KR20100039908A - A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace - Google Patents

A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace Download PDF

Info

Publication number
KR20100039908A
KR20100039908A KR1020107006684A KR20107006684A KR20100039908A KR 20100039908 A KR20100039908 A KR 20100039908A KR 1020107006684 A KR1020107006684 A KR 1020107006684A KR 20107006684 A KR20107006684 A KR 20107006684A KR 20100039908 A KR20100039908 A KR 20100039908A
Authority
KR
South Korea
Prior art keywords
ore
smelting
blast furnace
limestone
ferronickel
Prior art date
Application number
KR1020107006684A
Other languages
Korean (ko)
Inventor
쉔지 리우
Original Assignee
쉔지 리우
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36076566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20100039908(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 쉔지 리우 filed Critical 쉔지 리우
Publication of KR20100039908A publication Critical patent/KR20100039908A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/02General features in the manufacture of pig-iron by applying additives, e.g. fluxing agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/02Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/02Obtaining nickel or cobalt by dry processes
    • C22B23/023Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace, which comprises breaking and screening the raw ore, preparing agglomerate from the breeze, mixing the agglomerate, coke, limestone/calcined lime, dolomite and fluorite, and smelting them to obtain ferronickel in the blast furnace. The weight ratios of additives to agglomerate are as follows: fluorite 0.3~8%, dolomite 0~8%, limestone/ calcined lime 4~35%. Compared with the prior arts, by means of the ratio of fluorite to agglomerate in the smelting process of the invention, the influence of chromium upon furnace temperature can be reduced, and the burning through accident of hearth due to excessive content of fluorine can be avoided. The magnesium in dolomite can settle the problem of poor fluidity of molten iron caused by the chromium in nickel-chromium ore. Limestone not only provides the basicity but also balances the said additives. The smelting process of the invention is low in cost, and has a high recovery rate of raw material.

Description

결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법{A SMELTING PROCESS OF FERRONICKEL WITH NICKEL OXIDE ORE FREE OF CRYSTAL WATER IN A BLAST FURNACE}A method for smelting ferronickel blast furnace of nickel oxide ore without crystal water {A SMELTING PROCESS OF FERRONICKEL WITH NICKEL OXIDE ORE FREE OF CRYSTAL WATER IN A BLAST FURNACE}

본 발명은 고로 제련 공정, 특히 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정에 관계된다.The present invention relates to a blast furnace smelting process, in particular a ferronickel blast furnace smelting process of nickel oxide ore without crystal water.

