KR20100013801A - Differential diagnostic method, kit, chip for the dystrophin gene deletion, duplication, point mutation and dmd/bmd screening test therethrough - Google Patents

Differential diagnostic method, kit, chip for the dystrophin gene deletion, duplication, point mutation and dmd/bmd screening test therethrough Download PDF

Info

Publication number
KR20100013801A
KR20100013801A KR1020080075490A KR20080075490A KR20100013801A KR 20100013801 A KR20100013801 A KR 20100013801A KR 1020080075490 A KR1020080075490 A KR 1020080075490A KR 20080075490 A KR20080075490 A KR 20080075490A KR 20100013801 A KR20100013801 A KR 20100013801A
Authority
KR
South Korea
Prior art keywords
probe
dna
dystrophin
exon
artificial sequence
Prior art date
Application number
KR1020080075490A
Other languages
Korean (ko)
Other versions
KR101068939B1 (en
Inventor
박민구
이지원
Original Assignee
박민구
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박민구 filed Critical 박민구
Priority to KR1020080075490A priority Critical patent/KR101068939B1/en
Publication of KR20100013801A publication Critical patent/KR20100013801A/en
Application granted granted Critical
Publication of KR101068939B1 publication Critical patent/KR101068939B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A kit, a chip and a method for determining gene deletion, duplication, point mutation of dystrophin are provided to shorten test time and reduce analysis cost. CONSTITUTION: A method for determining deletion, duplication, point mutation of human dystrophin comprises: a step of producing a chip on which a probe is spotted; a step of isolating genomic DNA from a sample; a step of amplifying DNA to obtain a target DNA amplified product; a step of analyzing point mutation using an automated sequencing; a step of performing hybridization reaction between multiplex-PCR reaction product and probe which is fixed on the chip surface; and a step of scanning the chip with laser to measure fluorescence intensity according to the hybridized reaction result and analyzing exon deletion, duplication mutation.

Description

디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단방법 및 키트, 칩 그리고 이를 이용한 근이양증 스크리닝검사{Differential diagnostic method, kit, chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough}Differentiological diagnostic method, kit, chip for the dystrophin gene deletion, duplication, point mutation and DMD / BMD screening test therethrough}

본 발명은 유전자 결실, 중복, 점 돌연변이 일괄분석이 가능한 디스트로핀 유전변이 감별진단 조성물에 관한 것으로서, 보다 상세하게는, 디스트로핀 78개 각 exon별 대조군 대비 검체의 형광신호강도를 log 값 relative ratio로 판별하는 정량유전자량(quantitative gene dosage) 분석을 구현함으로써 유전자 결실, 중복 변이의 정확한 정량해석을 특징으로 하는 감별진단방법, 키트, 그리고 칩에 관한 것이다.The present invention relates to a differential diagnosis composition of dystrophin genetic mutations capable of gene deletion, duplication, and point mutation batch analysis, and more specifically, to determine the fluorescence signal intensity of a sample compared to the control group for each of the 78 exstropins by log value relative ratio. Discriminant diagnostic methods, kits, and chips characterized by accurate quantitative analysis of gene deletions, duplicate mutations by implementing quantitative gene dosage analysis.

근이양증 또는 근이영양증(Muscular dystrophy)은 진행성의 근위약을 보이며 근육의 괴사 및 재생과정을 통해 근섬유의 크기가 고르지 않고 다양하며 근섬유가 괴사된 부위가 지방 및 섬유화 조직으로 대치되어 팔, 다리등의 근육이 굳어져 결국 전혀 움직일 수 없게 되는 X 염색체 연관된 근 질환이다. 말기가 되면 호흡부전, 심부전 등의 합병증으로 사망까지 이르게 된다. 1987년 디스트로핀(Dystrophin) 유전자 결실 및 이로 인한 단백질 결핍이 뒤셴형 근이양증(Duchenne's muscular dystrophy, DMD)과 베커형 근이양증(Becker's muscular dystrophy, BMD)을 유발함이 증명된 이후, 근이양증의 병태생리를 이해함에 있어 획기적인 전환을 가져오게 되었다(Hoffman EP et al. Cell (1987) 51:919-928). Muscular dystrophy or muscular dystrophy is a progressive placebo, and muscle necrosis and regeneration process makes the muscle fibers uneven and diverse.The muscle necrosis areas are replaced by fat and fibrous tissue, resulting in muscles such as arms and legs. It is an X chromosome-associated muscle disease that hardens and eventually becomes completely immobile. In the late stages, death can occur due to complications such as respiratory failure and heart failure. Understanding the pathophysiology of muscular dystrophy after the 1987 dystrophin gene deletion and its resulting protein deficiency demonstrated Duchenne's muscular dystrophy (BMD) and Becker's muscular dystrophy (BMD). This resulted in a breakthrough (Hoffman EP et al. Cell (1987) 51: 919-928).

디스트로핀 유전자는 Xp21.2 locus에 위치하는 2.4 Mbp(mega base pairs)의 게노믹 DNA 크기와 14,000 bp에 달하는 cDNA 크기를 갖는 인간 최대 유전자 중 하나이다. 디스트로핀 단백질은 N-말단, rod domain, 시스테인-rich 부위, C-말단, 4개 domain으로 구성되며 골격근, 평활근, 심근의 세포질막에 존재하고, 뇌에서는 뉴런(neuron)의 시냅스후 막(postsynaptic membrane)에 존재한다(Hoffman EP et al. Cell (1987) 51:919-928, Ervasti JM et al. Cell (1992) 66:1121-1131).The dystrophin gene is one of the largest human genes with a genomic DNA size of 2.4 Mbp (mega base pairs) located at Xp21.2 locus and a cDNA size of 14,000 bp. Dystrophin protein consists of four domains: N-terminus, rod domain, cysteine-rich region, C-terminus, and is present in the cytoplasmic membranes of skeletal muscle, smooth muscle, and myocardium. In the brain, postsynaptic membrane of neurons Hoffman EP et al. Cell (1987) 51: 919-928, Ervasti JM et al. Cell (1992) 66: 1121-1131).

디스트로핀은 주로 세포골격(cytoskeleton)의 지지대 역할을 하는 근세포막단백질로 근육수축의 긴장을 견디게 하는 역할을 한다. 근이양증 환자에서는 근세포 내로 물질 유입이 일어나면 팽창된 세포는 압력을 견디지 못하고 터지게 된다(Arahata K et al. Nature (1988) 333:861-863). 디스트로핀은 당단백질들과 결합을 통해 디스트로핀-당단백질 복합체(dystrophin-glycoprotein complex)를 형성하는데, 이를 구성하는 단백질의 결핍이 여러 근이양증의 원인으로 보고되었다(Campbell KP et al. Nature (1989) 338:259-262, Ervasti JM et al. Cell (1991) 66:1121-1131).Dystrophin is a myocyte membrane protein that serves primarily as a support for the cytoskeleton, which is responsible for the stress of muscle contraction. In patients with myopathy, the inflow of material into myocytes causes the expanded cells to withstand pressure and burst (Arahata K et al. Nature (1988) 333: 861-863). Dystrophin binds to glycoproteins to form a dystrophin-glycoprotein complex, a deficiency of the proteins that make up it, which has been reported as a cause of several myopathy (Campbell KP et al. Nature (1989) 338: 259-262, Ervasti JM et al. Cell (1991) 66: 1121-1131).

면역조직화학염색법(immunohistochemical staining)을 통해 근이양증의 아형(subtype)들이 지속적으로 보고되고 있다. 조직검사 소견은 유사하지만, 그 유전적인 원인은 매우 다양해서, 유전의 양상, 침범부위, 진행속도등 임상 특징에 의하여 근이양증은 여러가지 형태로 분류된다. 국내에서도 뒤셴/베커(Duchenne/Becker)형 근이양증, 안인두근이양증, 안면견갑상완 근이양증, 지대(Limb-girdle)형 근이양증, 원위근이양증 등 매우 많은 종류의 근이양증이 보고되었다(Kim SY et al. J Korean Neurol Assoc (1993) 11:68-77). Subtypes of muscular dystrophy have been reported continuously through immunohistochemical staining. Although histological findings are similar, the genetic causes are very diverse, and muscle dysplasia can be classified into various forms according to the clinical characteristics such as genetic patterns, invasion sites, and progression speed. In Korea, there have been many reports of muscle dysplasia, including Duchenne / Becker type muscular dystrophy, osopharyngeal muscle dystrophy, facial scapular brachial dystrophy, limb-girdle type muscular dystrophy, and distal muscle dysplasia (Kim SY et al. J Korean) Neurol Assoc (1993) 11: 68-77).

뒤셴/베커형 이외에 여러가지 아형의 근이양증이 상염색체, 성염색체 열성 또는 우성의 다양한 유전양상을 나타내며 신경학적 검사, 근전도 검사 등의 임상소견만으로는 진단이 어렵다. 최근에는 뒤셴/베커형 근이양증에 대한 분자유전학적 진단을 가장 우선 시행하며, 음성의 결과인 경우, 근육 내 원인 단백질의 양을 in situ 측정하거나, 근생검을 통한 근조직 면역조직화학염색을 시행하여 진단한다. In addition to the Duchenne / Becker type, various subtypes of muscular dysplasia show various genetic features of autosomal, sex chromosomal recessive or dominant, and are difficult to diagnose based on clinical findings such as neurological examination and electromyography. In recent years, molecular genetic diagnosis of Duchenne / Becker type muscular dystrophy is the first to be performed.In case of negative results, the amount of causative protein in muscle is measured in situ or muscle tissue immunohistochemical staining is performed through muscle biopsy. .

뒤셴/베커형 근이양증은 유전성 신경 근 질환의 약 90%에 해당하는 X 염색체 연관성 질환으로 뒤셴형 근이양증은 남자아이 약 3,300 - 3,500명 당 1명의 비교적 높은 발생율을 나타낸다. 디스트로핀 유전자의 결손(deletion), 중복(duplication), 점 돌연변이(point mutation)에 의해 발병하는 DMD와 BMD는 동일한 유전자의 돌연변이에 의해 발생하는 질환이지만, 뒤셴형의 경우 많은 수에서 초기 운동발달이 느려 18개월까지 독립보행을 못하는 경우가 많고, 보통 4 - 5세경 자주 넘어지거나 까치발로 걷거나 또는 계단을 올라가기 힘든 증상이 나타난다. 대다수에서 비복근(종아리 근육)의 가성비대(pseudohypertrophy)를 보이며 하지 근위부에서 근위약이 시작되고 진행경과가 빨라 평균 10세경에 독립보행이 불가능해진 다. 베커형의 경우 그 임상 양상 및 발병 연령이 다양하여 6 - 19세 사이에 발병하고 병의 진행 경과는 뒤셴형에 비해 느리고 다양하다(Moser H Hum Genet (1984) 66:17-40, Emery AEH Nature (1977) 266:472-473, Leibowitz D et al. Dev Med Neurol (1981) 23:577-590). DMD는 돌연변이의 결과로 DNA 전사(transcription)과정의 reading frame이 변화되어 단백질이 전혀 생성되지 않는 경우가 대부분이고, BMD는 reading frame에는 변화를 주지않는 small 돌연변이로 인해 크기가 작거나 비정상적인 단백질이 만들어지는 경우가 많지만 모든 경우에서 일치하지는 않는다(Winnard AV et al. Hum Mol Genet (1993) 2:737-744). 결실과 삽입 변이는 유전자 전사(transcription)과정에서 아미노산으로 코딩되는 단위인 reading frame을 이동시키기에 전사과정이 조기에 종료되어 truncated 비활성 단백질이 생성되거나 비정상적인 단백질이 합성된다. 중복은 2개 염색체에 single copy씩 총 2개 copy가 존재하는 일반적인 경우와 달리 유전자가 multi-copy로 존재하는 카피 수 변화(copy number variation)로 인해 gene dosage가 변하는 변이를 나타낸다. Duchenne / Becker-type muscular dystrophy is an X chromosome-related disorder that accounts for about 90% of hereditary neuromuscular disorders. Duchenne-type muscular dystrophy has a relatively high incidence of 1 in about 3,300-3,500 boys. DMD and BMD caused by deletion, duplication, and point mutation of the dystrophin gene are caused by mutations in the same gene, but the Duchenne type causes slow initial motor development. Indeed, they are unable to walk independently for up to 18 months, and often fall around 4-5 years of age, have difficulty walking on the crow's feet or climbing stairs. The majority show pseudohypertrophy of the gastrocnemius muscle (calf muscle) and proximal initiation in the proximal lower extremities and rapid progression, making it impossible to walk independently around 10 years of age. In the case of the Becker type, the clinical manifestations and age of onset vary between 6 and 19 years, and the progression of the disease is slower and more diverse than the Duschen type (Moser H Hum Genet (1984) 66: 17-40, Emery AEH Nature (1977) 266: 472-473, Leibowitz D et al. Dev Med Neurol (1981) 23: 577-590). In most cases, DMD changes the reading frame of DNA transcription as a result of mutation and no protein is produced. In BMD, small or abnormal protein is produced by small mutation that does not change reading frame. In many cases, they do not match in all cases (Winnard AV et al. Hum Mol Genet (1993) 2: 737-744). Deletion and insertion mutations shift the reading frame, an amino acid-encoded unit, during transcription, leading to premature transcription, resulting in truncated inactive protein or abnormal protein synthesis. Duplicate shows a variation in gene dosage due to copy number variation in which the gene exists in multi-copy, unlike the general case in which a total of two copies exist in two chromosomes.

DMD/BMD의 대부분에서 사춘기를 전후하여 확장성 심근병증(dilated cardiomyopathy)과 울혈성 심부전(congestive heart failure)이 발생하며 DMD의 20%, BMD의 50%에서 각각 사망원인으로 작용한다(Finsterer J et al. Cardiology (2003) 99:1-19). DMD/BMD에서 혈청내 CK(creatinine kinase) 수치는 약 3세 전후로 최고치를 보이고 이후 점차 감소되는 것으로 알려져 있으며 DMD의 경우 정상 상한치의 약 100배, BMD의 경우 정상 상한치의 약 50배 이상 증가된다는 보고가 있다(Zatz M et al. Muscular dystrophy Methods and protocols 1st ed. (2001) 31-49). In most cases of DMD / BMD, dilated cardiomyopathy and congestive heart failure occur before and after puberty, causing death in 20% of DMD and 50% of BMD, respectively (Finsterer J et. al. Cardiology (2003) 99: 1-19). Serum creatinine kinase (CK) levels in DMD / BMD peaked around 3 years of age, and are known to decrease gradually. DMD / BMD reports about 100 times higher than normal upper limit and 50 times higher than normal upper limit for BMD. (Zatz M et al. Muscular dystrophy Methods and protocols 1st ed. (2001) 31-49).

디스트로핀 유전자 돌연변이의 약 65 - 85%는 Dystrophin 유전자를 구성하는 1개 이상의 엑손 결실(exon deletion)이 발생하는 경우이고 그 외 약 30%는 점 돌연변이, 6% 내외는 엑손의 duplication이 발생한다. 결실은 디스트로핀 유전자의 center 부위에서 주로 발생하며(~80%), 5' 말단에서 약 20% 빈도로 발생한다. 200 kb 걸쳐 존재하는 인트론 44, 엑손 45, 인트론 45 region이 주요한 결실 breakpoint이고 인종별로 결실의 분포 양상에 차이가 있다. (Forest S et al. Nature (1987) 329:638-640, Darras BT et al. Am J Hum Genet (1988) 43:620-629). 매우 큰 유전자 크기, 그 중에서도 평균 크기가 35 kb에 달할 정도로 큰 인트론 크기가 높은 결실 빈도의 원인 중 하나로 간주된다. 임상진단을 위한 디스트로핀 유전자 돌연변이 스크리닝 검사는 넓은 범위의 결실과 중복을 확인할 수 있는 서던 블랏팅(Southern blotting), 멀티플렉스 PCR(multiplex polymerase chain reaction), 정량형광-PCR(quantitative fluorescent-PCR), MLPA(multiplex ligation-dependent probe amplification) 방법과, 점 돌연변이 발생 여부를 확인하기 위한 dHPLC(denaturing high performance liquid chromatography), 전체 exon 약 14,000bp에 대한 direct sequencing방법 그리고 nonsense 돌연변이 검색을 위한 PTT(protein truncation test) 방법등이 적용되어 왔다. 그러나 이러한 방법론들 중 단일 방법만으로는 디스트로핀 유전자의 결실, 중복, 삽입, 점 돌연변이 등 모든 돌연변이 양상을 동시에 분석할 수 없었다. About 65-85% of dystrophin gene mutations involve one or more exon deletions that make up the Dystrophin gene, and about 30% in point mutations and around 6% of exons duplication. Deletion occurs mainly at the center of the dystrophin gene (~ 80%) and occurs approximately 20% of the time at the 5 'end. Intron 44, exon 45 and intron 45 regions over 200 kb are major deletion breakpoints and differ in the distribution of deletions by race. Forest S et al. Nature (1987) 329: 638-640, Darras BT et al. Am J Hum Genet (1988) 43: 620-629). Very large gene sizes, especially large introns with an average size of 35 kb, are considered one of the causes of high deletion frequency. Dystrophin gene mutation screening tests for clinical diagnostics include Southern blotting, multiplex polymerase chain reaction (PCR), quantitative fluorescent (PCR), and MLPA to identify a wide range of deletions and duplications. (multiplex ligation-dependent probe amplification), denaturing high performance liquid chromatography (DHPLC) to detect point mutations, direct sequencing for approximately 14,000 bp total exon, and protein truncation test (PTT) to detect nonsense mutations Methods have been applied. However, none of these methodologies could simultaneously analyze all aspects of mutation, including deletion, duplication, insertion, and point mutation of the dystrophin gene.

