100:117, 2005). 동물 중에서도 특히 돼지와의 접촉을 통해서 감염될 확률이 매우 높을 것으로 추정하고 있는데 그 이유는 돼지와 사람의 HEV가 계통분류적으로 가깝고(Meng et al., A novel virus in swine is closely related to the human hepatitis E virus. Proc Natl Acad Sci USA 94: 9860, 1997), 돼지와 자주 접하는 수의사나 돼지 농장의 인부 및 돼지를 판매하는 사람들의 혈청에서 측정된 HEV 항체가가 대조군의 사람들보다 유의성 있게 높은 것으로 증명되고 있기 때문이다. In addition, it was confirmed that antibodies to hepatitis E virus were very high in the sera of wild rats and mice as well as pets such as domestic animals such as pigs and cows, and most animals were already infected with HEV. It is recognized that hepatitis E virus is very likely to be transmitted to humans through animals (Arankalle et al. , Prevalence of anti-hepatitis E virus antibodies in different Indian animal species, J Viral Hepat 8: 223, 2001; Vitral et al ., Serological evidence of hepatitis E virus infection in different animal species from the Southeast of Brazil, Mem Inst Oswaldo Cruz 100: 117, 2005). It is estimated that the probability of infection among animals is particularly high through contact with pigs because the HEVs of pigs and humans are systematically close (Meng et al. , A novel virus in swine is closely related to the human hepatitis E virus.Proc Natl Acad Sci USA 94: 9860, 1997). Because it is.

HEV는 돼지에 감염되어 있을 때에는 임상증상이 없지만 사람에 감염되었을 경우에는 급성 간염 증상을 나타내고 특히 임산부에 감염되었을 경우에는 사망에 이르게도 한다(Madan et al., Detection of hepatitis C and E genomes in sera of patients with acute viral hepatitis and fulminant hepatitis by their simultaneous amplication in PVR. J Gastroenterol Hepatol 13: 125, 1998). 따라 서 새로운 인수공통 전염병의 원인체로 인식 되고 있는 swine HEV 에 대한 국내 돼지의 감염실태를 파악할 수 있는 표준화된 진단법의 확립이 매우 시급한 실정이다.HEV has no clinical symptoms when infected with swine, but acute hepatitis symptoms when infected with human pigs, and death, especially when infected with pregnant women (Madan et al ., Detection of hepatitis C and E genomes in sera). of patients with acute viral hepatitis and fulminant hepatitis by their simultaneous amplication in PVR.J Gastroenterol Hepatol 13: 125, 1998). Therefore, it is very urgent to establish a standardized diagnosis method to identify the domestic swine HEV infection status of swine HEV, which is recognized as a cause of new common infectious diseases.

이에 본 발명자들은 상기한 돼지 E형 간염바이러스 단백질 및 그를 코딩하는 유전자를 분리ㆍ확보하고자 예의 노력한 결과, 돼지의 분변으로부터 돼지 capsid 단백질 및 유전자를 분리하여 본 발명을 완성하게 되었다.Accordingly, the present inventors have made intensive efforts to isolate and secure the above-described pig hepatitis E virus protein and genes encoding the same, thereby separating the pig capsid protein and gene from pig feces to complete the present invention.

결국 본 발명의 목적은 서열번호 7의 돼지 HEV ORF2 capsid 단백질 및 이를 코딩하는 유전자를 제공하는 것이다. After all, it is an object of the present invention to provide a pig HEV ORF2 capsid protein of SEQ ID NO: 7 and a gene encoding the same.

본 발명의 다른 목적은 상기 HEV ORF2 유전자를 함유하는 벡터 및 이를 박테리아, 곰팡이 및 효모로 구성된 군에서 선택된 숙주세포에 도입하여 수득되는 형질전환 미생물을 제공하는 것이다. Another object of the present invention is to provide a vector containing the HEV ORF2 gene and a transformed microorganism obtained by introducing the same into a host cell selected from the group consisting of bacteria, fungi and yeast.

본 발명의 또 다른 목적은 상기 형질전환 미생물로부터 수득한 capsid 단백질을 이용하여 제작한 HEV 항체 및 이를 이용하여 제작한 HEV 예방백신을 제공하는 것이다. Another object of the present invention to provide a HEV antibody produced using a capsid protein obtained from the transforming microorganism and a HEV preventive vaccine produced using the same.

상기 목적을 달성하기 위하여, 본 발명은 서열번호 7의 돼지 HEV ORF2 capsid 단백질을 제공한다. In order to achieve the above object, the present invention provides a swine HEV ORF2 capsid protein of SEQ ID NO: 7.

본 발명은 또한, 상기 돼지 HEV ORF2 capsid 단백질을 코딩하는 유전자를 제공하며, 상기 유전자는 서열번호 6의 염기서열을 가지는 것을 특징으로 할 수 있다.The present invention also provides a gene encoding the pig HEV ORF2 capsid protein, wherein the gene may be characterized by having a nucleotide sequence of SEQ ID NO: 6.

본 발명은 또한, 상기 유전자를 함유하는 벡터를 제공하며, 상기 벡터는 pswHEV-Capsid인 것을 특징으로 할 수 있다. The present invention also provides a vector containing the gene, wherein the vector may be pswHEV-Capsid.

본 발명은 또한, 상기 발현벡터를 박테리아, 곰팡이 및 효모로 구성된 군에서 선택된 숙주세포에 도입하여 수득되는 형질전환 미생물을 제공한다. The present invention also provides a transformed microorganism obtained by introducing the expression vector into a host cell selected from the group consisting of bacteria, fungi and yeasts.

본 발명에 있어서, 상기 숙주세포는 대장균인 것을 특징으로 할 수 있으며, 상기 형질전환 미생물은 기탁번호 KCTC18139P인 것을 특징으로 할 수 있다. In the present invention, the host cell may be characterized in that E. coli, the transforming microorganism may be characterized in that the accession number KCTC18139P.

본 발명은 또한 상기 형질전환 미생물로부터 수득한 capsid 단백질 유전자를 이용하여 제작한 HEV 항체 및 이를 이용하여 제작한 HEV 예방백신을 제공한다. The present invention also provides a HEV antibody produced using a capsid protein gene obtained from the transformed microorganism and a HEV preventive vaccine produced using the same.

본 발명은 돼지 E형 간염바이러스의 capsid 단백질 및 그를 코딩하는 유전자, 상기 유전자를 함유하는 벡터를 제공하는 효과가 있다. The present invention has the effect of providing a capsid protein of pig hepatitis E virus, a gene encoding the same, and a vector containing the gene.

본 발명의 돼지 capsid 단백질 및 유전자는 swine HEV를 돼지의 분변에서 분리하여 확보하였으며, 이는 발현된 재조합 단백질은 단클론항체 생산, 간염바이러스 항체 검출용 진단법 및 예방백신 개발에 사용될 수 있다. Pig capsid protein and gene of the present invention was secured by separating the swine HEV from pig feces, which is expressed recombinant protein can be used for monoclonal antibody production, hepatitis virus antibody detection diagnostics and preventive vaccine development.

이하, 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는, 돼지의 분변으로부터 E형 간염바이러스(Swine hepatitis E virus)의 RNA를 추출한 다음, reverse transcriptase polymerase chain reaction(RT-PCR) 기법을 이용하여 capsid protein 유전자를 클로닝하였다. In the present invention, the RNA of the swine hepatitis E virus (Swine hepatitis E virus) was extracted from the pig feces, and then the capsid protein gene was cloned using reverse transcriptase polymerase chain reaction (RT-PCR) technique.

유전자 클로닝 결과, 상기 돼지 HEV capsid 유전자는 총 1,983개의 nucleotide로 구성되어 있었으며, 총 660개의 아미노산을 coding 하는 것으로 밝혀졌다. 클로닝 된 돼지 HEV capsid 유전자를 사람 및 돼지에서 유래한 HEV capsid 유전자와 비교 분석한 결과 genotype 3에 속하는 것을 증명하였다. Gene cloning revealed that the porcine HEV capsid gene was composed of a total of 1,983 nucleotides and encodes a total of 660 amino acids. The cloned porcine HEV capsid gene was compared with the HEV capsid genes derived from humans and pigs, and proved to belong to genotype 3.

또한, 본 발명에서 클로닝한 돼지 HEV capsid 유전자는 사람에서 분리된 HEV capsid 유전자와 약 92%의 유전적 상동성을 보유하고 있었다. 돼지 HEV capsid 유전자를 대장균 발현 시스템을 이용하여 75 kDa에 해당하는 재조합 단백질로 발현 한 후 정제하였으며, 단백질의 성상을 Western blot으로 확인하였다.In addition, the pig HEV capsid gene cloned in the present invention had about 92% genetic homology with the HEV capsid gene isolated from humans. Porcine HEV capsid gene was expressed and purified by recombinant protein corresponding to 75 kDa using an E. coli expression system, and the protein properties were confirmed by Western blot.