스테인레스와 특수강이 세계적으로 광범위하게 응용됨에 따라, 스테인레스와 특수강 제련의 가장 중요한 원소-니켈 금속의 공급 부족으로 가격 급등이 야기되고 있다. 전통적인 니켈 금속의 생산은 주로 지구 니켈 자원의 30%를 차지하는 황화니켈광석에서 추출하며, 성숙된 생산 공정을 가지고 있다. 하지만, 거의 백년에 가까운 연속 채굴을 거치면서, 현재 매장량 부족과 함께 자원은 위기를 보이고 있다. 이로써 지구 니켈 자원의 70%를 차지하는 라테라이트 니켈광(산화니켈광석)에서 니켈 금속을 채취하는 것에 대해 더 많은 관심을 기울일 수밖에 없게 되었다. 라테라이트 니켈광이 오랫동안 대규모적으로 개발되지 못한 주요 원인은 이러한 종류의 지하자원에서 니켈을 추출하는 공정의 원가가 높고, 공정이 복잡하며, 생산량이 낮고, 오염이 심각하기 때문이었다. 현재 국제적으로 고품질의 라테라이트 니켈광(니켈 함량 2.0% 이상)에 대해 일반적으로 광석 용광로 제련을 채택하고 있지만, 이 공정은 전력 소모가 많고, 환경 오염이 크며, 간헐식 생산으로 생산량이 낮다는 등의 폐단을 가지고 있다. 품질이 낮은 라테라이트 니켈광에 대해서는 대부분 습식제련, 즉 황산에 담그는 방법을 채택하는데, 라테라이트 니켈광 중에 고체의 산화니켈, 산화크롬, 산화철 등을 액체의 황산니켈, 황산크롬, 황산제1철 등 혼합 용액으로 변환시키고, 다시 황산니켈을 그 중에서 분리해내며, 전해를 통해 총량 1-2%만을 차지하는 금속 니켈을 형성하고, 그 나머지 성분은 모두 폐기된다. 이 공정 설비는 1차적 투자가 크고, 공정이 복잡하며, 주기가 길고, 환경 오염이 심각하다. 고로 제련이 경제적인 선택임에는 틀림없으나, 라테라이트 니켈광은 주로 Cr2O3 성분을 수반하기 때문에, 크롬의 녹는점이 너무 높아, 융해 후 용선의 점도가 너무 크게 되고, 니켈크롬을 함유한 용선이 순조롭게 유출되지 못하여, 고로 응결, 고로 훼손이라는 심각한 결과가 야기된다. 국내외 여러 기업과 연구 기관은 라테라이트 니켈광의 고로법을 통해 페로니켈(페로니켈)로 제련하는 공정에 대해 상당히 오랫동안 연구를 진행하였지만, 아직까지 성공했다는 보도가 없었다. 그러므로, 고효율 저소모, 높은 생산량, 저원가, 그리고 무오염 혹은 저오염인, 라테라이트 니켈광에서 직접 페로니켈로 제련하는 공정 기술을 찾는 것은 업계내에서 시급히 해결해야 하는 과제가 되었다.As stainless and special steels are widely used worldwide, soaring prices are caused by the shortage of the most important element-nickel metals in smelting stainless and special steels. Traditional nickel metal production is mainly derived from nickel sulfide ore, which accounts for 30% of the world's nickel resources, and has a mature production process. However, after nearly 100 years of continuous mining, resources are now in crisis with scarcity of reserves. This has drawn more attention to the collection of nickel metals from laterite nickel ores (nickel oxide ores), which account for 70% of the world's nickel resources. The main reason for the large-scale development of laterite nickel mines for a long time was the high cost, complex process, low production, and severe pollution of this process. Currently, ore smelting is generally adopted for high-quality laterite nickel ores (nickel content of 2.0% or more), but this process consumes a lot of power, has high environmental pollution, and has low production due to intermittent production. I have a defect. Most of low quality laterite nickel ores are wet smelting, that is, immersion in sulfuric acid.In the laterite nickel ore, solid nickel oxide, chromium oxide and iron oxide are mixed with liquid nickel sulfate, chromium sulfate and ferrous sulfate. Converted to a solution, nickel sulfate is separated therefrom, electrolytically forming metal nickel, which accounts for only 1-2% of the total amount, and all remaining components are discarded. The process equipment has a large initial investment, complex processes, long cycles and severe environmental pollution. Since smelting is an economical option, laterite nickel ore mainly involves Cr 2 O 3 , so the melting point of chromium is too high, the melt viscosity becomes too high after melting, and the molten iron containing nickel chromium smoothly. It is not leaked, causing serious consequences such as blast furnace condensation and blast furnace damage. Many domestic and international companies and research institutes have conducted research on the process of smelting ferronickel (ferronickel) through the blast furnace method of laterite nickel mine, but there have been no reports of success. Therefore, finding a process technology for smelting ferronickel directly from laterite nickel ore, which has high efficiency, low consumption, high yield, low cost, and no pollution or low pollution, is an urgent task in the industry.

본 발명의 취지는 상술한 문제를 해결하고, 결정수를 함유하지 않은 산화 니켈광석의 페로니켈 고로법 제련 공정을 제공하는 데에 있다.It is an object of the present invention to solve the above problems and to provide a process for smelting ferronickel blast furnace of nickel oxide ore which does not contain crystal water.

본 발명의 상기 목적은 다음 기술 방안을 통하여 실현한다.The above object of the present invention is realized through the following technical scheme.

본 발명은 일종의 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 공정을 제공하는 것으로서, 주로 다음 절차를 포함한다.The present invention provides a kind of smelting process for ferronickel blast furnace of nickel oxide ore without crystal water and mainly includes the following procedure.

