KR20090128966A - Method of controlling battery for hybrid electric vehicle - Google Patents

Method of controlling battery for hybrid electric vehicle Download PDF

Info

Publication number
KR20090128966A
KR20090128966A KR1020080054997A KR20080054997A KR20090128966A KR 20090128966 A KR20090128966 A KR 20090128966A KR 1020080054997 A KR1020080054997 A KR 1020080054997A KR 20080054997 A KR20080054997 A KR 20080054997A KR 20090128966 A KR20090128966 A KR 20090128966A
Authority
KR
South Korea
Prior art keywords
vehicle
battery
hybrid electric
mode
electric vehicle
Prior art date
Application number
KR1020080054997A
Other languages
Korean (ko)
Inventor
임해규
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020080054997A priority Critical patent/KR20090128966A/en
Publication of KR20090128966A publication Critical patent/KR20090128966A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/0307Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for using generators driven by a machine different from the vehicle motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PURPOSE: A battery control method of a hybrid electric vehicle is provided to improve the life, fuel efficiency, and durability of a battery by improving the efficiency of the battery control in consideration of the environment condition like a driving area, a driving mode and so on. CONSTITUTION: A battery control method of a hybrid electric vehicle is composed of the steps of: recognizing the environment condition of a vehicle by using a navigation system(10) mounted on a vehicle; transmitting the signal to a battery management system(11) by making the recognized environment condition as a signal; and transmitting the signal to a hybrid control unit(12) by making the SOC area information as a signal after setting the SOC area according to the received signal.

Description

하이브리드 전기 자동차용 배터리 제어방법{Method of controlling battery for Hybrid Electric Vehicle}Battery control method for hybrid electric vehicle {Method of controlling battery for Hybrid Electric Vehicle}

본 발명은 하이브리드 전기 자동차용 배터리 제어방법에 관한 것으로, 더욱 상세하게는 하이브리드 자동차의 주행지역 및 주행모드 등에 따른 환경조건을 고려하여 배터리를 능동적으로 제어하는 하이브리드 전기 자동차용 배터리 제어방법에 관한 것이다.The present invention relates to a battery control method for a hybrid electric vehicle, and more particularly, to a battery control method for a hybrid electric vehicle actively controlling the battery in consideration of environmental conditions according to the driving region and the driving mode of the hybrid vehicle.

일반적으로 하이브리드 전기 자동차(Hybrid Electric Vehicle;HEV)는 가솔린이나 디젤 등의 엔진에 전기모터를 결합하고 두 동력원이 각각의 특성을 발휘할 수 있는 영역에서 작동하게 하여 높은 에너지 효율을 얻음으로써 자동차 배기가스의 절감과 함께 연료소비효율을 개선할 수 있는 차량이다.In general, a hybrid electric vehicle (HEV) combines an electric motor with an engine such as gasoline or diesel, and operates in an area in which two power sources can exhibit their respective characteristics, thereby obtaining high energy efficiency. It is a vehicle that can reduce fuel consumption and improve fuel efficiency.

이러한 하이브리드 전기 자동차는 출발이나 저속 주행시에는 전기 모터를 사용하고, 높은 출력이 필요한 가속지점이나 오르막길 같은 경우는 내연기관의 엔진을 가동시키거나 또는 내연기관의 엔진과 전기모터를 동시에 작동시켜 주행한다.Such a hybrid electric vehicle uses an electric motor at the start or at a low speed, and operates an engine of an internal combustion engine or operates an engine and an electric motor of an internal combustion engine at the same time, such as an acceleration point or an uphill road, which require high output.

하이브리드 전기 자동차의 전기 모터 구동에 필요한 전력은 차량 내에 장착된 배터리를 통해 얻는데, 배터리의 충전량이 일정한도로 떨어지는 경우에 내연기관의 작동으로 배터리를 충전함으로써 에너지효율을 높여 연비를 향상시키게 된다.The electric power required to drive the electric motor of the hybrid electric vehicle is obtained through a battery mounted in the vehicle. When the amount of charge of the battery falls to a certain level, the operation of the internal combustion engine charges the battery, thereby improving energy efficiency and improving fuel efficiency.