본 발명의 HEV 항체를 만드는 방법은 다음과 같다. 먼저 HEV capsid 단백질을 이용하여 E. coli에서 발현ㆍ정제한 다음 Balb/C mouse에 복강으로 4회 주사하여 면역시킨다. 면역된 마우스의 혈청을 채취하여 HEV capsid 단백질에 특이적인 항체가 고도로 형성된 것을 확인한 후 비장을 적출한다. 적출된 비장에서 B 림프구 세포를 분리한 후 myeloma cell line (SP2/0 Ag14)과 융합시킨다. 융합된 세포 중에서 HEV capsid 단백질에 특이적으로 반응하는 항체를 생성하는 클론을 선발한다. 선발된 클론으로부터 생성되는 단클론항체(monoclonal antibody)를 정제한다. The method of making the HEV antibody of the present invention is as follows. First, HEV capsid protein is used to express and purify in E. coli, and then immunize Balb / C mice by intraperitoneal injection 4 times. The serum of the immunized mice is collected to confirm that the antibody specific for HEV capsid protein is highly formed, and the spleen is extracted. B lymphocyte cells are isolated from the isolated spleen and fused with myeloma cell line (SP2 / 0 Ag14). Among the fused cells, clones are generated that produce antibodies that specifically respond to the HEV capsid protein. The monoclonal antibody produced from the selected clone is purified.

상기 정제된 HEV capsid 단백질을 Incomplete Freund's adjuvant와 교반하여 백신으로 제조한다. 제조된 백신을 이용하여 돼지에 피하주사를 함으로써 1차 백신을 하며 1차 백신 후 2주 후에 동일한 방법으로 2차 백신을 수행한다. The purified HEV capsid protein is prepared as a vaccine by stirring with Incomplete Freund's adjuvant. The primary vaccine is given by subcutaneous injection into pigs using the prepared vaccine, and the second vaccine is performed in the same manner two weeks after the primary vaccine.

돼지의 분변 및 혈청에 존재하는 HEV는 다음과 같은 ELISA 방법을 통해 검출한다. 즉 HEV capsid 단백질을 이용하여 면역시킨 토끼에서 채취한 항체를 1차 항체로 사용하여 ELISA plate에 코팅을 한다. 돼지의 분변 및 혈청 샘플을 ELISA plate에 첨가함으로써 1차 항체에 부착되도록 한다. 이후 HEV capsid 단백질에 특이적인 단클론 항체를 2차 항체로 첨가하여 capsid에 부착하도록 한다. HEV capsid에 부착된 2차 항체를 인식하는 Horse radish peroxidase (HRP)-conjugated anti-mouse IgG 항체를 첨가한다. 이후 TMB substrate를 첨가하여 발색시킨 후 ELISA reader를 이용하여 optical density (OD)를 측정한다. 측정된 OD value에 근거하여 분변 및 혈청에 존재하던 HEV를 진단한다.HEV present in pig feces and serum is detected by the following ELISA method. In other words, the antibody collected from rabbit immunized with HEV capsid protein is used as the primary antibody and coated on ELISA plate. Pig fecal and serum samples are added to the ELISA plate to allow attachment to the primary antibody. Then, a monoclonal antibody specific for HEV capsid protein is added as a secondary antibody to attach to the capsid. Add horse radish peroxidase (HRP) -conjugated anti-mouse IgG antibody that recognizes a secondary antibody attached to the HEV capsid. After the addition of the TMB substrate and color development using an ELISA reader to measure the optical density (OD). Based on the measured OD values, HEVs present in feces and serum are diagnosed.

돼지의 혈청에 존재하는 HEV 항체는 다음과 같은 ELISA 방법을 통해 진단한다. 즉 정제된 HEV capsid 단백질을 ELISA plate에 코팅한 후 돼지에서 채취한 혈청을 첨가한다. 이후 HRP-conjugated anti-porcine IgG 항체를 첨가한다. 이후 TMB substrate을 첨가하여 발색시킨 후 ELISA reader를 이용하여 optical density (OD)를 측정한다. 측정된 OD value에 근거하여 anti-HEV 항체의 존재를 증명함으로써 돼지의 혈청을 이용한 HEV 진단법으로 사용가능하다. HEV antibodies present in pig serum are diagnosed by the following ELISA method. That is, the purified HEV capsid protein is coated on an ELISA plate, and then serum from pigs is added. HRP-conjugated anti-porcine IgG antibody is then added. After the addition of the TMB substrate and color development using an ELISA reader to measure the optical density (OD). Based on the measured OD values, the presence of anti-HEV antibodies can be used to verify HEV using porcine serum.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

하기 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. The following examples are merely to illustrate the invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1. 돼지 분변 샘플을 이용한 E형 간염 바이러스 RNA 추출Example 1. Hepatitis E Virus RNA Extraction Using Porcine Fecal Samples

돼지 E형 간염바이러스 RNA를 추출하기 위하여 전국의 13개 농장에서 수거된 돼지 분변 1g을 10㎖의 PBS로 부유시키고, 3,000rpm에서 30분 동안 원심 분리를 실시한 다음 상층액을 1.5㎖ tube에 수거하고, 다시 13,000rpm의 속도로 10분간 원심분리를 실시하여 세균 및 기타 부유물을 침전시켰다. 그 후 상층액을 분리해 70℃로 보관하였다. To extract pig hepatitis E virus RNA, 1 g of pig feces collected from 13 farms nationwide were suspended with 10 ml of PBS, centrifuged at 3,000 rpm for 30 minutes, and the supernatant was collected in a 1.5 ml tube. Further, centrifugation was carried out for 10 minutes at a speed of 13,000 rpm to precipitate bacteria and other suspended matter. Then, the supernatant was separated and stored at 70 ℃.

실시예 2. Swine HEV RNA 추출Example 2. Swine HEV RNA Extraction

QIAamp Viral RNA Mini kit(QIAGEN, USA)를 이용해서 RNA를 추출하였다. 즉, 상기 실시예 1에서 분리한 분변 140㎕를 carrier RNA가 포함되어 있는 AVL 버퍼 560㎕에 첨가해서 15초 동안 vortexing하여 섞어준 다음 10분간 실온에 방치하였다. 그 후, 560㎕의 100% 에탄올을 첨가한 후 15초 동안 vortexing하고 630㎕의 용액을 컬럼에 넣은 다음 8,000rpm의 속도로 1분 동안 원심분리를 하였다. 칼럼을 새로운 튜브로 옮기고 남아있던 샘플 630㎕의 용액을 칼럼에 넣은 후 8,000rpm에서 1분간 원심분리를 하였다. 그리고 AW1 버퍼를 500㎕ 첨가한 후, 8,000rpm의 속도로 1분간 원심분리한 다음 새로운 튜브에 컬럼을 넣고 AW2 버퍼를 넣고 3분간 14,000rpm의 속도로 원심분리하였다. 그리고 새로운 튜브로 컬럼을 옮기고 AVE 버퍼를 60㎕ 넣고 실온에서 1분간 incubation 시킨 다음 8,000rpm의 속도에서 1분간 원심분리를 실시하였다. 그 후 컬럼은 버리고 tube에 용출된 RNA를 사용하였다. 사용 후 남은 RNA는 -20℃에 보관하였다.RNA was extracted using a QIAamp® Viral RNA Mini kit (QIAGEN, USA). That is, 140 μl of the feces isolated in Example 1 was added to 560 μl of AVL buffer containing carrier RNA, vortexed for 15 seconds, and then allowed to stand at room temperature for 10 minutes. Thereafter, 560 µl of 100% ethanol was added and vortexed for 15 seconds, and 630 µl of solution was added to the column, followed by centrifugation for 1 minute at a speed of 8,000 rpm. The column was transferred to a new tube and 630 μl of the remaining sample was placed in the column and centrifuged for 1 minute at 8,000 rpm. After adding 500 μl of AW1 buffer, the resultant was centrifuged at 8,000 rpm for 1 minute, a column was placed in a new tube, and the AW2 buffer was added and centrifuged at 14,000 rpm for 3 minutes. Then, the column was transferred to a new tube, 60 μl of AVE buffer was added thereto, and incubated at room temperature for 1 minute, followed by centrifugation for 1 minute at a speed of 8,000 rpm. After that, the column was discarded and RNA was eluted from the tube. RNA remaining after use was stored at -20 ℃.