원광을 분쇄 분립하여 그 중에 입경이 10-60mm인 원광 덩어리는 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석을 혼합하고 소결을 진행하여 소결광 덩어리를 얻는다.The ore is pulverized and separated, and the ore agglomerates with a particle size of 10-60 mm are used as smelting raw materials of blast furnace, and the mineral powder, powdered coke and quicklime / limestone smaller than 10 mm are mixed and sintered to obtain a sintered ore chunk.

석회석/생석회, 백운석 및 형석으로 구성된 첨가제, 소결광 덩어리, 원광 덩어리 및 코크스를 혼합하고 고로 제련을 진행하여 페로니켈을 얻는 단계, 여기서 소결광 덩어리에 대한 첨가제의 중량부는 다음과 같다.Mixing additives consisting of limestone / limestone, dolomite and fluorite, sintered ore mass, ore mass and coke and smelting the blast furnace to obtain ferronickel, where the weight parts of the additives to the sintered ore mass are as follows.

형석 0.003-0.08    Fluorite 0.003-0.08

백운석 0-0.08   Dolomite 0-0.08

석회석/생석회 0.04-0.35    Limestone / quick lime 0.04-0.35

바람직하게는, 제련 절차 중에 원광 덩어리를 제련 원료로 첨가하지 않을 수도 있다.Preferably, no ore mass may be added as a smelting raw material during the smelting procedure.

바람직하게는 상기 산화니켈광석은 다음과 같은 함량의 성분들을 포함한다.
Preferably, the nickel oxide ore includes the following contents.

니켈: 0.5-4.5%    Nickel: 0.5-4.5%

크롬: 0.3-12%    Chromium: 0.3-12%

철: 38-55%    Iron: 38-55%

바람직하게는, 소결광 덩어리에 대한 상기 첨가제의 최적 중량부는 다음과 같다.Preferably, the optimum weight part of the additive relative to the sintered ore mass is as follows.

형석 0.003-0.05    Fluorite 0.003-0.05

백운석 0.005-0.05   Dolomite 0.005-0.05

석회석/생석회 0.08-0.15    Limestone / quick lime 0.08-0.15

바람직하게는, 상기 석회석 중의 CaO 함량은 50%보다 크고, 생석회 중의 CaO 함량은 80%보다 크며, 상기 백운석 중의 Mg 함량>10%, 상기 형석 중의 CaF2 함량>80%이다.Preferably, the CaO content in the limestone is greater than 50%, the CaO content in the quicklime is greater than 80%, the Mg content> 10% in the dolomite and the CaF 2 content> 80% in the fluorspar.

기존 기술과 비교하면, 전통적인 고로 제련 공정에서, 고로 온도는 최고 1700℃ 정도까지 도달할 수 있으며, 산화니켈광석 중에 함유된 크롬은 대부분 삼산화이크롬의 형식으로 존재하는데, 삼산화이크롬의 녹는점은 2300℃ 정도이므로, 산화니켈광석 중에 크롬의 환원 정도는 유한하여, 제련으로 얻는 용선의 유동성이 낮아지게 되며, 고로 응결 현상이 쉽게 발생하고, 심지어는 사고도 발생한다. 본 발명이 제공하는 니켈크롬철광의 페로니켈 제련 공정 중에 형석을 첨가하면 고로 온도에 대한 크롬의 영향을 효과적으로 낮출 수 있어, 용선의 유동성이 높아진다. 이와 동시에, 본 발명이 제공하는 제련 공정 중에 추가되는 형석의 양이 정밀한 계산을 거치므로, 형석 첨가량의 과다로 인해 야기되는 고로가 타버리는 것 등의 사고 발생도 효과적으로 피할 수 있다. 동시에, 본 발명에서 제공하는 공정 중에 백운석이 함유한 마그네슘도 니켈크롬광 중에 크롬으로 야기되는 용선 유동성 부족 문제를 해결하는 데에 도움을 줄 수 있다. 석회석은 염기도를 제공할 뿐만 아니라 상술한 두 가지 첨가제의 균형을 유지할 수도 있다. 본 발명이 제공하는 고로법 제련 공정은 공정 과정이 짧고, 연속 생산 생산량이 크며, 라테라이트 니켈광 중에 니켈크롬철 원소가 1차적으로 모두 추출되고, 자원 이용율이 높다. 이 제련으로 생산되는 슬래그는 시멘트 생산에 있어 좋은 원료이며, 어느 정도 CO2 가스를 배출하는 것을 제외하면, 기타 고체나 액체 폐기물이 발생하지 않아 오염이 없다.Compared with the existing technology, in the blast furnace smelting process, the blast furnace temperature can reach up to 1700 ℃, and most of the chromium contained in nickel oxide ore exists in the form of dichromium trioxide, and the melting point of dichromium trioxide is 2300 ℃. Since the degree of reduction of chromium in the nickel oxide ore is finite, the fluidity of the molten iron obtained by smelting becomes low, the blast furnace condensation easily occurs, and even an accident occurs. The addition of fluorspar during the ferronickel smelting process of nickel chromite ore provided by the present invention can effectively lower the influence of chromium on the blast furnace temperature, thereby increasing the flowability of the molten iron. At the same time, since the amount of fluorspar added during the smelting process provided by the present invention is precisely calculated, accidents such as burning of blast furnace caused by excessive amount of fluorspar addition can be effectively avoided. At the same time, the magnesium contained in the dolomite during the process provided by the present invention can also help to solve the problem of molten metal fluidity caused by chromium in nickel chromite. Limestone not only provides basicity but can also balance the two additives described above. The blast furnace smelting process provided by this invention has a short process process, a large continuous production yield, and all nickel chromium iron elements are extracted primarily in laterite nickel ore, and resource utilization rate is high. The slag produced by this smelting is a good raw material for the production of cement, except for the emission of CO 2 gas to some extent, other solid or liquid waste does not occur, there is no pollution.