현재 하이브리드 자동차의 배터리 제어는 배터리 상태에 따라 제어하는 방식이 이용되고 있다. 즉, 배터리의 충전상태(SOC: State Of Charge) 및 파워영역, 고장진단, 냉각에 의한 배터리의 운영 측면을 강조하여 차량은 그 제한적인 영역에서 하이브리드 제어를 하게 된다.Currently, the hybrid vehicle's battery control is based on the battery condition. That is, by emphasizing the state of charge (SOC) of the battery, power area, failure diagnosis, and operation of the battery by cooling, the vehicle performs hybrid control in the limited area.

이러한 배터리의 제어는 결국 하이브리드 자동차가 처한 환경적인 조건을 반영할 수 없는 문제가 있으며, 차량의 환경에 관계없이 배터리의 상태에 의존한 값에 의하여 제어기능을 구현하게 된다.The control of the battery, after all, has a problem that cannot reflect the environmental conditions encountered by the hybrid vehicle, and implements the control function based on the value of the battery regardless of the environment of the vehicle.

따라서, 하이브리드 차량이 배터리의 SOC 운영이나, 파워의 사용을 원활하게 하는데 있어서 제한되는 문제가 발생하게 된다.Therefore, a problem arises in that the hybrid vehicle is limited in smoothing the operation of the SOC of the battery or the use of power.

본 발명은 상기와 같은 문제점을 해결하기 위해 발명한 것으로서, 하이브리드 자동차의 배터리 제어에 있어서 차량의 주행지역 및 주행모드와 같은 환경조건을 반영함으로써 배터리 제어의 효율을 향상시켜 배터리의 수명 및 내구성과 차량 연비를 향상시킬 수 있는 하이브리드 전기 자동차용 배터리 제어방법을 제공하는데 그 목적이 있다.The present invention has been invented to solve the above problems, in the battery control of the hybrid vehicle by reflecting the environmental conditions such as the driving region and the driving mode of the vehicle to improve the efficiency of the battery control and durability of the battery and the vehicle An object of the present invention is to provide a battery control method for a hybrid electric vehicle that can improve fuel economy.

상기한 목적을 달성하기 위해 본 발명은 차량 구동을 위한 동력원으로 엔진과 전기모터가 사용되는 하이브리드 전기 자동차용 배터리 제어방법에 있어서,In order to achieve the above object, the present invention provides a battery control method for a hybrid electric vehicle in which an engine and an electric motor are used as a power source for driving a vehicle.

차량에 장착된 지역환경정보기를 이용하여 차량의 환경조건을 인지하고, 인지한 차량의 환경조건을 신호화하여 배터리제어기로 전송하는 단계;Recognizing the environmental conditions of the vehicle using the local environmental information mounted on the vehicle, signaling the recognized environmental conditions of the vehicle and transmitting them to the battery controller;

상기 배터리제어기가 수신한 신호에 따라 SOC 영역을 설정하고, 이를 신호화하여 차량 제어기에 전송하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법을 제공한다.And setting the SOC area according to the signal received by the battery controller, signaling the signal, and transmitting the signal to the vehicle controller.

그리고, 상기 지역환경정보기는 목적지가 입력되면 설정되어 있는 도로 모드에 따라 차량의 환경조건을 판별하는 것을 특징으로 한다.The local environment information device may be configured to determine an environmental condition of a vehicle according to a road mode set when a destination is input.

또한, 상기 배터리제어기의 SOC 영역은 상기 지역환경정보기에서 전송되는 신호에 따라 배터리의 충전상태와 가용파워를 산출하여 설정되는 것을 특징으로 한다.In addition, the SOC area of the battery controller is set by calculating the state of charge and available power of the battery according to the signal transmitted from the local environmental information.