실시예 3. Swine HEV ORF2 유전자 RT-PCRExample 3. Swine HEV ORF2 Gene RT-PCR

3-1. cDNA 제작3-1. cDNA production

Sensiscript  Reverse Transcription kit(QIAGEN, USA)를 이용해서 cDNA를 제작하였다. 즉, HEV는 심한 2차 구조를 가지고 있기 때문에 상기 실시예 2에서 추출한 RNA를 cDNA로 만들기 전에 65℃에서 5분간 denaturation 단계를 거친 다음 즉 시 ice에 두었다. Kit에서 제공되는 10x buffer RT, dNTP Mix 및 RNase-free water와 nest PCR에 사용할 서열번호 1의 HEV ORF2 external reverse primer를 실온에서 녹인 다음 ice에 두었다. 그 후, 하기 표 1의 조성에 따라서 master mix를 만들고 vortexing을 하여 섞어 준 다음, template RNA를 첨가하고, 37℃에 2시간 동안 반응 시켜 cDNA를 제작하였다. CDNA was prepared using Sensiscript® Reverse Transcription kit (QIAGEN, USA). That is, since HEV has a severe secondary structure, the RNA extracted in Example 2 was subjected to a denaturation step at 65 ° C. for 5 minutes before being cDNA and immediately placed on ice. 10x buffer RT, dNTP Mix and RNase-free water provided in the kit and HEV ORF2 external reverse primer of SEQ ID NO: 1 for nest PCR were dissolved at room temperature and placed on ice. Thereafter, according to the composition of Table 1 to make a master mix and vortexing to mix, then added template RNA, and reacted for 2 hours at 37 ℃ to produce a cDNA.

cDNA Mix 조성cDNA Mix Composition ComponentComponent Volume/reactionVolume / reaction 10x buffer RT10x buffer RT 2.0㎕2.0 μl dNTP Mix(5mM each dNTP)dNTP Mix (5mM each dNTP) 2.0㎕2.0 μl Primer(10μM)Primer (10 μM) 2.0㎕2.0 μl RNase inhibitor(10unit/㎕)RNase inhibitor (10 units / μl) 1.0㎕1.0 μl Sensiscript Reverse Transcriptase(1reaction/㎕)Sensiscript Reverse Transcriptase (1reaction / μl) 1.0㎕1.0 μl RNase-free water RNase-free water 2.0㎕2.0 μl Template RNATemplate RNA 10㎕10 μl Total volumeTotal volume 20㎕20 μl

3-2. 1차 PCR3-2. Primary PCR

상기 3-1)에서 제작된 cDNA를 template로 사용하고, 하기 표 2에 있는 HEV ORF external primer set를 이용하여 1차 PCR을 수행하였다. PCR Mix 조성은 표 3과 같고 PCR 반응은 template DNA의 확실한 변성을 위하여 94℃에서 5분간 반응시키고, 94℃에서 30초간 denaturation, 48℃에서 45초간 annealing, 72℃에서 2분간 extension 과정을 35 cycle 반복하였고, 마지막은 충분한 extension을 위해 72℃에서 10분간 반응시켜 1차 PCR 산물을 제작하였다.The cDNA prepared in 3-1) was used as a template, and the first PCR was performed using the HEV ORF external primer set shown in Table 2 below. The PCR Mix composition is shown in Table 3, and the PCR reaction was performed for 5 minutes at 94 ° C for denaturation of template DNA, denaturation at 94 ° C for 30 seconds, annealing at 48 ° C for 45 seconds, and extension for 2 minutes at 72 ° C for 35 cycles. Finally, the final PCR product was prepared by reacting for 10 minutes at 72 ° C. for sufficient extension.

3-3. Nested PCR3-3. Nested PCR

상기 3-2)에서 제작된 1차 PCR의 산물을 template로 사용하고, 하기 표 2에 있는 HEV ORF internal primer set를 이용하여 nested PCR을 수행하였다. PCR 조성은 하기 표 3과 같고 PCR 반응은 template DNA의 확실한 변성을 위하여 94℃에서 5분간 반응시키고, 94℃에서 30초간 denaturation, 55℃에서 30초간 annealing, 72℃에서 2분간 extension 과정을 35 cycle 반복하고, 마지막은 충분한 extension을 위해 72℃에서 10분간 반응시켜 nested PCR 산물을 제작한 다음, 1% agarose gel에 전기영동을 하여, 2kbp 크기의 DNA band를 확인하였다(도 1). 도 1은 돼지 E 형 간염바이러스 nested PCR 결과를 나타낸 것으로, lane M은 1kb DNA ladder이고, lane 1은 nested PCR product of HEV capsid gene이다. The product of the primary PCR prepared in 3-2) was used as a template, and nested PCR was performed using the HEV ORF internal primer set in Table 2 below. The PCR composition is shown in Table 3 below, and the PCR reaction was performed for 5 minutes at 94 ° C. for denaturation of the template DNA, denaturation at 94 ° C. for 30 seconds, annealing at 55 ° C. for 30 seconds, and extension for 2 minutes at 72 ° C. for 35 cycles. Repeating, the final reaction was carried out for 10 minutes at 72 ℃ for sufficient extension to produce a nested PCR product, and then electrophoresed on a 1% agarose gel, to confirm the DNA band of 2kbp size (Fig. 1). Figure 1 shows the pig hepatitis E virus nested PCR results, lane M is a 1kb DNA ladder, lane 1 is a nested PCR product of HEV capsid gene.

PCR Primer set PCR Primer set 구분division PrimerPrimer Sequence(5'→3')Sequence (5 '→ 3') 서열번호 2SEQ ID NO: 2 HEV ORF2 external forward primerHEV ORF2 external forward primer CGG GTG GAA TGA ATA ACA TGT CTCGG GTG GAA TGA ATA ACA TGT CT 서열번호 3SEQ ID NO: 3 HEV ORF2 external reverse primerHEV ORF2 external reverse primer CGC GRA AAG CAG AAA WAA GAA CGC GRA AAG CAG AAA WAA GAA 서열번호 4SEQ ID NO: 4 HEV ORF2 internal forward primerHEV ORF2 internal forward primer CAT GTC TTT TGC ATC GCC CAT GCAT GTC TTT TGC ATC GCC CAT G 서열번호 5SEQ ID NO: 5 HEV ORF2 internal reverse primerHEV ORF2 internal reverse primer AGA GRC TRC GAA GGG GGC ACAAGA GRC TRC GAA GGG GGC ACA

PCR Mix 조성PCR Mix Composition Material Material QuantityQuantity 2x GC buffer I2x GC buffer I 25㎕25 μl D. W.D. W. 7.5㎕7.5 μl dNTP Mixture(2.5mM each)dNTP Mixture (2.5mM each) 8㎕8 μl Forward primer(10μM)Forward primer (10 μM) 2㎕2 μl Reverse primer(10μM)Reverse primer (10 μM) 2㎕2 μl LA Taq polymerase(5unit/㎕)LA Taq polymerase (5unit / μl) 0.5㎕0.5 μl Template Template 5㎕5 μl

실시예 4. Swine HEV ORF2 유전자 cloningExample 4. Swine HEV ORF2 Gene Cloning

T&A Cloning Kit(RBC™, Taiwan)와 HIT Competent Cells™-DH5α(RBC™, Taiwan)를 이용하여 swine HEV ORF2 유전자를 cloning 하였다. 즉, 상기 실시예 3의 3-3)에서 제작된 nested PCR 산물을 1% agarose gel에 전기영동 하여 HEV ORF2 부분으로 예상되는 약 2kbp 크기의 band를 자르고, Gel Extraction kit(Dokdo, Korea)를 이용해서 DNA를 정제한 다음, 하기 표 4와 같은 Litigation Mix 조성액으로 22℃에서 15분간 반응시켜, Competent Cell에 transformation 하였다. 상기 transformation한 cell을 50㎍/㎖의 ampicillin, 20㎕ 50㎎/㎖ X-gal 및 100㎕ 100mM IPTG가 포함되어 있는 LB plate에 plating 하고, 37℃에서 14~16시간 동안 배양하였다. 상기 LB plate에서 white colony를 선발하여 50㎍/㎖ ampicillin이 포함되어 있는 LB broth에서 14~16시간 동안 다시 배양했다. The swine HEV ORF2 gene was cloned using T & A Cloning Kit (RBC ™, Taiwan) and HIT Competent Cells ™ -DH5α (RBC ™, Taiwan). That is, the nested PCR product prepared in Example 3-3) was electrophoresed on a 1% agarose gel to cut a band of about 2kbp expected as the HEV ORF2 portion, using a Gel Extraction kit (Dokdo, Korea) After purification, the DNA was reacted with a Litigation Mix composition solution as shown in Table 4 at 22 ° C. for 15 minutes, and transformed into a Competent Cell. The transformed cells were plated on LB plates containing 50 μg / ml ampicillin, 20 μl 50 mg / ml X-gal and 100 μl 100 mM IPTG, and incubated at 37 ° C. for 14-16 hours. White colonies were selected from the LB plate and re-incubated for 14-16 hours in LB broth containing 50 ㎍ / ml ampicillin.

Ligation MixLigation Mix MaterialMaterial QuantityQuantity 10X Ligation Buffer A10X Ligation Buffer A 1㎕1 μl 10X Ligation Buffer B10X Ligation Buffer B 1㎕1 μl T&A Cloning Vector(25ng/㎕)T & A Cloning Vector (25ng / μl) 2㎕2 μl PCR productPCR product 1㎕1 μl T4 DNA Ligase(3unit/㎕)T4 DNA Ligase (3units / μl) 1㎕1 μl Deionized WaterDeionized Water 4㎕4 μl

배양이 완료된 다음, plasmid mini prep kit(GeneAll사, Korea)를 이용하여, plasmid DNA를 추출하고, agarose gel에 전기영동을 실시한 후, 그 결과를 확인하였다(도 2). 그 결과, 도 2에 나타난 바와 같이, insert가 삽입된 클론과 insert가 삽입되지 않은 클론과의 크기 차이가 있음을 알 수 있었다. 즉 HEV ORF2 유전자가 클로닝된 것으로 추정했던 colony에서 추출한 plasmid DNA는 insert DNA가 클로닝되지 않은 blue colony에서 추출한 control plasmid DNA 보다 약 2kbp가 더 큰 것을 알 수 있었다. HEV capsid 유전자가 삽입된 plasmid DNA를 Macrogen사(Korea)에 DNA sequencing을 의뢰하여 나온 결과 서열번호 6번의 1,983개의 핵산으로 구성된 돼지 E형 간염 바이러스의 Capsid protein 유전자를 보유하고 있는 것을 알 수 있었다. After the incubation was completed, plasmid DNA was extracted using a plasmid mini prep kit (GeneAll Co., Korea), and electrophoresis was performed on an agarose gel, and the results were confirmed (FIG. 2). As a result, as shown in Figure 2, it can be seen that there is a difference in size between the clone inserted insert and the clone not inserted. In other words, the plasmid DNA extracted from the colony, which was estimated to be cloned from the HEV ORF2 gene, was about 2kbp larger than the control plasmid DNA extracted from the blue colony where the insert DNA was not cloned. DNA sequencing of the plasmid DNA into which the HEV capsid gene was inserted was found to have the Capsid protein gene of porcine hepatitis E virus consisting of 1,983 nucleic acids of SEQ ID NO: 6.