대조해 보면, 본 발명이 제공하는 고로 제련 공정은 원가가 낮은데, 전통적인 광석 용광로 공정은 2000-4000킬로와트/톤 철, 코크스 0.5톤이 필요하였으나, 본 발명이 제공하는 공정 중에 고로 전력소모는 150-200킬로와트/톤 철이다. 에너지 절약이 가능하고, 생산량이 크며, 고로의 평균 생산량이 광석 용광로 평균 생산량보다 많다. 오염이 적고, 분진이 적다. 원료 회수율이 높고, 수율은 각각 철 97-98%, 니켈 99%, 크롬 40-50%이다.In contrast, the blast furnace smelting process provided by the present invention has a low cost, while a conventional ore blast furnace process requires 2000-4000 kilowatts / ton of iron and coke 0.5 tons, but the blast furnace power consumption of the present invention is 150-200. Kilowatt / tonne iron. Energy saving is possible, production is large, and the average production of blast furnace is more than the average production of ore furnace. Less pollution, less dust The recovery of raw materials is high, and the yields are 97-98% iron, 99% nickel and 40-50% chromium, respectively.

다음에서 구체적인 실시예를 접목하여 본 발명을 진일보하게 해석 및 설명하는데, 다음 실시예는 본 발명의 보호 범위에만 제한되지 않으며, 본 발명에 기반한 사고를 통해 이루어진 수정 및 조정 모두 본 발명의 보호의 범위에 속한다.In the following, the present invention is further interpreted and explained by combining specific embodiments, but the following embodiments are not limited only to the scope of protection of the present invention, and all modifications and adjustments made through the thinking based on the present invention are the scope of protection of the present invention. Belongs to.

원광을 분쇄 분립하여 그 중에 입경이 10-60mm인 원광 덩어리는 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석을 혼합하고 소결을 진행하여 소결광 덩어리를 얻는다.The ore is pulverized and separated, and the ore agglomerates with a particle size of 10-60 mm are used as smelting raw materials of blast furnace, and the mineral powder, powdered coke and quicklime / limestone smaller than 10 mm are mixed and sintered to obtain a sintered ore chunk.

소결광 덩어리를 분쇄 분립하고, 입경 10-50mm인 소결광 덩어리를 고로 제련 원료로 하며, 입경이 10mm보다 작은 광물가루는 다시 소결한다.The sintered ore agglomerates are pulverized and separated, and the sintered ore agglomerates having a particle diameter of 10-50 mm are used as smelting raw materials, and mineral powder having a particle size smaller than 10 mm is sintered again.

