KR20090120539A - Polyvinylalcohol microfibrillar fiber and preparation method thereof - Google Patents

Polyvinylalcohol microfibrillar fiber and preparation method thereof Download PDF

Info

Publication number
KR20090120539A
KR20090120539A KR1020080046392A KR20080046392A KR20090120539A KR 20090120539 A KR20090120539 A KR 20090120539A KR 1020080046392 A KR1020080046392 A KR 1020080046392A KR 20080046392 A KR20080046392 A KR 20080046392A KR 20090120539 A KR20090120539 A KR 20090120539A
Authority
KR
South Korea
Prior art keywords
fiber
solution
saponification
mol
pva
Prior art date
Application number
KR1020080046392A
Other languages
Korean (ko)
Other versions
KR101024173B1 (en
Inventor
류원석
송두현
이영재
김선길
제갈영순
노석균
한성수
전한용
정용식
민병길
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020080046392A priority Critical patent/KR101024173B1/en
Publication of KR20090120539A publication Critical patent/KR20090120539A/en
Application granted granted Critical
Publication of KR101024173B1 publication Critical patent/KR101024173B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/06Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE: Polyvinylalcohol microfibrillar fiber and a preparation method thereof are provided to reduce manufacturing processes through simple mechanical shearing manipulation using methanol as a saponification solvent. CONSTITUTION: A preparation method of polyvinylalcohol microfibrillar fiber includes a step for producing a solution by dissolving poly(vinyl pivalate/acetic acid vinyl) copolymers as a saponification solvent, and a step for shearing a mixed compound after agitating the solution and an alkali saponification solvent after injecting the alkali saponification solvent in the solution. The saponification solvent one organic solvent selected from methanol, tetrahydrofuran, acetone, methyl ethyl ketone or dioxane. The saponification solvent is comprised of hydroxide of 0.5 - 0.07 mole selected from a group consisting of potassium hydroxide, calcium hydroxide, sodium hydroxide, and their mixture and water of 0.1 - 0.8 mole.

Description

폴리비닐알코올 마이크로피브릴 섬유 및 이의 제조방법{Polyvinylalcohol microfibrillar fiber and preparation method thereof} Polyvinyl alcohol microfibrillar fiber and preparation method thereof

본 발명은 폴리(피발산비닐/아세트산비닐) 공중합체를 비누화하는 과정 중에 메탄올과 특정의 비누화제를 이용하고 기계적 전단조작을 실시하여 제조되는 폴리비닐알코올(PVA) 마이크로피브릴 섬유 및 이의 제조방법에 관한 것이다.The present invention is a polyvinyl alcohol (PVA) microfibrill fiber prepared by using a methanol and a specific saponifying agent during the process of saponifying a poly (vinyl pivalate / vinyl acetate) copolymer and mechanical shearing operation and a method of manufacturing the same It is about.

최근 1931년 독일의 헤르만에 의해 처음 제조된[독일특허, 제685,048(1931)] PVA 섬유는 그후 70 여년간 의류용과 산업용 섬유로서 각광받고 있으며, 그에 대한 지속적인 연구가 진행되고 있다. 특히 최근에는 편광필름, 의료용 고분자 및 콘텍트렌즈 등 고기능성 재료로 사용되고 있다.PVA fiber, first manufactured by Hermann, Germany in 1931 (German Patent No. 685,048 (1931)), has been in the spotlight as a textile and garment for 70 years since then. In particular, recently, it has been used as a high functional material such as a polarizing film, a medical polymer and a contact lens.

PVA 섬유의 원료로 사용되는 PVA는 다음 화학식 1과 같은 혼성배열(atactic) PVA와 다음 화학식 2와 같은 교대배열(syndiotactic) PVA의 두가지 종류가 있다. PVA used as a raw material of the PVA fiber is of two types, an atactic PVA as shown in the following formula (1) and a syndiotactic PVA as shown in the following formula (2).

[화학식 1][Formula 1]

Figure 112008035444530-PAT00001
Figure 112008035444530-PAT00001

[화학식 2][Formula 2]

Figure 112008035444530-PAT00002
Figure 112008035444530-PAT00002

그러나 화학식 2와 같은 전 교대배열 PVA의 제조는 아직까지 이루어지지 않고 있으며 일본 공개특허 평4-108,109호에서 밝힌 것과 같이 입체장애를 일으키는 측쇄기를 갖고 있는 단량체를 중합하여 이를 다시 비누화(saponification)하여 제조된 교대배열 PVA조차도 교대배열다이애드기의 함량이 65%를 넘어서지 못하고 있다. However, the preparation of a full-arranged PVA, such as Formula 2, has not yet been made and is prepared by polymerizing a monomer having a side chain group causing steric hindrance as described in Japanese Patent Application Laid-Open No. 4-108,109 and saponifying it again. Even the alternating arrangement PVA content does not exceed 65% of the alternating diad group.

교대배열기를 풍부하게 함유하고 있는 고분자량의 PVA를 제조하기 위해서는 고분자량의 교대배열성 전구체가 얻어지도록 입체장애를 일으키는 에스테르기를 보유하고 있는 단량체를 사용하거나 중합방법을 개선하는 것이 필요하다. In order to prepare a high molecular weight PVA containing abundant alternating groups, it is necessary to use a monomer having an ester group causing steric hindrance or to improve the polymerization method so that a high molecular weight alternating precursor is obtained.

그 이유는 아세트산비닐을 벌크중합이나 용액중합 등의 일반적인 방법으로 중합하여 얻은 폴리아세트산비닐로부터 제조된 PVA는 혼성배열 PVA이고 라디칼 중합시 수반되는 빈번한 연쇄이동반응 때문에 높은 분자량을 얻는 것이 불가능하기 때문이다. The reason is that PVA prepared from polyvinyl acetate obtained by polymerizing vinyl acetate by a general method such as bulk polymerization or solution polymerization is a hybrid array PVA and it is impossible to obtain a high molecular weight due to the frequent chain transfer reactions involved in radical polymerization. .

동일배열, 혼성배열 및 교대배열 PVA를 제조하기 위한 전구체들을 합성하는 데에 사용되는 단량체들은 많이 알려져 있는데, 삼플루오르화 아세트산비닐은 교대배열성 PVA를 제조하는 전구체를 합성하기 위한 단량체로서 많이 사용되어 왔다[K. Yamaura, K. Hirata, S. Tamura, and S. Matsmura, J. Polym. Sci.: Polym. Phys. Ed., 23, 1703(1985)]. Many monomers are known for synthesizing precursors for the production of co-array, hybrid and alternating PVA. Vinyl trifluoride is widely used as a monomer for synthesizing precursors for alternating PVA. [K. Yamaura, K. Hirata, S. Tamura, and S. Matsmura, J. Polym. Sci .: Polym. Phys. Ed. , 23, 1703 (1985).

그러나 이 단량체는 가격이 매우 비싸고 충분한 교대배열성을 발현하지 못한다는 단점이 있다. 피발산비닐은 삼차부틸기의 입체장애 효과 때문에 가장 우수한 교대배열성을 발현하는 것으로 알려져 있으나 비누화 방법이 용이하지 않아 최근에 이르러서야 Yamamoto 등[T. Yamamoto, S. Yoda, H. Takase, T. Saso, O. Sangen, R. Fukae, M. Kamachi, and T. Sato, Polym. J., 23, 185(1991)] 또는 Ha와 Lyoo[일본국 및 유럽 특허 제 PCT/KR 95/00,065호]에 의해 비누화 방법이 확립되었다. However, these monomers have the disadvantage that they are very expensive and do not express sufficient alternating order. Vinyl pivalate is known to express the best alternating arrangement due to the steric hindrance effect of the tertiary butyl group, but the saponification method is not easy and only recently, Yamamoto et al. Yamamoto, S. Yoda, H. Takase, T. Saso, O. Sangen, R. Fukae, M. Kamachi, and T. Sato, Polym. J. , 23, 185 (1991) or by Ha and Lyoo (Japanese and European Patent No. PCT / KR 95 / 00,065) to establish a saponification process.