상기 클로닝된 돼지 E형 간염 바이러스의 Capsid protein 유전자는 Human HEV prototype인 US-2(AF060669)를 기준으로 5,197번째 nucleotide부터 7,179번째 nucleotide를 보유하고 있었다. 클로닝된 돼지 HEV capsid 유전자는 ATG 시작코돈 및 TAA 종료코돈을 보유하고 있었으며 서열번호 7번의 660개의 아미노산을 발현하고 있음을 알 수 있었다. The capsid protein gene of the cloned porcine hepatitis E virus ranged from 5,197 nucleotides to 7,179 nucleotides based on US-2 (AF060669), a human HEV prototype. The cloned porcine HEV capsid gene possessed ATG start codon and TAA stop codon, and it can be seen that it expresses 660 amino acids of SEQ ID NO.

상기 클로닝된 돼지 HEV capsid 유전자를 GenBank에 보고된 사람 유래 및 돼지 유래 HEV capsid 유전자와 비교 분석한 결과, 하기 표 5에 나타난 바와 같이, 사람의 E 형 간염 바이러스인 HE-JA10(AB089824) 및 HEV-US2(AF060669)와 92%가 일치함을 알 수 있었다.The cloned porcine HEV capsid gene was analyzed by comparison with the human-derived and porcine-derived HEV capsid genes reported in GenBank. As shown in Table 5 below, HE-JA10 (AB089824) and HEV- which are human hepatitis E viruses A 92% agreement with US2 (AF060669) was found.

HumanHuman SwineSwine IsolatesIsolates HE-JA10HE-JA10 HEV-US2HEV-US2 HEV-US1HEV-US1 JMY-HAWJMY-HAW swUS1swUS1 ArkellArkell swJ570swJ570 Identity(%)Identity (%) 9292 9292 9191 9191 9191 8989 8888

본 발명을 통해서 클로닝된 swine HEV ORF2 유전자를 보유하고 있는 plasmid의 이름을 pswHEV-capsid 라고 명명하였다. The name of the plasmid carrying the swine HEV ORF2 gene cloned through the present invention was named pswHEV-capsid.

또한, 본 발명자들은 상기와 같이 pswHEV-capsid를 함유한 대장균(E.coli)을 확인하고, 이를 2008년 9월 22일자로 한국생명공학연구원(Korean Collection for Type Cultures, KCTC)에 E.coli DH5@/pswHEV-capsid를 기탁하였으며, 기탁번호는 KCTC18139P 이다. In addition, the present inventors identified the E. coli containing pswHEV-capsid as described above, and the E. coli DH5 to the Korean Collection for Type Cultures (KCTC) dated September 22, 2008 @ / pswHEV-capsid was deposited with an accession number of KCTC18139P.

실시예 5. Phylogenetic tree analysisExample 5 Phylogenetic Tree Analysis

Molecular Evolutionary Genetics Analysis(MEGA) software version 4.0을 이용하여 상기 실시예 4에서 클로닝된 swine HEV ORF2 유전자 염기서열을 분석하였다. Phylogenetic tree는 neighbor joining method를 이용하여 작성하였다. Bootstrap은 1,000번으로 분석하고 genetic distance는 Kimura two-parameter method를 이용하였다. Phylogenetic tree를 작성하기 위하여 사용된 유전자의 Genbank accession number는 하기 표 6에 기재된 것과 같으며, 이들의 염기서열 중 HEV capsid protein 유전자 부분을 이용하여 Phylogenetic analysis를 실시하였다. 그 결과 도 3에 나타난 바와 같이, swine HEV의 capsid protein 유전자(KOR-HW)는 genotype 3 에 속함을 알 수 있었다. The swine HEV ORF2 gene sequence cloned in Example 4 was analyzed using Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Phylogenetic trees were created using the neighbor joining method. Bootstrap was analyzed 1,000 times and the genetic distance was Kimura two-parameter method. Genbank accession numbers of the genes used to prepare the phylogenetic tree are as shown in Table 6 below, and the phylogenetic analysis was performed using the HEV capsid protein gene portion of these nucleotide sequences. As a result, as shown in Figure 3, it was found that the capsid protein gene (KOR-HW) of swine HEV belongs to genotype 3.

Human HEVHuman HEV 돼지 HEVPig HEV AB108537(CCC220, China), AB074917(JKK-Sap, Japan), AB074915(JAK-Sai, Japan), AB080575(HE-JI4, Japan), AB097812(HE-JA1, Japan), AB091395(JSN-Sap-FH, Japan), AB099347(HE-JK4, Japan), AJ272108(T1, China), AB091394(JJT-KAN, Japan), AP003430(JRA1, Japan), AB089824(HE-JA10, Japan), AB074920(JMY-HAW, Japan), AB074918(JKN-Sap, Japan), AF082843(swUS1, US), AF060669(US2, US), AF060668(US1, US), M74506(M1, Mexico), X98292(I1(FHF), India), AY204877(T3, Chad(N'Djamena)), AY230202(Morocco, Morocco), L08816(C3(CHT-87), China), D11093(C4(Uigh179), China), D11092(C1(CHT-88), China), L25595(C2(KS2-87), China), AF444002(Sar55, Bangladeshi), M80581(P1, Bangladeshi), AF185822(P2[Abb-2B], Pakistan), X99441(I2[Mad-93], India), AF051830(NP1(TK15/92), Nepal), AF076239(I3, India), AF459438(Yam-67, India), M73218(B1(Bur-82), Burma), D10330(B2(Bur86), Burma)AB108537 (CCC220, China), AB074917 (JKK-Sap, Japan), AB074915 (JAK-Sai, Japan), AB080575 (HE-JI4, Japan), AB097812 (HE-JA1, Japan), AB091395 (JSN-Sap-FH , Japan), AB099347 (HE-JK4, Japan), AJ272108 (T1, China), AB091394 (JJT-KAN, Japan), AP003430 (JRA1, Japan), AB089824 (HE-JA10, Japan), AB074920 (JMY-HAW , Japan), AB074918 (JKN-Sap, Japan), AF082843 (swUS1, US), AF060669 (US2, US), AF060668 (US1, US), M74506 (M1, Mexico), X98292 (I1 (FHF), India) , AY204877 (T3, Chad (N'Djamena)), AY230202 (Morocco, Morocco), L08816 (C3 (CHT-87), China), D11093 (C4 (Uigh179), China), D11092 (C1 (CHT-88) , China), L25595 (C2 (KS2-87), China), AF444002 (Sar55, Bangladeshi), M80581 (P1, Bangladeshi), AF185822 (P2 [Abb-2B], Pakistan), X99441 (I2 [Mad-93] , India), AF051830 (NP1 (TK15 / 92), Nepal), AF076239 (I3, India), AF459438 (Yam-67, India), M73218 (B1 (Bur-82), Burma), D10330 (B2 (Bur86) , Burma) AF455784(Kyrgyz, Kyrgyzstan), AY115488(Arkell, Canada), AB073912(swJ570, Japan), AB097811(swJ13-1, Japan)AF455784 (Kyrgyz, Kyrgyzstan), AY115488 (Arkell, Canada), AB073912 (swJ570, Japan), AB097811 (swJ13-1, Japan)

실시예 6. 대장균 단백질 발현 vector에 cloning할 HEV ORF2 유전자의 증폭Example 6 Amplification of the HEV ORF2 Gene Cloning in an E. Coli Protein Expression Vector

단백질 발현용 vector에는 시작코돈과 종료코돈이 이미 있기 때문에 Insert 용 HEV ORF2 유전자 증폭을 위해 실시한 PCR은 ORF2를 coding하고 있는 유전자의 시작코돈 ATG와 종료코돈 UAA는 제외하고 증폭하였다(도 4). 이때 사용한 templete는 TA vector에 cloning 되어 있는 swine HEV ORF2이고 Primer는 하기와 같다. Since there is already a start codon and an end codon in the protein expression vector, PCR performed for amplification of the HEV ORF2 gene for insertion was amplified except for the start codon ATG and the end codon UAA of the gene encoding ORF2 (FIG. 4). The templete used at this time is swine HEV ORF2 cloned in TA vector and Primer is as follows.