종래의 근이양증 분석방법들 중에서, 2002년 개발된 MLPA(multiplex ligation-dependent probe amplification)를 포함한 PCR 방법론은, 증폭된 반응산물들의 길이(base pairs)에 따른 차이로 결과를 해석하기 때문에 1회 반응에 최대 포함가능한 타겟 부위의 갯수가 고-처리량 분석방법인 칩 분석에 비해 제한적이라는 단점이 있다. 그리고 반응이 포함하는 타겟 부위의 갯수가 증가할수록, 즉 complexity가 증가할수록 small size의 반응산물들의 증폭 효율이 증가하는 경향으로 인해 유전자 결실 및 중복의 결과해석에서 오류 가능성이 있으며, 또한 반응 초기의 타겟 유전자 copy number가 정량화된 수치가 아니기에 반응 종료시점의 반응산물 intensity만으로 정량적인 해석은 무리가 따른다. 증폭산물의 존재 유무와 아가로스 젤 전기영동 이미지 intensity를 통한 육안 판독에 의존하는 기존 분석방법의 상기 단점들을 해결할 수 있는 고-처리량의 정량분석이 가능한 판독 시스템을 제공하고자 한다. 그리고 종래의 검사방법 중, 면역조직화학염색 검사법은 디스트로핀 단백질의 C-말단, N-말단, rod domain, 3가지 항체 모두를 사용하고, 웨스턴 블랏팅(Western blotting)을 동시에 수행해야만 근이양증의 아형을 특이적으로 확인할 수 있으나, 높은 검사비용과 delayed 분석 소요시간으로 인해 연구목적 이외에 진단목적으로는 여러가지 문제점이 있었다. Among conventional muscle dystrophic assays, PCR methodology, including multiplex ligation-dependent probe amplification (MLPA), developed in 2002, interprets the results according to the base pairs of amplified reaction products. The maximum number of target sites that can be included is limited compared to chip analysis, which is a high-throughput analysis method. In addition, as the number of target sites included in the reaction increases, that is, as the complexity increases, the amplification efficiency of small-size reaction products increases, which may lead to errors in the interpretation of the result of gene deletion and duplication. Since the gene copy number is not a quantitative value, quantitative interpretation based on the reaction product intensity only at the end of the reaction is difficult. An object of the present invention is to provide a high-throughput quantitative analysis system capable of solving the above-mentioned drawbacks of the existing analytical methods, which rely on the presence of amplification products and visual reading through agarose gel electrophoresis image intensity. In the conventional test method, immunohistochemical staining method uses the C-terminus, N-terminus, rod domain, and all three antibodies of dystrophin protein, and Western blotting should be performed at the same time to subtype muscular dysplasia. Although it can be specifically identified, there are various problems for diagnosis purposes other than the research purpose due to the high test cost and delayed analysis time.

또한, 정상 대조군의 디스트로핀 유전자 각 exon별 증폭산물 형광 시그널 대비 임상검체의 증폭산물 형광 시그널을 비교함으로써, 그 log값 형광 ratio를 통해 디스트로핀 유전자 dosage 평가를 정량화하고 정확도가 향상된 중복 변이 분석방법을 제공하고자 한다. 특히, X 염색체 2개 중 하나에서 결실이 있어 정상적인 경우에 비해 유전자 dosage가 절반가량으로 감소된 여성 보인자(carrier) 감별에 효과적인 진단방법을 제공하고자 한다. In addition, by comparing the amplification product fluorescence signal of the clinical sample with the amplification product fluorescence signal for each exon of the dystrophin gene in the normal control group, the log value fluorescence ratio to quantify the evaluation of dystrophin gene dosage and to provide a redundant variation analysis method with improved accuracy. do. In particular, it is to provide an effective diagnostic method for discriminating female carriers in which the gene dosage is reduced by about half compared to normal because there is a deletion in one of two X chromosomes.

전기 본 발명의 목적을 달성하기 위해, 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별분석하는 고-처리량 정량분석 조성물을 제공한다.In order to achieve the object of the present invention, there is provided a high-throughput quantitative composition that differentiates dystrophin gene deletions, duplications, point mutations.

자세하게는 디스트로핀 유전자의 전체 78개 각 exon별 프로브 형광신호강도 분석에 있어, 정상 대조군 대비 임상검체의 형광신호강도를 log 값 relative ratio로 판별하는 정량유전자량(quantitative gene dosage) 분석을 구현함으로써 중복(duplication) 변이의 정확한 정량해석이 가능하고, 동일한 반응산물의 일부를 이용한 직접 염기서열분석(direct sequencing)을 통해 점 돌연변이까지 일괄분석하는 근이양증 돌연변이 유전소인을 감별진단방법, 키트 그리고 칩을 제공한다.In detail, the fluorescence signal intensity analysis of each 78 exons of the dystrophin gene was repeated by implementing a quantitative gene dosage analysis that distinguishes the fluorescence signal intensity of the clinical sample from the normal control by the log value relative ratio. duplication) Accurate quantitative analysis of mutations, and direct sequencing using parts of the same reaction products, provide differential diagnosis, kits, and chips for murine dystrophy mutants.

그리고 더욱 자세하게 상기 분석방법에 있어서, 5'- 또는 3'-말단에 아미노 모디파이어(amino modifier) 또는 티올 모디파이어(thiol modifier)가 수식된 프로브가 스팟팅(spotting)된 칩(chip)을 제작하는 단계;In more detail, in the assay method, a chip in which a probe modified with an amino modifier or a thiol modifier at the 5'- or 3'-end is spotted is manufactured. ;

검체로부터 게노믹(genomic) DNA를 분리하는 단계; Isolating genomic DNA from the sample;

디스트로핀 유전자의 전체 78개 엑손을 대상으로 결실, 중복 변이를 판별하는 프로브 타겟(target) 부위를 멀티플렉스-PCR 반응을 통해 증폭하면서, 형광색소(fluorescent dye)가 포함되도록 타겟 DNA 증폭산물을 준비하는 단계;The target DNA amplification product was prepared to include fluorescent dyes by amplifying a probe target site for determining deletion and overlapping mutations in all 78 exons of the dystrophin gene through a multiplex-PCR reaction. step;

상기 멀티플렉스-PCR 반응산물의 일부를 자동염기서열분석법을 이용해서 점 돌연변이(point mutation) 유무를 분석하는 단계;Analyzing a portion of the multiplex-PCR reaction product for the presence of point mutations using an automatic sequencing method;

상기 멀티플렉스-PCR 반응산물과 칩 표면에 고정화된 프로브간 혼성화(hybridization) 반응을 수행하고 세척(washing)하는 단계;Performing and washing a hybridization reaction between the multiplex-PCR reaction product and a probe immobilized on a chip surface;

형광색소에 특이적인 파장의 레이저(laser)로 칩을 스캐닝(scanning)하고 혼성화 반응 결과에 따른 형광강도를 측정함으로써 디스트로핀 mRNA를 코딩하는 엑손의 결실 및 중복 변이를 감별분석하는 단계; 그리고Differentially analyzing the deletion and overlapping mutations of the exons encoding dystrophin mRNA by scanning the chip with a laser of a wavelength specific to the fluorescent dye and measuring the fluorescence intensity according to the hybridization reaction result; And

상기 분석단계 전부를 포함하는 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단방법, 키트 및 칩을 제공한다.Dystrophin gene deletion, duplication, point mutation differential diagnosis method, kit and chip including all the above analysis step is provided.

그리고, 본 발명의 목적을 바람직하게 실현하기 위해, 서열목록번호 1 내지 156의 염기서열을 갖는 올리고뉴클레오티드(oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 프로브(probe)를 포함하는 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단용 칩을 제공한다.And, in order to achieve the object of the present invention preferably, dystrophin gene deletion, duplication, dot containing one or more probes (probe) selected from the group consisting of oligonucleotides having a nucleotide sequence of SEQ ID NO: 1 to 156 Provides a chip for diagnosis of mutations.

또한, 본 발명의 분석방법을 바람직하게 실현하기 위해, 서열목록번호 1 내지 156의 염기서열을 갖는 프로브로 구성된 그룹으로부터 선택되는 하나 이상의 프로브 타겟 부위를 증폭할 수 있는 키트를 제공한다.In addition, to implement preferably the assay method of the present invention, there is provided a kit capable of amplifying one or more probe target sites selected from the group consisting of probes having the nucleotide sequences of SEQ ID NOs: 1 to 156.

본 발명의 근이양증 유전변이 감별분석용 칩을 통하여 질환의 원인이 되는 유전자 결실 및 중복을 자동화된 고-처리량 정량분석으로 판별할 수 있다. 상세하게는, 대조군 대비 검체의 형광신호강도를 log 값 relative ratio로 판별하는 정량 유전자량(quantitative gene dosage) 분석을 구현함으로써 유전자 중복(duplication) 변이의 정확한 정량해석이 가능하다. 이와 동시에, 동일한 반응산물의 일부를 이용한 직접 염기서열분석(direct sequencing)을 통해 점 돌연변이까지 일괄분석함으로써 유전변이 감별분석결과 신뢰도가 더욱 견고해진다.Genetic deletions and duplications that cause disease can be determined by automated high-throughput quantitative analysis through the chip for myopathic genetic variation of the present invention. Specifically, accurate quantitative analysis of gene duplications can be achieved by implementing quantitative gene dosage analysis that determines the fluorescence signal intensity of the sample relative to the control group as a log value relative ratio. At the same time, batch mutation analysis through direct sequencing using a part of the same reaction product further strengthens the reliability of the differential genetic analysis.

본 발명의 바람직한 구현을 통해 근 생검(muscle biopsy)에 비해 비-침습적(non-invasive)이며, 방사성 동위원소를 사용하는 서던 블랏팅(Southern blotting)에 비해 검사소요시간이 단축되고, 면역조직화학염색법에 비해 분석원가가 저렴한 근이양증 스크리닝 검사가 가능하다. A preferred embodiment of the present invention is non-invasive compared to muscle biopsy, shorter test time compared to Southern blotting using radioisotopes, and immunohistochemistry. Muscular dysentery screening test is possible, which is cheaper than staining method.

또한, 자동화된 칩 플랫폼의 특성과 칩 스캐닝 및 형광신호강도 분석 소프트웨어의 동일한 세팅이 부합되어, 실험자 또는 기관별 동일한 분석결과가 가능하다.In addition, the characteristics of the automated chip platform and the same settings of the chip scanning and fluorescence signal intensity analysis software match, enabling the same analysis results for each experimenter or institution.

이하 도면 및 표를 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 명세서에 기재된 도, 표 및 실시예에 도시된 구성은 본 발명을 가장 바람직하게 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않으며, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings and tables. The configurations shown in the figures, tables and examples described herein are intended to most preferably illustrate the invention, and the scope of the invention is not limited by these examples, which may be substituted for them at the time of the present application. It should be understood that there may be various equivalents and variations.

또한 본 발명이 청구하는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며 이러한 변형은 본 발명의 범위에 속한다. Also, within the scope of the present invention, various modifications may be made by those skilled in the art to which the present invention pertains, and such modifications are within the scope of the present invention.

<< 실시예Example 1>  1> 디스트로핀Dystrophin 유전자 결실, 중복, 점 돌연변이 분석을 위한 멀티플 렉스  Multiplex for Gene Deletion, Duplicate, and Point Mutation Analysis PCRPCR 반응에 포함되는  Included in the reaction 프라이머primer (( primerprimer ) 디자인 및 합성A) design and synthesis

뒤셴/베커형 근이양증 유전질환 스크리닝 검사로서의 적절성과 유효성을 평가하기 위해, 디스트로핀 유전자 결실(deletion), 중복(duplication), 점 돌연변이(point mutation) 감별진단(differential diagnosis)을 위한 고-처리량 칩(chip) 반응을 수행하고자 하였으며, 이에 선행하여 실시하는 멀티플렉스 PCR(multiplex polymerase chain reaction) 반응에 포함되는 프라이머(primer)는 하기와 같이 고안하였다. 미국 NCBI(National Center for Biotechnology Information)의 염기서열 데이터베이스인 GenBank, 일본의 DDBJ(The DNA Data Bank of Japan), 그리고 유럽연합의 EMBL(the European Molecular Biology Laboratory) 염기서열 데이터베이스로부터 검색한 근이양증(muscular dystrophy) 관련 디스트로핀 유전자 mRNA 서열의 약 20종 아형(subtype) 염기서열들을 분석하여 제작하였다. 뒤셴/베커형 디스트로핀 유전자(Dp427m variant, NCBI accession no. NM_004006.1, GI no.:5032282, Gene ID :1756)의 총 78개 엑손(exon)을 증폭 대상부위 크기별로 12개 subset으로 세분한뒤 멀티플렉스-PCR을 통해 증폭하였다. 가급적 엑손 서열내에서 PCR 프라이머(primer)를 고안하고자 하였으며, 여의치 않을 경우 해당 엑손의 5', 3' 양 말단에 위치하는 인트론 서열로부터 프라이머를 고안하였다. 멀티플렉스-PCR을 위한 프라이머 타겟 부위를 대상으로 프라이머 프리미어(Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), 디엔에이시스 맥스 (DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA) 프로그램을 응용하여 디스트로핀 해당 엑손-특이적 프라이머를 디자인하였다. 프라이머 선발의 기본 요건은 다음과 같다 ; 프라이머 길이(19 - 24 base pair), 융해온도[Tm(℃), 58 - 62℃], 3' 말단의 GC 함량이 높지 않아야하며, 프라이머 서열내 염기 4개 이상 연속해서 상보적이지 않도록 해서 hairpin 이차구조 형성을 방지하였으며, 3'말단에 동일한 염기가 3개 이상 연속해서 위치하지 않도록 해서 프라이머 이합체(dimer)의 형성을 방지하였다. 그리고 타겟 부위내에 단일염기 다형성(single nucletide polymorphism, SNP)이 포함되지 않도록 하여 높은 특이도를 확보하였다. 또한 해당 프라이머 염기서열이 본 발명이 목적하는 칩을 구성하는 디스트로핀 타 엑손 및 기타 인간 게놈 염기서열과 cross-reactive한 특성을 나타내지 않음을 미국 NCBI 염기서열 데이터베이스 등 다양한 염기서열 검색 툴(tool)을 활용하여 검증하였다. 본 발명에 사용하는 프라이머(primer)는 미국 IDT(Integrated DNA Technologies, Inc., San Jose, CA, USA)를 통해 합성하였다.High-throughput chip for dystrophin gene deletion, duplication, point mutation differential diagnosis to assess its adequacy and effectiveness as a Duschen / Becker dystrophic genetic disease screening test The primers included in the multiplex polymerase chain reaction (PCR) reaction carried out prior to this were designed as follows. Muscular dystrophy retrieved from GenBank, a DNA database from the National Center for Biotechnology Information (NCBI), The DNA Data Bank of Japan (DDBJ) from Japan, and the European Molecular Biology Laboratory (EMBL) sequence database from the European Union. ) Were produced by analyzing about 20 subtype sequences of related dystrophin gene mRNA sequences. 78 exons of Duchenne / Becker type dystrophin gene (Dp427m variant, NCBI accession no.NM_004006.1, GI no.:5032282, Gene ID: 1756) were subdivided into 12 subsets by size Amplification via multiplex-PCR. Preferably, PCR primers were designed in the exon sequence, and primers were designed from intron sequences located at both 5 'and 3' ends of the exon. Primer Premier site for multiplex-PCR (Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), DNAsis MAX (2.7, MiraiBio Group, South San Francisco, CA, USA) program was designed to design dystrophin corresponding exon-specific primers. The basic requirements for primer selection are as follows; Primer length (19-24 base pair), melting temperature [Tm (℃), 58-62 ℃], GC content at 3 'end should not be high, and hairpin should not be complementary for more than 4 consecutive bases in primer sequence Secondary structure formation was prevented, and the formation of primer dimers was prevented by preventing three or more identical bases from being consecutively located at the 3 ′ end. In addition, single specific polymorphisms (SNPs) were not included in the target site to ensure high specificity. In addition, the primer sequence is not cross-reactive with dystrophinta exon and other human genome sequences constituting the target chip of the present invention utilizing various nucleotide sequence search tools such as the US NCBI sequencing database. It was verified by. Primers used in the present invention were synthesized through US IDT (Integrated DNA Technologies, Inc., San Jose, CA, USA).

본 발명의 바람직한 구현을 통해, 디스트로핀 유전자의 결실, 중복, 점 돌연변이 감별분석을 위한 프라이머는 DNA 염기서열의 5'말단 또는 3'말단에 형광색소가 표지된 프라이머를 사용하거나, 또는 형광색소가 표지되지 않은 일반적인 프라이머를 사용하고 멀티플렉스 PCR 반응 중에 형광색소가 표지된 디옥시리보뉴클레오티드 트리포스페이트가 증폭산물에 삽입되게끔 유도하여 증폭산물을 표지하는 두가지 방법을 모두 확인하였다. 본 발명에 사용하는 형광색소는 6-FAM(6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE(6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS(N-hydroxysuccinimide) Ester, Texas Red 이다. 프라이머의 농도는 ND-1000 분 광광도계(NanoDrop Technologies, Rockland, Maine, USA)를 통해 확인하고 최종 50 - 200 pmole/uL 범위의 농도가 되도록 3차 탈이온 멸균 증류수로 재현탁(resuspension)하고 aliquots으로 -70℃ 냉동보관하였다. According to a preferred embodiment of the present invention, primers for the deletion, duplication, and point mutation differential analysis of the dystrophin gene may be prepared by using a primer labeled with fluorescent dye at the 5 'end or 3' end of the DNA sequence, or the fluorescent dye may be labeled. Both methods of labeling amplification products were identified by using non-generic primers and inducing fluorescent dye-labeled deoxyribonucleotide triphosphate to be inserted into amplification products during multiplex PCR reactions. Fluorescent dyes used in the present invention are 6-FAM (6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE (6-carboxy-4 ', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green TAMRA NHS (N-hydroxysuccinimide) Ester, Texas Red. The concentration of the primer was checked with an ND-1000 minute photometer (NanoDrop Technologies, Rockland, Maine, USA) and resuspended in tertiary deionized sterile distilled water to a final range of 50-200 pmole / uL and aliquots Frozen at -70 ℃.

<< 실시예Example 2> 임상검체 채취 및 이로부터  2> Clinical sample collection and from DNADNA 분리 detach

근이양증 유전질환의 돌연변이 원인 감별진단을 위한 검체 종류는 전혈(whole blood), 혈청(serum), 양수(amniotic fluid), 융모막(chorionic villus sampling) 검체, 조직(tissue) 등이며, 임상검체로부터 인간 게노믹 DNA(genomic DNA)를 분리함에 있어 상용화된 DNA 추출 키트(LaboPass™ Tissue kit, 코스모진텍, 서울, 한국)를 사용하였다. 혈액은 EDTA튜브를 이용하여 채혈하고 냉장보관, 운송하였으며, 양수, 융모막 검체는 산모 혈액도 채혈하여 산모 세포/DNA 오염여부를 확인하였다. 양수는 약 10mL을 채취하였으며, 채취 당일에 가급적 게노믹 DNA를 분리하였다.Specimens for differential diagnosis of the causes of murine dystrophy are whole blood, serum, amniotic fluid, chorionic villus sampling, tissue, and the like. In order to separate genomic DNA, a commercially available DNA extraction kit (LaboPass ™ Tissue kit, Cosmojintech, Seoul, Korea) was used. Blood was collected using EDTA tubes, refrigerated, and transported. Amniotic fluid and chorionic samples were collected from maternal blood to confirm maternal cell / DNA contamination. About 10 mL of amniotic fluid was collected, and genomic DNA was separated as much as possible.