그러나 이 단량체 또한 일반적으로 PVA의 제조를 위한 전구체의 합성에 사용되는 단량체인 아세트산비닐에 비해 상대적으로 고가이다.However, this monomer is also relatively expensive compared to vinyl acetate, which is generally a monomer used for the synthesis of precursors for the preparation of PVA.

일반적인 PVA의 제조방법에 의해서는 얻어낼 수 없는 혼성배열 고분자량 PVA 및 교대배열 PVA를 제조하기 위해서는 중합방법의 개선이 필요한데 연구 방향도 크게 벌크중합, 용액중합, 유화중합 및 현탁중합의 네가지로 나뉜다. In order to prepare hybrid-array high molecular weight PVA and alternating-array PVA which cannot be obtained by the general method of producing PVA, the polymerization method needs to be improved, and the research directions are largely divided into four types of bulk polymerization, solution polymerization, emulsion polymerization and suspension polymerization. .

벌크중합은 중합계 내에 단량체만 존재하기 때문에 연쇄이동이 발생할 확률이 다른 중합법에 비해 낮으므로 상대적으로 고분자량의 폴리비닐알코올을 얻어낼 수 있다는 장점이 있다. Bulk polymerization has a merit that relatively high molecular weight polyvinyl alcohol can be obtained because the probability of chain transfer is low since only monomer is present in the polymerization system.

많은 연구자들이 벤조일퍼옥시드[M. Matsumoto and M. Maeda, Kobunshi Kagaku, 12, 428(1955)], 벤조일 스테로일 퍼옥시드[A. Voss and W. Heuer, German Patent, 666,866(1934)], 디스테로일 퍼옥시드와 디라우로일 퍼옥시드[S. Molnar, J. Polym. Sci.: Part A-I, 10, 2245(1972)] 및 디푸로일 퍼옥시드[J. W. L. Fordham, G. H. McCain, and L. E. Alexander, J. Polym. Sci., 39, 335(1959)] 등을 이용하여 아세트산비닐을 벌크중합한 결과를 보고하여 왔으나, 아세트산비닐의 중합열이 다른 비닐계열 단량체들에 비해 매우 높고[S. R. Sandler and W. Karo, "Polymer Synthesis", vol. 3, pp. 197-199, Academic Press, New York, 1980], 이로 인한 반응 속도의 상승이 일어나기 때문에 고분자량의 PVA를 효과적으로 얻어낼 수 없고 점성도 조절이 용이하지 않아 높은 수준의 전환율을 얻기가 어렵다는 단점을 가지고 있다. Many researchers have described benzoylperoxide [M. Matsumoto and M. Maeda, Kobunshi Kagaku , 12, 428 (1955)], benzoyl steroyl peroxide [A. Voss and W. Heuer, German Patent, 666,866 (1934)], disteroyl peroxide and dilauroyl peroxide [S. Molnar, J. Polym. Sci .: Part AI , 10, 2245 (1972)] and difuroyl peroxide (JWL Fordham, GH McCain, and LE Alexander, J. Polym. Sci. , 39, 335 (1959)] and the like have been reported to bulk polymerization of vinyl acetate, but the heat of polymerization of vinyl acetate is very high compared to other vinyl monomers [SR Sandler and W. Karo, "Polymer Synthesis ", vol. 3, pp. 197-199, Academic Press, New York, 1980], because of this increase in the reaction rate, it is difficult to obtain a high molecular weight PVA effectively, and it is difficult to obtain a high level of conversion because the viscosity is not easy to control. .

미국 특허 제 4,963,138호에 의하면, 아세트산비닐을 자외선으로 개시시켜 여러 저온에서 벌크중합하여 얻어진 초고분자량의 폴리아세트산비닐을 완전 비누화하여 고유점성도가 5(dl/g)을 넘는 초고분자량의 PVA를 합성하였고, Imai 등[K. Imai, T. Shiomi, N. Oda, and H. Otsuka, J. Polym. Sci.: Polym. Chem. Ed., 24, 3225(1986)]은 아세트산비닐을 60 ℃에서 극소량의 아조비스이소부티로니트릴을 개시제로 벌크중합하여 얻은 폴리아세트산비닐로부터 고분자량의 PVA를 제조하였다.According to US Patent No. 4,963,138, ultra-high molecular weight PVA having an intrinsic viscosity of more than 5 (dl / g) was synthesized by completely saponifying ultra high molecular weight polyvinyl acetate obtained by initiating vinyl acetate with ultraviolet rays and bulk polymerization at various low temperatures. , Imai, et al. [K. Imai, T. Shiomi, N. Oda, and H. Otsuka, J. Polym. Sci .: Polym. Chem. Ed. , 24, 3225 (1986)] prepared a high molecular weight PVA from polyvinyl acetate obtained by bulk polymerization of vinyl acetate at 60 ° C. with a small amount of azobisisobutyronitrile.

Go 등[Y. Go, S. Matsuzawa, Y. Kondo, K. Nakamura, and T. Sakamoto, Kobunshi Kagaku, 25, 55(1968)]은 삼플루오르화 아세트산비닐을 벤조일퍼옥시드를 개시제로 60 ℃에서 벌크중합하여 얻어진 폴리삼플루오르화아세트산비닐을 가아민 분해하여 수평균 중합도 7,700 및 교대배열다이애드기 함량 55%인 교대배열 고분자량의 PVA를 합성하였다.Go et al. [Y. Go, S. Matsuzawa, Y. Kondo, K. Nakamura, and T. Sakamoto, Kobunshi Kagaku , 25, 55 (1968)] are obtained by bulk polymerization of vinyl trifluoride acetate with benzoyl peroxide as an initiator at 60 ° C. The vinyl trifluoride acetate was subjected to amine decomposition to synthesize PVA having a high molecular weight of alternating arrangement having a number average degree of polymerization of 7,700 and an alternating diad group content of 55%.

유화중합은 중합도와 중합속도를 동시에 상승시켜 줄 수 있는 중합반응계이지만 아세트산비닐은 다른 비닐계열 단량체들에 비하여 월등히 높은 성장반응속 도[P. J. Flory, "Principles of Polymer Chemistry", pp. 106-161, Cornell University Press, Ithaca, 1953]와 이 중합계에서의 높은 반응속도에 의한 가지생성반응 때문에 고분자량의 폴리비닐알코올을 얻어내기 어렵다는 단점을 가지고 있다. Emulsion polymerization is a polymerization system that can increase the polymerization rate and polymerization rate, but vinyl acetate has a much higher growth reaction rate than other vinyl monomers. J. Flory, "Principles of Polymer Chemistry", pp. 106-161, Cornell University Press, Ithaca, 1953] and it is difficult to obtain high molecular weight polyvinyl alcohol due to the branching reaction due to the high reaction rate in this polymerization system.

따라서 우수한 물성을 보유하는 폴리비닐알코올을 얻어내기 위해서 여러 가지 특수한 유화중합이 많이 시도되고 있는데, Nikolaev 등[A. F. Nikolaev, K. V. Belogorodskaya, N. P. Kukushkina, and O. A. Pigulevskaya, USSR Patent, 1,016,305(1978)]은 망간 트리아세틸아세토네이트를 수용화하여 저온 유화중합의 개시제로 이용함으로써 적은 양의 가지를 가지는 수평균 분자량 870,000의 폴리아세트산비닐을 합성하였고, Lanthier[R. Lanthier, U. S. Patent, 3,303,174(1967)]는 아세트산비닐을 -15℃에서 감마선조사 유화중합하여 얻어진 폴리아세트산비닐로부터 수평균 중합도가 12,000인 혼성배열 초고분자량의 폴리비닐알코올을 제조하였다. Therefore, many special emulsion polymerizations have been attempted to obtain polyvinyl alcohol having excellent physical properties. Nikolaev et al. F. Nikolaev, KV Belogorodskaya, NP Kukushkina, and OA Pigulevskaya, USSR Patent, 1,016,305 (1978)] accept a manganese triacetylacetonate and use it as an initiator for low temperature emulsion polymerization. Polyvinyl acetate was synthesized, and Lanthier [R. Lanthier, U. S. Patent, 3,303, 174 (1967), prepared a polyarray having a polyarray having a number average degree of polymerization of 12,000 from polyvinyl acetate obtained by gamma irradiation emulsion polymerization of vinyl acetate at -15 ° C.