바람직하게, 상기 지역환경정보기는 고도 및 도로정보를 제공하는 네비게이션 또는 모젠인 것을 특징으로 하며,Preferably, the local environmental information is characterized in that the navigation or mogen providing altitude and road information,

상기 도로 모드는 도심 모드, 고속도로 모드, 산악 모드, 출퇴근 모드 등으로 설정되는 것을 특징으로 한다.The road mode may be set to a downtown mode, a highway mode, a mountain mode, a commute mode, and the like.

본 발명에 따른 하이브리드 전기 자동차용 배터리 제어방법은 차량이 처한 지역환경을 고려하여 배터리를 제어함으로써 배터리 제어의 효율이 향상됨은 물론이고, 배터리 운영 효율에 따라 배터리의 수명 및 내구성이 향상되고, 이러한 배터리를 이용한 차량의 가속성능 및 연비의 향상이 기대되는 효과가 있다.The battery control method for a hybrid electric vehicle according to the present invention not only improves the efficiency of battery control by controlling the battery in consideration of the local environment in which the vehicle is located, but also improves the lifespan and durability of the battery according to the battery operating efficiency. There is an effect that is expected to improve the acceleration performance and fuel economy of the vehicle using.

본 발명에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니며, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention, and the singular forms “a”, “an” and “the” include plural forms unless the context clearly indicates otherwise.

본 발명의 실시 예로는 다수 개가 존재할 수 있으며, 설명에 있어서 종래의 기술과 동일한 부분에 대하여 중복되는 설명은 생략되는 것도 있다.There may be a plurality of embodiments of the present invention, and overlapping descriptions of the same parts as in the prior art may be omitted.

이하, 첨부된 도면을 참조로 하여 본 발명의 바람직한 일실시 예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

본 발명에 따라 바람직하게 실시되는 하이브리드 전기 자동차용 배터리 제어방법은 차량의 운행조건에 대하여 차내에 구비되는 지역환경정보기(10)에 의해 차량 환경을 인지하고, 인지된 환경조건을 신호화하여 이를 배터리제어기(Battery Management System, BMS)(11)에 송신하면, 배터리제어기(11)가 수신된 신호(Signal)의 단계에 따라 SOC 운영 및 파워영역에 대한 가변을 취한 다음 이를 차량 제어기(Hybrid control unit, HCU)(12)로 송부함으로써 차량 조건에 맞는 배터리 제어를 한다.The battery control method for a hybrid electric vehicle, which is preferably implemented according to the present invention, recognizes the vehicle environment by the local environmental information device 10 provided in the vehicle with respect to the driving conditions of the vehicle, signals the recognized environmental conditions, and converts the battery into a battery. When transmitting to the controller (Battery Management System, BMS) (11), the battery controller 11 takes a variable for the SOC operation and the power area according to the step of the received signal (Signal), and then the vehicle controller (Hybrid control unit, HCU) is sent to the battery control according to the vehicle conditions.

첨부한 도 1은 본 발명에 따른 하이브리드 전기 자동차용 배터리 제어방법을 나타낸 블록도이고, 도 2는 차량의 환경조건에 따른 SOC 영역을 도시한 그래프이다.1 is a block diagram illustrating a method for controlling a battery for a hybrid electric vehicle according to the present invention, and FIG. 2 is a graph illustrating an SOC region according to environmental conditions of a vehicle.

이하 더욱 상세하게 설명하면, 본 발명은 도 1에 도시된 바와 같이, 하이브리드 자동차에 장착되는 네비게이션이나 모젠과 같은 지역환경정보기(10)를 통해 차량이 처한 환경, 예를 들면 고속도로나 국도, 도심 도로와 같은 주행 도로의 상황(도로정보)이나 도로의 고도, 차량의 주행모드 등을 인식한 다음, 배터리제어기(11)가 이 환경조건들을 인식할 수 있도록 도 2와 같이 지역환경을 구분하여 다양한 통신신호로 변환하여 배터리제어기(11)에 송신한다.In more detail, the present invention, as shown in Figure 1, the environment in which the vehicle is located, such as highways, national highways, urban roads through a local environmental information device 10, such as navigation or mogen mounted to a hybrid vehicle After recognizing the situation (road information) of the driving road, the altitude of the road, the driving mode of the vehicle, and the like, the battery controller 11 recognizes these environmental conditions so as to distinguish the various local environments as shown in FIG. 2. The signal is converted into a signal and transmitted to the battery controller 11.