시료를 포함하는 에펜도르프 튜브를 덴빌 260D 고속 원심분리기(high-speed centrifuge, Denville Scientific Inc., Metuchen, NJ, USA)를 이용해서 12,000 rpm(revolutions per minute, 분당회전수), 1분 원심분리하였다. 상층액을 제거하고 침전물을 500 uL의 PBS 용액에 풀어준 뒤 다시 동일 조건에서 원심분리하여 세척과정을 거쳤다. 검체의 볼륨(volume)이 적을 경우에는 1X PBS 용액 500 uL를 첨가하여 전기 동일한 조건으로 고속원심분리하였다. 1X PBS 용액은 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4를 3차 멸균 증류수 1L에 최종 pH 7.4가 되도록 조성하였다. 상기 침전물에 시료를 분해하는 TL 완충용액(buffer) 200 uL를 첨가하여 풀어주고 단백분해효소 K(Proteinase K, 100 mg/mL) 20 uL를 첨가하고 약하게 교반(vortex)한 후 56℃, 10분간 반응시켰다. 이후 반응물에 TB 완충용액 400 uL를 첨가하고 교반하여 반응물을 혼합하였다. 이어서 반응물을 스핀 칼럼(spin column)의 상층부에 로딩(loading)하고 8,000 rpm, 1분 원심분리하였다. 컬렉션 튜브(collection tube)를 새로 교체하고 검체로 부터 추출된 DNA를 칼럼의 멤브레인(membrane)에 결합시키는 작용을 하는 BW 완충용액 700 uL를 첨가하고 상기 동일 조건으로 원심분리하였다. 컬렉션 튜브(collection tube)를 새로 교체하고 멤브레인으로부터 불순물을 제거하는 NW 완충용액 500 uL를 첨가하고 13,000 rpm, 2분 원심분리하였다. 이후 스핀 칼럼 상층부를 새로운 에펜도르프 튜브로 옮긴뒤 DNA를 용출시키기 위해 탈이온(de-ionized) 멸균 3차 증류수 100 uL를 로딩하고 실온에서 5분 처리하고 8,000 rpm, 2분 원심분리하여 순수한 DNA를 분리하였다.The Eppendorf tube containing the sample was centrifuged at 12,000 rpm (revolutions per minute) using a Denville 260D high-speed centrifuge (Denville Scientific Inc., Metuchen, NJ, USA) for 1 minute. . The supernatant was removed, the precipitate was dissolved in 500 uL of PBS solution, and centrifuged again under the same conditions. When the volume of the sample was small, 500 uL of 1X PBS solution was added and high-speed centrifugation was carried out under the same conditions. The 1 × PBS solution was formulated with 8 g NaCl, 0.2 g KCl, 1.44 g Na 2 HPO 4 , 0.24 g KH 2 PO 4 in 1 L of tertiary sterile distilled water to a final pH of 7.4. After adding 200 uL of TL buffer to decompose the precipitate, add 20 uL of proteinase K (100 mg / mL), gently stir (vortex), and then 56 ° C for 10 minutes. Reacted. Then 400 uL TB buffer was added to the reaction and stirred to mix the reaction. The reaction was then loaded onto the top of the spin column and centrifuged at 8,000 rpm for 1 minute. A new collection tube was replaced and 700 uL of BW buffer, which acts to bind the DNA extracted from the sample to the membrane of the column, was added and centrifuged under the same conditions. The collection tube was freshly replaced and 500 uL of NW buffer was added to remove impurities from the membrane and centrifuged at 13,000 rpm for 2 minutes. The top of the spin column was then transferred to a new Eppendorf tube, loaded with 100 uL of de-ionized sterile tertiary distilled water to elute DNA, treated for 5 minutes at room temperature, centrifuged at 8,000 rpm for 2 minutes, and purified pure DNA. Separated.

<< 실시예Example 3> 멀티플렉스  3> multiplex PCRPCR 을 통한 through 디스트로핀Dystrophin 유전자 변이 감별진단용 칩( Genetic variation differential diagnosis chip chipchip )의 )of 타겟target 유전자 증폭 Gene amplification

고-처리량 칩(chip) 분석에 앞서, 검체로부터 분리한 게노믹 DNA를 주형으로 디스트로핀 78개 엑손을 멀티플렉스-PCR 반응을 통해 증폭하였다. 멀티플렉스 PCR subset당 7 - 8개 타겟 엑손, 대조군 유전자를 포함하도록 12개 subset 멀티플렉스 조합을 고안하였다. 이후, 증폭된 반응산물들을 칩(chip) 위에 미리 고정화시켜둔 각 엑손의 전체 coding 서열을 분석할 수 있도록 고르게 spanning되어있는 프로브들과 혼성화(hybridization) 반응을 실시함으로써 근이양증 유전질환 산전 진단에 대한 유전 소인 데이터를 제공하게 된다. Prior to high-throughput chip analysis, 78 dystrophin exons were amplified by multiplex-PCR reactions with genomic DNA isolated from the sample as a template. Twelve subset multiplex combinations were designed to include 7-8 target exons, control genes per multiplex PCR subset. Subsequently, hybridization with probes that are evenly spanned to analyze the entire coding sequence of each exon immobilized with the amplified reaction products on a chip allows the genetic analysis for prenatal diagnosis of muscular dystrophy. Provide postmark data.

1회 반응에 12개 멀티플렉스-PCR을 동시에 실시하여 디스트로핀 전체 exon의 결실, 중복, 점 돌연변이 유무를 분석하는데 필요한 PCR 앰플리콘(amplicon)들을 확보하였다. 96well PCR 플레이트를 사용할 경우 8개의 임상검체를 대상으로 12 subset 멀티플렉스-PCR을 1회 반응만으로 효율적으로 수행할 수 있었다. 상기 멀티플렉스-PCR은 내부 대조군(endogenous control)으로 디스트로핀과 마찬가지로 X 염색체에 위치하는 house keeping gene인 HPRT(hypoxanthine phosphoribosyltransferase) 유전자(NCBI accession no. NM_000194.2, GI no.:164518913, Gene ID :3251)를 사용하였다. 본 실시예에 기술하는 12개 subset 멀티플렉스-PCR의 PCR 마스터믹스(PCR mastermix)의 구성 조성 및 PCR 반응조건은 하기 표 1과 같다. Twelve multiplex-PCRs were performed in one reaction at the same time to obtain PCR amplicons for analyzing the presence of deletion, duplication, and point mutations of the entire dystrophin exon. Using 96-well PCR plates, 12 subsets multiplex-PCR could be efficiently performed on 8 clinical samples in a single reaction. The multiplex-PCR is an internal control (endogenous control), a home keeping gene, HPRT (hypoxanthine phosphoribosyltransferase) gene (NCBI accession no. ) Was used. The compositional composition and PCR reaction conditions of the PCR mastermix of the 12 subset multiplex-PCR described in this Example are shown in Table 1 below.

디스트로핀Dystrophin 유전자 변이 스크리닝용 멀티플렉스  Multiplex for Gene Mutation Screening PCRPCR 마스터믹스Master mix 조성 및  Composition and PCRPCR 조건 Condition PCR 반응액 조성  PCR reaction solution composition 부피(uL) Volume (uL) PCR 반응 조건  PCR reaction conditions 탈이온 3차 멸균 증류수  Deionized Tertiary Sterilized Distilled Water 3.5 ~ 4.2 3.5 to 4.2 초기변성 (Initial denaturation) Initial denaturation 95℃, 15분 95 ° C, 15 minutes 1회 1 time 7 - 8종 프라이머 프리믹스(primer premix) 7-8 primer premixes 5.8 ~ 6.5 5.8 to 6.5 변성 (Denaturation)  Denaturation 95℃, 30초  95 ° C, 30 seconds 25회     25 times 2X 멀티플렉스 PCR 프리믹스  2X Multiplex PCR Premix 15  15 결합 (Annealing) Annealing 56℃ ~ 59℃, 40초 56 ℃ to 59 ℃, 40 seconds 주형 DNA(100 ng 이상)  Template DNA (more than 100 ng) 5  5 연장 (Extension) Extension 72℃, 60초 72 ° C., 60 seconds 최종 부피  Final volume 30  30 최종연장 (Extension)  Extension 72℃, 7분 72 ° C., 7 minutes 1회 1 time

멀티플렉스 PCR 반응액 혼합물에 포함되는 PCR 완충용액의 최종농도는 50 mM KCl, 4 mM MgCl2, 10mM Tris-HCl, pH 8.2이며, 2.5 unit의 Taq 중합효소, 300 uM dNTPs(Boehringer Mannheim, Mannheim, Germany), 0.01% Tween-20, 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함한다. The final concentration of the PCR buffer in the multiplex PCR reaction mixture is 50 mM KCl, 4 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, 2.5 unit Taq polymerase, 300 uM dNTPs (Boehringer Mannheim, Mannheim, Germany), 0.01% Tween-20, 10 mg / mL bovine serum albumin.

멀티플렉스-PCR 프라이머 프리믹스에 포함되는 개별 엑손 유전자들의 정방향(sense) 프라이머는 5'- 또는 3'-말단에 Cy3 또는 Cy5 형광색소를 표지시켜 합성하거나, 또는 양 말단의 변형(modification)없이 nascent 올리고뉴클레오티드로 합성하였다(Integrated DNA Technologies, Inc., Coralville, IA, USA). Sense primers of the individual exon genes included in the multiplex-PCR primer premix are synthesized by labeling Cy3 or Cy5 fluorescent dye at the 5'- or 3'-end, or nascent oligos without modification at both ends. Synthesized with nucleotides (Integrated DNA Technologies, Inc., Coralville, IA, USA).

본 발명의 또한 바람직한 일 양태에 따라, 양 말단에 형광색소 변형이 없는 프라이머를 포함하는 멀티플렉스 PCR 키트는 PCR 과정중에 Cy3 또는 Cy5 형광색소가 표지된 디옥시사이토신 트리포스페이트(Cy3- 또는 Cy5-dCTP )가 증폭산물을 구성하는 뉴클레오티드로 첨가되도록 하여 반응의 민감도와 특이도를 향상시킬 수 있었다. Cy3-dCTP를 멀티플렉스 PCR 반응에 사용할 경우, PCR 마스터믹스는 최종농도 50 mM KCl, 3.5 mM MgCl2, 10 mM Tris-HCl, pH 8.2, Taq 중합효소 2.5 unit(h-Taq DNA polymerase, Cat.No. SG1202, 솔젠트(주), 대전, 한국), 300 uM dATP, 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP(FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 0.01% Tween-20, 그리고 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함하였다.According to a further preferred aspect of the present invention, a multiplex PCR kit comprising primers having no fluorescent dye modifications at both ends is deoxycytosine triphosphate (Cy3- or Cy5- labeled with Cy3 or Cy5 fluorescent dyes) during PCR. dCTP) was added to the nucleotides constituting the amplification product to improve the sensitivity and specificity of the reaction. When Cy3-dCTP was used in a multiplex PCR reaction, the PCR mastermix was prepared with a final concentration of 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, Taq polymerase 2.5 units (h-Taq DNA polymerase, Cat. SG1202, Solgent, Daejeon, Korea), 300 uM dATP, 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP (FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ , USA), 0.01% Tween-20, and 10 mg / mL bovine serum albumin.

정상인과 근이양증 환우 검체 DNA 비교분석 결과, 디스트로핀 유전자의 중복(duplication) 변이가 정확하게 구분되는 최대 PCR cycle수는 25 cycle이었다. 증폭 사이클수가 25 이상으로 증가될 경우, 정확한 유전자 dosage분석을 위해 허용되는 편차(deviation) 이상으로 측정치가 변화하였다. 이에, 본 발명의 바람직한 일 양태는 중복 변이의 정확도를 확보하기 위해 멀티플렉스-PCR을 25 cycle까지만 수행한 후, 디스트로핀 유전자의 결실, 중복, 점 돌연변이, 삽입 등의 변이를 감별분석하였다.As a result of DNA analysis of normal and muscular dystrophy patients, the maximum number of PCR cycles to accurately distinguish the duplication variation of dystrophin gene was 25 cycles. When the number of amplification cycles increased to 25 or more, the measurement changed beyond the allowable deviation for accurate gene dosage analysis. Thus, in one preferred embodiment of the present invention, to ensure the accuracy of overlapping mutations, only after performing 25 times of multiplex-PCR, the differential analysis of the deletion, duplication, point mutations, insertion, etc. of the dystrophin gene.

<< 실시예Example 4>  4> 디스트로핀Dystrophin 유전자의 점 돌연변이 분석을 위한 멀티플렉스  Multiplex for Point Mutation Analysis of Genes PCRPCR 증폭산물의 시퀀싱 분석 Sequencing Analysis of Amplified Products

디스트로핀 78개 엑손을 증폭하기위한 12개 subset 멀티플렉스-PCR 증폭산물을 2% 아가로스 젤 전기영동을 통해 산물의 크기(bp)와 엑손 증폭여부를 확인하였다. 증폭이 확인된 엑손 앰플리콘들은 멀티플렉스-PCR 증폭산물 내의 기타 산물들로부터 순수분리하기위해 아가로스 젤로부터 elution하였다(Zymoclean™ Gel DNA Recovery Kit, Cat. No. D4001, Zymo Research Co. Ltd., Orange, CA, USA). 목적하는 PCR 산물을 포함하는 젤 slice를 1.5 mL 에펜도르프 튜브에 첨가하고 이의 3배 volume의 ADB buffer를 첨가한 후 55℃, 5분 가열하여 젤을 용해하였다. 반응액을 Zymo-Spin 칼럼으로 옮기고 10,000 rpm, 30초 원심분리하였다. 용출액은 폐기하고 Wash buffer 200 uL를 로딩하고 10,000 rpm, 30초 원심분리하고 이를 1회 반복하였다. 15 uL의 3차 멸균증류수를 첨가하고 12,000 rpm, 60초 원심분리하여 순수한 증폭산물을 분리하였다.Twelve subsets multiplex-PCR amplification products for amplifying 78 dystrophin exons were confirmed by 2% agarose gel electrophoresis to confirm the product size (bp) and exon amplification. Exon amplicons with confirmed amplification were elution from agarose gels for pure separation from other products in the multiplex-PCR amplification products (Zymoclean ™ Gel DNA Recovery Kit, Cat.No. D4001, Zymo Research Co. Ltd., Orange, CA, USA). A gel slice containing the desired PCR product was added to a 1.5 mL Eppendorf tube, and 3 times the volume of ADB buffer was added, followed by heating at 55 ° C. for 5 minutes to dissolve the gel. The reaction solution was transferred to a Zymo-Spin column and centrifuged at 10,000 rpm for 30 seconds. The eluate was discarded and loaded with 200 uL Wash buffer and centrifuged at 10,000 rpm for 30 seconds and this was repeated once. 15 uL of tertiary sterile distilled water was added and centrifuged at 12,000 rpm for 60 seconds to separate pure amplification products.

순수분리한 증폭산물은 BigDye® Terminator v3.1 Cycle Sequencing Kit(Part No. 4337455, Applied Biosystems, Foster city, CA, USA)를 사용하여 시퀀싱 반응을 수행한 후, ABI Prism 377 자동염기서열분석기(Sequencer)로 염기서열을 확인하였다. 상세하게는, thin wall PCR 튜브에 전기 순수분리 증폭산물 1 - 3 uL(1 - 5 ng), 시퀀싱 프라이머 1 uL(3.2 pmol/uL), Terminator ready reaction mix 4 uL, BigDye 시퀀싱 버퍼 2 uL를 첨가하고 최종 20 uL 되도록 3차 멸균증류수를 가하고 혼합하였다. 혼합된 반응액은 PCR 기기(GeneAmp PCR 2700, Applied Biosystems, Foster city, CA, USA)를 이용하여 96℃, 1분 초기변성을 거치고, 96℃/10초(변성), 50℃/5초(annealing), 60℃/4분(연장) 사이클을 25회 진행시켜 사이클 시퀀싱(cycle sequencing) 반응을 수행하였다. 시퀀싱 반응산물에 125 mM EDTA 2 uL, 3 M 소디움 아세테이트(sodium acetate) 2 uL를 첨가하고 가볍게 혼합한 후, 100% 에탄올 50 uL를 첨가하고 가볍게 vortex하였다. 실온에서 15분 incubation한 후, 12,000rpm, 10분간 원심분리하였다. 상층액을 제거하고 75% 에탄올 70 uL를 첨가하고 상기 동일조건으로 원심분리하여 시퀀싱 반응산물을 세척하였다. 에탄올 침전을 통해 반응산물 내에 잔존하는 프라이머, 형광 표지된 디데옥시뉴클레오타이드(ddNTPs)를 제거하였다. 에탄올 침전된 시퀀싱 반응산물 DNA 펠렛(pellet)에 Hi-Di 포름아마이드 : EDTA/블루 덱스트란(5 : 1 ratio) 로딩버퍼 6 uL를 가해서 용해한 후, 100℃, 2분 변성시킨 후 ice위에 보관하였다. 이후, pre-casting된 6% Long ranger gel(Takara, Cat. No. F50660, 타카라코리아, 서울, 한국)의 샘플 웰에 로딩하고 시퀀싱 size에 따라 2 - 4시간동안 전기영동을 수행하였다. 시퀀싱을 통해 확보된 염기서열 데이타를 토대로, 정상 대조군과 임상검체의 각 엑손 염기서열들을 align해서 비교함으로써 점 돌연변이를 분석하였다.The purely isolated amplification product was subjected to sequencing reaction using BigDye® Terminator v3.1 Cycle Sequencing Kit (Part No. 4337455, Applied Biosystems, Foster city, CA, USA), followed by ABI Prism 377 automatic sequencing (Sequencer). ) Confirmed the base sequence. Specifically, 1-3 uL (1-5 ng) of electric pure separation amplification product, 1 uL of sequencing primer (3.2 pmol / uL), 4 uL of Terminator ready reaction mix, and 2 uL of BigDye sequencing buffer were added to the thin wall PCR tube. Tertiary sterile distilled water was added to the final 20 uL and mixed. The mixed reaction solution was subjected to 96 ° C., 1 minute initial denaturation using a PCR instrument (GeneAmp PCR 2700, Applied Biosystems, Foster City, CA, USA), 96 ° C./10 seconds (denature), 50 ° C./5 seconds ( cycle sequencing reaction was performed by 25 cycles of annealing, 60 ° C./4 min (extension). 2 uL of 125 mM EDTA and 2 uL of 3 M sodium acetate were added to the sequencing reaction product and mixed gently. Then, 50 uL of 100% ethanol was added and lightly vortexed. After 15 minutes of incubation at room temperature, centrifugation was performed at 12,000 rpm for 10 minutes. The supernatant was removed and 70 uL of 75% ethanol was added and centrifuged under the same conditions to wash the sequencing reaction product. Ethanol precipitation removed primers, fluorescently labeled dideoxynucleotides (ddNTPs) that remained in the reaction product. 6 μL of Hi-Di formamide: EDTA / blue dextran (5: 1 ratio) loading buffer was added to the ethanol precipitated sequencing reaction DNA pellet, which was denatured and stored on ice at 100 ° C. for 2 minutes. . Thereafter, the sample was loaded into a sample well of a pre-cast 6% Long ranger gel (Takara, Cat. No. F50660, Takara Korea, Seoul, Korea) and subjected to electrophoresis for 2-4 hours depending on the sequencing size. Based on the sequence data obtained through sequencing, point mutations were analyzed by aligning and comparing each exon sequence of the normal control group and the clinical sample.