최근에 이르러 Yamamoto 등[T. Yamamoto, S. Yoda, O. Sangen, and M. Kamachi, Polym. J., 21, 1053(1989)]은 교대배열기를 증가시키기 위하여 피발산비닐을 0℃에서 자외선 조사시켜 유화중합 후 비누화하여 수평균 중합도 18,000 및 교대배열다이애드기 함량이 62.8%인 고교대배열 초고분자량의 폴리비닐알코올을 제조하였다.Recently, Yamamoto et al. [T. Yamamoto, S. Yoda, O. Sangen, and M. Kamachi, Polym. J. , 21, 1053 (1989)], in order to increase the alternator, vinyl pivalate was irradiated with UV at 0 ° C for emulsion polymerization, followed by saponification to obtain a number average degree of polymerization of 18,000 and an alternating diad group content of 62.8%. Ultra high molecular weight polyvinyl alcohol was prepared.

용액중합은 반응계에 존재하는 용매에 의하여 점성도와 발열의 조절이 비교적 용이하므로 에틸아세테이트[A. Conix and J. Smets, J. Polym. Sci., 10, 525(1953)], 디메틸카비톨[K. Ito, J. Polym. Sci.: Part A-1, 10, 1481(1972)], 아세트산[L. M. Minsk and E. W. Taylor, U. S. Patent, 2,582,055(1952)], 아세트산/물[S. Okamura and T. Motoyama, J. Polym. Sci., 17, 428(1955)], 디메틸포름아미드[C. H. Bamford, A. D. Jenkins, and R. Johnston, J. Polym. Sci., 29, 355(1958)], 벤젠[W. R. Sorenson and T. W. Campbell, "Preparative Methods of Polymer Chemistry", 2nd Ed., p. 238, Wiley Interscience, New York, 1968], 알코올계[M. Ueda and K. Kajitani, Macromol. Chem., 108, 138(1967)] 및 염화에틸렌[W. R. Conn and H. T. Neher, J. Polym. Sci., 5, 355(1950)] 등의 여러 가지 용매를 이용한 아세트산비닐의 용액중합은 많이 연구되어 왔으나, 이 방법은 용매로의 빈번한 연쇄이동반응 때문에 가지생성반응과 종결반응이 자주 일어나서 고분자량의 PVA를 얻어내는데 불리하다. Solution polymerization is relatively easy to control viscosity and exotherm by solvents present in the reaction system, so ethyl acetate [A. Conix and J. Smets, J. Polym. Sci. , 10, 525 (1953)], dimethyl carbitol [K. Ito, J. Polym. Sci .: Part A-1 , 10, 1481 (1972)], acetic acid [LM Minsk and EW Taylor, US Patent, 2,582,055 (1952)], acetic acid / water [S. Okamura and T. Motoyama, J. Polym. Sci. , 17, 428 (1955)], dimethylformamide [CH Bamford, AD Jenkins, and R. Johnston, J. Polym. Sci. , 29, 355 (1958)], benzene [WR Sorenson and TW Campbell, "Preparative Methods of Polymer Chemistry", 2nd Ed., P. 238, Wiley Interscience, New York, 1968, alcohol system [M. Ueda and K. Kajitani, Macromol. Chem. , 108, 138 (1967) and ethylene chloride [WR Conn and HT Neher, J. Polym. Sci. , 5, 355 (1950)] have been studied for the solution polymerization of vinyl acetate using various solvents. However, this method has a high molecular weight PVA due to frequent branching and terminating reactions due to frequent chain transfer reactions to solvents. It is disadvantageous to obtain.

선형성이 우수한 폴리아세트산비닐을 합성하여 그로부터 고분자량의 PVA를 얻어내기 위하여 저온에서 레독스 용액중합이 많이 시도되었으나[J. Furukawa and T. Tsuruta, J. Polym. Sci., 28, 227(1958)], 이 방법은 금속 촉매에 의한 착색 현상이 발생하여 전환율이 매우 낮은 단점을 가지고 있다. In order to synthesize polyvinyl acetate having excellent linearity and obtain high molecular weight PVA therefrom, redox solution polymerization has been attempted at low temperature [J. Furukawa and T. Tsuruta, J. Polym. Sci. , 28, 227 (1958)], this method has a disadvantage that the conversion rate is very low due to the coloring phenomenon caused by the metal catalyst.

Sorokin 등[A. Y. Sorokin, V. A. Kuzentsova, and T. D. Korneva, USSR Patent, 507,590(1976)]은 디아크릴 퍼옥시드 올리고머를 개시제로 아세트산비닐을 합성하여 그로부터 수평균 분자량 110,000인 고분자량의 PVA를 얻어냈고, Nakamae 등[K. Nakamae et al, Polymer, 33, 2581(1992)]은 ADMVN을 개시제로 삼플루오르화 아세트산비닐을 -78 ℃에서 자외선조사 용액중합하여 얻은 전구체를 비누화하여 교 대배열다이애드기 함량이 63%인 고교대배열 PVA를 제조하였으며 Kamiake와 Ueda[K. Kamiake and F. ueda, Japan Patent, 62-064,807(1987)]는 아실포스포네이트를 광개시제로 이용하여 아세트산비닐을 자외선조사 용액중합하여 얻어진 고분자량의 폴리아세트산비닐로부터 고분자량의 PVA를 제조하였다.Sorokin et al. [AY Sorokin, VA Kuzentsova, and TD Korneva, USSR Patent, 507,590 (1976)] synthesized vinyl acetate with a diacryl peroxide oligomer as an initiator to obtain a high molecular weight PVA having a number average molecular weight of 110,000 from Nakamae et al. [K. Nakamae et al, Polymer , 33, 2581 (1992)], a high school with 63% alternating diad group content by saponifying a precursor obtained by polymerizing ADMVN with an ultraviolet irradiation solution of vinyl trifluoride acetate at -78 ° C. Large array PVA was prepared and Kamiake and Ueda [K. Kamiake and F. ueda, Japan Patent, 62-064,807 (1987)] prepared a high molecular weight PVA from high molecular weight polyvinyl acetate obtained by polymerizing vinyl acetate with ultraviolet irradiation solution using acylphosphonate as a photoinitiator.

PVA 섬유 제조를 위한 일반적인 방법은 단량체로부터 모중합체를 제조하고 그 모중합체를 비누화하여 PVA 중합체를 얻은 다음 이것을 용액방사(solution-spinning) 또는 겔방사(gel-spinning)한 후 연신(stretching)시키고 열처리하여 중합체 분자쇄를 평행하게 배향시킴으로써 PVA 섬유를 제조한다. 그리고 연속 필라멘트 섬유를 그 용도에 맞게 적당한 길이로 절단하여 PVA 단섬유를 제조한다.A general method for preparing PVA fibers is to prepare a parent polymer from monomers and saponify the parent polymer to obtain a PVA polymer, which is then solution-spinning or gel-spinning, followed by stretching and heat treatment. PVA fibers are prepared by orienting polymer molecular chains in parallel. And the continuous filament fibers are cut to a suitable length for the purpose to produce a short PVA fiber.

현재 시판되고 있는 고강도 비닐론??섬유(일본국, 구라레이사 제품) 역시 상기 일반적인 방법에 의해 제조되고 있다.High-strength vinylon on the market ?? Fiber (Japan, Kuraray Co., Ltd.) is also produced by the above general method.

또한, 일본공개특허 평4-108109호에 의하면, 입체장애를 일으키는 측쇄기를 갖고 있는 단량체를 중합하여 제조된 모중합체를 비누화시켜 교대배열기가 풍부한 고분자량의 PVA를 제조한 다음, 이를 분리, 세척 및 건조한 후 다시 용매에 녹여 용액방사한 뒤 이를 연신 및 건조하여 PVA 섬유를 얻는다. 그리고 그 방사섬유를 특수한 절단장치로 절단하여 PVA 단섬유를 얻는다.Further, according to Japanese Patent Application Laid-Open No. 4-108109, saponification of a mother polymer prepared by polymerizing a monomer having a side chain group causing steric hindrance to prepare a high molecular weight PVA rich in alternating array groups, and then separating, washing and After drying, the solution is dissolved in a solvent to spin the solution, which is then stretched and dried to obtain PVA fibers. The spun fiber is cut by a special cutting device to obtain PVA short fibers.