소결광 덩어리, 원광 덩어리, 코크스, 석회석/생석회, 백운석과 형석을 혼합하고 고로 제련으로 페로니켈을 얻는다. Sintered ore mass, ore mass, coke, limestone / limestone, dolomite and fluorite are mixed and smelting of blast furnace to obtain ferronickel.

소결광과 기타 원료를 혼합하고 제련하며, 그 중에 소결광과 원광은 임의의 비율로 혼합할 수 있고, 소결광이나 원광만을 순전히 사용할 수도 있는데, 만약 전부 원광을 사용한다면, 광석과 코크스의 비율은 1.9-2.1: 1이고, 만약 전부 소결광으로 사용한다면, 광석과 코크스의 비율은 2.2-2.4: 1이다. The sintered ore and other raw materials are mixed and smelted, and the sintered ore can be mixed in any ratio, and only sintered ore ore can be used purely. If all ore is used, the ratio of ore and coke is 1.9-2.1 : 1, and if all are used as sintered ore, the ratio of ore and coke is 2.2-2.4: 1.

사용하는 니켈크롬철광의 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of nickel chromite ore used are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr CaCa SiSi MgMg AlAl 1One 38.1838.18 4.494.49 11.9211.92 4.524.52 3.243.24 1.671.67 3.143.14 22 40.1240.12 2.972.97 10.0710.07 4.014.01 3.123.12 1.551.55 3.013.01 33 43.7743.77 1.761.76 9.039.03 3.453.45 3.013.01 1.471.47 2.882.88 44 47.2147.21 1.351.35 7.487.48 3.063.06 2.882.88 1.201.20 2.512.51 55 50.3950.39 .087.087 5.485.48 2.972.97 2.562.56 1.071.07 2.342.34 66 54.8754.87 .053.053 3.133.13 2.072.07 2.152.15 1.031.03 2.072.07

얻어 낸 소결광의 주요 성분 및 함량(중량 %)은 다음과 같다The main components and the content (% by weight) of the obtained sintered ore are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr CaCa SiSi 1One 36.1036.10 4.784.78 12.1012.10 6.106.10 3.343.34 22 38.2438.24 3.633.63 10.8710.87 5.825.82 3.403.40 33 40.8140.81 1.761.76 9.049.04 5.615.61 3.523.52 44 43.5743.57 1.381.38 7.487.48 5.305.30 3.613.61 55 44.8244.82 0.880.88 3.483.48 5.105.10 3.623.62 66 46.5046.50 0.540.54 3.183.18 4.914.91 3.633.63

고로 재료 구성(중량 Kg)은 다음 표와 같다.The blast furnace material composition (weight Kg) is shown in the following table.

성분 로트번호Ingredient Lot Number 원광 덩어리Ore bullion 소결광Sintered ore 코크스cokes 형석fluorite 백운석dolomite 석회석/생석회Limestone / quick lime 1One 10001000 10001000 455455 8080 8080 350350 22 500500 10001000 415415 7070 7070 300300 33 500500 15001500 680680 6060 9090 300300 44 -- 15001500 625625 7575 7575 150150 55 -- 20002000 920920 2020 2020 160160 66 -- 20002000 830830 66 -- 8080

고로 제련 공정 계수Blast Furnace Smelting Process Coefficient

항목 모델Item model 노저 직경Noger diameter 투이어 직경Two diameter Pan 풍압wind pressure 고로 용적 36m3 Blast furnace volume 36m 3 2.1m2.1m 75mm75 mm 230m/s230 m / s 4200(수은주 밀리미터)4200 (millimeters of mercury) 고로 용적 90m3 Blast furnace volume 90m 3 2.9m2.9m 100mm100 mm 380m/s380 m / s 4600(수은주 밀리미터)4600 (millimeters of mercury)

제련으로 얻은 페로니켈 주요 성분 및 함량(중량 %)은 다음과 같다.The main components and contents (% by weight) of ferronickel obtained by smelting are as follows.