<< 실시예Example 5>  5> 디스트로핀Dystrophin 유전자 변이 감별분석용 칩( Gene mutation differential analysis chip chipchip )을 구성하는 프로브(Probes that make up probeprobe ) 디자인 및 합성A) design and synthesis

본 발명의 바람직한 실현을 위한 근이양증 유전질환의 돌연변이 원인 감별분석용 칩(chip)을 제공하기 위하여, 디스트로핀 유전자의 78개 엑손들의 결실, 중복 돌연변이를 고-특이도로 판별할 수 있는 프로브(probe)들을 디자인하였다. In order to provide a chip for differential analysis of the cause of mutation of myelopathy genetic disease for the preferred embodiment of the present invention, probes capable of discriminating with high-specificity deletion and duplication of 78 exons of dystrophin gene Designed.

상세하게는, 본 발명의 바람직한 양태에 따른 디스트로핀 유전자의 돌연변이 감별분석용 DNA 또는 PNA 칩(chip)은 해당하는 디스트로핀 엑손의 전체 코딩서열 중에서 결실과 중복 변이에 대한 높은 변별력을 나타내는 프로브 부위를 선별하기 위해, 평균 25bp 길이 단위로 일부 엑손 서열이 상호 중첩되도록 고안한 프로브 후보군들 중에서 정상군과 근이양증 환자군 간에 높은 변별력을 나타낸 프로브들을 포함하고 있다. 프로브 선별과정은 프라이머 프리미어(Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), 디엔에이시스 맥스 (DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA), 또는 올리고어레이(OligoArray 2.0, http://cbr-rbc.nrc-cnrc.gc.ca) 프로그램을 응용하여 수행하였고 그 세부정보는 표 2와 같다. 목적하는 DNA 또는 PNA 프로브 염기서열의 5'말단 또는 3'말단에 아민(amine) 또는 티올(thiol) 그룹이 위치하도록 변형(modification)된 프로브를 합성하였다(MWG-Biotech AG, Ebersberg, Germany). 프로브의 5'말단에 아미노 모디파이어를 수식할 경우 탄소 6 - 9개 또는 티민(thymine) 염기 12 - 15개의 스페이서(spacer)를 첨가하여 반응 효율을 촉진하였다. 프로브의 3'말단에 아미노 모디파이어를 수식할 경우에는 스페이서를 사용하지 않았다. 프로브의 아민기는 1차 아민기의 성질을 지니며, 알데히드-활성화된 또는 카르복실(carboxyl)-활성화된 칩(chip) 표면에 부착하였다. 프로브의 농도는 260nm에서 흡광도 수치를 통해 환산하였고 몰디-토프(MALDI-TOF, Matrix Assisted Laser Desorption/Ionization Time-of-Flight)를 통해 불순물 함유 여부를 확인하고 고성능 액체 크로마토그래피(HPLC, High-performance liquid chromatography)를 통해 순수 정제한 후 멸균 3차 증류수에 최종농도가 100-250 pM 되도록 제조하였다.Specifically, the DNA or PNA chip for mutation differential analysis of dystrophin gene according to a preferred embodiment of the present invention is to select a probe site showing a high discrimination ability for deletion and overlapping mutations among the entire coding sequence of the corresponding dystrophin exon. To this end, among probe candidate groups designed to have some exon sequences overlapped with each other on an average 25 bp length basis, probes having high discrimination ability between the normal group and the myopathy patient group are included. The probe screening process can be Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA, DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA, or OligoArray. 2.0, http://cbr-rbc.nrc-cnrc.gc.ca) program was applied and the details are shown in Table 2. Probes modified to place amine or thiol groups at the 5 'or 3' end of the DNA or PNA probe sequence of interest were synthesized (MWG-Biotech AG, Ebersberg, Germany). When modifying the amino modifier at the 5 'end of the probe, spacers of 6 to 9 carbons or 12 to 15 thymine bases were added to promote the reaction efficiency. No spacer was used when modifying the amino modifier at the 3 'end of the probe. The amine groups of the probe have the properties of primary amine groups and are attached to the aldehyde-activated or carboxyl-activated chip surface. The concentration of the probe was converted to absorbance values at 260 nm, and it was checked for impurities by Maldi-TOF (MALDI-TOF, Matrix Assisted Laser Desorption / Ionization Time-of-Flight), and high performance liquid chromatography (HPLC) After pure purification through liquid chromatography) was prepared so that the final concentration in sterile tertiary distilled water 100-250 pM.