그리고, 혼성배열 PVA에 비해 더욱 우수한 기계적 물성이나 내열성, 내용제성, 내약품성 및 내후성을 갖는 것으로 알려진 교대배열 PVA의 모중합체인 폴리피발산비닐 중합체를 피발산비닐 단량체로부터 중합하고 그 중합체를 비누화하여 교 대배열 PVA를 제조한 경우[미국특허 제5,238,995호]에도 상기와 유사한 방법에 의해서 PVA 단섬유를 제조하기 때문에, 그 제조 공정이 번거롭고 비용이 많이 소요되는 단점이 있다. In addition, a polypivalate vinyl polymer, which is a parent polymer of alternating PVA, which is known to have better mechanical properties, heat resistance, solvent resistance, chemical resistance, and weather resistance than hybrid arrangement PVA, is polymerized from vinyl pivalate monomer and saponified. In the case of manufacturing the alternating PVA [US Pat. No. 5,238,995], since the PVA short fibers are manufactured by a method similar to the above, there is a disadvantage in that the manufacturing process is cumbersome and expensive.

이에, 본 발명자들은 상기 종래의 PVA 단섬유 제조과정에 있어서, 비누화공정 후 합성된 PVA를 용해시켜 용액이나 겔로 만들어 방사한 뒤 연신, 열처리, 세척 및 건조하는 제반공정들을 생략해 주는 폴리비닐알코올 마이크로피브릴 섬유를 보다 저렴한 방법으로 제조하기 위하여 연구 노력한 결과, 피발산비닐과 아세트산비닐을 벌크공중합, 용액공중합, 유화공중합 및 현탁공중합으로 이루어진 군에서 선택된 어느 하나의 중합법에 의하여 제조한 폴리(피발산비닐/아세트산비닐) 공중합체에 특정한 알칼리 비누화제를 투입하고 동시에 교반기의 종류 및 교반속도 등을 다양하게 조합하여 기계적 전단 조작을 실시함으로써 고강도의 마이크로피브릴화 PVA 단섬유를 제조할 수 있다는 점을 발견하여 본 발명을 완성하였다. Accordingly, the present inventors in the conventional PVA short fiber manufacturing process, polyvinyl alcohol micro to omit the various processes of dissolving the synthesized PVA after the saponification process to form a solution or gel, spinning, stretching, heat treatment, washing and drying As a result of research efforts to produce fibrillated fibers in a more inexpensive manner, poly (pi) produced by any one polymerization method selected from the group consisting of bulk copolymerization, solution copolymerization, emulsion copolymerization and suspension copolymerization of vinyl pivalate and vinyl acetate High strength microfibrillated PVA short fibers can be produced by adding a specific alkali saponifier to a vinyl volatile / vinyl acetate) copolymer and simultaneously carrying out various kinds of stirrers and stirring speeds to perform mechanical shearing. The present invention was completed by finding out.

따라서, 본 발명의 목적은 상대적으로 저렴한 아세트산비닐과 피발산비닐을 다양한 방법으로 공중합하여 PVA의 모중합체를 제조하고, 현재 가장 이상적인 비누화용제로 알려진 테트라히드로푸란 대신 상대적으로 독성이 약하고 가격이 저렴한 메탄올을 비누화용제로 사용하여 단순한 기계적 전단 조작에 의해 제조공정을 단축시켜 얻어지는 폴리비닐알코올 마이크로피브릴 섬유 및 이의 제조방법을 제공하는 데에 있다.Accordingly, an object of the present invention is to prepare a copolymer of PVA by copolymerizing a relatively inexpensive vinyl acetate and vinyl pivalate in a variety of methods, and relatively low toxicity and inexpensive methanol instead of tetrahydrofuran which is currently known as the most ideal saponification solvent It is to provide a polyvinyl alcohol microfibrils obtained by shortening the manufacturing process by a simple mechanical shearing operation using a saponification solvent and a method for producing the same.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention

폴리(피발산비닐/아세트산비닐) 공중합체를 비누화용제로 용해시켜 용액을 제조하는 단계 및 상기 용액에 알칼리 비누화제를 투입하고 교반한 후, 기계적으로 전단하는 단계를 포함하여 이루어지는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법을 제공한다.Dissolving a poly (vinyl pivalate / vinyl acetate) copolymer with a saponification solvent to prepare a solution, and adding an alkaline saponifier to the solution and stirring, followed by mechanical shearing Provided is a method for producing vinyl alcohol microfibrils.

상기 폴리(피발산비닐/아세트산비닐) 공중합체는 벌크공중합, 용액공중합, 유화공중합 및 현탁공중합으로 이루어진 군에서 선택된 어느 하나의 중합법에 의해 제조된다.The poly (vinyl pivalate / vinyl acetate) copolymer is prepared by any one polymerization method selected from the group consisting of bulk copolymerization, solution copolymerization, emulsion copolymerization and suspension copolymerization.

상기 비누화용제는 메탄올, 테트라히드로푸란, 아세톤, 메틸에틸케톤 또는 디옥산에서 선택된 어느 하나의 유기용매를 사용하며, 보다 바람직하게는 메탄올을 사용한다.The saponification solvent is any one of an organic solvent selected from methanol, tetrahydrofuran, acetone, methyl ethyl ketone or dioxane, more preferably methanol.

상기 알칼리 비누화제는 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나의 수산화물 0.005 - 0.07 몰 및 물 0.01 - 0.8 몰로 구성된다. The alkali saponifying agent is composed of 0.005-0.07 mol of hydroxide and 0.01-0.8 mol of water selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide and mixtures thereof.

만약, 물의 함량이 상기 범위를 벗어나 많아지면 비누화 반응 중에 블록한 형태의 히드록시기가 많이 생기게 되며 반응 속도 느려지게 되어 고강력 PVA 피브릴을 효과적으로 제조할 수 없는 문제가 야기될 수 있다.If the content of the water increases beyond the above range, a large number of blocked hydroxyl groups are generated during the saponification reaction, and the reaction rate is slowed, which may cause a problem in that high strength PVA fibrils cannot be effectively produced.

상기 전단은 100 내지 5,000 rpm의 전단속도로 기계적 전단조작을 수행하는 것이 바람직하다. 상기 범위 내에서 전단 속도를 높일수록 섬유장은 길어지며 섬유 두께는 작아지는 현상이 나타나지만, 상기 범위를 벗어날 경우 섬유가 끊어지거나 섬유 자체가 생성되지 않는 문제가 야기될 수 있다. The shear is preferably carried out a mechanical shearing operation at a shear rate of 100 to 5,000 rpm. The higher the shear rate within the range, the longer the fiber length and the smaller the thickness of the fiber appear, but if it is out of the range may cause a problem that the fiber is broken or the fiber itself is not produced.

또한, 본 발명은 폴리(피발산비닐/아세트산비닐) 공중합체를 메탄올로 용해 시켜 제조한 용액에 알칼리 비누화제를 첨가하여 교반한 후, 기계적으로 전단함으로써 얻어지는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유를 제공한다.In addition, the present invention is a polyvinyl alcohol microfibrils obtained by mechanically shearing after adding and stirring an alkali saponifier to a solution prepared by dissolving a poly (vinyl pivalate / vinyl acetate) copolymer with methanol. Provide fiber.

상기 섬유는 평균 길이가 0.1 - 1,000 mm이고, 평균 직경이 0.5 - 100 ㎛인 마이크로피브릴 구조를 가지는 것이 바람직하다. The fibers preferably have a microfibril structure with an average length of 0.1-1,000 mm and an average diameter of 0.5-100 μm.