성분 로트번호Ingredient Lot Number FeFe NiNi CrCr SS PP 1One 48.2648.26 31.1031.10 33.1133.11 0.0610.061 0.0600.060 22 52.3152.31 10.5910.59 23.1023.10 0.0590.059 0.0610.061 33 64.5864.58 8.328.32 22.3822.38 0.0590.059 0.0590.059 44 75.5175.51 5.985.98 13.3613.36 0.0600.060 0.0580.058 55 85.2985.29 3.243.24 7.097.09 0.0580.058 0.0570.057 66 93.4693.46 0.920.92 0.630.63 0.0570.057 0.0600.060

Claims (8)

다음 단계를 포함하는, 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법:
(A) 원광을 분쇄 분립하여 그 중에 입경이 10-60mm인 원광 덩어리는 고로 제련 원료로 하고, 입경이 10mm보다 작은 광물가루와 분코크스, 생석회/석회석을 혼합하고 소결을 진행하여 소결광 덩어리를 얻는 단계;
(B) 소결광 덩어리를 파쇄 분립하고, 입경 10-50mm인 소결광 덩어리를 고로 제련 원료로 하며, 입경이 10mm보다 작은 광물가루는 다시 소결하는 단계; 및
(C) 석회석/생석회와 형석으로 구성된 첨가제, 소결광 덩어리, 원광 덩어리 및 코크스를 혼합하고 고로 제련을 진행하여 페로니켈을 얻는 단계, 여기서 소결광 덩어리에 대한 첨가제의 중량부는 다음과 같음:
형석 0.003-0.08
석회석/생석회 0.04-0.35.
Process for smelting ferronickel blast furnace of nickel oxide ore without crystal water, comprising the following steps:
(A) Grinding and grinding the ore, the ore agglomerates with a particle size of 10-60 mm are used as smelting raw materials for blast furnaces, and the mixture of mineral powder, powdered coke and quicklime / limestone with a particle size smaller than 10 mm is sintered to obtain a sintered ore mass. step;
(B) crushing and sintering the sintered ore agglomerate, and using the sintered ore agglomerate having a particle diameter of 10-50 mm as a smelting raw material, and sintering mineral powder having a particle size smaller than 10 mm again; And
(C) mixing additives consisting of limestone / limestone and fluorite, sintered ore masses, ore masses and coke and smelting the blast furnace to obtain ferronickel, wherein the weight parts of the additives to the sintered ore mass are as follows:
Fluorite 0.003-0.08
Limestone / quick lime 0.04-0.35.
제 1항에 있어서, 단계 (C)에서 소결광 덩어리에 대하여 0 보다 크고 0.08 이하의 중량부의 백운석을 첨가제로서 추가로 포함함을 특징으로 하는, 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.The method for smelting ferronickel blast furnace according to claim 1, further comprising as an additive an amount of dolomite greater than 0 and less than or equal to 0.08 by weight relative to the sintered ore mass in step (C). 제 1항 또는 제 2항에 있어서, 산화니켈광석은 0.5-4.5 중량%의 니켈, 0.3-12 중량%의 크롬, 38-55 중량%의 철을 포함함을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.3. Nickel-free nickel oxide according to claim 1 or 2, wherein the nickel oxide ore comprises 0.5-4.5 wt% nickel, 0.3-12 wt% chromium and 38-55 wt% iron. Smelting method of ferronickel blast furnace of ore. 제 1항 또는 제 2항에 있어서, 제련 과정 중에 원광 덩어리를 제련 원료로 첨가하지 않음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.The method for smelting ferronickel blast furnace of crystal oxide-free nickel oxide ore according to claim 1 or 2, wherein no ore mass is added as a smelting raw material during the smelting process. 제 2항에 있어서, 소결광 덩어리에 대한 상기 첨가제의 중량부가 다음과 같음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법:
형석 0.003-0.05
백운석 0.005-0.05
석회석/생석회 0.08-0.15.
The method of claim 2, wherein the weight part of the additive to the sintered ore mass is as follows.
Fluorite 0.003-0.05
Dolomite 0.005-0.05
Limestone / quick lime 0.08-0.15.
제 1항 또는 제 2항에 있어서, 상기 석회석 중에 CaO 함량이 50%보다 크고 100% 보다 작으며, 생석회 중에 CaO 함량이 80%보다 크고 100% 보다 작음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.The nickel oxide ore without crystal water according to claim 1 or 2, wherein the CaO content in the limestone is greater than 50% and less than 100%, and the CaO content in quicklime is greater than 80% and less than 100%. Method of smelting ferronickel blast furnace. 제 2항에 있어서, 상기 백운석 중에 Mg 함량이 10%보다 크고 100% 보다 작음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.The method of claim 2, wherein the Mg content in the dolomite is greater than 10% and less than 100%. 제 1항 또는 제 2항에 있어서, 상기 형석 중에 CaF2 함량이 80% 보다 크고 100% 보다 작음을 특징으로 하는 결정수 미함유 산화니켈광석의 페로니켈 고로 제련 방법.3. The method of claim 1 or 2, wherein the CaF 2 content in the fluorspar is greater than 80% and less than 100%.
KR1020107006684A 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace KR20100039908A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510102984.5 2005-09-16
CNB2005101029845A CN1306049C (en) 2005-09-16 2005-09-16 Ferronickel smelting process of nickel oxide ore free of crystal water in blast furnace