그럼 배터리제어기(11)는 상기 지역환경정보기(10)로부터 통신신호를 받아 이 신호에 따른 배터리의 충전상태와 가용파워를 산출한다. 즉, 배터리제어기(11)의 파워 제한값은, 도 2의 예에서와 같이 도심 주행에 비해 비교적 큰 파워를 필요로 하는 산악 주행시 SOC 영역의 폭을 가능한 범위에서 확대하고 순간 제한값을 확대하듯이, 지역환경에 맞춰 조절되고 차량 제어기(12)는 배터리제어기(11)의 파워 제한값(가용 파워)을 고려하여 내연기관의 엔진을 제어하여 구동부를 다양하게 구동(Motoring)할 수 있게 된다.Then, the battery controller 11 receives the communication signal from the local environmental information 10 to calculate the state of charge and available power of the battery according to this signal. That is, the power limit value of the battery controller 11 is, as in the example of FIG. 2, the area is expanded as much as possible and the instantaneous limit value is expanded in the range of the SOC area during mountain driving, which requires a relatively large amount of power compared to city driving. The vehicle controller 12 may be adjusted to the environment, and the vehicle controller 12 may control the engine of the internal combustion engine in consideration of the power limit value (available power) of the battery controller 11 to variously drive the driving unit.

도 3 ~ 도 5는 본 발명에 따른 일실시예에서 지역환경정보기가 인식한 주행 도로 모드에 따라 배터리의 가용파워(가용에너지)가 변동되는 것을 도시한 그래프이다. 3 to 5 are graphs illustrating that available power (available energy) of a battery is changed according to a driving road mode recognized by the local environment information device according to an exemplary embodiment of the present invention.

다음과 같은 실시예에서 배터리제어기(11)의 가용 SOC 기준범위는 전체의 20~80%로 설정되고, 지역환경정보기는 인식한 차량의 지역환경을 도심 모드, 고속도로 모드, 산악 모드, 출퇴근 모드 등으로 모드를 분류하며, 이때 엔진의 성능이 동일하다고 보고 모터에 의한 하이브리드 차량의 성능을 살펴본다.In the following embodiment, the available SOC reference range of the battery controller 11 is set to 20 to 80% of the total, and the local environmental information system sets the recognized local environment of the vehicle in the city mode, highway mode, mountain mode, commute mode, etc. Modes are classified and the engine performance is the same, and the performance of the hybrid vehicle by the motor is examined.

물론, 상기 배터리제어기(11)는 상기에서 언급된 모드 외에도 다양한 모드로 분류하여 설정할 수 있다.Of course, the battery controller 11 may be set in various modes in addition to the above-mentioned mode.

도 3에 도시된 바와 같이, 지역환경정보기(10)로부터 신호화된 차량의 환경조건을 전송받은 배터리제어기(11)가 산악 모드로 판단하게 되면, 차량의 주행을 위한 필요에너지가 증가되기 때문에 배터리제어기(11)의 가용 SOC범위가 10~90%로 확대되어 가용파워가 증가하고 이에 따라 차량의 가속성능이나 출력성능이 더 우수해져 차량의 상품성이 향상된다.As shown in FIG. 3, when the battery controller 11 receiving the environmental condition of the vehicle signaled from the local environmental information 10 determines that the vehicle is in the mountain mode, the energy required for driving the vehicle is increased. The available SOC range of the controller 11 is expanded to 10 to 90% to increase the available power, thereby improving the acceleration performance or the output performance of the vehicle, thereby improving the merchandise of the vehicle.