[서열번호 8] Forward primer: 5'-CGC CCT AGG GCT GTT CTG TT-3' [SEQ ID NO: 8] Forward primer: 5'-CGC CCT AGG GCT GTT CTG TT-3 '

[서열번호 9] Reverse Primer: 5'-AGA CTC CCG GGT TTT ACC TAC C-3' PCR[SEQ ID NO: 9] Reverse Primer: 5'-AGA CTC CCG GGT TTT ACC TAC C-3 'PCR

또한, PCR Mix 조성은 표 7과 같으며, PCR 반응은 template DNA의 확실한 변성을 위하여 94℃에서 5분간 반응시켰고, 94℃에서 30초간 denaturation, 55℃에서 30초간 annealing, 72℃에서 2분간 extension 과정을 35 cycle 반복하고, 마지막은 충분한 extension을 위해 72℃에서 10분간 반응시켰다.In addition, PCR Mix composition is shown in Table 7, PCR reaction was reacted for 5 minutes at 94 ℃ for denaturation of template DNA, denaturation at 94 ℃ for 30 seconds, annealing at 55 ℃ for 30 seconds, extension for 2 minutes at 72 ℃ The procedure was repeated 35 cycles, and the last reaction was carried out for 10 minutes at 72 ° C for sufficient extension.

PCR Mix 조성PCR Mix Composition Material Material QuantityQuantity 10x buffer10x buffer 5㎕5 μl D. W.D. W. 35.5㎕35.5 μl dNTP Mixture(2.5mM each)dNTP Mixture (2.5mM each) 4㎕4 μl Forward primer(10μM)Forward primer (10 μM) 2㎕2 μl Reverse primer(10μM)Reverse primer (10 μM) 2㎕2 μl Ex Taq polymerase(5unit/㎕)Ex Taq polymerase (5unit / μl) 0.5㎕0.5 μl Template plasmid DNATemplate plasmid DNA 1㎕1 μl

실시예 7. 대장균 단백질 발현 vector에 CloningExample 7. Cloning to an E. coli Protein Expression Vector

The QIAexpressionist™(QIAGEN, USA)를 이용하여 HEV ORF2 단백질 유전자를 Cloning 하였다. 즉, 상기 kit에서 제공되는 pQE-30-UA vector와 실시예 3의 PCR product인 swine HEV ORF2 단백질 유전자를 ligation시켰다. Ligation mix를 섞은 다음 16℃에서 2시간 반응시켰으며, ligation mix의 조성은 하기 표 8과 같다.The QIAexpressionist ™ (QIAGEN, USA) was used to clone the HEV ORF2 protein gene. That is, the pQE-30-UA vector provided in the kit and the swine HEV ORF2 protein gene, which is the PCR product of Example 3, were ligation. After mixing the ligation mix and reacted for 2 hours at 16 ℃, the composition of the ligation mix is shown in Table 8.

pQE-30 UA Ligation mix 조성pQE-30 UA Ligation mix composition ComponentComponent Volume/reactionVolume / reaction pQE-30 UA vector(50ng/㎕)pQE-30 UA vector (50 ng / μl) 1㎕1 μl PCR productPCR product 2㎕2 μl Distilled waterDistilled water 2㎕2 μl 2x Ligation Master Mix2x Ligation Master Mix 5㎕5 μl Total volumeTotal volume 10㎕10 μl

한편, competent M15 cell 또는 SG13009 cell 100㎕를 얼음에서 녹인 후, 상기 ligation mix를 competent cell에 섞어 ice에서 20분, 42℃ heating block에서 90초 동안 반응시키고, 500㎕의 Psi broth를 첨가하여, 37℃ shaking incubator에서 60~90분 동안 반응시켰다. 그 후 25㎍/㎖ kanamycin과 100㎍/㎖ ampicillin이 첨가되어 있는 LB-agar plate에 plating 해서 37℃에서 14~16시간 배양하였다. Meanwhile, 100 μl of competent M15 cell or SG13009 cell was dissolved in ice, and the ligation mix was mixed with competent cell for 20 minutes on ice and reacted for 90 seconds at 42 ° C. heating block, and 500 μl of Psi broth was added. The reaction was stirred for 60 to 90 minutes in a shaking shaking incubator. After that, the plate was plated on an LB-agar plate containing 25 µg / ml kanamycin and 100 µg / ml ampicillin and incubated at 37 ° C. for 14-16 hours.

또한, colony를 선별하여 배양한 후, 1mM IPTG로 단백질 발현을 유도하였다. 배양된 대장균을 13,000rpm에서 5분간 원심분리하여 pellet을 SDS buffer에 용해시킨 후 SDS-PAGE에서 전기영동을 실시하였다(도 5). SDS-PAGE 상에 예상되는 크기의 단백질이 발현된 대장균에서 plasmid를 추출하여 DNA sequencing을 의뢰하여 다시 한번 swine HEV의 capsid 유전자임을 확인하였다. 즉, 1번부터 11번 샘플 중 6번 샘플이 약 75kD 크기의 HEV capsid protein을 발현하였기 때문에 이 샘플을 다시 DNA sequencing 한 결과 돼지 HEV capsid 유전자를 보유하고 있음을 확인한 것이다. In addition, the colony was selected and cultured, and protein expression was induced with 1 mM IPTG. The cultured E. coli was centrifuged at 13,000 rpm for 5 minutes to dissolve pellets in SDS buffer, and electrophoresis was performed on SDS-PAGE (FIG. 5). Plasmids were extracted from E. coli expressing the expected size of the protein on SDS-PAGE, and the DNA sequencing was again confirmed to be the capsid gene of swine HEV. In other words, 6 out of 1 to 11 samples expressed about 75 kD of HEV capsid protein, so DNA sequencing of the sample confirmed that they possessed pig HEV capsid gene.

실시예 8. Swine HEV ORF2 단백질 발현 및 정제Example 8. Swine HEV ORF2 Protein Expression and Purification

The QIAexpressionist™(QIAGEN, USA)을 이용하여 HEV ORF2 재조합 단백질을 발현한 다음 정제하였다. The QIAexpressionist ™ (QIAGEN, USA) was used to express and purify the HEV ORF2 recombinant protein.

즉, 단백질 발현이 확인된 클론을 25㎍/㎖ kanamycin과 100㎍/㎖ ampicillin이 첨가되어 있는 LB broth에 배양하고, 1mM IPTG로 단백질 발현을 유도시킨 다음 4~5시간 더 키운 후 원심 분리하여 상층액은 버리고 대장균 pellet은 -20℃에 보관하였다. 또한, lysis buffer(6M GuHCl)로 대장균 세포를 lysis시킨 후 원심 분리하여 상층액을 획득하고, Ni-NTA agarose와 4:1로 1시간 동안 실온에서 shaking 하였다. 이후 kit에서 제공되는 단백질 정제용 column, washing buffer, elution buffer 등을 이용해서 단백질을 정제하였다(도 6). 즉, 먼저 단백질 발현을 다시 확인하고 capsid protein의 수용성 여부를 확인하였다. 도 6의 1번은 IPTG로 induction하기 전 샘플이고 2번은 induction 후의 샘플이다. 75kD의 단백질이 induction후 생성됨을 확인할 수 있고 3번은 soluble, 4번은 insoluble한 샘플로 대부분의 capsid 단백질이 insoluble한 상태임을 확인할 수 있었다. 5~12번은 elution 단계로 12번으로 갈수록 elution 농도가 높아짐을 알 수 있었다. In other words, clones with confirmed protein expression were incubated in LB broth containing 25 μg / ml kanamycin and 100 μg / ml ampicillin, induced protein expression with 1 mM IPTG, followed by further growth for 4-5 hours, followed by centrifugation. The solution was discarded and the E. coli pellets were stored at -20 ° C. In addition, the E. coli cells were lysed with lysis buffer (6M GuHCl), centrifuged to obtain supernatant, and shaken with Ni-NTA agarose at 4: 1 for 1 hour at room temperature. Since the protein was purified using a protein purification column, washing buffer, elution buffer and the like provided in the kit (Fig. 6). That is, the protein expression was checked again first, and the capsid protein was confirmed to be water-soluble. 6 is a sample before induction by IPTG and 2 is a sample after induction. 75kD protein was generated after induction, and 3 times were soluble and 4 times were insoluble samples, indicating that most capsid proteins were insoluble. 5 to 12 was the elution step, the elution concentration was increased to 12 times.

상기와 같이 정제한 단백질을 SDS-PAGE와 Western blotting으로 HEV capsid 단백질임을 최종적으로 확인하였다(도 7). Western blot에 사용한 1차 항체는 HEV에 이미 걸려있는 돼지의 혈청을 1,000배로 희석해서 사용하였고, 2차 항체는 Horseradish peroxidase(HRP)가 붙어있는 anti-porcine IgG를 10000배로 희석해서 사용하였다. 발색은 HRP staining solution인 DAB(3,3'-diaminobenzidine)으로 20분간 실시하였다. The purified protein as described above was finally confirmed that the HEV capsid protein by SDS-PAGE and Western blotting (Fig. 7). The primary antibody used in Western blot was diluted to 1,000 times the serum of pigs already in HEV, and the secondary antibody was diluted to 10,000 times the anti-porcine IgG attached to Horseradish peroxidase (HRP). Color development was carried out for 20 minutes with DAB (3,3'-diaminobenzidine) HRP staining solution.