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020067017169A Division KR20070085069A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Publications (1)

Publication Number Publication Date
KR20100039908A true KR20100039908A (en) 2010-04-16

Family

ID=36076566

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020107006684A KR20100039908A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace
KR1020067017169A KR20070085069A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020067017169A KR20070085069A (en) 2005-09-16 2005-11-02 A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace

Country Status (7)

Country Link
EP (1) EP1927667B1 (en)
JP (1) JP4734414B2 (en)
KR (2) KR20100039908A (en)
CN (1) CN1306049C (en)
AU (1) AU2005304190B2 (en)
MY (1) MY140939A (en)
WO (1) WO2006050658A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100595290C (en) * 2006-09-06 2010-03-24 刘光火 Technique for smelting nickel-cobalt-ferrum by nickel oxide ore through electrical furnace
KR101322897B1 (en) 2007-05-11 2013-10-29 주식회사 포스코 Method for manufacturing molten irons comprising nickels
KR101322898B1 (en) * 2007-05-11 2013-10-29 주식회사 포스코 Method for manufacturing molten irons comprising nickels
CN101680042B (en) * 2007-05-11 2013-02-20 Posco公司 Method for manufacturing molten iron comprising nickel
KR100948926B1 (en) 2007-07-23 2010-03-24 주식회사 포스코 Method for manufacturing molten iron comprising nickel
AU2008316326B2 (en) * 2007-10-26 2013-06-20 Bhp Billiton Innovation Pty Ltd Production of nickel
CN101353708B (en) * 2008-09-11 2010-06-02 张家港浦项不锈钢有限公司 Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
KR101009034B1 (en) * 2008-09-19 2011-01-17 주식회사 포스코 Method of forming a ferronikel
CN101392331B (en) * 2008-10-10 2010-08-25 建德市新安江镍合金有限公司 Smelting technique for processing nickel ore by rotary kiln
CN102212681B (en) * 2010-12-27 2013-03-27 池州市润鹏冶金科技有限公司 Sintering synergistic agent and use method thereof
CN102650002A (en) * 2011-02-25 2012-08-29 云南锡业集团(控股)有限责任公司 Improved method for smelting laterite nickel ore to produce nickelferrite or nickel matte
FI123241B (en) * 2011-06-13 2013-01-15 Outokumpu Oy Process for improving the degree of reduction in melting of a ferro-mixture
CN102965521B (en) * 2012-11-26 2013-11-20 罕王实业集团有限公司 Method for nickel laterite ore through adopting wet pellet smelting lower temperature reduction mode
CN103131872B (en) * 2013-02-20 2015-06-03 罕王实业集团有限公司 Method of controlling temperature of energy-saving environment-friendly laterite-nickel ore smelting shaft furnace through aluminothermic process
FI126718B (en) * 2013-12-17 2017-04-28 Outotec Finland Oy Process for utilizing dust from a ferro-nickel process and sintered pellets prepared by the process
CN103773948B (en) * 2014-01-30 2015-08-26 首钢总公司 Method for using iron ore powder in iron-making system
CN104060084A (en) * 2014-05-08 2014-09-24 无锡市阳泰冶金炉料有限公司 Nickeliferous poor chromite separation and enrichment smelting method
CN104911288B (en) * 2015-04-14 2017-09-29 四川金广实业(集团)股份有限公司 Reduce the blast furnace process lateritic nickel ore method of slag oxidation content of magnesium
NO346383B1 (en) * 2017-05-05 2022-07-04 Knut Henriksen Method for converting a waste material from sulphide ore based nickel refining into nickel pig iron