또, 상기 섬유는 교대배열다이애드기 함량이 51 - 62%, 비누화도가 75.0 - 99.9 몰% 및 수평균 중합도가 100 - 10,000인 것이 바람직하다.In addition, the fibers preferably have an alternating arrangement group content of 51 to 62%, a saponification degree of 75.0 to 99.9 mol%, and a number average degree of polymerization of 100 to 10,000.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

종래에 알려진 폴리비닐알코올 마이크로피브릴 섬유의 제조과정은 첫째, 테트라히드로푸란을 비누화용제로 사용하여 제조된 기존의 고교대배열 고분자량 폴리비닐알코올 마이크로피브릴 섬유의 제조방법들은 상대적으로 고가인 테트라히드로푸란을 비누화용제로 이용하며, 둘째, 수산화칼륨과 소량의 물을 효과적으로 녹여서 완벽한 산소제거를 해야 하고 고도의 기계적 전단조작을 이용하였다. 이러한 방법들은 테트라히드로푸란의 가격 및 비누화반응 후 폐수처리 뿐만 아니라 고도의 기계적 전단조작 및 완벽한 산소제거의 어려움이 있었다. The manufacturing process of the conventionally known polyvinyl alcohol microfibrils fiber is first, the conventional methods of manufacturing a high-molecular high molecular weight polyvinyl alcohol microfibril fiber prepared using tetrahydrofuran as a saponification solvent is relatively expensive tetra Hydrofuran is used as a saponification solvent. Second, the complete oxygen removal is required by dissolving potassium hydroxide and a small amount of water effectively and using a high mechanical shearing operation. These methods suffered from high price of tetrahydrofuran and post-saponification wastewater treatment, as well as high mechanical shearing and perfect oxygen removal.

이에, 본 발명은 상기한 기존의 비누화법의 단점을 보완하여 공업적으로 낮은 경비를 사용하면서도 테트라히드로푸란을 사용할 경우와 유사하게 높은 비누화도를 나타내는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법에 관한 것으로, 전단조작이 쉽고 완벽한 산소제거 없이 상대적으로 낮은 온도인 40 ℃에서 테트라히 드로푸란보다 독성이 약한 메탄올을 이용하여 비누화를 수행함으로써 폴리비닐알코올 마이크로피브릴 섬유를 제조하는 것이다. Accordingly, the present invention is a method for producing a polyvinyl alcohol microfibrillated fiber exhibiting a high degree of saponification similar to the case of using tetrahydrofuran while using an industrially low cost by supplementing the disadvantages of the conventional saponification method described above. It is to prepare polyvinyl alcohol microfibrill fibers by performing saponification with methanol, which is less toxic than tetrahydrofuran, at 40 ° C., at a relatively low temperature without shearing, and without complete oxygen removal.

이러한 비누화방법을 이용하여 벌크공중합, 용액공중합, 유화공중합 및 현탁공중합으로 이루어진 군에서 선택된 어느 하나의 중합법에 의해 제조된 폴리(피발산비닐/아세트산비닐) 공중합체를 저렴하고 쉽게 비누화시킬 수 있다. By using this saponification method, poly (vinyl pivalate / vinyl acetate) copolymer prepared by any one polymerization method selected from the group consisting of bulk copolymerization, solution copolymerization, emulsion copolymerization and suspension copolymerization can be saponified easily and inexpensively. .

보다 구체적으로 설명하면, 먼저 폴리(피발산비닐/아세트산비닐) 공중합체를 유기용매에 녹인 다음 교반하면서 용액의 온도를 25 - 65 ℃ 상승시킨 후 알칼리 비누화제를 서서히 첨가하여 100 rpm 내지 5,000 rpm의 교반 속도로 교반하면 적정반응시간 후에 용액의 점성도가 급격히 상승하면서 용액 중에는 겔이 생기게 된다. In more detail, first, the poly (vinyl pivalate / vinyl acetate) copolymer is dissolved in an organic solvent, and then the temperature of the solution is raised to 25-65 ° C. while stirring. When stirring at the stirring speed, the viscosity of the solution rapidly increases after the titration reaction time, and gel is formed in the solution.

이는 비누화제 중의 알칼리의 작용에 의해 폴리(피발산비닐/아세트산비닐) 공중합체 분자쇄의 곁사슬에 해당하는 아세틸(acetyl)기와 피발로일(pivaloyl)기가 이탈되면서 분자간 수소결합을 이루어 특정 방향으로의 배향없이 고화됨에 기인한 것이다.This is due to the action of alkali in the saponification agent, acetyl and pivaloyl groups, which are the side chains of the molecular chain of the poly (vinyl pivalate / vinyl acetate) copolymer, are released to form hydrogen intermolecular hydrogen bonds. This is due to solidification without orientation.

그리고 이 용액을 적정시간 동안 계속 교반하면 비누화제 성분 중의 물이 PVA의 분자쇄 사이에 규칙적으로 배열하여 PVA 분자간에 가교역할을 함으로써 분자내 수소결합을 그대로 유지시키면서 분자간의 수소결합을 봉쇄시켜 PVA 주쇄들이 일정한 거리를 유지하도록 분자쇄를 배열시켜 반응계 전체는 겔화되고 배열된 분자쇄는 그대로 유지되어 섬유축 방향으로 높은 배향성을 갖는 고체 상태의 섬유 덩어리가 얻어진다. If the solution is continuously stirred for a suitable time, the water in the saponification agent is regularly arranged between the molecular chains of PVA to crosslink the PVA molecules, thereby blocking the hydrogen bonds between molecules while maintaining intramolecular hydrogen bonds, thereby blocking the PVA main chain. The molecular chains are arranged so that they maintain a constant distance so that the entire reaction system is gelled and the arranged molecular chains are kept intact to obtain a solid fiber mass having a high orientation in the fiber axis direction.

이렇게 얻어진 비누화 반응물을 메탄올에 넣어 분리 및 세척하고 기계적 충 격을 가하거나 초음파 파쇄기를 이용하여 파쇄함으로써 피브릴화 섬유를 얻는다.Fibrillated fibers are obtained by separating and washing the saponified reactants thus obtained in methanol and subjecting them to mechanical shock or crushing using an ultrasonic crusher.

본 발명에서 사용된 비누화제는 수산화물 및 물의 혼합용액으로써, 폴리(피발산비닐/아세트산비닐) 1 g에 대하여, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나의 수산화물 0.005 - 0.07 몰 및 물 0.01 - 0.8 몰로 구성된다. The saponification agent used in the present invention is a mixed solution of hydroxide and water, and any one selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide and mixtures thereof with respect to 1 g of poly (vinyl pivalate / vinyl acetate). Consisting of 0.005-0.07 mol of hydroxide and 0.01-0.8 mol of water.

또한, 제조과정에서 사용된 유기용매는 메탄올, 테트라히드로푸란, 아세톤, 메틸에틸케톤 또는 디옥산 등의 유기용매가 이용될 수 있으며, 우수한 물성을 갖는 섬유를 더욱 저렴하게 형성시키고, 간편한 전단 조작이 요구되는 메탄올이 가장 바람직하다.In addition, as the organic solvent used in the manufacturing process, an organic solvent such as methanol, tetrahydrofuran, acetone, methyl ethyl ketone or dioxane may be used, and it is possible to form fibers having excellent physical properties more cheaply, and to perform simple shearing operation. Methanol required is most preferred.

본 발명에 따른 폴리비닐알코올 마이크로피브릴 섬유는 천연의 면이나 마섬유와 유사한 성질을 갖는 것으로 다양한 목적으로 사용될 수 있으며, 폴리피발산비닐 중합체의 비누화 과정에 의해 제조되던 기존의 폴리비닐알코올 마이크로피브릴 섬유보다 더욱 저렴한 방법으로 제조된다는 장점이 있다. The polyvinyl alcohol microfibrillated fiber according to the present invention has properties similar to those of natural cotton or hemp fiber, and can be used for various purposes, and the conventional polyvinyl alcohol microfiber prepared by saponification process of polypivalate polymer The advantage is that it is produced in a more inexpensive way than the brill fiber.