그리고, 도 4에 도시된 바와 같이, 지역환경정보기(10)로부터 신호화된 차량의 환경조건을 전송받은 배터리제어기(11)가 수신한 신호를 고속도로 모드로 판단하게 되면, 차량의 주행을 위한 필요에너지가 감소되기 때문에 배터리제어기(11)의 가용 SOC 범위가 30~70%로 축소되어 가용파워는 감소하나 배터리시스템의 불필요한 충방전을 방지하여 배터리의 내구성이 확보되는 효과를 얻을 수 있다.As shown in FIG. 4, when the battery controller 11 receiving the environmental condition of the vehicle signaled from the local environmental information 10 determines the signal received in the highway mode, it is necessary to drive the vehicle. Since the energy is reduced, the available SOC range of the battery controller 11 is reduced to 30 to 70%, so that the available power is reduced, but the unnecessary durability of the battery system can be prevented, thereby ensuring the durability of the battery.

한편, 도 5에 도시된 바와 같이, 배터리제어기(11)가 네비게이션이나 모젠에서 송부된 정보를 출퇴근 모드로 판단하게 되면, 가용 SOC범위가 5~95%로 확대되어 가용파워가 증가하고 차량의 성능이 향상된다.On the other hand, as shown in Figure 5, when the battery controller 11 determines the information sent from the navigation or mozen to the commute mode, the available SOC range is extended to 5 ~ 95% to increase the available power and the performance of the vehicle This is improved.

상기 실시예에서는 출퇴근시에 교통이 매우 혼잡한 것을 고려하여 산악 모드시보다 가용파워가 크게 증가되도록 설정하여 출퇴근시 자주 발생하는 차량의 멈춤 /구동에 따른 배터리의 충전/방전의 효과를 최대로 이용할 수 있도록 하여 장기적으로 연비절감 효과 및 차량의 가속성능 향상을 기대할 수 있다.In the above embodiment, considering that the traffic is very congested at the time of commute, the available power is set to be greatly increased than in the mountain mode, thereby maximizing the effect of the charging / discharging of the battery according to the stopping / driving of the vehicle frequently occurring at the time of commute. In the long term, it is possible to expect fuel efficiency and vehicle acceleration performance.

상기와 같은 가용 SOC의 범위는 배터리제어기(11)에서 제한된 영역으로 설정되는 값이며, 대부분의 도로 모드는 이러한 SOC 영역 내에서 차량 제어기(12)가 파워를 사용하게 된다. 그러나, 만약 차량 제어기(12)에서 가용 SOC범위를 벗어나 구동부(전기모터)를 동작시키게 되면 배터리제어기(11)에서 파워제한을 걸게 되어 차량이 성능이 떨어질 수 있다.The range of the available SOC is a value set to the limited area in the battery controller 11, and in most road modes, the vehicle controller 12 uses power in the SOC area. However, if the driving unit (electric motor) is operated out of the available SOC range in the vehicle controller 12, the battery controller 11 may place a power limit, thereby degrading the performance of the vehicle.

따라서, 본 발명에서 차량의 지역환경에 따라 가변되는 SOC 영역이 차량 성능을 향상시킬 수 있도록 설정하려면, SOC 영역 설정시 차량에서 전기모터를 구동하기 위하여 요구하는 동력성능 및 배터리 내구를 고려해야 한다.Therefore, in the present invention, in order to set the SOC area that is variable according to the local environment of the vehicle to improve the vehicle performance, the power performance and battery durability required for driving the electric motor in the vehicle should be taken into consideration when setting the SOC area.

본 발명에 따라 작동하는 하이브리드 차량의 제어상태를 정리하여 설명하면 다음과 같다.The control state of the hybrid vehicle operating according to the present invention will be described as follows.

먼저, 모젠(NAVI)과 같은 지역환경정보기(10)에 승객이 목적지를 설정하면 상기 지역환경정보기(10)에 설정되어 있는 경로를 통하여 어느 모드(예를 들면 산악 모드, 고속도로 모드, 출퇴근 모드, 도심 모드 등)에 속하는지 판단하고 결정된 모드를 신호화하여 배터리제어기(11)로 전송한 다음, 상기 배터리제어기(11)가 각 모드에 따른 가용 SOC 영역(가변 설정 가능)을 설정하여 차량 제어기(12)에 그 신호를 송부한다.First, when a passenger sets a destination in a local environmental information device 10 such as MOGEN (NAVI), a certain mode (for example, mountain mode, highway mode, commute mode, Determine whether it belongs to a downtown mode, etc., and transmit the determined mode to the battery controller 11, and then the battery controller 11 sets an available SOC area (variable setting) according to each mode. Send the signal to 12).