디스트로핀Dystrophin 유전자 변이 감별분석용 칩( Gene mutation differential analysis chip chipchip )을 구성하는 Make up) 프로브Probe (( probeprobe ) 조합) Combination 서열 목록 번호Sequence listing number 프로브 타겟 엑손, 엑손 size(디스트로핀 Dp470m mRNA 서열 내 엑손위치) Probe target exon, exon size (exon position in dystrophin Dp470m mRNA sequence) 프로브 방향, 프로브 염기서열(5'-3') Probe orientation, probe sequence (5'-3 ') 길이 (mer) Length (mer) 1One exon 1, 31bp(245-275bp)exon 1, 31 bp (245-275 bp) 정방향, AAATGCTTTGGTGGGAAGAAGTAGAForward, AAATGCTTTGGTGGGAAGAAGTAGA 2525 22 정방향, TGCTTTGGTGGGAAGAAGTAGAGGAForward, TGCTTTGGTGGGAAGAAGTAGAGGA 2525 33 exon 2, 62bp(276-337bp)exon 2, 62 bp (276-337 bp) 역방향, TATTTTGCATTTTAGATGAAAGAGAAGATGReverse, TATTTTGCATTTTAGATGAAAGAGAAGATG 3030 44 역방향, CAATTTTCTAAGGTAAGAATGGTTTGTTACReverse, CAATTTTCTAAGGTAAGAATGGTTTGTTAC 3030 55 exon 3, 93bp(338-430bp)exon 3, 93 bp (338-430 bp) 정방향, ACCTCTTCAGTGACCTACAGGATGGGAForward, ACCTCTTCAGTGACCTACAGGATGGGA 2727 66 정방향, TATTGAGAACCTCTTCAGTGACCTACAGForward, TATTGAGAACCTCTTCAGTGACCTACAG 2828 77 exon 4, 78bp(431-508bp)exon 4, 78 bp (431-508 bp) 역방향, CCTTGTTGACATTGTTCAGGGCATReverse, CCTTGTTGACATTGTTCAGGGCAT 2424 88 역방향, CTTGTTGACATTGTTCAGGGCATReverse, CTTGTTGACATTGTTCAGGGCAT 2323 99 exon 5, 93bp(509-601bp)exon 5, 93 bp (509-601 bp) 정방향, AACTGACTCTTGGTTTGATTTGGAAForward, AACTGACTCTTGGTTTGATTTGGAA 2525 1010 역방향, AGAGTCAGTTTATGATTTCCATCTACGReverse, AGAGTCAGTTTATGATTTCCATCTACG 2727 1111 exon 6, 173bp(602-774bp)exon 6, 173 bp (602-774 bp) 정방향, TGGCTTTGAATGCTCTCATCCATAGTCForward, TGGCTTTGAATGCTCTCATCCATAGTC 2727 1212 정방향, GCAACAAACCAACAGTGAAAAGATTForward, GCAACAAACCAACAGTGAAAAGATT 2525 1313 exon 7, 119bp(775-893bp)exon 7, 119 bp (775-893 bp) 정방향, AGTGTGGTTTGCCAGCAGTCAGCCForward, AGTGTGGTTTGCCAGCAGTCAGCC 2424 1414 정방향, TGGTTTGCCAGCAGTCAGCCACACForward, TGGTTTGCCAGCAGTCAGCCACAC 2424 1515 exon 8, 182bp(894-1075bp)exon 8, 182 bp (894-1075 bp) 정방향, ACATCACTCTTCCAAGTTTTGCCTCForward, ACATCACTCTTCCAAGTTTTGCCTC 2525 1616 정방향, GCCACCTAAAGTGACTAAAGAAGAACAForward, GCCACCTAAAGTGACTAAAGAAGAACA 2727 1717 exon 9, 129bp(1076-1204bp)exon 9, 129 bp (1076-1204 bp) 정방향, CTCTGACCCTACACGGAGCCCATTForward, CTCTGACCCTACACGGAGCCCATT 2424 1818 정방향, CACACAGGCTGCTTATGTCACCACCForward, CACACAGGCTGCTTATGTCACCACC 2525 1919 exon 10, 189bp(1205-1393bp)exon 10, 189 bp (1205-1393 bp) 정방향, AAGACAAGTCATTTGGCAGTTCATTForward, AAGACAAGTCATTTGGCAGTTCATT 2525 2020 정방향, CAAGGAGAGATTTCTAATGATGTGGAForward, CAAGGAGAGATTTCTAATGATGTGGA 2626 2121 exon 11, 182bp(1394-1575bp)exon 11, 182 bp (1394-1575 bp) 정방향, TCAAGATGGGAATGCCTCAGGGTAGForward, TCAAGATGGGAATGCCTCAGGGTAG 2525 2222 정방향, GATTGGAACAGGAAAATTATCAGAAGAForward, GATTGGAACAGGAAAATTATCAGAAGA 2727 2323 exon 12, 151bp(1576-1726bp)exon 12, 151 bp (1576-1726 bp) 정방향, ACTGAAAGAGTTGAATGACTGGCTAAForward, ACTGAAAGAGTTGAATGACTGGCTAA 2626 2424 정방향, AGAACAAGGAAAATGGAGGAAGAGCCForward, AGAACAAGGAAAATGGAGGAAGAGCC 2626 2525 exon 13, 120bp(1727-1846bp)exon 13, 120bp (1727-1846bp) 역방향, CTTCCAAAGCAGCAGTTGCGTGATReverse, CTTCCAAAGCAGCAGTTGCGTGAT 2424 2626 정방향, GGTGGTAGTTGATGAATCTAGTGGAGAForward, GGTGGTAGTTGATGAATCTAGTGGAGA 2727 2727 exon 14, 102bp(1847-1948bp)exon 14, 102 bp (1847-1948 bp) 역방향, GAACCCAGCGGTCTTCTGTCCATCTAReverse, GAACCCAGCGGTCTTCTGTCCATCTA 2626 2828 정방향, CAAGACATCCTTCTCAAATGGCAACGForward, CAAGACATCCTTCTCAAATGGCAACG 2626 2929 exon 15, 108bp(1949-2056bp)exon 15, 108 bp (1949-2056 bp) 정방향, GAACAAGATTCACACAACTGGCTTTAAForward, GAACAAGATTCACACAACTGGCTTTAA 2727 3030 정방향, AAGATCAAAATGAAATGTTATCAAGTCTTCForward, AAGATCAAAATGAAATGTTATCAAGTCTTC 3030 3131 exon 16, 180bp(2057-2236bp)exon 16, 180 bp (2057-2236 bp) 정방향, TCAGTGACCCAGAAGACGGAAGCATForward, TCAGTGACCCAGAAGACGGAAGCAT 2525 3232 정방향, TGGGCAAACTGTATTCACTCAAACAForward, TGGGCAAACTGTATTCACTCAAACA 2525 3333 exon 17, 176bp(2237-2412bp)exon 17, 176 bp (2237-2412 bp) 정방향, GTAACTACGGTGACCACAAGGGAACAGAForward, GTAACTACGGTGACCACAAGGGAACAGA 2828 3434 정방향, TCCCCAAAAGAAGAGGCAGATTACTForward, TCCCCAAAAGAAGAGGCAGATTACT 2525 3535 exon 18, 124bp(2413-2536bp)exon 18, 124 bp (2413-2536 bp) 정방향, GCAATCTTTCGGAAGGAAGGCAACTForward, GCAATCTTTCGGAAGGAAGGCAACT 2525 3636 역방향, AAGTTGCCTTCCTTCCGAAAGATTGReverse, AAGTTGCCTTCCTTCCGAAAGATTG 2525 3737 exon 19, 88bp(2537-2624bp)exon 19, 88 bp (2537-2624 bp) 정방향, GCCCTGGTGGAACAGATGGTGAATGForward, GCCCTGGTGGAACAGATGGTGAATG 2525 3838 정방향, GCCCTGGTGGAACAGATGGTGAAForward, GCCCTGGTGGAACAGATGGTGAA 2323 3939 exon 20, 242bp(2625-2866bp)exon 20, 242 bp (2625-2866 bp) 정방향, GCAGATAGCATCAAACAAGCCTCAGAForward, GCAGATAGCATCAAACAAGCCTCAGA 2626 4040 정방향, TACTGCTGAAAACTGGTTGAAAATCCForward, TACTGCTGAAAACTGGTTGAAAATCC 2626 4141 exon 21, 181bp(2867-3047bp)exon 21, 181 bp (2867-3047 bp) 정방향, CTATGGCACAGGATGAAGTCAACCGForward, CTATGGCACAGGATGAAGTCAACCG 2525 4242 정방향, ATACTCTATGGCACAGGATGAAGTCAACForward, ATACTCTATGGCACAGGATGAAGTCAAC 2828 4343 exon 22, 146bp(3048-3193bp)exon 22, 146 bp (3048-3193 bp) 정방향, TGGGTCCAGCAGTCAGAAACCAAACForward, TGGGTCCAGCAGTCAGAAACCAAAC 2525 4444 정방향, GCAGTCAGAAACCAAACTCTCCATACCForward, GCAGTCAGAAACCAAACTCTCCATACC 2727 4545 exon 23, 213bp(3194-3406bp)exon 23, 213 bp (3194-3406 bp) 역방향, GCTTCTTCCAGCGTCCCTCAATReverse, GCTTCTTCCAGCGTCCCTCAAT 2222 4646 정방향, TCAGCACCACTGTGAAAGAGATGTCGForward, TCAGCACCACTGTGAAAGAGATGTCG 2626 4747 exon 24, 114bp(3407-3520bp)exon 24, 114 bp (3407-3520 bp) 정방향, AAACCCTGAAGAAATGGATGGCTGAForward, AAACCCTGAAGAAATGGATGGCTGA 2525 4848 정방향, GAAATGGATGGCTGAAGTTGATGTTForward, GAAATGGATGGCTGAAGTTGATGTT 2525 4949 exon 25, 156bp(3521-3676bp)exon 25, 156 bp (3521-3676 bp) 정방향, AAACAGTGTCAATGAAGGTGGGCAGAForward, AAACAGTGTCAATGAAGGTGGGCAGA 2626 5050 정방향, TGGGCAGAAGATAAAGAATGAAGCAGAForward, TGGGCAGAAGATAAAGAATGAAGCAGA 2727 5151 exon 26, 171bp(3677-3847bp)exon 26, 171 bp (3677-3847 bp) 정방향, GAGAAAACTGTAAGCCTCCAGAAAGATForward, GAGAAAACTGTAAGCCTCCAGAAAGAT 2727 5252 정방향, TTACAGAAAGCAGTTGAAGAGATGAAGForward, TTACAGAAAGCAGTTGAAGAGATGAAG 2727 5353 exon 27, 183bp(3848-4030bp)exon 27, 183 bp (3848-4030 bp) 정방향, GCCCAACAAAAAGAAGCGAAAGTGAAForward, GCCCAACAAAAAGAAGCGAAAGTGAA 2626 5454 역방향, AGTTTCACTTTCGCTTCTTTTTGTTGGReverse, AGTTTCACTTTCGCTTCTTTTTGTTGG 2727 5555 exon 28, 135bp(4031-4165bp)exon 28, 135 bp (4031-4165 bp) 정방향, GGAGAAAGCAAACAAGTGGCTAAATGAForward, GGAGAAAGCAAACAAGTGGCTAAATGA 2727 5656 정방향, AGAAAGCAAACAAGTGGCTAAATGAAGTForward, AGAAAGCAAACAAGTGGCTAAATGAAGT 2828 5757 exon 29, 150bp(4166-4315bp)exon 29, 150 bp (4166-4315 bp) 정방향, TATTGGCACAGACCCTAACAGATGGCForward, TATTGGCACAGACCCTAACAGATGGC 2626 5858 정방향, TGATGCGACATTCAGAGGATAACCCAAForward, TGATGCGACATTCAGAGGATAACCCAA 2727 5959 exon 30, 162bp(4316-4477bp)exon 30, 162 bp (4316-4477 bp) 역방향, GCTGCCAACTGCTTGTCAATGAATGTReverse, GCTGCCAACTGCTTGTCAATGAATGT 2626 6060 역방향, CTGGGCTTCCTGAGGCATTTGAGReverse, CTGGGCTTCCTGAGGCATTTGAG 2323 6161 exon 31, 111bp(4478-4588bp)exon 31, 111 bp (4478-4588 bp) 정방향, AGGGGAAGGAGGCTGCCCAAAGAGForward, AGGGGAAGGAGGCTGCCCAAAGAG 2424 6262 정방향, AGAGTCCTGTCTCAGATTGATGTTGCForward, AGAGTCCTGTCTCAGATTGATGTTGC 2626 6363 exon 32, 174bp(4589-4762bp)exon 32, 174 bp (4589-4762 bp) 정방향, TTTGAGCAGCGTCTACAAGAAAGTAAGForward, TTTGAGCAGCGTCTACAAGAAAGTAAG 2727 6464 정방향, GCATTGGAAACAAAGAGTGTGGAACForward, GCATTGGAAACAAAGAGTGTGGAAC 2525 6565 exon 33, 156bp(4763-4918bp)exon 33, 156 bp (4763-4918 bp) 정방향, GAAAAAGCAGACGGAAAATCCCAAAGForward, GAAAAAGCAGACGGAAAATCCCAAAG 2626 6666 정방향, CAAAGAACTTGATGAAAGAGTAACAGCForward, CAAAGAACTTGATGAAAGAGTAACAGC 2727 6767 exon 34, 171bp(4919-5089bp)exon 34, 171 bp (4919-5089 bp) 정방향, CGTAAGATGCGAAAGGAAATGAATGTForward, CGTAAGATGCGAAAGGAAATGAATGT 2626 6868 정방향, ATTTGGATTCTGAAGTTGCCTGGGGAForward, ATTTGGATTCTGAAGTTGCCTGGGGA 2626 6969 exon 35, 180bp(5090-5269bp)exon 35, 180 bp (5090-5269 bp) 정방향, AACAGTTTTGGGCAAGAAGGAGACGForward, AACAGTTTTGGGCAAGAAGGAGACG 2525 7070 정방향, CTGAAGAGTATCACAGAGGTAGGAGAGGForward, CTGAAGAGTATCACAGAGGTAGGAGAGG 2828 7171 exon 36, 129bp(5270-5398bp)exon 36, 129 bp (5270-5398 bp) 역방향, TGATTCATCCAAAAGTGTGTCAGCCTReverse, TGATTCATCCAAAAGTGTGTCAGCCT 2626 7272 정방향, CAGGCTGACACACTTTTGGATGAATForward, CAGGCTGACACACTTTTGGATGAAT 2525 7373 exon 37, 171bp(5399-5569bp)exon 37, 171 bp (5399-5569 bp) 정방향, GCAGAACTGAATGACATACGCCCAAForward, GCAGAACTGAATGACATACGCCCAA 2525 7474 정방향, AAGCAGCAAACTTGATGGCAAACCGForward, AAGCAGCAAACTTGATGGCAAACCG 2525 7575 exon 38, 123bp(5570-5692bp)exon 38, 123 bp (5570-5692 bp) 정방향, TGCTTGAACCACTGGAGGCTGAAATForward, TGCTTGAACCACTGGAGGCTGAAAT 2525 7676 역방향, GTCTTCCTCTTTCAGATTCACCCCCTReverse, GTCTTCCTCTTTCAGATTCACCCCCT 2626 7777 exon 39, 138bp(5693-5830bpexon 39, 138 bp (5693-5830 bp) 정방향, ATCACAGATGAGAGAAAGCGAGAGGAAForward, ATCACAGATGAGAGAAAGCGAGAGGAA 2727 7878 정방향, CAGACAAAACATAATGCTCTCAAGGTAForward, CAGACAAAACATAATGCTCTCAAGGTA 2727 7979 exon 40, 153bp(5831-5983bp)exon 40, 153 bp (5831-5983 bp) 정방향, AGCCAGCCTACCTGAGCCCAGAGATForward, AGCCAGCCTACCTGAGCCCAGAGAT 2525 8080 정방향, GAGGTCTCAAAGAAGAAAAAAGGCTForward, GAGGTCTCAAAGAAGAAAAAAGGCT 2525 8181 exon 41, 183bp(5894-6166bp)exon 41, 183 bp (5894-6166 bp) 정방향, GCTGAGGGCTTGTCTGAGGATGGGForward, GCTGAGGGCTTGTCTGAGGATGGG 2424 8282 정방향, TGAGGGCTTGTCTGAGGATGGGGCForward, TGAGGGCTTGTCTGAGGATGGGGC 2424 8383 exon 42, 195bp(6167-6361bp)exon 42, 195 bp (6167-6361 bp) 정방향, ACAAGCCCTATTAGAAGTGGAACAACForward, ACAAGCCCTATTAGAAGTGGAACAAC 2626 8484 정방향, TGACCTCTGTGCTAAGGACTTTGAAForward, TGACCTCTGTGCTAAGGACTTTGAA 2525 8585 exon 43, 173bp(6362-6534bp)exon 43, 173bp (6362-6534bp) 정방향, CAACGCCTGTGGAAAGGGTGAAGCForward, CAACGCCTGTGGAAAGGGTGAAGC 2424 8686 정방향, CTTCACCCTTTCCACAGGCGTTGCForward, CTTCACCCTTTCCACAGGCGTTGC 2424 8787 exon 44, 148bp(6535-6682bp)exon 44, 148 bp (6535-6682 bp) 정방향, ATCTGTTGAGAAATGGCGGCGTTForward, ATCTGTTGAGAAATGGCGGCGTT 2323 8888 역방향, AACGCCGCCATTTCTCAACAGATReverse, AACGCCGCCATTTCTCAACAGAT 2323 8989 exon 45, 176bp(6683-6858bp)exon 45, 176 bp (6683-6858 bp) 정방향, GAACTCCAGGATGGCATTGGGCAGForward, GAACTCCAGGATGGCATTGGGCAG 2424 9090 정방향, ATTGGGAAGCCTGAATCTGCGGTGForward, ATTGGGAAGCCTGAATCTGCGGTG 2424 9191 exon 46, 148bp(6859-7006bp)exon 46, 148 bp (6859-7006 bp) 정방향, AAAAGAGCAGCAACTAAAAGAAAAGCForward, AAAAGAGCAGCAACTAAAAGAAAAGC 2626 9292 정방향, ATTTGTTTTATGGTTGGAGGAAGCAGForward, ATTTGTTTTATGGTTGGAGGAAGCAG 2626 9393 exon 47, 150bp(7007-7156bp)exon 47, 150bp (7007-7156bp) 정방향, TAAATGAAACTGGAGGACCCGTGCTForward, TAAATGAAACTGGAGGACCCGTGCT 2525 9494 정방향, CCCATAAGCCCAGAAGAGCAAGATAForward, CCCATAAGCCCAGAAGAGCAAGATA 2525 9595 exon 48, 186bp(7157-7342bp)exon 48, 186bp (7157-7342bp) 정방향, TCATCTGCTGCTGTGGTTATCTCCTAForward, TCATCTGCTGCTGTGGTTATCTCCTA 2626 9696 정방향, ATAACCAACCAAACCAAGAAGGACCAForward, ATAACCAACCAAACCAAGAAGGACCA 2626 9797 exon 49, 102bp(7343-7444bp)exon 49, 102 bp (7343-7444 bp) 정방향, TGGAAGAGATTTTGTCTAAAGGGCAGCForward, TGGAAGAGATTTTGTCTAAAGGGCAGC 2727 9898 정방향, TACAAGGAAAAACCAGCCACTCAGCCForward, TACAAGGAAAAACCAGCCACTCAGCC 2626 9999 exon 50, 109bp(7445-7553bp)exon 50, 109 bp (7445-7553 bp) 정방향, TCCTGGACTGACCACTATTGGAGCCTForward, TCCTGGACTGACCACTATTGGAGCCT 2626 100100 역방향, AGGCTCCAATAGTGGTCAGTCCAGGAReverse, AGGCTCCAATAGTGGTCAGTCCAGGA 2626 101101 exon 51, 233bp(7554-7786bp)exon 51, 233 bp (7554-7786 bp) 역방향, TCAAGCAGAGAAAGCCAGTCGGTAAReverse, TCAAGCAGAGAAAGCCAGTCGGTAA 2525 102102 정방향, TTGGACAGAACTTACCGACTGGCTTForward, TTGGACAGAACTTACCGACTGGCTT 2525 103103 exon 52, 118bp(7787-7904bp)exon 52, 118 bp (7787-7904 bp) 정방향, ACAGAGGCGTCCCCAGTTGGAAGAAForward, ACAGAGGCGTCCCCAGTTGGAAGAA 2525 104104 정방향, TGAAAAACAAGACCAGCAATCAAGAGGForward, TGAAAAACAAGACCAGCAATCAAGAGG 2727 105105 exon 53, 212bp(7905-8116bp)exon 53, 212bp (7905-8116bp) 정방향, TAAAGGATTCAACACAATGGCTGGAForward, TAAAGGATTCAACACAATGGCTGGA 2525 106106 정방향, GCAATCCAAAAGAAAATCACAGAAACCAForward, GCAATCCAAAAGAAAATCACAGAAACCA 2828 107107 exon 54, 155bp(8117-8271bp)exon 54, 155 bp (8117-8271 bp) 정방향, TGGCAGACAAATGTAGATGTGGCAAForward, TGGCAGACAAATGTAGATGTGGCAA 2525 108108 정방향, GCAGATGATACCAGAAAAGTCCACAForward, GCAGATGATACCAGAAAAGTCCACA 2525 109109 exon 55, 190bp(8272-8461bp)exon 55, 190 bp (8272-8461 bp) 정방향, CTACAGGATGCTACCCGTAAGGAAAGGForward, CTACAGGATGCTACCCGTAAGGAAAGG 2727 110110 정방향, CAAAGCAGCCTCTCGCTCACTCACCForward, CAAAGCAGCCTCTCGCTCACTCACC 2525 111111 exon 56, 173bp(8462-8634bp)exon 56, 173 bp (8462-8634 bp) 정방향, TCGGAAAAAGTCTCTCAACATTAGGTAGForward, TCGGAAAAAGTCTCTCAACATTAGGTAG 2828 112112 역방향, CCTACCTAATGTTGAGAGACTTTTTCCGReverse, CCTACCTAATGTTGAGAGACTTTTTCCG 2828 113113 exon 57, 157bp(8635-8791bp)exon 57, 157 bp (8635-8791 bp) 정방향, AAGCCAGTTCTGACCAGTGGAAGCGTForward, AAGCCAGTTCTGACCAGTGGAAGCGT 2626 114114 정방향, CAGGCACCTATTGGAGGCGACTTTCForward, CAGGCACCTATTGGAGGCGACTTTC 2525 115115 exon 58, 121(8792-8912bp)exon 58, 121 (8792-8912 bp) 정방향, GAGAAACTCTACCAGGAGCCCAGForward, GAGAAACTCTACCAGGAGCCCAG 2323 116116 정방향, ATTTCTGACAGAGCAGCCTTTGGAAGForward, ATTTCTGACAGAGCAGCCTTTGGAAG 2626 117117 exon 59, 269bp(8913-9181bp)exon 59, 269 bp (8913-9181 bp) 정방향, CTCCGCTGACTGGCAGAGAAAAATAGATGForward, CTCCGCTGACTGGCAGAGAAAAATAGATG 2929 118118 정방향, TGAGGAGGTCAATACTGAGTGGGAAForward, TGAGGAGGTCAATACTGAGTGGGAA 2525 119119 exon 60, 147bp(9182-9328bp)exon 60, 147 bp (9182-9328 bp) 정방향, CGTATAACCTCAGCACTCTGGAAGACCForward, CGTATAACCTCAGCACTCTGGAAGACC 2727 120120 정방향, CTCTCACCGTATAACCTCAGCACTCTForward, CTCTCACCGTATAACCTCAGCACTCT 2626 121121 exon 61, 79bp(9408-9468bp) exon 61, 79 bp (9408-9468 bp) 정방향, ACTTTGGTCCAGCATCTCAGCACTTTCForward, ACTTTGGTCCAGCATCTCAGCACTTTC 2727 122122 정방향, CTTTCTTTCCAGTAAGTCATTTTCAGCForward, CTTTCTTTCCAGTAAGTCATTTTCAGC 2727 123123 exon 62, 61bp(9408-9468bp)exon 62, 61 bp (9408-9468 bp) 정방향, CTTCTTTTCAGCGTCTGTCCAGGGTCForward, CTTCTTTTCAGCGTCTGTCCAGGGTC 2626 124124 정방향, AGAGCCATCTCGCCAAACAAAGTGCForward, AGAGCCATCTCGCCAAACAAAGTGC 2525 125125 exon 63, 62bp(9469-9530bp)exon 63, 62 bp (9469-9530 bp) 정방향, ACGAGACTCAAACAACTTGCTGGGACCForward, ACGAGACTCAAACAACTTGCTGGGACC 2727 126126 정방향, TATGTTTTGTGTTTTAGCCACGAGACTForward, TATGTTTTGTGTTTTAGCCACGAGACT 2727 127127 exon 64, 75bp(9531-9605bp)exon 64, 75bp (9531-9605bp) 정방향, TAATGTCAGATTCTCAGCTTATAGGACTGForward, TAATGTCAGATTCTCAGCTTATAGGACTG 2929 128128 역방향, GCAGTCTTCGGAGTTTCATGGCAGTReverse, GCAGTCTTCGGAGTTTCATGGCAGT 2525 129129 exon 65, 202bp(9606-9807bp)exon 65, 202 bp (9606-9807 bp) 정방향, GTTTGACCACTATTTATGACCGCCTGForward, GTTTGACCACTATTTATGACCGCCTG 2626 130130 정방향, TATGTGTCTGAACTGGCTGCTGAATGTForward, TATGTGTCTGAACTGGCTGCTGAATGT 2727 131131 exon 66, 85bp(9808-9893bp)exon 66, 85 bp (9808-9893 bp) 정방향, TAAAACTGGCATCATTTCCCTGTGTAAForward, TAAAACTGGCATCATTTCCCTGTGTAA 2727 132132 역방향, TTACACAGGGAAATGATGCCAGTTTTAReverse, TTACACAGGGAAATGATGCCAGTTTTA 2727 133133 exon 67, 157bp(9894-10051bp)exon 67, 157 bp (9894-10051 bp) 정방향, CCTTTTCAAGCAAGTGGCAAGTTCAAForward, CCTTTTCAAGCAAGTGGCAAGTTCAA 2626 134134 정방향, GCATCCTTTGGGGGCAGTAACATTGForward, GCATCCTTTGGGGGCAGTAACATTG 2525 135135 exon 68, 167bp(10052-10218bp)exon 68, 167 bp (10052-10218 bp) 정방향, AAACTGCCAAGCATCAGGCCAAATGTForward, AAACTGCCAAGCATCAGGCCAAATGT 2626 136136 역방향, ACATTTGGCCTGATGCTTGGCAGTTTReverse, ACATTTGGCCTGATGCTTGGCAGTTT 2626 137137 exon 69, 111bp(10219-10330bp)exon 69, 111bp (10219-10330bp) 정방향, TTTAATTATGACATCTGCCAAAGCTGCTForward, TTTAATTATGACATCTGCCAAAGCTGCT 2828 138138 역방향, AGCAGCTTTGGCAGATGTCATAATTAAAReverse, AGCAGCTTTGGCAGATGTCATAATTAAA 2828 139139 exon 70, 136bp(10331-10467bp)exon 70, 136 bp (10331-10467 bp) 정방향, AAGGTATTTTGCGAAGCATCCCCGAForward, AAGGTATTTTGCGAAGCATCCCCGA 2525 140140 정방향, GAAGCATCCCCGAATGGGCTACCTForward, GAAGCATCCCCGAATGGGCTACCT 2424 141141 exon 71, 39bp(10468-10506bp)exon 71, 39bp (10468-10506bp) 정방향, GCCAGTAGATTCTGCGTGAGTACTTTForward, GCCAGTAGATTCTGCGTGAGTACTTT 2626 142142 정방향, AAAGTACTCACGCAGAATCTACTGGCForward, AAAGTACTCACGCAGAATCTACTGGC 2626 143143 exon 72, 66bp(10507-10572bp)exon 72, 66 bp (10507-10572 bp) 정방향, CACGATGATACTCATTCACGCATTGAForward, CACGATGATACTCATTCACGCATTGA 2626 144144 정방향, GCCTGCCTCGTCCCCTCAGCForward, GCCTGCCTCGTCCCCTCAGC 2020 145145 exon 73, 66bp(10573-10638bp)exon 73, 66 bp (10573-10638 bp) 정방향, TAGCAGAAATGGAAAACAGCAATGGForward, TAGCAGAAATGGAAAACAGCAATGG 2525 146146 정방향, GCAGAAATGGAAAACAGCAATGGATForward, GCAGAAATGGAAAACAGCAATGGAT 2525 147147 exon 74, 159bp(10639-10797bp)exon 74, 159 bp (10639-10797 bp) 역방향, TACGAGGCTGGCTCAGGGGGGAReverse, TACGAGGCTGGCTCAGGGGGGA 2222 148148 정방향, ACTCCCCCCTGAGCCAGCCTCGTAGForward, ACTCCCCCCTGAGCCAGCCTCGTAG 2525 149149 exon 75, 244bp(10798-11041bp)exon 75, 244 bp (10798-11041 bp) 정방향, CCCTCCTGAAATGATGCCCACCTCTForward, CCCTCCTGAAATGATGCCCACCTCT 2525 150150 정방향, GCTGGAGTCACAGTTACACAGGCTAForward, GCTGGAGTCACAGTTACACAGGCTA 2525 151151 exon 76, 124bp(11042-11165bp)exon 76, 124 bp (11042-11165 bp) 정방향, GAGTGGTTGGCAGTCAAACTTCGGAForward, GAGTGGTTGGCAGTCAAACTTCGGA 2525 152152 정방향, AAGTGAATGGCACAACGGTGTCCTCTForward, AAGTGAATGGCACAACGGTGTCCTCT 2626 153153 exon 77, 93bp(11166-11258bp)exon 77, 93 bp (11166-11258 bp) 정방향, CCCCAGGACACAAGCACAGGGTTAGForward, CCCCAGGACACAAGCACAGGGTTAG 2525 154154 정방향, GAGCAACTCAACAACTCCTTCCCTAForward, GAGCAACTCAACAACTCCTTCCCTA 2525 155155 exon 78, 32bp(11259-11290bp)exon 78, 32 bp (11259-11290 bp) 정방향, AGGAAGAAATACCCCTGGAAAGCGAAForward, AGGAAGAAATACCCCTGGAAAGCGAA 2424 156156 정방향, TTCGCTTTCCAGGGGTATTTCTTCCTForward, TTCGCTTTCCAGGGGTATTTCTTCCT 2424

<< 실시예Example 5>  5> 디스트로핀Dystrophin 유전자 변이 감별분석용 칩( Gene mutation differential analysis chip chipchip ) 제작Production