그리고 섬유의 평균 직경이 0.5 - 100 ㎛, 평균 길이가 0.1 - 1,000 ㎜인 매우 미세한 마이크로피브릴화 구조에 기인한 단열성도 뛰어나기 때문에 발암물질인 석면의 대체자재로도 매우 유용하다. It is also very useful as an alternative to asbestos, a carcinogen, because it has excellent thermal insulation due to a very fine microfibrillated structure having an average diameter of 0.5 to 100 μm and an average length of 0.1 to 1,000 mm.

또한 건축자재용 무기물과의 친화력과 내알칼리성이 뛰어나기 때문에 시멘트나 콘크리트 보강섬유 등의 복합재료를 포함하는 다양한 분야에 폭넓게 활용할 수 있다.In addition, since it has excellent affinity and alkali resistance with inorganic materials for building materials, it can be widely used in various fields including composite materials such as cement or concrete reinforcing fiber.

본 발명의 실시예에 의해 제조된 폴리비닐알코올 마이크로피브릴 섬유들의 인장강도 및 인장탄성률을 섬유인장시험기에 의해 측정한 결과, 각각 15g/d 및 1,000 이하로, 방사 및 연신에 의해 제조되는 폴리비닐알코올 섬유들과 유사한 정도의 인장성질을 비누화 단계에서 곧장 얻을 수 있었다. Tensile strength and tensile modulus of the polyvinyl alcohol microfibrillated fibers prepared according to an embodiment of the present invention were measured by a fiber tensile tester, and the polyvinyls produced by spinning and stretching were 15 g / d and 1,000 or less, respectively. Tensile properties similar to alcohol fibers could be obtained directly at the saponification stage.

본 발명에 따른 폴리비닐알코올 마이크로피브릴 섬유는 천연의 면이나 마섬유와 유사한 성질을 갖는 것으로 다양한 목적으로 사용될 수 있으며, 폴리피발산비닐 중합체의 비누화 과정에 의해 제조되던 기존의 폴리비닐알코올 마이크로피브릴 섬유보다 더욱 저렴한 방법으로 제조된다는 장점이 있다. The polyvinyl alcohol microfibrillated fiber according to the present invention has properties similar to those of natural cotton or hemp fiber, and can be used for various purposes, and the conventional polyvinyl alcohol microfiber prepared by saponification process of polypivalate polymer The advantage is that it is produced in a more inexpensive way than the brill fiber.

그리고 마이크로피브릴화 구조에 기인한 단열성도 뛰어나기 때문에 발암물질인 석면의 대체자재로도 매우 유용하며, 건축자재용 무기물과의 친화력과 내알칼리성이 뛰어나기 때문에 시멘트나 콘크리트 보강섬유 등의 복합재료를 포함하는 다양한 분야에 폭넓게 활용할 수 있다.It is also very useful as an alternative to asbestos, a carcinogen, because of its excellent thermal insulation due to its microfibrillated structure.It also has excellent affinity and alkali resistance to inorganic materials for building materials. It can be widely used in various fields including.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 그러나, 하기 실시예는 본 발명의 내용을 구체화하기 위한 설명일 뿐 실시예에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for the purpose of clarifying the contents of the present invention, and the present invention is not limited by the examples.

실시예 1Example 1

온도계, 질소유입구, 알칼리 비누화제 적하관 및 H자 앵커형 교반기가 부착된 500㎖의 4구 둥근 플라스크에 질소기류 하에서 고유점성도가 3.82이고 교대배열다이애드기의 함량이 60.2%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄 올 2.47 ㏖에 녹인 다음 용액의 온도를 40℃까지 올리고 100 rpm으로 교반하면서 수산화나트륨 0.03 ㏖ 및 물 0.2 ㏖을 혼합한 용액 2.5 ㎖를 4분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 700 rpm으로 내려 10시간 동안 교반시켰다. A 500 ml four-necked round flask equipped with a thermometer, a nitrogen inlet, an alkali saponifier dripping pipe, and an H-shaped anchor stirrer was used to obtain poly (pivalic acid) having a 3.82 intrinsic viscosity and a 60.2% content of alternating diad groups under a nitrogen stream. 1 g of vinyl / vinyl acetate copolymer was dissolved in 2.47 mol of methanol, and the solution was heated to 40 ° C., and 2.5 ml of a solution containing 0.03 mol of sodium hydroxide and 0.2 mol of water was slowly added thereto for 4 minutes while stirring at 100 rpm. Then, the stirring speed was raised to 1,000 rpm and the stirring was continued for 30 minutes, and the stirring speed was lowered to 700 rpm and stirred for 10 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 2Example 2

상기 실시예 1과 동일한 장치 내에서 고유점성도가 4.03이고 교대배열다이애드기의 함량이 59.1%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 100 rpm으로 교반하면서 수산화나트륨 0.03 ㏖ 및 물 0.3 ㏖을 혼합한 용액 2.5 ㎖를 3분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm으로 내려 8시간 동안 교반시켰다. In the same apparatus as in Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 4.03 and an alternating diad group content of 59.1% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. The solution was slowly added to 2.5 ml of a solution containing 0.03 mol of sodium hydroxide and 0.3 mol of water while stirring at 100 rpm and stirring at 100 rpm for 3 minutes, and then the stirring speed was increased to 1,000 rpm for 30 minutes, and the stirring speed was lowered to 500 rpm. Stir for 8 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 3Example 3

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.62이고 교대배열다이애드기의 함량이 58.0%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 40℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.03 ㏖ 및 물 0.3 ㏖을 혼합한 용액 2 ㎖를 3분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 700 rpm으로 내려 7시간 동안 교반시켰다. In the same apparatus as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.62 and an alternating diad group content of 58.0% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 40 2 ml of a solution mixed with 0.03 mol of sodium hydroxide and 0.3 mol of water was slowly added for 3 minutes while stirring at 200 rpm, and the stirring speed was increased to 1,000 rpm for 30 minutes, and the stirring speed was lowered to 700 rpm. Stir for 7 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 4Example 4

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.13이고 교대배열다이애드기의 함량이 56.2%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.02 ㏖ 및 물 0.4 ㏖을 혼합한 용액 2 ㎖를 2분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 700 rpm으로 내려 7시간 동안 교반시켰다. In the same apparatus as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.13 and an alternating diad group content of 56.2% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. 2 ml of a solution containing 0.02 mol of sodium hydroxide and 0.4 mol of water was slowly added thereto for 2 minutes while stirring at 200 rpm, and the stirring speed was increased to 1,000 rpm for 30 minutes, and the stirring speed was lowered to 700 rpm. Stir for 7 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적 으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. The fibers were filtered and washed several times and dried in a vacuum oven to yield quantitative pale yellow fibrous PVA.

실시예 5Example 5

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.11이고 교대배열다이애드기의 함량이 52.4%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.02 ㏖ 및 물 0.4 ㏖을 혼합한 용액 2 ㎖를 2 분간 서서히 첨가한 다음 교반속도를 800 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm으로 내려 8시간 동안 교반시켰다. In the same apparatus as in Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.11 and an alternating diad group content of 52.4% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. 2 ml of a solution containing 0.02 mol of sodium hydroxide and 0.4 mol of water was slowly added thereto for 2 minutes while stirring at 200 rpm, and the stirring speed was increased to 800 rpm for 30 minutes, and the stirring speed was lowered to 500 rpm. Stir for 8 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 6Example 6

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.72이고 교대배열다이애드기의 함량이 58.5%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 40℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.03 ㏖ 및 물 0.3 ㏖을 혼합한 용액 2 ㎖를 3 분간 서서히 첨가한 다음 교반속도를 800 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 400 rpm으로 내려 5시간 동안 교반시켰다. In the same device as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.72 and an alternating diad group content of 58.5% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 40 2 ml of a solution containing 0.03 mol of sodium hydroxide and 0.3 mol of water was slowly added to the mixture for 3 minutes while stirring at 200 rpm, and the stirring speed was increased to 800 rpm for 30 minutes, and the stirring speed was lowered to 400 rpm. Stir for 5 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고 속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another vessel, 300 ml of methanol was added and separated into fine fibers using a high speed mixer to obtain fibrillated fibers. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 7Example 7