이상으로 본 발명 내용의 특정부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 것은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it should be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 돼지 E 형 간염바이러스 nested PCR 결과를 나타낸 것으로, lane M은 1kb DNA ladder이고, lane 1은 nested PCR product of HEV capsid gene이다. Figure 1 shows the pig hepatitis E virus nested PCR results, lane M is a 1kb DNA ladder, lane 1 is a nested PCR product of HEV capsid gene.

도 2는 돼지 E 형 간염바이러스 capsid gene을 클로닝한 결과를 나타낸 것으로, lane M은 1kb DNA ladder, lane 1은 HEV capsid gene cloned in TA vector, lane 2는 negative control(blue colony)이다. Figure 2 shows the result of cloning the pig hepatitis E virus capsid gene, lane M is 1kb DNA ladder, lane 1 is HEV capsid gene cloned in TA vector, lane 2 is negative control (blue colony).

도 3은 HEV capsid 유전자의 Phylogenetic analysis 결과를 나타낸 것으로, 밑줄 친 KOR-HW가 본 발명에서 분리된 swine HEV의 capsid protein 유전자 이다. Figure 3 shows the results of Phylogenetic analysis of the HEV capsid gene, the underlined KOR-HW is the capsid protein gene of the swine HEV isolated in the present invention.

도 4는 대장균 단백질 발현 vector에 cloning할 HEV ORF2 유전자의 PCR 증폭 결과를 나타낸 것으로, lane M은 1kb DNA ladder를 lane 1은 HEV ORF2 PCR 산물 Product이다. Figure 4 shows the PCR amplification result of the HEV ORF2 gene to be cloned in E. coli protein expression vector, lane M is 1kb DNA ladder lane 1 is the product of HEV ORF2 PCR product.

도 5는 돼지 HEV capsid 단백질 발현 colony를 확인한 결과를 나타낸 것으로, lane M은 protein marker를 lanes 1~11는 IPTG로 induction 한 샘플이다. Figure 5 shows the results of confirming the pig HEV capsid protein expression colony, lane M is a protein marker induction lanes 1 to 11 induction by IPTG.

도 6은 단백질의 발현 및 정제한 결과를 나타낸 것으로, lane M은 protein ladder를 lanes 1~12는 단백질 정제 단계별로 획득된 샘플이다. Figure 6 shows the results of the expression and purification of the protein, lane M is a protein ladder lanes 1 to 12 are samples obtained by protein purification step.

도 7은 Swine HEV ORF2 단백질의 western blotting 결과를 나타낸 것으로, lane M은 protein marker, lane 1은 negative control, lane 2는 recombinant HEV capsid protein을 나타낸다.Figure 7 shows the western blotting results of Swine HEV ORF2 protein, lane M is a protein marker, lane 1 is a negative control, lane 2 is a recombinant HEV capsid protein.