본 발명의 바람직한 양태로 제공하는 디스트로핀 유전자의 돌연변이 감별분석용 DNA 또는 PNA 칩(chip)은 해당하는 디스트로핀 유전자의 78개 엑손들의 결실, 중복 돌연변이를 고-특이도로 판별할 수 있는 empirically 선별된 156종의 프로브(probe)가 집적되어 있다. 내부 대조군(endogenous control)으로 디스트로핀과 마찬가지로 X 염색체에 위치하는 house keeping gene인 HPRT(hypoxanthine phosphoribosyltransferase) 유전자 프로브가 고정화되어있다. 하나의 칩 기판위에 총 디스트로핀 78개 엑손의 결실, 중복 변이에 대한 고-처리량 감별분석이 가능한 그리드(grid)가 8개씩 포함되도록 칩 레이아웃을 고안하여, 8 웰 혼성화 반응 챔버(8 well hybridization reaction chamber)를 통해 8개의 개별 검체에 대한 분석을 동시에 진행할 수 있도록 고안하였다(도 2 참조). 영하 70℃ 보관중인 프로브 스탁(stock)을 실온에서 해동한 후, 탈이온 멸균 3차 증류수에 최종농도 100 μM이 되도록 희석하여 워킹 스탁(working stock)으로 사용하였다. 워킹 스탁을 50배 희석한 각각의 프로브들을 3X SSC 스포팅 용액(500 mM NaCl, 3 mM sodium citrate, 1.5 M N,N,N-trimethylglycine, pH 6.8)과 1 : 5 - 10 비율(v/v)로 혼합하여 최종 96 웰 플레이트(well plate)에 분주되는 프로브의 농도범위가 20 - 30 pmole/uL 가 되도록 하였다. 상기 master 플레이트를 Microssys 5100 microarrayer(Cartesian Technologies, Ann Arbor, MI, USA)에 장착하고 이로부터 알데하이드(aldehyde)-, 티오이소시아네이트(thioisocyanate)-활성화된 글라스 슬라이드(CEL associates Inc., Houston, TX, USA), 에폭시(epoxy)-활성화된 플라스틱 칩, 또는 골드 필름 표면에 프로브들을 순서에 따라 2개씩 duplicate으로 스포팅하였다. 스팟(spot)의 평균 크기(diameter)는 80 - 140 마이크로미터(micrometer)이며 스팟간 크로스-토크(cross-talk)효과를 최소화하기 위해 스팟간의 거리는 350 - 500 마이크로미터를 유지하였다. 칩 제작은 75% 습도(humidity)를 유지하는 클래스 10,000 룸에서 실시하였다. 프로브가 스팟팅된 칩은 120℃, 1시간 베이킹(baking)한 후, 0.25% SDS(Sodium dodecyl sulfate)용액에서 3분간 세척하고 멸균 3차 증류수로 다시 세척하였다. 이후 칩을 0.2% 소디움 보로하이드라이드(NaBH4)를 포함하는 용액에 15분간 반응시켜 프로브를 블럭킹(blocking)하였다. 이후 3차 증류수로 2회 세척하고 물기를 제거한 후 chip slide 보관 box에 위치시키고, 사용시점까지 데시케이터(dessicator)에 보관하였다.DNA or PNA chip for mutation differential analysis of dystrophin gene, which is provided as a preferred embodiment of the present invention, includes 156 empirically selected species capable of high-specificity of deletion and duplication of 78 exons of a corresponding dystrophin gene. Probes are integrated. As an endogenous control, the HPRT (hypoxanthine phosphoribosyltransferase) gene probe, a house keeping gene located on the X chromosome, is immobilized as in dystrophin. An 8-well hybridization reaction chamber was designed with a chip layout designed to include eight grids capable of high-throughput differential analysis of deletion and duplication of 78 exstropins on a single chip substrate. ) Is designed to proceed with the analysis of eight individual samples at the same time (see Figure 2). After thawing at 70 ° C., the probe stock was stored at room temperature, and then diluted with deionized sterile tertiary distilled water to a final concentration of 100 μM and used as a working stock. Each probe with 50-fold dilution of working stock was subjected to a 1: 5-10 ratio (v / v) with 3X SSC spotting solution (500 mM NaCl, 3 mM sodium citrate, 1.5 MN, N, N-trimethylglycine, pH 6.8). By mixing, the concentration range of the probe dispensed into the final 96 well plate was 20-30 pmole / uL. The master plate was mounted on a Microssys 5100 microarrayer (Cartesian Technologies, Ann Arbor, MI, USA), from which an aldehyde-, thioisocyanate-activated glass slide (CEL associates Inc., Houston, TX, USA) ), Two probes were spotted in duplicate on the surface of the epoxy-activated plastic chip or gold film. The average diameter of the spots is 80-140 micrometers and the distance between spots was maintained at 350-500 micrometers to minimize cross-talk effects between spots. Chip fabrication was carried out in a class 10,000 room maintaining 75% humidity. The chip spotted with the probe was baked at 120 ° C. for 1 hour, and then washed for 3 minutes in 0.25% SDS (Sodium dodecyl sulfate) solution, and then again washed with sterile tertiary distilled water. The chip was then reacted with a solution containing 0.2% sodium borohydride (NaBH 4 ) for 15 minutes to block the probe. After washing twice with 3 distilled water, water was removed and placed in a chip slide storage box, and stored in a desiccator (dessicator) until the point of use.

<< 실시예Example 6>  6> 디스트로핀Dystrophin 유전자 변이 감별분석용 칩( Gene mutation differential analysis chip chipchip ) 혼성화() Hybridization ( hybridizationhybridization ) 반응 및 결과 분석) Response and result analysis

본 발명의 바람직한 일 실시예에 따른 디스트로핀 유전자의 78개 엑손들과 대조군 유전자를 증폭하는 12개 서브셋(subset) 멀티플렉스-PCR 증폭산물을 각각 5 - 10 uL씩 총 60 - 120 uL를 이와 동일한 volume의 탈이온 3차 멸균 증류수가 미리 첨가된 1.5 mL 에펜도르프 튜브에 첨가하였다. 이 mixture를 부드럽게 vortex하고, 95℃, 5분간 열변성시킨 후 얼음위에 5분간 보존하고 원심분리기로 스핀다운(spin down)하였다. 분석용 칩(chip) 표면에 8 웰 혼성화 반응 챔버(8 well hybridization chamber)를 위치시키고 웰 커버(cover)로 웰 상층부를 덮어두었다. 이후 반응시키고자하는 웰(well)에 상기 반응 혼합용액에 혼성화 반응 온도인 58℃로 미리 가열해둔 60 - 120uL의 혼성화 반응 용액(3X SSC, 0.1% SDS, 0.2 mg/mL 소혈청알부민, pH 7)을 첨가하여 혼합한 후 웰 커버의 구멍(hole)을 통해 반응액 혼합물을 주입하고 버블(bubble)이 발생하지 않도록 주의하였다. 챔버 리드(lid)를 고정시킨 후 58℃, 30분간 혼성화 반응을 통해 칩 표면의 프로브와 멀티플렉스 PCR 반응산물간 특이적인 뉴클레오티드 상보적(complementary) 결합을 유도하였다. 혼성화 반응이 종료된 칩 표면의 웰 커버를 제거하고 칩을 세척버퍼 1(0.1X SSC, 0.05% SDS)용액에 담그고 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후 세척용액 2(2X SSC, 0.1% SDS)용액에 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 반복하였다. 이후 탈이온 3차 멸균 증류수에 담가 2회 세척하고 1,000 rpm에서 원심분리하여 칩을 건조하였다. 전기 세척과정을 통해 칩 반응의 비특이적인 시그널을 제거한 후, 디스트로핀 변이 감별분석용 칩을 스캔어래이 라이트(ScanArray Lite, Packard Instrument Co., Meriden, CT, USA) 스캐너를 이용하여 판독하였고, 분석 소프트웨어(QuantArray 2.0)를 이용하여 양성 대조군 스팟들의 평균 형광강도(fluorescence intensity) 및 표준오차를 스팟 주변의 값들과 비교하여 signal-to-noise(S/R) 비율을 구한 뒤 그 값이 4 이상일 경우 양성 값으로 스코어링(scoring) 처리하였다(도 3, 4, 5 참조). A total of 60-120 uL of 5-10 uL of the 12 subset multiplex-PCR amplification products for amplifying 78 exons of the dystrophin gene and the control gene according to the preferred embodiment of the present invention are respectively the same volume. Of deionized tertiary sterile distilled water was added to a 1.5 mL Eppendorf tube pre-added. The mixture was gently vortexed, thermally denatured at 95 ° C. for 5 minutes, preserved on ice for 5 minutes and spun down with a centrifuge. An 8 well hybridization chamber was placed on the analytical chip surface and the well top was covered with a well cover. Thereafter, 60-120 uL of a hybridization reaction solution (3X SSC, 0.1% SDS, 0.2 mg / mL bovine serum albumin, pH 7), which was preheated to the reaction mixture solution at 58 ° C., in the reaction mixture solution ) Was added and mixed, and then the reaction mixture was injected through the hole of the well cover, and care was taken not to generate bubbles. After fixing the chamber lid, hybridization reaction was performed at 58 ° C. for 30 minutes to induce specific nucleotide complementary binding between the probe on the chip surface and the multiplex PCR reaction product. The well cover of the chip surface where the hybridization reaction was completed was removed, the chip was immersed in the washing buffer 1 (0.1X SSC, 0.05% SDS) solution, washed with stirring at 2,000 rpm for 2 minutes, and repeated. After washing with washing solution 2 (2X SSC, 0.1% SDS) solution at 2,000 rpm for 2 minutes (washing) was repeated. Thereafter, the chips were dried by immersion in deionized tertiary sterile distilled water twice and centrifuged at 1,000 rpm. After the non-specific signal of the chip reaction was removed by the electric washing process, the chips for differential analysis of dystrophin mutation were read using a scan array light (ScanArray Lite, Packard Instrument Co., Meriden, CT, USA) scanner, and analyzed by the analysis software ( QuantArray 2.0) is used to determine the signal-to-noise (S / R) ratio by comparing the mean fluorescence intensity and standard error of the positive control spots with the values around the spots. Scoring was performed (see FIGS. 3, 4, 5).

도 1은 정상인과 뒤셴형 근이양증의 디스트로핀 엑손 결실 유무와 근섬유 조직염색을 통한 디스트로핀 단백질의 존재유무를 비교하여 나타낸다. 디스트로핀 엑손 결실이 없는 정상인(좌측 상단)과 달리 근이양증 환자들은 디스트로핀 유전자의 복수이상의 엑손 결실을 확인할 수 있다(우측 상단). 정상인은 근섬유 조직염색에서 디스트로핀 단백질의 존재를 확인할 수 있으나(좌측 하단), 근이양증 환자들의 조직에서는 희박하게 존재함을 확인할 수 있다(우측 하단).Figure 1 shows the presence of dystrophin exon deletion and the presence of dystrophin protein through myofibrillar tissue staining of normal and Duchenne muscular dystrophy. Unlike normal people without a dystrophin exon deletion (top left), myopathy patients can identify more than one exon deletion in the dystrophin gene (top right). Normal subjects can confirm the presence of dystrophin protein in myofiber tissue staining (bottom left), but rarely in tissues of muscle dystrophy patients (bottom right).

도 2는 본 발명에 따라 제작된 뒤셴/베커형 근이양증 유전질환의 원인을 규명하기 위한 디스트로핀 유전자 돌연변이 감별분석용 칩의 모식도이다. 디스트로핀 mRNA(약 14,000bp)를 코딩하는 전체 엑손의 결실, 중복 변이를 높은 변별력으로 분석하는 프로브가 배열된 칩 그리드(grid)를 나타내었으며, 형광물질이 표지된 타겟 DNA와 칩 위에 배열된 프로브간 혼성화(hybridization)반응이 이루어지는 8웰 혼성화 반응 챔버를 모식하여 나타냈다.Figure 2 is a schematic diagram of a dystrophin gene mutation differential analysis chip for identifying the cause of Duchenne / Becker-type muscular dystrophy genetic disease prepared according to the present invention. A chip grid is shown in which a probe for analyzing the deletion and duplication of the entire exon encoding dystrophin mRNA (approximately 14,000 bp) with high discrimination power is shown. An 8-well hybridization reaction chamber in which hybridization reaction is performed is shown schematically.

도 3은 본 발명에 따라 프로브가 고정화된 칩 제작 이후, 임상검체로부터 분리한 genomic DNA를 주형으로 디스트로핀 78개 전체 엑손을 멀티플렉스 PCR을 통해 증폭한 뒤, 형광 표지된 증폭산물과 칩 위의 선택적 프로브들과 혼성화(hybridization) 반응을 실시함으로써 디스트로핀 유전자의 결실, 중복 돌연변이를 분석하고, 동시에 멀티플렉스 증폭산물의 일부를 direct sequencing을 통해 점 돌연변이 유무를 확인함으로써 근이양증 유전질환의 원인이 되는 디스트로핀 유전자 변이를 감별진단하는 분석흐름도이다.Figure 3, after fabrication of the chip in which the probe is immobilized according to the present invention, after amplifying the entirety of 78 dystrophin exons by multiplex PCR as a template genomic DNA isolated from the clinical sample, the fluorescently labeled amplification product and the selective on the chip Dystrophin gene mutations that cause muscular dystrophy by analyzing hybridization with probes and analyzing the deletion and duplication of the dystrophin gene and confirming the presence or absence of point mutations by direct sequencing some of the multiplex amplification products An analytical flow chart for differentially diagnosing

도 4는 본 발명에 따라 임상검체로부터 디스트로핀 유전자의 돌연변이 감별분석한 결과를 나타내는 칩 그리드(상단)와 칩 스캔 이미지(하단)를 나타낸다. 엑손 3번, 4번, 5번, 9번, 19번, 22번, 23번, 24번, 25번, 26번, 40번, 41번, 42번, 43번, 44번, 45번, 51번, 52번이 large deletion된 뒤셴형 근이양증 환자의 칩 분석이미지를 나타낸다.Figure 4 shows the chip grid (top) and chip scan image (bottom) showing the results of differential mutation analysis of dystrophin gene from clinical specimens according to the present invention. Exxon 3, 4, 5, 9, 19, 22, 23, 24, 25, 26, 40, 41, 42, 43, 44, 45, 51 And 52 show chip analysis images of Duchenne muscular dystrophy patients with large deletions.

도 5는 본 발명에 따라 임상검체로부터 디스트로핀 유전자의 돌연변이 감별분석한 결과를 나타내는 칩 그리드(상단)와 칩 스캔 이미지(하단)를 나타낸다. 엑손 25번, 26번, 27번, 28번, 29번, 30번, 48번, 49번, 50번, 51번, 52번이 small deletion된 베커형 근이양증 환자의 칩 분석이미지를 나타낸다.Figure 5 shows a chip grid (top) and chip scan image (bottom) showing the results of differential mutation analysis of dystrophin gene from clinical specimens according to the present invention. Exon 25, 26, 27, 28, 29, 30, 48, 49, 50, 51 and 52 show chip analysis images of Becker-type muscular dystrophy patients with small deletions.