이때, 지역환경정보기(10)를 통해 인식한 각 모드에 따라 SOC 범위가 증대되면 차량의 동력성능이 향상되고, SOC 범위가 감소되면 배터리의 내구 및 수명을 연 장할 수 있으며, 차량 제어기(12)는 배터리제어기(11)의 가용 SOC 영역을 고려하여 전기모터를 이용한 차량의 동작을 제어한다.At this time, if the SOC range is increased according to each mode recognized by the local environmental information 10, the power performance of the vehicle is improved, and if the SOC range is reduced, the durability and life of the battery can be extended, and the vehicle controller 12 The controller controls the operation of the vehicle using the electric motor in consideration of the available SOC area of the battery controller 11.

이상에서는 본 발명을 특정의 바람직한 실시 예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시 예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 실시할 수 있는 다양한 형태의 실시 예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments, the invention is not limited to these embodiments, and those of ordinary skill in the art claim the invention as claimed in the appended claims. It includes all embodiments of the various forms that can be carried out without departing from the spirit.

도 1은 본 발명에 따른 하이브리드 전기 자동차용 배터리 제어방법을 나타낸 블록도, 1 is a block diagram showing a battery control method for a hybrid electric vehicle according to the present invention;

도 2는 본 발명의 일실시예에 따라 차량의 환경조건에 따른 SOC 영역을 도시한 그래프,2 is a graph showing an SOC region according to environmental conditions of a vehicle according to an embodiment of the present invention;

도 3 ~ 도 5는 본 발명에 따른 일실시예에서 지역환경정보기가 인식한 주행 도로 모드에 따라 배터리의 가용파워(가용에너지)가 변동되는 것을 도시한 그래프.3 to 5 are graphs illustrating that available power (available energy) of a battery is changed according to a driving road mode recognized by the local environment information device in one embodiment according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 지역환경정보기 11 : 배터리제어기10: local environmental information 11: battery controller

12 : 차량 제어기12: vehicle controller

Claims (5)

차량 구동을 위한 동력원으로 엔진과 전기모터가 사용되는 하이브리드 전기 자동차용 배터리 제어방법에 있어서,In a battery control method for a hybrid electric vehicle using an engine and an electric motor as a power source for driving a vehicle, 차량에 장착된 지역환경정보기를 이용하여 차량의 환경조건을 인지하고, 인지한 차량의 환경조건을 신호화하여 배터리제어기로 전송하는 단계;Recognizing the environmental conditions of the vehicle using the local environmental information mounted on the vehicle, signaling the recognized environmental conditions of the vehicle and transmitting them to the battery controller; 상기 배터리제어기가 수신한 신호에 따라 SOC 영역을 설정하고, 이를 신호화하여 차량 제어기에 전송하는 단계;Setting an SOC area according to a signal received by the battery controller, signaling the signal, and transmitting the signal to a vehicle controller; 를 포함하여 이루어지는 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법.Battery control method for a hybrid electric vehicle, characterized in that comprises a. 청구항 1에 있어서,The method according to claim 1, 상기 지역환경정보기는 목적지가 입력되면 설정되어 있는 도로 모드에 따라 차량의 환경조건을 판별하는 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법.The local environmental information control device for a hybrid electric vehicle, characterized in that for determining the environmental conditions of the vehicle according to the road mode is set when the destination is input. 청구항 1에 있어서,The method according to claim 1, 상기 배터리제어기의 SOC 영역은 상기 지역환경정보기에서 전송되는 신호에 따라 배터리의 충전상태와 가용파워를 산출하여 설정되는 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법.The SOC region of the battery controller is set by calculating the state of charge and available power of the battery according to the signal transmitted from the local environmental information battery control method for a hybrid electric vehicle. 청구항 1에 있어서,The method according to claim 1, 상기 지역환경정보기는 고도 및 도로정보를 제공하는 네비게이션 또는 모젠인 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법.The local environmental information device is a hybrid electric vehicle battery control method, characterized in that the navigation or mogen providing altitude and road information. 청구항 2에 있어서,The method according to claim 2, 상기 도로 모드는 도심 모드, 고속도로 모드, 산악 모드, 출퇴근 모드 등으로 설정되는 것을 특징으로 하는 하이브리드 전기 자동차용 배터리 제어방법.The road mode is a battery control method for a hybrid electric vehicle, characterized in that the city mode, highway mode, mountain mode, commute mode is set.
KR1020080054997A 2008-06-12 2008-06-12 Method of controlling battery for hybrid electric vehicle KR20090128966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080054997A KR20090128966A (en) 2008-06-12 2008-06-12 Method of controlling battery for hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080054997A KR20090128966A (en) 2008-06-12 2008-06-12 Method of controlling battery for hybrid electric vehicle