<110> Konkuk University Industrial Cooperation Corp. <120> Capsid Protein and the gene of Swine hepatitis E virus <130> P08-E267 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external reverse primer <400> 1 cgcgraaagc agaaawaaga a 21 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external forward primer <400> 2 cgggtggaat gaataacatg tct 23 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external reverse primer <400> 3 cgcgraaagc agaaawaaga a 21 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 internal forward primer <400> 4 catgtctttt gcatcgccca tg 22 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 internal reverse primer <400> 5 agagrctrcg aagggggcac a 21 <210> 6 <211> 1983 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 capsid DNA <400> 6 atgcgcccta gggctgttct gttgctgctc ctcgtgtttc tgcctatgct gcccgcgcca 60 ccggccggcc agccgtctgg ccgtcgtcgt gggcggcgca gcggcggtac cagcggtggt 120 ttctggggtg acagggttga ttctcagccc ttcgccatcc cctatattca tccaaccaac 180 cccttcgccg ccgatgtcgt ttcacaatcc ggggctggaa ctcgccctcg acagccgccc 240 cgcccccttg gctccgcttg gcgcgaccag tcccagcgcc cccccgctgc cccccgtcgt 300 cgatctgccc cagctggggc tgcgccgttg accgctatat caccggcccc tgacacagcc 360 cctgtacctg atgtagattc acgtggcgct attctgcgtc gccagtataa tttgtccacg 420 tctccgctta cgtcttctgt tgcttctggt actaatctgg tcctctatgc cgctccgctg 480 aaccctcttt tgcctcttca ggatggtacc aacactcata ttatggctac tgaggcatcc 540 aattatgccc agtatcgggt tgtccgagct acaatccgtt atcgcccgct ggtgccaaat 600 gctgttggtg gttatgctat ctctatctca ttctggcctc aaactacaac tactcctacc 660 tctgttgata tgaattctat tacttccact gatgttagga ttttggtcca gcctggtatt 720 gcctccgagt tagtcatccc tagtgagcgc cttcattacc gtaatcaagg ctggcgctct 780 gttgagacca cgggtgtggc tgaggaggag gctacttccg gtctggtaat gctttgcatc 840 catggctctc ctgttaattc ttatactaat acaccttaca ctggtgcact ggggcttctt 900 gattttgcat tagagcttga gtttagaaat ttaacacccg ggaacaccaa cacccgtgtt 960 tcccggtata ccagcacagc ccgccaccgg ctgcgccgcg gtgccgacgg taccgctgag 1020 cttactgcca ctgcagccac acgtttcatg aaagatctgc actttactgg cacgaatggc 1080 gttggtgagg tgggccgtgg tattgctctg acactgttta atctagctga tacgcttctc 1140 ggtggtttac cgacagaatt gatttcgtcg gctgggggtc agatgtttta ctcccgccct 1200 gttgtctctg ccaatggcga gccgacagaa aagctatata catctgtaga gaatgcgcag 1260 caagataagg gcattaccat cccacacgat atagatttgg gtgactctcg tgtggttatt 1320 caggattatg ataaccagca cgagcaagac cgacctactc cgtcacctgc cccctcccgc 1380 cctttttcag ttcttcgtgc caatgatgtt ctgtggcttt ccctcactgc cgctgggtac 1440 gaccagacta cgtatgggtc gtctaccaac cctatgtatg tctccgatac tgtcacattt 1500 gttaatgtgg ccactggtgc tcaagctgtt gcccgctctc ttgattggtc caaagttact 1560 ctggatggtc gccccctcac taccattcag cagtactcta agacatttta tgttctcccg 1620 ctccgcggga agttgtcctt ctgggaggct ggcacaacta aggccggcta cccgtacaat 1680 tataacacta ctgctagtga ccaaattttg attgggaacg cggccggtca ccgtgtcgct 1740 atttctactt atactactag ccttggtgcc ggccctacct cgatctccgc ggtcggtgta 1800 ttagccccac acacggccct tgctgttctt gaggatacta ttgattaccc cgcttgcgct 1860 catacctttg atgatttctg cccggagtgc cgcaccttgg gtctgcaggg ttgtgcattc 1920 cagtctactg ttgctgagct tcagcgcctt aagatgaagg taggtaaaac ccgggagtct 1980 taa 1983 <210> 7 <211> 660 <212> PRT <213> Artificial Sequence <220> <223> HEV ORF2 capsid protein <400> 7 Met Arg Pro Arg Ala Val Leu Leu Leu Leu Leu Val Phe Leu Pro Met 1 5 10 15 Leu Pro Ala Pro Pro Ala Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg 20 25 30 Arg Ser Gly Gly Thr Ser Gly Gly Phe Trp Gly Asp Arg Val Asp Ser 35 40 45 Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Ala 50 55 60 Asp Val Val Ser Gln Ser Gly Ala Gly Thr Arg Pro Arg Gln Pro Pro 65 70 75 80 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ser Gln Arg Pro Pro Ala 85 90 95 Ala Pro Arg Arg Arg Ser Ala Pro Ala Gly Ala Ala Pro Leu Thr Ala 100 105 110 Ile Ser Pro Ala Pro Asp Thr Ala Pro Val Pro Asp Val Asp Ser Arg 115 120 125 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr 130 135 140 Ser Ser Val Ala Ser Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 145 150 155 160 Asn Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala 165 170 175 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Val Arg Ala Thr Ile 180 185 190 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser 195 200 205 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met 210 215 220 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 225 230 235 240 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln 245 250 255 Gly Trp Arg Ser Val Glu Thr Thr Gly Val Ala Glu Glu Glu Ala Thr 260 265 270 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr 275 280 285 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu 290 295 300 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val 305 310 315 320 Ser Arg Tyr Thr Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp 325 330 335 Gly Thr Ala Glu Leu Thr Ala Thr Ala Ala Thr Arg Phe Met Lys Asp 340 345 350 Leu His Phe Thr Gly Thr Asn Gly Val Gly Glu Val Gly Arg Gly Ile 355 360 365 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro 370 375 380 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Met Phe Tyr Ser Arg Pro 385 390 395 400 Val Val Ser Ala Asn Gly Glu Pro Thr Glu Lys Leu Tyr Thr Ser Val 405 410 415 Glu Asn Ala Gln Gln Asp Lys Gly Ile Thr Ile Pro His Asp Ile Asp 420 425 430 Leu Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu 435 440 445 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val 450 455 460 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Gly Tyr 465 470 475 480 Asp Gln Thr Thr Tyr Gly Ser Ser Thr Asn Pro Met Tyr Val Ser Asp 485 490 495 Thr Val Thr Phe Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg 500 505 510 Ser Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Thr Thr 515 520 525 Ile Gln Gln Tyr Ser Lys Thr Phe Tyr Val Leu Pro Leu Arg Gly Lys 530 535 540 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 545 550 555 560 Tyr Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Gly Asn Ala Ala Gly 565 570 575 His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro 580 585 590 Thr Ser Ile Ser Ala Val Gly Val Leu Ala Pro His Thr Ala Leu Ala 595 600 605 Val Leu Glu Asp Thr Ile Asp Tyr Pro Ala Cys Ala His Thr Phe Asp 610 615 620 Asp Phe Cys Pro Glu Cys Arg Thr Leu Gly Leu Gln Gly Cys Ala Phe 625 630 635 640 Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys 645 650 655 Thr Arg Glu Ser 660 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer <400> 8 cgccctaggg ctgttctgtt 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer <400> 9 agactcccgg gttttaccta cc 22 <110> Konkuk University Industrial Cooperation Corp. <120> Capsid Protein and the gene of Swine hepatitis E virus <130> P08-E267 <160> 9 <170> KopatentIn 1.71 <210> 1 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external reverse primer <400> 1 cgcgraaagc agaaawaaga a 21 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external forward primer <400> 2 cgggtggaat gaataacatg tct 23 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 external reverse primer <400> 3 cgcgraaagc agaaawaaga a 21 <210> 4 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 internal forward primer <400> 4 catgtctttt gcatcgccca tg 22 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 internal reverse primer <400> 5 agagrctrcg aagggggcac a 21 <210> 6 <211> 1983 <212> DNA <213> Artificial Sequence <220> <223> HEV ORF2 capsid DNA <400> 6 atgcgcccta gggctgttct gttgctgctc ctcgtgtttc tgcctatgct gcccgcgcca 60 ccggccggcc agccgtctgg ccgtcgtcgt gggcggcgca gcggcggtac cagcggtggt 120 ttctggggtg acagggttga ttctcagccc ttcgccatcc cctatattca tccaaccaac 180 cccttcgccg ccgatgtcgt ttcacaatcc ggggctggaa ctcgccctcg acagccgccc 240 cgcccccttg gctccgcttg gcgcgaccag tcccagcgcc cccccgctgc cccccgtcgt 300 cgatctgccc cagctggggc tgcgccgttg accgctatat caccggcccc tgacacagcc 360 cctgtacctg atgtagattc acgtggcgct attctgcgtc gccagtataa tttgtccacg 420 tctccgctta cgtcttctgt tgcttctggt actaatctgg tcctctatgc cgctccgctg 480 aaccctcttt tgcctcttca ggatggtacc aacactcata ttatggctac tgaggcatcc 540 aattatgccc agtatcgggt tgtccgagct acaatccgtt atcgcccgct ggtgccaaat 600 gctgttggtg gttatgctat ctctatctca ttctggcctc aaactacaac tactcctacc 660 tctgttgata tgaattctat tacttccact gatgttagga ttttggtcca gcctggtatt 720 gcctccgagt tagtcatccc tagtgagcgc cttcattacc gtaatcaagg ctggcgctct 780 gttgagacca cgggtgtggc tgaggaggag gctacttccg gtctggtaat gctttgcatc 840 catggctctc ctgttaattc ttatactaat acaccttaca ctggtgcact ggggcttctt 900 gattttgcat tagagcttga gtttagaaat ttaacacccg ggaacaccaa cacccgtgtt 960 tcccggtata ccagcacagc ccgccaccgg ctgcgccgcg gtgccgacgg taccgctgag 1020 cttactgcca ctgcagccac acgtttcatg aaagatctgc actttactgg cacgaatggc 1080 gttggtgagg tgggccgtgg tattgctctg acactgttta atctagctga tacgcttctc 1140 ggtggtttac cgacagaatt gatttcgtcg gctgggggtc agatgtttta ctcccgccct 1200 gttgtctctg ccaatggcga gccgacagaa aagctatata catctgtaga gaatgcgcag 1260 caagataagg gcattaccat cccacacgat atagatttgg gtgactctcg tgtggttatt 1320 caggattatg ataaccagca cgagcaagac cgacctactc cgtcacctgc cccctcccgc 1380 cctttttcag ttcttcgtgc caatgatgtt ctgtggcttt ccctcactgc cgctgggtac 1440 gaccagacta cgtatgggtc gtctaccaac cctatgtatg tctccgatac tgtcacattt 1500 gttaatgtgg ccactggtgc tcaagctgtt gcccgctctc ttgattggtc caaagttact 1560 ctggatggtc gccccctcac taccattcag cagtactcta agacatttta tgttctcccg 1620 ctccgcggga agttgtcctt ctgggaggct ggcacaacta aggccggcta cccgtacaat 1680 tataacacta ctgctagtga ccaaattttg attgggaacg cggccggtca ccgtgtcgct 1740 atttctactt atactactag ccttggtgcc ggccctacct cgatctccgc ggtcggtgta 1800 ttagccccac acacggccct tgctgttctt gaggatacta ttgattaccc cgcttgcgct 1860 catacctttg atgatttctg cccggagtgc cgcaccttgg gtctgcaggg ttgtgcattc 1920 cagtctactg ttgctgagct tcagcgcctt aagatgaagg taggtaaaac ccgggagtct 1980 taa 1983 <210> 7 <211> 660 <212> PRT <213> Artificial Sequence <220> <223> HEV ORF2 capsid protein <400> 7 Met Arg Pro Arg Ala Val Leu Leu Leu Leu Leu Val Phe Leu Pro Met   1 5 10 15 Leu Pro Ala Pro Pro Ala Gly Gln Pro Ser Gly Arg Arg Arg Gly Arg              20 25 30 Arg Ser Gly Gly Thr Ser Gly Gly Phe Trp Gly Asp Arg Val Asp Ser          35 40 45 Gln Pro Phe Ala Ile Pro Tyr Ile His Pro Thr Asn Pro Phe Ala Ala      50 55 60 Asp Val Val Ser Gln Ser Gly Ala Gly Thr Arg Pro Arg Gln Pro Pro  65 70 75 80 Arg Pro Leu Gly Ser Ala Trp Arg Asp Gln Ser Gln Arg Pro Pro Ala                  85 90 95 Ala Pro Arg Arg Arg Ser Ala Pro Ala Gly Ala Ala Pro Leu Thr Ala             100 105 110 Ile Ser Pro Ala Pro Asp Thr Ala Pro Val Pro Asp Val Asp Ser Arg         115 120 125 Gly Ala Ile Leu Arg Arg Gln Tyr Asn Leu Ser Thr Ser Pro Leu Thr     130 135 140 Ser Ser Val Ala Ser Gly Thr Asn Leu Val Leu Tyr Ala Ala Pro Leu 145 150 155 160 Asn Pro Leu Leu Pro Leu Gln Asp Gly Thr Asn Thr His Ile Met Ala                 165 170 175 Thr Glu Ala Ser Asn Tyr Ala Gln Tyr Arg Val Val Arg Ala Thr Ile             180 185 190 Arg Tyr Arg Pro Leu Val Pro Asn Ala Val Gly Gly Tyr Ala Ile Ser         195 200 205 Ile Ser Phe Trp Pro Gln Thr Thr Thr Thr Pro Thr Ser Val Asp Met     210 215 220 Asn Ser Ile Thr Ser Thr Asp Val Arg Ile Leu Val Gln Pro Gly Ile 225 230 235 240 Ala Ser Glu Leu Val Ile Pro Ser Glu Arg Leu His Tyr Arg Asn Gln                 245 250 255 Gly Trp Arg Ser Val Glu Thr Thr Gly Val Ala Glu Glu Glu Ala Thr             260 265 270 Ser Gly Leu Val Met Leu Cys Ile His Gly Ser Pro Val Asn Ser Tyr         275 280 285 Thr Asn Thr Pro Tyr Thr Gly Ala Leu Gly Leu Leu Asp Phe Ala Leu     290 295 300 Glu Leu Glu Phe Arg Asn Leu Thr Pro Gly Asn Thr Asn Thr Arg Val 305 310 315 320 Ser Arg Tyr Thr Ser Thr Ala Arg His Arg Leu Arg Arg Gly Ala Asp                 325 330 335 Gly Thr Ala Glu Leu Thr Ala Thr Ala Ala Thr Arg Phe Met Lys Asp             340 345 350 Leu His Phe Thr Gly Thr Asn Gly Val Gly Glu Val Gly Arg Gly Ile         355 360 365 Ala Leu Thr Leu Phe Asn Leu Ala Asp Thr Leu Leu Gly Gly Leu Pro     370 375 380 Thr Glu Leu Ile Ser Ser Ala Gly Gly Gln Met Phe Tyr Ser Arg Pro 385 390 395 400 Val Val Ser Ala Asn Gly Glu Pro Thr Glu Lys Leu Tyr Thr Ser Val                 405 410 415 Glu Asn Ala Gln Gln Asp Lys Gly Ile Thr Ile Pro His Asp Ile Asp             420 425 430 Leu Gly Asp Ser Arg Val Val Ile Gln Asp Tyr Asp Asn Gln His Glu         435 440 445 Gln Asp Arg Pro Thr Pro Ser Pro Ala Pro Ser Arg Pro Phe Ser Val     450 455 460 Leu Arg Ala Asn Asp Val Leu Trp Leu Ser Leu Thr Ala Ala Gly Tyr 465 470 475 480 Asp Gln Thr Thr Tyr Gly Ser Ser Thr Asn Pro Met Tyr Val Ser Asp                 485 490 495 Thr Val Thr Phe Val Asn Val Ala Thr Gly Ala Gln Ala Val Ala Arg             500 505 510 Ser Leu Asp Trp Ser Lys Val Thr Leu Asp Gly Arg Pro Leu Thr Thr         515 520 525 Ile Gln Gln Tyr Ser Lys Thr Phe Tyr Val Leu Pro Leu Arg Gly Lys     530 535 540 Leu Ser Phe Trp Glu Ala Gly Thr Thr Lys Ala Gly Tyr Pro Tyr Asn 545 550 555 560 Tyr Asn Thr Thr Ala Ser Asp Gln Ile Leu Ile Gly Asn Ala Ala Gly                 565 570 575 His Arg Val Ala Ile Ser Thr Tyr Thr Thr Ser Leu Gly Ala Gly Pro             580 585 590 Thr Ser Ile Ser Ala Val Gly Val Leu Ala Pro His Thr Ala Leu Ala         595 600 605 Val Leu Glu Asp Thr Ile Asp Tyr Pro Ala Cys Ala His Thr Phe Asp     610 615 620 Asp Phe Cys Pro Glu Cys Arg Thr Leu Gly Leu Gln Gly Cys Ala Phe 625 630 635 640 Gln Ser Thr Val Ala Glu Leu Gln Arg Leu Lys Met Lys Val Gly Lys                 645 650 655 Thr Arg Glu Ser             660 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer <400> 8 cgccctaggg ctgttctgtt 20 <210> 9 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Reverse Primer <400> 9 agactcccgg gttttaccta cc 22  