<110> PARK, MinKoo <120> Differential diagnostic method, kit, chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough <160> 156 <170> KopatentIn 1.71 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 1 probe <400> 1 aaatgctttg gtgggaagaa gtaga 25 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon1 probe <400> 2 tgctttggtg ggaagaagta gagga 25 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon2 probe <400> 3 tattttgcat tttagatgaa agagaagatg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon2 probe <400> 4 caattttcta aggtaagaat ggtttgttac 30 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon3 probe <400> 5 acctcttcag tgacctacag gatggga 27 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon3 probe <400> 6 tattgagaac ctcttcagtg acctacag 28 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon4 probe <400> 7 ccttgttgac attgttcagg gcat 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon4 probe <400> 8 cttgttgaca ttgttcaggg cat 23 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon5 probe <400> 9 aactgactct tggtttgatt tggaa 25 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon5 probe <400> 10 agagtcagtt tatgatttcc atctacg 27 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon6 probe <400> 11 tggctttgaa tgctctcatc catagtc 27 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon6 probe <400> 12 gcaacaaacc aacagtgaaa agatt 25 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon7 probe <400> 13 agtgtggttt gccagcagtc agcc 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon7 probe <400> 14 tggtttgcca gcagtcagcc acac 24 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 8 probe <400> 15 acatcactct tccaagtttt gcctc 25 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 8 probe <400> 16 gccacctaaa gtgactaaag aagaaca 27 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 9 probe <400> 17 ctctgaccct acacggagcc catt 24 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 9 probe <400> 18 cacacaggct gcttatgtca ccacc 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 10 probe <400> 19 aagacaagtc atttggcagt tcatt 25 <210> 20 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 10 probe <400> 20 caaggagaga tttctaatga tgtgga 26 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 11 probe <400> 21 tcaagatggg aatgcctcag ggtag 25 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 11 probe <400> 22 gattggaaca ggaaaattat cagaaga 27 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 12 probe <400> 23 actgaaagag ttgaatgact ggctaa 26 <210> 24 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 12 probe <400> 24 agaacaagga aaatggagga agagcc 26 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 13 probe <400> 25 cttccaaagc agcagttgcg tgat 24 <210> 26 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 13 probe <400> 26 ggtggtagtt gatgaatcta gtggaga 27 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 14 probe <400> 27 gaacccagcg gtcttctgtc catcta 26 <210> 28 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 14 probe <400> 28 caagacatcc ttctcaaatg gcaacg 26 <210> 29 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 15 probe <400> 29 gaacaagatt cacacaactg gctttaa 27 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 15 probe <400> 30 aagatcaaaa tgaaatgtta tcaagtcttc 30 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 16 probe <400> 31 tcagtgaccc agaagacgga agcat 25 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 16 probe <400> 32 tgggcaaact gtattcactc aaaca 25 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 17 probe <400> 33 gtaactacgg tgaccacaag ggaacaga 28 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 17 probe <400> 34 tccccaaaag aagaggcaga ttact 25 <210> 35 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 18 probe <400> 35 gcaatctttc ggaaggaagg caact 25 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 18 probe <400> 36 aagttgcctt ccttccgaaa gattg 25 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 19 probe <400> 37 gccctggtgg aacagatggt gaatg 25 <210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 19 probe <400> 38 gccctggtgg aacagatggt gaa 23 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 20 probe <400> 39 gcagatagca tcaaacaagc ctcaga 26 <210> 40 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 20 probe <400> 40 tactgctgaa aactggttga aaatcc 26 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 21 probe <400> 41 ctatggcaca ggatgaagtc aaccg 25 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 21 probe <400> 42 atactctatg gcacaggatg aagtcaac 28 <210> 43 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 22 probe <400> 43 tgggtccagc agtcagaaac caaac 25 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 22 probe <400> 44 gcagtcagaa accaaactct ccatacc 27 <210> 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 23 probe <400> 45 gcttcttcca gcgtccctca at 22 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 23 probe <400> 46 tcagcaccac tgtgaaagag atgtcg 26 <210> 47 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 24 probe <400> 47 aaaccctgaa gaaatggatg gctga 25 <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 24 probe <400> 48 gaaatggatg gctgaagttg atgtt 25 <210> 49 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 25 probe <400> 49 aaacagtgtc aatgaaggtg ggcaga 26 <210> 50 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 25 probe <400> 50 tgggcagaag ataaagaatg aagcaga 27 <210> 51 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 26 probe <400> 51 gagaaaactg taagcctcca gaaagat 27 <210> 52 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 26 probe <400> 52 ttacagaaag cagttgaaga gatgaag 27 <210> 53 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 27 probe <400> 53 gcccaacaaa aagaagcgaa agtgaa 26 <210> 54 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 27 probe <400> 54 agtttcactt tcgcttcttt ttgttgg 27 <210> 55 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 28 probe <400> 55 ggagaaagca aacaagtggc taaatga 27 <210> 56 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 28 probe <400> 56 agaaagcaaa caagtggcta aatgaagt 28 <210> 57 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 29 probe <400> 57 tattggcaca gaccctaaca gatggc 26 <210> 58 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 29 probe <400> 58 tgatgcgaca ttcagaggat aacccaa 27 <210> 59 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 30 probe <400> 59 gctgccaact gcttgtcaat gaatgt 26 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 30 probe <400> 60 ctgggcttcc tgaggcattt gag 23 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 31 probe <400> 61 aggggaagga ggctgcccaa agag 24 <210> 62 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 31 probe <400> 62 agagtcctgt ctcagattga tgttgc 26 <210> 63 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 32 probe <400> 63 tttgagcagc gtctacaaga aagtaag 27 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 32 probe <400> 64 gcattggaaa caaagagtgt ggaac 25 <210> 65 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 33 probe <400> 65 gaaaaagcag acggaaaatc ccaaag 26 <210> 66 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 33 probe <400> 66 caaagaactt gatgaaagag taacagc 27 <210> 67 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 34 probe <400> 67 cgtaagatgc gaaaggaaat gaatgt 26 <210> 68 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 34 probe <400> 68 atttggattc tgaagttgcc tgggga 26 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 35 probe <400> 69 aacagttttg ggcaagaagg agacg 25 <210> 70 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 35 probe <400> 70 ctgaagagta tcacagaggt aggagagg 28 <210> 71 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 36 probe <400> 71 tgattcatcc aaaagtgtgt cagcct 26 <210> 72 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 36 probe <400> 72 caggctgaca cacttttgga tgaat 25 <210> 73 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 37 probe <400> 73 gcagaactga atgacatacg cccaa 25 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 37 probe <400> 74 aagcagcaaa cttgatggca aaccg 25 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 38 probe <400> 75 tgcttgaacc actggaggct gaaat 25 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 38 probe <400> 76 gtcttcctct ttcagattca ccccct 26 <210> 77 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 39 probe <400> 77 atcacagatg agagaaagcg agaggaa 27 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 39 probe <400> 78 cagacaaaac ataatgctct caaggta 27 <210> 79 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 40 probe <400> 79 agccagccta cctgagccca gagat 25 <210> 80 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 40 probe <400> 80 gaggtctcaa agaagaaaaa aggct 25 <210> 81 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 41 probe <400> 81 gctgagggct tgtctgagga tggg 24 <210> 82 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 41 probe <400> 82 tgagggcttg tctgaggatg gggc 24 <210> 83 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 42 probe <400> 83 acaagcccta ttagaagtgg aacaac 26 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 42 probe <400> 84 tgacctctgt gctaaggact ttgaa 25 <210> 85 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 43 probe <400> 85 caacgcctgt ggaaagggtg aagc 24 <210> 86 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 43 probe <400> 86 cttcaccctt tccacaggcg ttgc 24 <210> 87 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 44 probe <400> 87 atctgttgag aaatggcggc gtt 23 <210> 88 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 44 probe <400> 88 aacgccgcca tttctcaaca gat 23 <210> 89 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 45 probe <400> 89 gaactccagg atggcattgg gcag 24 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 45 probe <400> 90 attgggaagc ctgaatctgc ggtg 24 <210> 91 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 46 probe <400> 91 aaaagagcag caactaaaag aaaagc 26 <210> 92 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 46 probe <400> 92 atttgtttta tggttggagg aagcag 26 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 47 probe <400> 93 taaatgaaac tggaggaccc gtgct 25 <210> 94 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 47 probe <400> 94 cccataagcc cagaagagca agata 25 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 48 probe <400> 95 tcatctgctg ctgtggttat ctccta 26 <210> 96 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 48 probe <400> 96 ataaccaacc aaaccaagaa ggacca 26 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 49 probe <400> 97 tggaagagat tttgtctaaa gggcagc 27 <210> 98 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 49 probe <400> 98 tacaaggaaa aaccagccac tcagcc 26 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 50 probe <400> 99 tcctggactg accactattg gagcct 26 <210> 100 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 50 probe <400> 100 aggctccaat agtggtcagt ccagga 26 <210> 101 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 51 probe <400> 101 tcaagcagag aaagccagtc ggtaa 25 <210> 102 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 51 probe <400> 102 ttggacagaa cttaccgact ggctt 25 <210> 103 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 52 probe <400> 103 acagaggcgt ccccagttgg aagaa 25 <210> 104 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 52 probe <400> 104 tgaaaaacaa gaccagcaat caagagg 27 <210> 105 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 53 probe <400> 105 taaaggattc aacacaatgg ctgga 25 <210> 106 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 53 probe <400> 106 gcaatccaaa agaaaatcac agaaacca 28 <210> 107 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 54 probe <400> 107 tggcagacaa atgtagatgt ggcaa 25 <210> 108 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 54 probe <400> 108 gcagatgata ccagaaaagt ccaca 25 <210> 109 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 55 probe <400> 109 ctacaggatg ctacccgtaa ggaaagg 27 <210> 110 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 55 probe <400> 110 caaagcagcc tctcgctcac tcacc 25 <210> 111 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 56 probe <400> 111 tcggaaaaag tctctcaaca ttaggtag 28 <210> 112 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 56 probe <400> 112 cctacctaat gttgagagac tttttccg 28 <210> 113 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 57 probe <400> 113 aagccagttc tgaccagtgg aagcgt 26 <210> 114 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 57 probe <400> 114 caggcaccta ttggaggcga ctttc 25 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 58 probe <400> 115 gagaaactct accaggagcc cag 23 <210> 116 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 58 probe <400> 116 atttctgaca gagcagcctt tggaag 26 <210> 117 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 59 probe <400> 117 ctccgctgac tggcagagaa aaatagatg 29 <210> 118 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 59 probe <400> 118 tgaggaggtc aatactgagt gggaa 25 <210> 119 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 60 probe <400> 119 cgtataacct cagcactctg gaagacc 27 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 60 probe <400> 120 ctctcaccgt ataacctcag cactct 26 <210> 121 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 61 probe <400> 121 actttggtcc agcatctcag cactttc 27 <210> 122 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 61 probe <400> 122 ctttctttcc agtaagtcat tttcagc 27 <210> 123 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 62 probe <400> 123 cttcttttca gcgtctgtcc agggtc 26 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 62 probe <400> 124 agagccatct cgccaaacaa agtgc 25 <210> 125 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 63 probe <400> 125 acgagactca aacaacttgc tgggacc 27 <210> 126 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 63 probe <400> 126 tatgttttgt gttttagcca cgagact 27 <210> 127 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 64 probe <400> 127 taatgtcaga ttctcagctt ataggactg 29 <210> 128 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 64 probe <400> 128 gcagtcttcg gagtttcatg gcagt 25 <210> 129 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 65 probe <400> 129 gtttgaccac tatttatgac cgcctg 26 <210> 130 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 65 probe <400> 130 tatgtgtctg aactggctgc tgaatgt 27 <210> 131 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 66 probe <400> 131 taaaactggc atcatttccc tgtgtaa 27 <210> 132 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 66 probe <400> 132 ttacacaggg aaatgatgcc agtttta 27 <210> 133 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 67 probe <400> 133 ccttttcaag caagtggcaa gttcaa 26 <210> 134 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 67 probe <400> 134 gcatcctttg ggggcagtaa cattg 25 <210> 135 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 68 probe <400> 135 aaactgccaa gcatcaggcc aaatgt 26 <210> 136 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 68 probe <400> 136 acatttggcc tgatgcttgg cagttt 26 <210> 137 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 69 probe <400> 137 tttaattatg acatctgcca aagctgct 28 <210> 138 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 69 probe <400> 138 agcagctttg gcagatgtca taattaaa 28 <210> 139 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 70 probe <400> 139 aaggtatttt gcgaagcatc cccga 25 <210> 140 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 70 probe <400> 140 gaagcatccc cgaatgggct acct 24 <210> 141 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 71 probe <400> 141 gccagtagat tctgcgtgag tacttt 26 <210> 142 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 71 probe <400> 142 aaagtactca cgcagaatct actggc 26 <210> 143 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 72 probe <400> 143 cacgatgata ctcattcacg cattga 26 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 72 probe <400> 144 gcctgcctcg tcccctcagc 20 <210> 145 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 73 probe <400> 145 tagcagaaat ggaaaacagc aatgg 25 <210> 146 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 73 probe <400> 146 gcagaaatgg aaaacagcaa tggat 25 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 74 probe <400> 147 tacgaggctg gctcaggggg ga 22 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 74 probe <400> 148 actcccccct gagccagcct cgtag 25 <210> 149 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 75 probe <400> 149 ccctcctgaa atgatgccca cctct 25 <210> 150 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 75 probe <400> 150 gctggagtca cagttacaca ggcta 25 <210> 151 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 76 probe <400> 151 gagtggttgg cagtcaaact tcgga 25 <210> 152 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 76 probe <400> 152 aagtgaatgg cacaacggtg tcctct 26 <210> 153 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 77 probe <400> 153 ccccaggaca caagcacagg gttag 25 <210> 154 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 77 probe <400> 154 gagcaactca acaactcctt cccta 25 <210> 155 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 78 probe <400> 155 aggaagaaat acccctggaa agcgaa 26 <210> 156 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 78 probe <400> 156 ttcgctttcc aggggtattt cttcct 26 <110> PARK, MinKoo <120> Differential diagnostic method, kit, chip for the dystrophin gene          deletion, duplication, point mutation and DMD / BMD screening test          therethrough <160> 156 <170> KopatentIn 1.71 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 1 probe <400> 1 aaatgctttg gtgggaagaa gtaga 25 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon1 probe <400> 2 tgctttggtg ggaagaagta gagga 25 <210> 3 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon2 probe <400> 3 tattttgcat tttagatgaa agagaagatg 30 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon2 probe <400> 4 caattttcta aggtaagaat ggtttgttac 30 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon3 probe <400> 5 acctcttcag tgacctacag gatggga 27 <210> 6 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon3 probe <400> 6 tattgagaac ctcttcagtg acctacag 28 <210> 7 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon4 probe <400> 7 ccttgttgac attgttcagg gcat 24 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon4 probe <400> 8 cttgttgaca ttgttcaggg cat 23 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon5 probe <400> 9 aactgactct tggtttgatt tggaa 25 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon5 probe <400> 10 agagtcagtt tatgatttcc atctacg 27 <210> 11 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon6 probe <400> 11 tggctttgaa tgctctcatc catagtc 27 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon6 probe <400> 12 gcaacaaacc aacagtgaaa agatt 25 <210> 13 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon7 probe <400> 13 agtgtggttt gccagcagtc agcc 24 <210> 14 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon7 probe <400> 14 tggtttgcca gcagtcagcc acac 24 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 8 probe <400> 15 acatcactct tccaagtttt gcctc 25 <210> 16 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 8 probe <400> 16 gccacctaaa gtgactaaag aagaaca 27 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 9 probe <400> 17 ctctgaccct acacggagcc catt 24 <210> 18 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 9 probe <400> 18 cacacaggct gcttatgtca ccacc 25 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 10 probe <400> 19 aagacaagtc atttggcagt tcatt 25 <210> 20 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 10 probe <400> 20 caaggagaga tttctaatga tgtgga 26 <210> 21 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 11 probe <400> 21 tcaagatggg aatgcctcag ggtag 25 <210> 22 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 11 probe <400> 22 gattggaaca ggaaaattat cagaaga 27 <210> 23 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 12 probe <400> 23 actgaaagag ttgaatgact ggctaa 26 <210> 24 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 12 probe <400> 24 agaacaagga aaatggagga agagcc 26 <210> 25 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 13 probe <400> 25 cttccaaagc agcagttgcg tgat 24 <210> 26 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 13 probe <400> 26 ggtggtagtt gatgaatcta gtggaga 27 <210> 27 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 14 probe <400> 27 gaacccagcg gtcttctgtc catcta 26 <210> 28 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 14 probe <400> 28 caagacatcc ttctcaaatg gcaacg 26 <210> 29 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 15 probe <400> 29 gaacaagatt cacacaactg gctttaa 27 <210> 30 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 15 probe <400> 30 aagatcaaaa tgaaatgtta tcaagtcttc 30 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 16 probe <400> 31 tcagtgaccc agaagacgga agcat 25 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 16 probe <400> 32 tgggcaaact gtattcactc aaaca 25 <210> 33 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 17 probe <400> 33 gtaactacgg tgaccacaag ggaacaga 28 <210> 34 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 17 probe <400> 34 tccccaaaag aagaggcaga ttact 25 <210> 35 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 18 probe <400> 35 gcaatctttc ggaaggaagg caact 25 <210> 36 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 18 probe <400> 36 aagttgcctt ccttccgaaa gattg 25 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 19 probe <400> 37 gccctggtgg aacagatggt gaatg 25 <210> 38 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 19 probe <400> 38 gccctggtgg aacagatggt gaa 23 <210> 39 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 20 probe <400> 39 gcagatagca tcaaacaagc ctcaga 26 <210> 40 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 20 probe <400> 40 tactgctgaa aactggttga aaatcc 26 <210> 41 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 21 probe <400> 41 ctatggcaca ggatgaagtc aaccg 25 <210> 42 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 21 probe <400> 42 atactctatg gcacaggatg aagtcaac 28 <210> 43 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 22 probe <400> 43 tgggtccagc agtcagaaac caaac 25 <210> 44 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 22 probe <400> 44 gcagtcagaa accaaactct ccatacc 27 <210> 45 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 23 probe <400> 45 gcttcttcca gcgtccctca at 22 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 23 probe <400> 46 tcagcaccac tgtgaaagag atgtcg 26 <210> 47 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 24 probe <400> 47 aaaccctgaa gaaatggatg gctga 25 <210> 48 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 24 probe <400> 48 gaaatggatg gctgaagttg atgtt 25 <210> 49 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 25 probe <400> 49 aaacagtgtc aatgaaggtg ggcaga 26 <210> 50 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 25 probe <400> 50 tgggcagaag ataaagaatg aagcaga 27 <210> 51 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 26 probe <400> 51 gagaaaactg taagcctcca gaaagat 27 <210> 52 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 26 probe <400> 52 ttacagaaag cagttgaaga gatgaag 27 <210> 53 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 27 probe <400> 53 gcccaacaaa aagaagcgaa agtgaa 26 <210> 54 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 27 probe <400> 54 agtttcactt tcgcttcttt ttgttgg 27 <210> 55 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 28 probe <400> 55 ggagaaagca aacaagtggc taaatga 27 <210> 56 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 28 probe <400> 56 agaaagcaaa caagtggcta aatgaagt 28 <210> 57 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 29 probe <400> 57 tattggcaca gaccctaaca gatggc 26 <210> 58 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 29 probe <400> 58 tgatgcgaca ttcagaggat aacccaa 27 <210> 59 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 30 probe <400> 59 gctgccaact gcttgtcaat gaatgt 26 <210> 60 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 30 probe <400> 60 ctgggcttcc tgaggcattt gag 23 <210> 61 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 31 probe <400> 61 aggggaagga ggctgcccaa agag 24 <210> 62 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 31 probe <400> 62 agagtcctgt ctcagattga tgttgc 26 <210> 63 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 32 probe <400> 63 tttgagcagc gtctacaaga aagtaag 27 <210> 64 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 32 probe <400> 64 gcattggaaa caaagagtgt ggaac 25 <210> 65 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 33 probe <400> 65 gaaaaagcag acggaaaatc ccaaag 26 <210> 66 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 33 probe <400> 66 caaagaactt gatgaaagag taacagc 27 <210> 67 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 34 probe <400> 67 cgtaagatgc gaaaggaaat gaatgt 26 <210> 68 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 34 probe <400> 68 atttggattc tgaagttgcc tgggga 26 <210> 69 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 35 probe <400> 69 aacagttttg ggcaagaagg agacg 25 <210> 70 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 35 probe <400> 70 ctgaagagta tcacagaggt aggagagg 28 <210> 71 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 36 probe <400> 71 tgattcatcc aaaagtgtgt cagcct 26 <210> 72 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 36 probe <400> 72 caggctgaca cacttttgga tgaat 25 <210> 73 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 37 probe <400> 73 gcagaactga atgacatacg cccaa 25 <210> 74 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 37 probe <400> 74 aagcagcaaa cttgatggca aaccg 25 <210> 75 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 38 probe <400> 75 tgcttgaacc actggaggct gaaat 25 <210> 76 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 38 probe <400> 76 gtcttcctct ttcagattca ccccct 26 <210> 77 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 39 probe <400> 77 atcacagatg agagaaagcg agaggaa 27 <210> 78 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 39 probe <400> 78 cagacaaaac ataatgctct caaggta 27 <210> 79 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 40 probe <400> 79 agccagccta cctgagccca gagat 25 <210> 80 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 40 probe <400> 80 gaggtctcaa agaagaaaaa aggct 25 <210> 81 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 41 probe <400> 81 gctgagggct tgtctgagga tggg 24 <210> 82 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 41 probe <400> 82 tgagggcttg tctgaggatg gggc 24 <210> 83 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 42 probe <400> 83 acaagcccta ttagaagtgg aacaac 26 <210> 84 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 42 probe <400> 84 tgacctctgt gctaaggact ttgaa 25 <210> 85 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 43 probe <400> 85 caacgcctgt ggaaagggtg aagc 24 <210> 86 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 43 probe <400> 86 cttcaccctt tccacaggcg ttgc 24 <210> 87 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 44 probe <400> 87 atctgttgag aaatggcggc gtt 23 <210> 88 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 44 probe <400> 88 aacgccgcca tttctcaaca gat 23 <210> 89 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 45 probe <400> 89 gaactccagg atggcattgg gcag 24 <210> 90 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 45 probe <400> 90 attgggaagc ctgaatctgc ggtg 24 <210> 91 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 46 probe <400> 91 aaaagagcag caactaaaag aaaagc 26 <210> 92 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 46 probe <400> 92 atttgtttta tggttggagg aagcag 26 <210> 93 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 47 probe <400> 93 taaatgaaac tggaggaccc gtgct 25 <210> 94 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 47 probe <400> 94 cccataagcc cagaagagca agata 25 <210> 95 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 48 probe <400> 95 tcatctgctg ctgtggttat ctccta 26 <210> 96 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 48 probe <400> 96 ataaccaacc aaaccaagaa ggacca 26 <210> 97 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 49 probe <400> 97 tggaagagat tttgtctaaa gggcagc 27 <210> 98 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 49 probe <400> 98 tacaaggaaa aaccagccac tcagcc 26 <210> 99 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 50 probe <400> 99 tcctggactg accactattg gagcct 26 <210> 100 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 50 probe <400> 100 aggctccaat agtggtcagt ccagga 26 <210> 101 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 51 probe <400> 101 tcaagcagag aaagccagtc ggtaa 25 <210> 102 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 51 probe <400> 102 ttggacagaa cttaccgact ggctt 25 <210> 103 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 52 probe <400> 103 acagaggcgt ccccagttgg aagaa 25 <210> 104 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 52 probe <400> 104 tgaaaaacaa gaccagcaat caagagg 27 <210> 105 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 53 probe <400> 105 taaaggattc aacacaatgg ctgga 25 <210> 106 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 53 probe <400> 106 gcaatccaaa agaaaatcac agaaacca 28 <210> 107 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 54 probe <400> 107 tggcagacaa atgtagatgt ggcaa 25 <210> 108 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 54 probe <400> 108 gcagatgata ccagaaaagt ccaca 25 <210> 109 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 55 probe <400> 109 ctacaggatg ctacccgtaa ggaaagg 27 <210> 110 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 55 probe <400> 110 caaagcagcc tctcgctcac tcacc 25 <210> 111 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 56 probe <400> 111 tcggaaaaag tctctcaaca ttaggtag 28 <210> 112 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 56 probe <400> 112 cctacctaat gttgagagac tttttccg 28 <210> 113 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 57 probe <400> 113 aagccagttc tgaccagtgg aagcgt 26 <210> 114 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 57 probe <400> 114 caggcaccta ttggaggcga ctttc 25 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 58 probe <400> 115 gagaaactct accaggagcc cag 23 <210> 116 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 58 probe <400> 116 atttctgaca gagcagcctt tggaag 26 <210> 117 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 59 probe <400> 117 ctccgctgac tggcagagaa aaatagatg 29 <210> 118 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 59 probe <400> 118 tgaggaggtc aatactgagt gggaa 25 <210> 119 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 60 probe <400> 119 cgtataacct cagcactctg gaagacc 27 <210> 120 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 60 probe <400> 120 ctctcaccgt ataacctcag cactct 26 <210> 121 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 61 probe <400> 121 actttggtcc agcatctcag cactttc 27 <210> 122 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 61 probe <400> 122 ctttctttcc agtaagtcat tttcagc 27 <210> 123 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 62 probe <400> 123 cttcttttca gcgtctgtcc agggtc 26 <210> 124 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 62 probe <400> 124 agagccatct cgccaaacaa agtgc 25 <210> 125 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 63 probe <400> 125 acgagactca aacaacttgc tgggacc 27 <210> 126 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 63 probe <400> 126 tatgttttgt gttttagcca cgagact 27 <210> 127 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 64 probe <400> 127 taatgtcaga ttctcagctt ataggactg 29 <210> 128 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 64 probe <400> 128 gcagtcttcg gagtttcatg gcagt 25 <210> 129 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 65 probe <400> 129 gtttgaccac tatttatgac cgcctg 26 <210> 130 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 65 probe <400> 130 tatgtgtctg aactggctgc tgaatgt 27 <210> 131 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 66 probe <400> 131 taaaactggc atcatttccc tgtgtaa 27 <210> 132 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 66 probe <400> 132 ttacacaggg aaatgatgcc agtttta 27 <210> 133 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 67 probe <133> 133 ccttttcaag caagtggcaa gttcaa 26 <210> 134 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 67 probe <400> 134 gcatcctttg ggggcagtaa cattg 25 <210> 135 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 68 probe <400> 135 aaactgccaa gcatcaggcc aaatgt 26 <210> 136 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 68 probe <400> 136 acatttggcc tgatgcttgg cagttt 26 <210> 137 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 69 probe <400> 137 tttaattatg acatctgcca aagctgct 28 <210> 138 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 69 probe <400> 138 agcagctttg gcagatgtca taattaaa 28 <139> <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 70 probe <400> 139 aaggtatttt gcgaagcatc cccga 25 <210> 140 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 70 probe <400> 140 gaagcatccc cgaatgggct acct 24 <210> 141 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 71 probe <400> 141 gccagtagat tctgcgtgag tacttt 26 <210> 142 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 71 probe <400> 142 aaagtactca cgcagaatct actggc 26 <210> 143 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 72 probe <400> 143 cacgatgata ctcattcacg cattga 26 <210> 144 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 72 probe <400> 144 gcctgcctcg tcccctcagc 20 <210> 145 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 73 probe <400> 145 tagcagaaat ggaaaacagc aatgg 25 <210> 146 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 73 probe <400> 146 gcagaaatgg aaaacagcaa tggat 25 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 74 probe <400> 147 tacgaggctg gctcaggggg ga 22 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 74 probe <400> 148 actcccccct gagccagcct cgtag 25 <210> 149 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 75 probe <400> 149 ccctcctgaa atgatgccca cctct 25 <210> 150 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 75 probe <400> 150 gctggagtca cagttacaca ggcta 25 <210> 151 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 76 probe <400> 151 gagtggttgg cagtcaaact tcgga 25 <210> 152 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 76 probe <400> 152 aagtgaatgg cacaacggtg tcctct 26 <210> 153 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 77 probe <400> 153 ccccaggaca caagcacagg gttag 25 <210> 154 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 77 probe <400> 154 gagcaactca acaactcctt cccta 25 <210> 155 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 78 probe <400> 155 aggaagaaat acccctggaa agcgaa 26 <210> 156 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> dystrophin exon 78 probe <400> 156 ttcgctttcc aggggtattt cttcct 26  