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.26이고 교대배열다이애드기의 함량이 57.5%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 40℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.02 ㏖ 및 물 0.4 ㏖을 혼합한 용액 2 ㎖를 2 분간 서서히 첨가한 다음 교반속도를 900 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm으로 내려 6시간 동안 교반시켰다. In the same apparatus as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.26 and an alternating diad group content of 57.5% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 40 2 ml of a solution containing 0.02 mol of sodium hydroxide and 0.4 mol of water was slowly added to the mixture for 2 minutes while stirring at 200 rpm, and the stirring speed was increased to 900 rpm for 30 minutes, and the stirring speed was lowered to 500 rpm. Stir for 6 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 8Example 8

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.22이고 교대배열다이애드기의 함량이 57.0%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.02 ㏖ 및 물 0.3 ㏖을 혼합한 용액 2 ㎖를 2 분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm 으로 내려 8시간 동안 교반시켰다. In the same apparatus as in Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.22 and an alternating diad group content of 57.0% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. 2 ml of a solution containing 0.02 mol of sodium hydroxide and 0.3 mol of water was slowly added to the mixture for 2 minutes while stirring at 200 rpm, and the stirring speed was increased to 1,000 rpm for 30 minutes, and the stirring speed was lowered to 500 rpm. Stir for 8 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 9Example 9

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.31이고 교대배열다이애드기의 함량이 55.8%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 200 rpm으로 교반하면서 수산화나트륨 0.03 ㏖ 및 물 0.2 ㏖을 혼합한 용액 2 ㎖를 2 분간 서서히 첨가한 다음 교반속도를 1,100 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm으로 내려 10시간 동안 교반시켰다. In the same device as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.31 and an alternating diad group content of 55.8% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. 2 ml of a solution mixed with 0.03 mol of sodium hydroxide and 0.2 mol of water was slowly added to the mixture for 2 minutes while stirring at 200 rpm, and the stirring speed was increased to 1,100 rpm for 30 minutes, and the stirring speed was lowered to 500 rpm. Stir for 10 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실시예 10Example 10

상기 실시예 1과 동일한 장치 내에서 고유점성도가 3.12이고 교대배열다이애드기의 함량이 53.1%인 폴리(피발산비닐/아세트산비닐) 공중합체 1 g을 메탄올 2.47 ㏖에 녹인 다음 용액의 온도를 50℃까지 올리고 200 rpm으로 교반하면서 수산 화나트륨 0.02 ㏖ 및 물 0.4 ㏖을 혼합한 용액 2 ㎖를 3 분간 서서히 첨가한 다음 교반속도를 1,000 rpm으로 올려 30분 동안 계속 교반하고 다시 교반속도를 500 rpm으로 내려 9시간 동안 교반시켰다. In the same apparatus as Example 1, 1 g of a poly (vinyl pivalate / vinyl acetate) copolymer having an intrinsic viscosity of 3.12 and an alternating diad group content of 53.1% was dissolved in 2.47 mol of methanol, and then the temperature of the solution was 50. 2 ml of a solution containing 0.02 mol of sodium hydroxide and 0.4 mol of water was slowly added to the mixture for 3 minutes while stirring at 200 rpm. Then, the stirring speed was increased to 1,000 rpm for 30 minutes and the stirring was continued at 500 rpm. Lowered and stirred for 9 hours.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 장치 내에서 수평균 중합도가 27,100인 폴리피발산비닐 1 g을 테트라히드로푸란 1.23 ㏖에 녹인 다음 용액의 온도를 60℃까지 올리고 500 rpm으로 교반하면서 메탄올 0.209 ㏖, 수산화칼륨 0.0446 ㏖ 및 물 0.0831 ㏖을 혼합한 용액 10㎖를 4분간 서서히 첨가한 다음 교반속도를 10,000 rpm으로 올려 5분 동안 계속 교반하고 다시 교반속도를 2,000 rpm으로 내려 10분 동안 교반시켰다. In the same apparatus as in Example 1, 1 g of polypivalate having a number average degree of polymerization of 27,100 was dissolved in 1.23 mol of tetrahydrofuran, and then the temperature of the solution was raised to 60 ° C and stirred at 500 rpm, 0.209 mol of methanol and 0.0446 potassium hydroxide. 10 ml of a mixture of mol and 0.0831 mol of water was slowly added for 4 minutes, and then the stirring speed was increased to 10,000 rpm, and the stirring was continued for 5 minutes, and the stirring speed was lowered to 2,000 rpm and stirred for 10 minutes.

반응물이 고화되면 이것을 다른 용기에 분리하여 메탄올 300 ㎖를 가하고 고속 믹서를 사용하여 미세한 섬유로 분리해 피브릴상의 섬유를 얻었다. 이 섬유를 수차례 여과 및 세척하고 진공 오븐에서 건조하여 연노란색의 섬유상 PVA를 정량적으로 얻었다.When the reaction solidified, it was separated into another container, 300 ml of methanol was added, and the fibrillated fiber was obtained by separating into fine fibers using a high speed mixer. This fiber was filtered and washed several times and dried in a vacuum oven to yield quantitative light yellow fibrous PVA.

실험예 1Experimental Example 1

상기 실시예 1 내지 5 및 비교예 1에 의해 제조된 PVA 단섬유의 특성을 하기 방법들에 의해 검토한 결과를 표 1에 나타내었다.Table 1 shows the results of examining the properties of the PVA short fibers prepared in Examples 1 to 5 and Comparative Example 1 by the following methods.

이때, 교대배열기 함량과 비누화도는 NMR 분석(Nuclear Magnetic Resonance Spectroscopy) 방법으로, 수평균 중합도는 Ubbelohde 점성도계를 사용하여 측정한 환원점성도를 0%로 외삽하여 고유점성도[η]를 구하였다.At this time, the alternator content and the degree of saponification were obtained by NMR analysis (Nuclear Magnetic Resonance Spectroscopy), and the number average polymerization degree was extrapolated to 0% of the reduced viscosity measured using a Ubbelohde viscometer to obtain the intrinsic viscosity [η].

이렇게 산출된 고유 점성도는 Mark-Houwink 식에 의해 수평균 중합도로 환산하였으며, Instron 4201을 이용하여 인장강도와 인장탄성률을 구하였다. 제조된 시료를 파지거리 20mm, cross head speed 10mm/min의 조건에서 시료당 20회씩 실시하여 상한 및 하한값 2개씩을 빼고 얻은 하중값을 이용하여 각각을 계산하였다.The intrinsic viscosity calculated as described above was converted to the number average degree of polymerization by the Mark-Houwink equation, and tensile strength and tensile modulus were calculated using Instron 4201. The prepared samples were carried out 20 times per sample under a holding distance of 20 mm and a cross head speed of 10 mm / min. The upper and lower limit values were subtracted from each other, and each was calculated using the load values obtained.

교대배열기 함량 (몰%)Alternator content (mol%) 비누화도Saponification degree 수평균 중합도Number average degree of polymerization 인장강도(g/d)Tensile strength (g / d) 인장탄성률(g/d)Tensile Modulus (g / d) 실시예 1Example 1 60.260.2 99.999.9 8,6008,600 1515 800800 실시예 2Example 2 59.159.1 99.299.2 8,1008,100 1313 740740 실시예 3Example 3 58.058.0 97.497.4 7,7007,700 1212 700700 실시예 4Example 4 56.256.2 91.491.4 5,9005,900 99 560560 실시예 5Example 5 52.452.4 86.486.4 5,1005,100 77 420420 실시예 6Example 6 58.558.5 95.395.3 7,5007,500 1212 710710 실시예 7Example 7 57.557.5 90.590.5 6,1006,100 1010 580580 실시예 8Example 8 57.057.0 94.594.5 6,0006,000 1010 570570 실시예 9Example 9 55.855.8 99.899.8 5,9005,900 99 570570 실시예 10Example 10 53.153.1 88.488.4 5,2005,200 77 430430 비교예 1Comparative Example 1 64.064.0 99.699.6 16,70016,700 2121 1,0601,060

Claims (7)