Publications (1)

Publication Number Publication Date
KR20090128966A true KR20090128966A (en) 2009-12-16

Family

ID=41689113

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080054997A KR20090128966A (en) 2008-06-12 2008-06-12 Method of controlling battery for hybrid electric vehicle

Country Status (1)

Country Link
KR (1) KR20090128966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481288B1 (en) * 2013-07-02 2015-01-09 현대자동차주식회사 Driving control method for hybrid vehicle
KR20230100282A (en) 2021-12-28 2023-07-05 주식회사 효원파워텍 Method and apparatus of generating pulse for estimating a position of rotator in motor for phil simulator, and motor control system using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481288B1 (en) * 2013-07-02 2015-01-09 현대자동차주식회사 Driving control method for hybrid vehicle
KR20230100282A (en) 2021-12-28 2023-07-05 주식회사 효원파워텍 Method and apparatus of generating pulse for estimating a position of rotator in motor for phil simulator, and motor control system using the same

Similar Documents

Publication Publication Date Title
KR101655609B1 (en) Method for controlling battery state of charge in hybrid electric vehicle
KR100992755B1 (en) Method for determination optimum working point of HEV
US9327712B2 (en) System and method for control of a hybrid vehicle with regenerative braking using location awareness
KR101713735B1 (en) Method for controlling output of low voltage DC-DC converter in green car, and low voltage DC-DC converter of green car
US8116973B2 (en) Vehicular display device, method of controlling the same, program, and storage medium having program stored therein
US20190126907A1 (en) Hybrid vehicle and method of changing operation mode for the same
CN102416950B (en) Minimum equivalent fuel consumption-based hybrid electrical vehicle control method
KR101371463B1 (en) Method and system for controlling recharging of a battery for hybrid vehicle
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
EP3060445B1 (en) Movement support apparatus and movement support method
US10081352B2 (en) Method for operating a navigation system of a hybrid motor vehicle, and hybrid motor vehicle
KR20180086782A (en) Method for controlling driving of hybrid vehicle
US11312360B2 (en) Control system for vehicle
KR102359578B1 (en) Method for determining optimal operating point for hybrid electric vehicle
JP5835126B2 (en) Driving assistance device
KR100867808B1 (en) Method for controlling driving mode of plug-in hev
KR20210079569A (en) Apparatus and method for predicting driving distance according to driving mode of electric vehicle
JP2003070102A (en) Controller for hybrid vehicle
JP2012189466A (en) Driving support system and in-vehicle system
KR20090128966A (en) Method of controlling battery for hybrid electric vehicle
JP2013147233A (en) Control apparatus for electric vehicle
US20180126977A1 (en) Method for controlling driving of vehicle using driving information of forward vehicle
KR101943864B1 (en) Hybrid vehicle and method of controlling engine
CN108340905B (en) Method for controlling driving of hybrid vehicle
KR20230039803A (en) Hybrid vehicle and method of controlling charging amount

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application