Claims (11)

인간 디스트로핀(Dystrophin) 유전자의 결실(deletion), 중복(duplication), 점 돌연변이(point mutation)를 동시에 고-처리량 방식으로 감별진단하는 방법.A method for differential diagnosis of deletion, duplication, and point mutation of the human dystrophin gene simultaneously in a high-throughput manner. 제 1항에 있어서, 5'- 또는 3'-말단에 아미노 모디파이어(amino modifier) 또는 티올 모디파이어(thiol modifier)가 수식된 프로브가 스팟팅(spotting)된 칩(chip)을 제작하는 단계;The method of claim 1, further comprising: manufacturing a chip in which a probe modified with an amino modifier or a thiol modifier at the 5′- or 3′-end is spotted; 검체로부터 게노믹(genomic) DNA를 분리하는 단계; Isolating genomic DNA from the sample; 디스트로핀 유전자의 전체 78개 엑손을 대상으로 결실, 중복 변이를 판별하는 프로브 타겟(target) 부위를 멀티플렉스-PCR 반응을 통해 증폭하면서, 형광색소(fluorescent dye)가 포함되도록 타겟 DNA 증폭산물을 준비하는 단계;The target DNA amplification product was prepared to include fluorescent dyes by amplifying a probe target site for determining deletion and overlapping mutations in all 78 exons of the dystrophin gene through a multiplex-PCR reaction. step; 상기 멀티플렉스-PCR 반응산물의 일부를 자동염기서열분석법을 이용해서 점 돌연변이(point mutation) 유무를 분석하는 단계;Analyzing a portion of the multiplex-PCR reaction product for the presence of point mutations using an automatic sequencing method; 상기 멀티플렉스-PCR 반응산물과 칩 표면에 고정화된 프로브간 혼성화(hybridization) 반응을 수행하고 세척(washing)하는 단계;Performing and washing a hybridization reaction between the multiplex-PCR reaction product and a probe immobilized on a chip surface; 형광색소에 특이적인 파장의 레이저(laser)로 칩을 스캐닝(scanning)하고 혼성화 반응 결과에 따른 형광강도를 측정함으로써 디스트로핀 mRNA를 코딩하는 엑손의 결실 및 중복 변이를 감별분석하는 단계; 그리고Differentially analyzing the deletion and overlapping mutations of the exons encoding dystrophin mRNA by scanning the chip with a laser of a wavelength specific to the fluorescent dye and measuring the fluorescence intensity according to the hybridization reaction result; And 상기 분석단계 전부를 포함하는 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단방법.Dystrophin gene deletion, duplication, point mutation differential diagnosis method comprising all of the above analysis step. 제 1항에 있어서, 서열목록번호 1 내지 156의 염기서열을 갖는 DNA 올리고뉴클레오티드(deoxyribonucleic acid oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 DNA 프로브(probe)를 포함하는 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단용 DNA 칩.According to claim 1, Dystrophin gene deletion, duplication, point mutation differential diagnosis comprising one or more DNA probes (probe) selected from the group consisting of DNA oligonucleotide (deoxyribonucleic acid oligonucleotide) having a nucleotide sequence of SEQ ID NO: 1 to 156 DNA chip. 제 1항에 있어서, 서열목록번호 1 내지 156의 염기서열을 갖는 PNA 올리고뉴클레오티드(peptide nucleic acid oligonucleotide)로 이루어진 그룹에서 선택된 하나 이상의 PNA 프로브를 포함하는 디스트로핀 유전자 결실, 중복, 점 돌연변이 감별진단용 PNA 칩.The method of claim 1, wherein the DNA deletion, duplication, point mutation differential diagnosis PNA chip comprising at least one PNA probe selected from the group consisting of PNA oligonucleotide (Pptide nucleic acid oligonucleotide) having a nucleotide sequence of SEQ ID NO: 1 to 156 . 제 1항 내지 4항에 있어서, 디스트로핀 mRNA를 코딩하는 엑손의 결실, 중복, 그리고 점 돌연변이를 감별분석하기 위해, 서열목록번호 1 내지 156의 염기서열을 갖는 프로브로 구성된 그룹으로부터 선택되는 하나 이상의 프로브 타겟 부위를 증폭할 수 있는 멀티플렉스-PCR 키트.The method of claim 1, wherein the one or more probes selected from the group consisting of probes having the nucleotide sequences of SEQ ID NOs: 1 to 156 to differentiate deletions, duplications, and point mutations of exons encoding dystrophin mRNA Multiplex-PCR kit capable of amplifying the target site. 제 1항 내지 5항에 있어서, 정방향(sense) 또는 역방향(anti-sense) 프라이머의 5' 또는 3' 말단에 형광색소(Fluorescent dye)가 표지된 프라이머(primer)를 포함하는 키트.The kit according to claim 1, wherein the kit comprises a primer labeled with a fluorescent dye at the 5 'or 3' end of a forward or anti-sense primer. 제 1항 내지 5항에 있어서, PCR 증폭과정 중에 형광색소가 표지된 디옥시시티딘 트리포스페이트(Deoxycytidine triphosphate, dCTP) 또는 디옥시유리딘 트리포스페이트(Deoxyuridine triphosphate, dUTP)을 사용하여 증폭산물의 염기서열내 형광색소가 표지되는 반응원리를 갖는 키트.The base of the amplification product according to claims 1 to 5 using deoxycytidine triphosphate (dCTP) or deoxyuridine triphosphate (dUTP) labeled with fluorescent dye during PCR amplification. Kit having a reaction principle that the fluorescent dye in the sequence is labeled. 제 1항 내지 7항에 있어서, 형광색소는 비오틴(Biotin), 로다민(Rhodamine), Cy3, Cy5, Cy5.5, 6-FAM(6-carboxyfluorescein), JOE(6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS(N-hydroxysuccinimide) Ester, Texas Red 그룹으로부터 선택되는 형광색소를 사용하는 것을 특징으로 하는 키트. The method of claim 1, wherein the fluorescent pigments are biotin, Rhodamine, Cy3, Cy5, Cy5.5, 6-FAM (6-carboxyfluorescein), JOE (6-carboxy-4 ', 5). A kit comprising fluorescent dyes selected from the group '-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS (N-hydroxysuccinimide) Ester, and Texas Red. 제 1항 내지 4항에 있어서, 알데하이드(aldehyde)-, 티오이소시아네이트(thioisocyanate)-, 또는 카르복실(carboxyl)-활성화된 유리 슬라이드(glass slide)로 구성되거나, 에폭시(epoxy)-활성화된 플라스틱(plastic) 또는 금 필름(gold film) 재질의 칩으로 구성되는 디스트로핀 유전자 변이 감별진단용 칩.The process according to claim 1, wherein the aldehyde is composed of aldehyde, thioisocyanate, or carboxyl-activated glass slide, or an epoxy-activated plastic ( Dystrophin gene mutation differential diagnosis chip consisting of chips made of plastic or gold film. 제 1항 내지 4항에 있어서, 디스트로핀 유전자 변이 감별진단용 칩을 이용한 디스트로핀 전체 엑손의 결실, 중복, 점 돌연변이 분석결과와, 혈청 크레아틴 카이네이즈(creatine kinase) 수치, 가족력, 근 생검(biopsy) 결과를 통합하여, 뒤셴/ 베커형 근이양증을 선별진단하는 방법.The method according to claim 1, wherein the deletion, duplication, and point mutation analysis results of whole dystrophin exons using a dystrophin gene mutation differential diagnosis chip are integrated with serum creatine kinase levels, family history, and biopsy results. To screen for Duchenne / Becker-type muscular dystrophy. 제 1항 내지 5항에 있어서, 디스트로핀 유전자 변이 감별진단용 칩을 포함하는 뒤셴/베커형 근이양증 산전(prenatal) 진단키트.6. The prenatal diagnosis kit according to claim 1, wherein the Duschen / Becker type muscle dysplasia comprises a dystrophin gene mutation differential diagnosis chip. 7.
KR1020080075490A 2008-08-01 2008-08-01 DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough KR101068939B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080075490A KR101068939B1 (en) 2008-08-01 2008-08-01 DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080075490A KR101068939B1 (en) 2008-08-01 2008-08-01 DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough

Publications (2)

Publication Number Publication Date
KR20100013801A true KR20100013801A (en) 2010-02-10
KR101068939B1 KR101068939B1 (en) 2011-10-05

Family

ID=42087753

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080075490A KR101068939B1 (en) 2008-08-01 2008-08-01 DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough

Country Status (1)

Country Link
KR (1) KR101068939B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128286A1 (en) * 2017-01-06 2018-07-12 배진현 Method for rapidly detecting nucleic acid, and method for rapidly diagnosing disease using same
CN108753953A (en) * 2018-06-19 2018-11-06 上海五色石医学研究股份有限公司 A kind of people DMD gene extron PCR amplifications system, detection kit and its method of application
CN111607642A (en) * 2019-03-29 2020-09-01 北京希望组生物科技有限公司 Detection probe, kit and method for Dystrophin gene
WO2021191386A1 (en) * 2020-03-25 2021-09-30 Centre Hospitalier Universitaire De Liège Methods and tools for analysing the duchenne muscular dystrophy (dmd) gene
CN116144794A (en) * 2023-03-09 2023-05-23 华中农业大学 Bovine 12K SV liquid phase chip and design method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184566B1 (en) 2012-05-11 2012-09-20 케이맥(주) Method for integrated analysis of real-time pcr and dna chip
CN109486936A (en) * 2018-11-06 2019-03-19 南方医科大学南方医院 Detect the genetic fragment of DMD deletion mutant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128286A1 (en) * 2017-01-06 2018-07-12 배진현 Method for rapidly detecting nucleic acid, and method for rapidly diagnosing disease using same
CN108753953A (en) * 2018-06-19 2018-11-06 上海五色石医学研究股份有限公司 A kind of people DMD gene extron PCR amplifications system, detection kit and its method of application
CN111607642A (en) * 2019-03-29 2020-09-01 北京希望组生物科技有限公司 Detection probe, kit and method for Dystrophin gene
WO2021191386A1 (en) * 2020-03-25 2021-09-30 Centre Hospitalier Universitaire De Liège Methods and tools for analysing the duchenne muscular dystrophy (dmd) gene
CN116144794A (en) * 2023-03-09 2023-05-23 华中农业大学 Bovine 12K SV liquid phase chip and design method and application thereof
CN116144794B (en) * 2023-03-09 2023-12-19 华中农业大学 Bovine 12K SV liquid phase chip and design method and application thereof

Also Published As

Publication number Publication date
KR101068939B1 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
KR101742937B1 (en) Genetic polymorphic markers for determining type of white skin and use thereof
KR101176091B1 (en) Detection of chromosomal disorders
KR101074841B1 (en) Diagnosis Kit and Chip for Bladder Cancer Using Bladder Cancer Specific Methylation Marker Gene
KR101068939B1 (en) DNA chip and PNA chip for the dystrophin gene deletion, duplication, point mutation and DMD/BMD screening test therethrough
KR101432164B1 (en) Novel haplotype marker for discriminating level of meat quality of Pig and use thereof
US6787309B2 (en) Alterations in the long QT syndrome genes KVLQT1 and SCN5A and methods for detecting same
JP2009523442A (en) DNA chip for corneal dystrophy diagnosis
AU2014203213A1 (en) Diagnostic markers for ankylosing spondylitis and uses thereof
CA2305675C (en) .beta.-adrenergic receptor polymorphisms
KR101450792B1 (en) Novel SNP marker for discriminating Black Coat Colour of Pig and use thereof
US20120148574A1 (en) Diagnostic Markers for Ankylosing Spondylitis
KR101051385B1 (en) Primer set for obesity gene amplification, reagent for amplifying obesity gene comprising same and use thereof
Bang‐Ce et al. Rapid detection of common Chinese glucose‐6‐phosphate dehydrogenase (G6PD) mutations by microarray‐based assay
KR100666099B1 (en) Oligonucleotide microarray and method for detecting mutations employing same
CN112501286A (en) Marker of genetic thyroid dysfunction disease pathogenic gene and detection kit thereof
KR101019952B1 (en) Stroke early diagnosing chip and screening analysis thereof
WO2001081633A1 (en) Association of protein kinase c zeta polymorphisms with diabetes
KR101728023B1 (en) Detection of mutations in ATP7B gene using PCR-LDR
CN103789436A (en) Artificial modified primer-based quantitative mutation detecting system
WO2011063474A1 (en) Diagnostic markers for spondyloarthropathies and uses thereof
KR101929383B1 (en) Novel gene marker for discriminating the composition of omega fatty acid of pigs and use thereof
JP4502570B2 (en) IgA nephropathy diagnosis using genetic polymorphism analysis and IgA nephropathy diagnosis kit
CN118222690A (en) Primer probe composition for detecting human TGFBI gene mutation and application thereof
JP2002223760A (en) Oligonucleotide array and method for detecting the splicing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140922

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180927

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190906

Year of fee payment: 9