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1290436A (en) * 1969-04-30 1972-09-27
SE354297B (en) * 1971-07-16 1973-03-05 Avesta Jernverks Ab
JPS62290842A (en) * 1986-06-10 1987-12-17 Nippon Kokan Kk <Nkk> Manufacture of ferronickel
JPS62290843A (en) * 1986-06-10 1987-12-17 Nippon Kokan Kk <Nkk> Production of ferronickel
AUPN639995A0 (en) * 1995-11-03 1995-11-30 Technological Resources Pty Limited A method and an apparatus for producing metals and metal alloys
RU2132400C1 (en) * 1998-09-03 1999-06-27 Открытое акционерное общество "Серовский металлургический завод" Method of processing oxidized nickel ores
RU2157412C1 (en) * 1999-04-19 2000-10-10 ЗАО "Научно-производственное предприятие ФАН" Method of production of blast-furnace ferronickel
CN1237641A (en) * 1999-06-15 1999-12-08 吉林省冶金研究院 Technological process for extracting Ni, Cu, Co and Mg from nickel sulfide preparation concentrate and making nickelferrite
JP2001303113A (en) * 2000-04-26 2001-10-31 Mitsui Matsushima Co Ltd METHOD FOR UTILIZING COAL HAVING MUCH CaO COMPONENT AND Fe2O3 COMPONENT IN BURNT ASH
US6903585B2 (en) * 2003-06-27 2005-06-07 Analog Devices, Inc. Pulse width modulated common mode feedback loop and method for differential charge pump
CN1257295C (en) * 2004-11-15 2006-05-24 四川川投峨眉铁合金(集团)有限责任公司 Production method for extracting nickel by pyrogenic process

Also Published As

Publication number Publication date
EP1927667A4 (en) 2008-11-05
AU2005304190A1 (en) 2006-05-18
EP1927667B1 (en) 2013-06-19
MY140939A (en) 2010-02-12
AU2005304190B2 (en) 2009-09-17
CN1733950A (en) 2006-02-15
EP1927667A1 (en) 2008-06-04
KR20070085069A (en) 2007-08-27
JP2009508004A (en) 2009-02-26
WO2006050658A1 (en) 2006-05-18
CN1306049C (en) 2007-03-21
JP4734414B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
KR20100039908A (en) A smelting process of ferronickel with nickel oxide ore free of crystal water in a blast furnace
KR20100039907A (en) A smelting process of ferronickel with nickel oxide ore containing of crystal water in a blast furnace
CN101353708B (en) Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
CN100507013C (en) Method for directly producing ferrochromium from chrome ore powder and coal
CN104878289B (en) High cerium mischmetal Antaciron and its production method
CN102634718B (en) Preparation process for organically-combined fluorite ball
CN107365093A (en) A kind of preparation method of the active copper ashes of binder materials
CN102534116A (en) Slag modifier and preparation method and application thereof
CN101353709B (en) Nickel iron smelting process with nickel oxide ore and stainless steel production wastes as raw materials
CN103643056B (en) The smelting process of low carbon ferromanganese
CN103643094B (en) The smelting process of high carbon ferromanganese
CN101469378B (en) Method for preparing alsifer from high-alumina fly ash and magnetic beads
CN100577818C (en) Nickel iron blast furnace smelting process with nickel oxide ore as raw material
CN104498743A (en) Low-cost production method of high-carbon 50 vanadium iron
CN103643057B (en) The smelting process of mid-carbon fe-mn
CN110820017B (en) Preparation method of aluminum-manganese alloy
CN108611543A (en) A method of producing rare earth magnesium ferrosilicon alloy based on comprehensive utilization of resources means
CN102787203A (en) Fluoride-free slag-making fluxing agent for converter steel making
CN115747421A (en) Novel environment-friendly slagging agent and preparation method thereof
CN115595404A (en) Slagging agent for AOD furnace and preparation method thereof
CN114908263A (en) Preparation method of silicon-manganese alloy
CN101928837B (en) Method for producing silicon-aluminum-barium alloy
CN1294198A (en) Method for producing casting by using scrap iron

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application