Claims (10)

서열번호 7의 돼지 HEV ORF2 capsid 단백질.Porcine HEV ORF2 capsid protein of SEQ ID NO: 7. 제1항의 돼지 HEV ORF2 capsid 단백질을 코딩하는 유전자.The gene encoding the pig HEV ORF2 capsid protein of claim 1. 제2항에 있어서, 상기 유전자는 서열번호 6의 염기서열을 가지는 것을 특징으로 하는 유전자.The gene according to claim 2, wherein the gene has a nucleotide sequence of SEQ ID NO. 제2항의 유전자를 함유하는 벡터.A vector containing the gene of claim 2. 제4항에 있어서, 상기 벡터는 pswHEV-capsid인 것을 특징으로 하는 클로닝벡터.5. The cloning vector according to claim 4, wherein said vector is pswHEV-capsid. 제4항 또는 제5항의 벡터를 박테리아, 곰팡이 및 효모로 구성된 군에서 선택 된 숙주세포에 도입하여 수득되는 형질전환 미생물.A transformed microorganism obtained by introducing a vector of claim 4 or 5 into a host cell selected from the group consisting of bacteria, fungi and yeasts. 제6항에 있어서, 상기 숙주세포는 대장균인 것을 특징으로 하는 형질전환 미생물.The transforming microorganism according to claim 6, wherein the host cell is Escherichia coli. 제7항에 있어서, 상기 형질전환 미생물은 기탁번호 KCTC18139P인 것을 특징으로 하는 형질전환 미생물.The transforming microorganism according to claim 7, wherein the transforming microorganism is Accession No. KCTC18139P. 제6항 내지 제8항 중 어느 한 항에 있어서, 상기 형질전환 미생물로부터 수득한 capsid 단백질을 이용하여 제작한 HEV 항체.The HEV antibody according to any one of claims 6 to 8, produced using a capsid protein obtained from the transgenic microorganism. 제9항의 HEV 항체를 이용하여 제작한 HEV 예방백신.HEV vaccine produced using the HEV antibody of claim 9.
KR1020080102883A 2008-10-21 2008-10-21 The caffeine protein of the swine hepatitis E virus and the gene encoding the same KR101058486B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080102883A KR101058486B1 (en) 2008-10-21 2008-10-21 The caffeine protein of the swine hepatitis E virus and the gene encoding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080102883A KR101058486B1 (en) 2008-10-21 2008-10-21 The caffeine protein of the swine hepatitis E virus and the gene encoding the same

Publications (2)

Publication Number Publication Date
KR20100043714A true KR20100043714A (en) 2010-04-29
KR101058486B1 KR101058486B1 (en) 2011-08-22

Family

ID=42218648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080102883A KR101058486B1 (en) 2008-10-21 2008-10-21 The caffeine protein of the swine hepatitis E virus and the gene encoding the same

Country Status (1)

Country Link
KR (1) KR101058486B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823057A (en) * 2014-03-07 2014-05-28 中国农业科学院兰州兽医研究所 Colloidal gold test strip for quick diagnosis of total swine HEV (Hepatitis E Virus) antibody
CN103837680A (en) * 2014-03-07 2014-06-04 中国农业科学院兰州兽医研究所 Method for preparing porcine hepatitis E virus (HEV) total antibody enzyme-linked immuno sorbent assay (ELISA) detection kit
KR101491814B1 (en) * 2012-12-21 2015-02-16 대한민국 Code-optimizated gene coding capsid protein of swine hepatitis E virus and Recombinant cell expressing the same
JP2019516745A (en) * 2016-05-25 2019-06-20 インターベット インターナショナル ベー. フェー. HEV vaccine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101491814B1 (en) * 2012-12-21 2015-02-16 대한민국 Code-optimizated gene coding capsid protein of swine hepatitis E virus and Recombinant cell expressing the same
CN103823057A (en) * 2014-03-07 2014-05-28 中国农业科学院兰州兽医研究所 Colloidal gold test strip for quick diagnosis of total swine HEV (Hepatitis E Virus) antibody
CN103837680A (en) * 2014-03-07 2014-06-04 中国农业科学院兰州兽医研究所 Method for preparing porcine hepatitis E virus (HEV) total antibody enzyme-linked immuno sorbent assay (ELISA) detection kit
CN103823057B (en) * 2014-03-07 2016-01-20 中国农业科学院兰州兽医研究所 Total antibody colloidal gold fast diagnose test paper bar of one boar HEV and preparation method thereof
JP2019516745A (en) * 2016-05-25 2019-06-20 インターベット インターナショナル ベー. フェー. HEV vaccine

Also Published As

Publication number Publication date
KR101058486B1 (en) 2011-08-22

Similar Documents

Publication Publication Date Title
BE1005485A5 (en) Viral agent.
CN111848786B (en) Monoclonal antibody, preparation method and application thereof
KR20070028547A (en) Identifying virally infected and vaccinated organisms
CN112175086B (en) Monoclonal antibody of anti-porcine epidemic diarrhea virus nsp13 protein and application
CN106456741B (en) Recombinant Classical Swine Fever Virus (CSFV) comprising a substitution in the TAV epitope of the E2 protein
CN111116720B (en) Classical swine fever virus recombinant E2 protein and application thereof
KR100204258B1 (en) Recombinant feline coronavirus s proteins
KR101058486B1 (en) The caffeine protein of the swine hepatitis E virus and the gene encoding the same
CN111925994B (en) Recombinant African swine fever virus with DP71L gene deleted and preparation method and application thereof
AU2004245859A1 (en) Cell surface expression vector of SARS virus antigen and microorganisms transformed thereby
CN110845624B (en) SUMO-CP fusion protein, preparation method thereof and preparation method of polyclonal antibody thereof
CN1053012C (en) Hog cholera virus vaccine and diagnostic
CN1977045A (en) SARS nucleic acids, proteins, vaccines, and uses thereof
JP3245169B2 (en) Canine coronavirus S gene and uses thereof
CN116240222A (en) Codon-optimized bovine viral diarrhea virus type 1E2 protein gene and application thereof
KR100773141B1 (en) 3 3 Variant ORF3 protein derived from PEDV a nuceleic acid encoding the protein method of differentiating wild type and attenuated PEDV using the variant ORF3 protein and gene thereof and a kit for differentiating wild type and attenuated PEDV
CN113549634B (en) Gene for coding soluble HPV58L1 protein and construction and application of recombinant plasmid thereof
KR20100121288A (en) Genetic recombinant classical swine fever vaccine flc-lom-berns virus and preparing method thereof
TWI328039B (en)
CN114315984A (en) N protein epitope mutation marker for preparing PRRSV gene II type epitope deletion vaccine strain and application thereof
Venkat et al. Monoclonal antibodies to the recombinant nucleocapsid protein of a groundnut bud necrosis virus infecting tomato in Karnataka and their use in profiling the epitopes of Indian tospovirus isolates
Freije et al. High-level expression in Escherichia coli of the gene coding for the major structural protein (p72) of African swine fever virus
Sathish et al. Production of recombinant structural proteins from the Indian WSSV isolate
CN114480308B (en) Recombinant baculovirus and preparation method and application thereof
WO2005016247A2 (en) Dna sequences, peptides, antibodies and vaccines for prevention and treatment of sars

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130516

Year of fee payment: 17