폴리(피발산비닐/아세트산비닐) 공중합체를 비누화용제로 용해시켜 용액을 제조하는 단계 및 상기 용액에 알칼리 비누화제를 투입하고 교반한 후, 기계적으로 전단하는 단계를 포함하여 이루어지는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법.Dissolving a poly (vinyl pivalate / vinyl acetate) copolymer with a saponification solvent to prepare a solution, and adding an alkaline saponifier to the solution and stirring, followed by mechanical shearing Method for producing vinyl alcohol microfibrillated fiber. 제 1항에 있어서, 상기 비누화용제는 메탄올, 테트라히드로푸란, 아세톤, 메틸에틸케톤 또는 디옥산에서 선택된 어느 하나의 유기용매인 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법.The method of claim 1, wherein the saponification solvent is any one of an organic solvent selected from methanol, tetrahydrofuran, acetone, methyl ethyl ketone or dioxane. 제 1항에 있어서, 상기 알칼리 비누화제는 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나의 수산화물 0.005 - 0.07 몰 및 물 0.01 - 0.8 몰로 구성되는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법.The method of claim 1, wherein the alkali saponification agent is characterized in that consisting of 0.005-0.07 mol of any one hydroxide selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide and mixtures thereof and 0.01-0.8 mol of water. Method for producing polyvinyl alcohol microfibrillated fiber. 제 1항에 있어서, 상기 전단은 100 내지 5,000 rpm의 전단속도로 기계적 전단조작을 수행하는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유의 제조방법.The method of claim 1, wherein the shear is a method of producing polyvinyl alcohol microfibrils, characterized in that the mechanical shearing at a shear rate of 100 to 5,000 rpm. 폴리(피발산비닐/아세트산비닐) 공중합체를 메탄올로 용해시켜 제조한 용액에 알칼리 비누화제를 첨가하여 교반한 후, 기계적으로 전단함으로써 얻어지는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유.A polyvinyl alcohol microfibrils fiber obtained by mechanically shearing after adding and stirring an alkali saponifier to a solution prepared by dissolving a poly (vinyl pivalate / vinyl acetate) copolymer with methanol. 제 5항에 있어서, 상기 섬유는 평균 길이가 0.1 - 1,000 mm이고, 평균 직경이 0.5 - 100 ㎛인 마이크로피브릴 구조를 가지는 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유.6. The polyvinyl alcohol microfibrils fiber according to claim 5, wherein the fibers have a microfibrillated structure having an average length of 0.1-1,000 mm and an average diameter of 0.5-100 m. 제 5항에 있어서, 상기 섬유는 교대배열다이애드기 함량이 51 - 62%, 비누화도가 75.0 - 99.9 몰% 및 수평균 중합도가 100 - 10,000인 것을 특징으로 하는 폴리비닐알코올 마이크로피브릴 섬유.6. The polyvinyl alcohol microfibrils fiber according to claim 5, wherein the fibers have an alternating diad group content of 51 to 62%, a saponification degree of 75.0 to 99.9 mol%, and a number average degree of polymerization of 100 to 10,000.
KR1020080046392A 2008-05-20 2008-05-20 Polyvinylalcohol microfibrillar fiber and preparation method thereof KR101024173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080046392A KR101024173B1 (en) 2008-05-20 2008-05-20 Polyvinylalcohol microfibrillar fiber and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080046392A KR101024173B1 (en) 2008-05-20 2008-05-20 Polyvinylalcohol microfibrillar fiber and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20090120539A true KR20090120539A (en) 2009-11-25
KR101024173B1 KR101024173B1 (en) 2011-03-22

Family

ID=41603759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080046392A KR101024173B1 (en) 2008-05-20 2008-05-20 Polyvinylalcohol microfibrillar fiber and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101024173B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137293A1 (en) * 2015-02-27 2016-09-01 경북대학교 산학협력단 Method for manufacturing functional extract-containing polyvinylalcohol nanofibrous non-woven fabric by heterogeneous saponification of polyvinylacetate nanofibrous non-woven fabric

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53110695A (en) 1977-03-10 1978-09-27 Unitika Ltd Saponification of polyvinyl acetate
JPH0481407A (en) * 1990-07-25 1992-03-16 Kuraray Co Ltd Production of polyvinyl alcohol based polymer
KR100209484B1 (en) * 1996-08-06 1999-07-15 한성수 Polyvinyl alcohol microfibril fiber and that manufacture method
KR100419848B1 (en) * 2001-12-04 2004-02-25 동양제철화학 주식회사 Process for preparing polyvinyl alcohol microfibril

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137293A1 (en) * 2015-02-27 2016-09-01 경북대학교 산학협력단 Method for manufacturing functional extract-containing polyvinylalcohol nanofibrous non-woven fabric by heterogeneous saponification of polyvinylacetate nanofibrous non-woven fabric

Also Published As

Publication number Publication date
KR101024173B1 (en) 2011-03-22

Similar Documents

Publication Publication Date Title
Lyoo et al. Preparation of syndiotacticity‐rich high molecular weight poly (vinyl alcohol) microfibrillar fiber by photoinitiated bulk polymerization and saponification
JP2763932B2 (en) Method for producing thermoplastic polymer fiber
Lyoo et al. Synthesis of high-molecular-weight poly (vinyl alcohol) with high yield by novel one-batch suspension polymerization of vinyl acetate and saponification
KR101861038B1 (en) Manufacturing method for blend fiber of polyvinylalcohol/acrylate polymer blend, blend fiber thereby and fiber product using the same
KR101024173B1 (en) Polyvinylalcohol microfibrillar fiber and preparation method thereof
Gan et al. Manufacture, characterization, and structure analysis of melt-spun fibers derived from paramylon esters
JPH0368604A (en) New polyvinyl alcohol polymer and preparation thereof
CN110791952B (en) Modified cellulose fiber and preparation method and application thereof
KR100419848B1 (en) Process for preparing polyvinyl alcohol microfibril
KR100209484B1 (en) Polyvinyl alcohol microfibril fiber and that manufacture method
KR100209485B1 (en) High molecular weight poly(vinyl pivalic acid/vinyl acetic acid) copolymer with various highly-alternation and its preparation process
JPH10306191A (en) Composite of polyvinyl alcohol/ethylene-vinyl alcohol copolymer
KR100487024B1 (en) Cross-linked polyvinyl alcohol adhesive having various stereoregularities and manufacturing method thereof
Lyoo et al. Bulk polymerization of vinyl pivalate using low‐temperature azoinitiator and saponification for the preparation of poly (vinyl alcohol) microfibrils
KR100566397B1 (en) Novel Clay/Polylactide Nanocomposite with Improved Shear Thining Property and Preparation Thereof
Wang et al. Preparation of high‐strength, high‐modulus PVA fiber by synthesis of syndiotacticity‐rich high molecular weight PVA polymers with VAc and VBz via emulsifier‐free emulsion polymerization
KR100960014B1 (en) Preparation method of polyvinylalcohol film with various stereoregularities and polyvinylalcohol film obtained thereby
KR100743535B1 (en) Polyvinyl alcohol adhesive composition for polarizing film
KR100205632B1 (en) The process for manufacturion of polyvinyl acetic acid by solution polymerization of vinyl acetic acid and polyvinyl acetic acid or polyvinyl alcohol produced thereby
JP2728741B2 (en) Method for producing high-strength polyvinyl alcohol fiber
Lyoo et al. Low-temperature suspension polymerization of vinyl pivalate for the preparation of syndiotacticity-rich ultrahigh molecular weight poly (vinyl alcohol) microfibrils with high yield
KR100571511B1 (en) Method for preparing polyvinyl alcohol having improved alternating arrangement through vinyl tecanoate polymerization
KR20220105547A (en) Polyethylene film manufacturing method with various stereoregularities
Cao et al. Electrospun fiber membranes of novel thermoplastic polyester elastomers: Preparation and characterization
KR100205633B1 (en) The high-efficient process for manufacturing of high molecolar weight polyvinyl acetic acid by low-temperature suspension polymerisation of vinyl acetic acid and polyvinyl acetic acid or polyvinyl alcohol produced thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170310

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee