KR20090106813A - A manufacturing method of nutrient-bar usable in space environment using irradiation technology - Google Patents

A manufacturing method of nutrient-bar usable in space environment using irradiation technology Download PDF

Info

Publication number
KR20090106813A
KR20090106813A KR1020080032181A KR20080032181A KR20090106813A KR 20090106813 A KR20090106813 A KR 20090106813A KR 1020080032181 A KR1020080032181 A KR 1020080032181A KR 20080032181 A KR20080032181 A KR 20080032181A KR 20090106813 A KR20090106813 A KR 20090106813A
Authority
KR
South Korea
Prior art keywords
nutrition bar
radiation
bar
nutrition
space environment
Prior art date
Application number
KR1020080032181A
Other languages
Korean (ko)
Inventor
이주운
변명우
송범석
김재훈
최종일
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020080032181A priority Critical patent/KR20090106813A/en
Publication of KR20090106813A publication Critical patent/KR20090106813A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/26Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating
    • A23L3/263Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by irradiation without heating with corpuscular or ionising radiation, i.e. X, alpha, beta or omega radiation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2250/00Food ingredients
    • A23V2250/20Natural extracts
    • A23V2250/21Plant extracts
    • A23V2250/2124Ginseng

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Polymers & Plastics (AREA)
  • Mycology (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

PURPOSE: A method for preparing a nutritional bar for outer space is provided to sterilize the nutritional bar using radiation technology after packing, thereby minimizing a change in quality and extending shelf life. CONSTITUTION: A method for preparing a nutritional bar for outer space comprises the following steps of: preparing a nutritional bar; packing the prepared nutritional bar; and applying radiation to the packed nutritional bar. The nutritional bar comprises one or more ingredients selected from the group consisting of cereals, vegetables, nuts, fruits, plants, animal-derived protein powder, and processed ingredients using the same.

Description

방사선 조사 기술을 이용한 우주환경에서도 취식이 가능한 영양바의 제조방법{A Manufacturing method of nutrient―bar usable in space environment using irradiation technology}A manufacturing method of nutrient―bar usable in space environment using irradiation technology}

본 발명은 방사선 조사 기술을 이용한 우주환경에서도 취식이 가능한 영양바의 제조방법에 관한 것으로, 보다 상세하게는 본 발명은 우주인의 영양결핍을 해소할 수 있도록 필수영양소를 균형있게 설계하고, 방사선 조사를 통해 우주식품으로써 갖추어야할 미생물학적 조건을 충족시킴으로써 우주환경에서 장기간 저장이 가능하고 미생물학적으로 안전하며, 간편하게 영양분을 섭취할 수 있는 영양바에 관한 것이다.The present invention relates to a method of manufacturing a nutrition bar that can be eaten in a space environment using radiation technology, and more particularly, the present invention provides a balanced design of essential nutrients to solve the nutritional deficiency of astronauts, By satisfying the microbiological conditions to be equipped as a space food through the long-term storage in space environment, microbiologically safe and easy to ingest nutrient bar.

일반적으로 우주식품은 우주환경에 적합한 식품을 말하는데, 우주공간이 지구와 가장 큰 차이점은 중력이 거의 없는 무중력 상태와 우주방사선이라 불리는 빛에너지가 존재한다는 것이다. 또한, 우주선 내에 냉장고가 없어 온도의 변화가 심한 환경 하에서 장기간 보관이 가능하여야 하고 식품의 형태는 무중력 상태에서 쉽 게 섭취할 수 있어야 하며, 수분 또는 음식 부스러기는 우주선 내의 비산으로 비행기기에 치명적 영향을 미칠 수 있으므로 그 제조 형태에 있어 제약을 받고 있다.In general, space food refers to food suitable for the space environment. The biggest difference between the space and the earth is that there is a gravity-free state with little gravity and light energy called space radiation. In addition, since there is no refrigerator in the spaceship, it should be able to be stored for a long time in the environment with high temperature change, and the form of food should be easily ingested in the weightless state, and moisture or food crumbs will have a fatal effect on the plane due to scattering in the spaceship. As it can, it is restricted in the form of manufacture.

우주환경 중 우주방사선은 미생물의 돌연변이 발생률을 높이는 것으로 알려져 있으며 식품에 존재하는 미생물에도 영향을 미친다. 따라서 아무리 우리 몸에 이로운 균이라 할지라도 우주방사선에 의한 돌연변이로의 전환 가능성이 있으며, 이로 인해 병원성을 나타낼 가능성이 있기 때문에 우주식품은 완전 무균상태로 제조되어야 한다고 권고되고 있다. Space radiation in the space environment is known to increase the incidence of microbial mutations and also affects microorganisms in food. Therefore, it is recommended that even foods that are beneficial to our bodies can be converted into mutations caused by cosmic radiation, and because of the possibility of pathogenicity, space foods should be manufactured as completely aseptic.

국외 우주식품 개발 현황에 있어 미국의 경우 1995년 2월 26일 FDA는 미국항공우주국(National Aeronautics and Space Administration, NASA)의 우주비행프로그램에서 사용할 냉동 및 포장 식육의 방사선 조사를 승인하였으며, 이에 NASA는 미육군 Natick 기술연구소와 공동으로 식육의 멸균을 목적으로 최소 44 kGy의 방사선을 조사하여 우주식 스테이크 및 BBQ를 개발하였다. 러시아의 경우 방사선 조사선량에 대한 규정은 없으며 엄격한 미생물 규정을 준수해야 한다. 또한, 3개월간의 우주환경과 유사한 조건에서 저장기간에 따른 미생물 검사와 관능평가를 통해 최종적으로 우주선 탑재 가능성을 인증하게 된다. 방사선 조사에 의한 상업적 살균제품의 경우 포자 형성균이 식품 g당 10 CFU 이하여야 하고 혐기성균은 식품 5 g에서 검출되면 안 된다. 러시아의 우주식품 인증기관인 러시아 우주항공청 산하 생의학연구소(Institute of Biomedical Problems, IBMP)가 제시하는 우주식품의 미생물 기준은 하기 표 1에 나타내는 바와 같다.In the US, on February 26, 1995, FDA approved the irradiation of frozen and packaged meat for use in the NASA's space flight program. In collaboration with the US Army Natick Institute of Technology, a space steak and BBQ was developed by irradiating at least 44 kGy of radiation for sterilization of meat. In Russia, there are no regulations on radiation doses and strict microbial regulations. In addition, under the conditions similar to the space environment for three months, the microorganism inspection and sensory evaluation according to the storage period will finally confirm the possibility of loading the spacecraft. For commercial sterilized products by irradiation, spore-forming bacteria should not be more than 10 CFU / g of food and anaerobes should not be detected in 5 g of food. The microbial standards of space foods proposed by the Institute of Biomedical Problems (IBMP) of the Russian Space Agency, a Russian space food certification authority are shown in Table 1 below.

러시아 Russia IBMPIBMP 의 우주식품 미생물 기준Space food microbial standards 식품food 미생물 인자Microbial factors 제한limit 비-내열성Non-heat resistant 총 호기성 세균수Total aerobic bacteria < 20,000 CFU/g<20,000 CFU / g 대장균(Coliform)Coliform < 10CFU/g<10 CFU / g 그람 양성 포도상구균Gram-positive staphylococcus 0 CFU/g0 CFU / g 살모넬라균Salmonella 0 CFU/25g0 CFU / 25g 효모, 곰팡이(mold)Yeast, mold < 50 CFU/g<50 CFU / g 대장균(Escherichia coli)Escherichia coli 0 CFU/10g0 CFU / 10g 바실러스균Bacillus bacteria < 10CFU/g<10 CFU / g 상업적 살균 제품 (내열성 및 방사선 조사)Commercial Sterilization Products (Heat Resistance and Irradiation) 포자형성 중온성 바실러스균Spore-forming mesophilic Bacillus < 10 CFU/g<10 CFU / g 중온성 혐기성 세균Mesophilic anaerobic bacteria 0 CFU/5g0 CFU / 5g 효모, 곰팡이(Fungi)(pH<4.2의 조건하에서)Yeast, Fungi (under pH <4.2) 0 CFU/2g0 CFU / 2g

미생물 제어를 위한 방사선 식품조사(Food Irradiation) 기술은 감마선(Co-60 또는 Se-137) 또는 X-선 등의 방사능 물질에서 나오는 에너지 즉, 이온화된 방사선 에너지를 0.01 kGy ~ 50 kGy 조사선량으로 식품에 조사하는 것으로 식품의 발아 억제, 숙도 지연, 기생충 및 해충 구제, 및 부패 및 병원성 미생물의 살균 등에 이용된다. 종래에는 생활용품 및 식품의 멸균을 위해 에틸렌옥사이드와 같은 화학 훈증제들을 사용해 왔으나, 인체에 치명적으로 해를 주고 환경을 파괴하는 것으로 알려져 현재 대부분의 선진국에서는 경제적인 효율성이 좋고 인체에 무해한 방사선 식품조사 방법을 활발히 이용하고 있다. Radiation Food Irradiation technology for controlling microorganisms uses energy from radioactive materials, such as gamma rays (Co-60 or Se-137) or X-rays, that is, ionized radiation energy at 0.01 kGy to 50 kGy It is used to suppress germination of foods, delay ripening, control parasites and pests, and sterilize decay and pathogenic microorganisms. Conventionally, chemical fumigants such as ethylene oxide have been used for sterilization of household goods and foods, but it is known to harm the human body and destroy the environment. Currently, most developed countries are economically efficient and harmless to humans. Is actively using.

상기의 방사선 기술이 지닌 장점을 활용하여 미우주항공국의 경우 미육군(Natick) 연구소와 공동으로 1960년대부터 우주 식품 개발에서 방사선 조사 기술을 핵심 기술로 하여 다양한 연구를 수행하고 있다. 또한, 우주 공간에서 있을 수 있는 식품 유래 질환이 우주 비행사의 안전을 위협할 수 있기 때문에 미생물학적 안전성을 확보하기 위한 가공법으로 방사선 조사 기술이 연구되고 있으며, 미생물 제어로 인한 위생 증진 효과뿐만 아니라 그 건전성 또한 입증되었다. Taking advantage of the above-mentioned radiation technology, the NASA has been conducting various researches with radiation technology as a core technology in space food development since the 1960s in collaboration with the Natick Research Institute. In addition, because food-borne diseases that may exist in space may threaten the safety of astronauts, irradiation technology is being studied as a processing method to secure microbiological safety, and the health as well as the hygiene-promoting effects of microbial control are studied. It has also been proven.

영양바는 목적에 따라 고단백, 저탄수화물, 저지방 등 필수영양소를 조절하거나 미량의 영양소를 강화한 바형태의 음식으로 50여 가지 이상의 다양한 곡류, 야채류, 채소류, 견과류, 과일류 및 이를 이용한 가공품들을 원료로 사용하여 제조된다. 그러나 곡류는 다양한 미생물들에 의해 오염되어 있으며, 특히 바실러스(Bacillus) 속의 균들과 같이 포자를 형성하는 균들은 일반적인 방법으로 제어하기가 매우 어렵다. 그 중 병원성을 나타내는 바실러스 세레우스(Bacillus cereus)의 경우 우주식품에 있어 미생물 기준이 되므로 이를 제어하기 위한 위생화 기술이 필요하며, 이러한 기술이 제품의 형태 및 맛에 미치는 영향은 최소화되어야 한다. 또한, 우주환경에서는 식욕감퇴, 생리적 변화로 인한 영양소의 결핍의 문제가 발생될 수 있으며, 이를 위해 필수영양소가 풍부한 우주식품의 개발이 필요하다. Nutrition bar is a bar-shaped food that adjusts essential nutrients such as high protein, low carbohydrate and low fat or strengthens trace nutrients according to the purpose, and uses more than 50 kinds of cereals, vegetables, vegetables, nuts, fruits and processed products using the same. It is manufactured by. However, grains are contaminated by various microorganisms, and spore-forming bacteria such as bacteria in Bacillus are very difficult to control in a general way. Among them, Bacillus cereus , which shows pathogenicity, is a microbial standard for space foods, so hygienic techniques for controlling them are required, and the effect of these techniques on the shape and taste of products should be minimized. In addition, the lack of nutrients due to loss of appetite and physiological changes in the space environment may occur, for which the development of space foods rich in essential nutrients is necessary.

이에, 본 발명자들은 우주식품으로 개발하기 위한 가공방법을 연구하여, 생식분말 및 홍삼엑기스 등의 건강기능성 소재를 첨가하여 기능성을 향상시키고, 진공포장 및 방사선 조사를 통해 멸균시켜 관능적 품질저하를 방지하면서 미생물학적 안전성을 확보하여, 우주환경에서도 장기간 저장 및 취식이 가능한 영양바를 개발함으로써 본 발명을 완성하였다.Thus, the present inventors studied the processing method for development into space food, by adding health functional materials such as raw powder and red ginseng extract to improve the functionality, while sterilizing by vacuum packaging and irradiation to prevent sensory quality degradation The present invention has been completed by securing a microbiological safety and developing a nutrition bar that can be stored and eaten for a long time in a space environment.

본 발명의 목적은 우주환경에서 취식이 가능한 영양바 및 이의 제조방법을 제공하는 것이다.An object of the present invention is to provide a nutrition bar and a method for manufacturing the same that can be eaten in the space environment.

상기 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention

1) 영양바를 제조하는 단계;1) preparing a nutrition bar;

2) 상기 단계 1)의 영양바를 포장하는 단계; 및2) packing the nutrition bar of step 1); And

3) 상기 단계 2)의 포장된 영양바에 방사선을 조사하는 단계를 포함하는 우주환경에서 취식이 가능한 영양바의 제조방법을 제공한다.3) It provides a method for producing a nutrition bar that can be eaten in a space environment comprising the step of irradiating the packaged nutrition bar of step 2).

본 발명은 상기 제조방법에 의해 제조된 우주환경에서 취식이 가능한 영양바를 제공한다.The present invention provides a nutrition bar that can be eaten in the space environment prepared by the manufacturing method.

본 발명의 우주영양바는 우주인의 영양결핍을 해소할 수 있도록 필수영양소를 균형있게 포함하고, 방사선 기술을 이용한 포장 후 멸균으로 제품의 품질에 미치는 영향을 최소화하여 우주식품으로써 갖추어야할 미생물학적 조건을 충족시킴으로써 우주환경과 같은 극한 환경에서도 장기간 저장이 가능하고 미생물학적으로 안전하며, 간편하게 영양분을 섭취할 수 있는 식품으로 유용하게 이용될 수 있다. The space nutrient bar of the present invention includes essential nutrients in a balanced manner to solve the nutritional deficiency of astronauts, and minimizes the effect on the quality of the product by sterilization after packaging using radiation technology to provide microbiological conditions to be prepared as space foods. It can be used as food that can be stored for a long time in extreme environments such as space environment, microbiologically safe, and easily nourish.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 The present invention

1) 영양바를 제조하는 단계;1) preparing a nutrition bar;

2) 상기 단계 1)의 영양바를 포장하는 단계; 및2) packing the nutrition bar of step 1); And

3) 상기 단계 2)의 포장된 영양바에 방사선을 조사하는 단계를 포함하는 우주환경에서도 취식이 가능한 영양바의 제조방법을 제공한다(도 2 참조).3) provides a method for preparing a nutrition bar that can be eaten in a space environment including the step of irradiating the packaged nutrition bar of step 2) (see Fig. 2).

상기 제조방법에 있어서, 단계 1)의 영양바는 목적에 따라 고단백, 저탄수화물, 저지방 등 필수영양소를 조절하거나 미량의 영양소를 강화한 바형태의 음식으로, 50여 가지 이상의 다양한 곡류, 야채류, 채소류, 견과류, 과일류, 식물 또는 동물 기원 단백분말, 및 이를 이용한 가공품들을 원료로 사용하여 제조된다. 그 외에 영양성 및 건강기능성을 부가하기 위해 비타민류, 홍삼엑기스 또는 생식분말을 추가적으로 포함하여 제조될 수 있으나 이에 한정되지 않는다. 상기 홍삼엑기스는 전체 영양바 함량에 대한 5 ~ 8%를 첨가하는 것이 바람직하고 7%를 첨가하는 것이 더욱 바람직하나 이에 한정되지 않는다. In the above manufacturing method, the nutrition bar of step 1) is a bar-type food that adjusts essential nutrients such as high protein, low carbohydrate and low fat or strengthens trace nutrients according to the purpose, and has more than 50 various grains, vegetables, vegetables, nuts , Fruit, plant or animal-derived protein powder, and processed products using the same are manufactured using as a raw material. In addition, it may be prepared by additionally including vitamins, red ginseng extract or raw powder to add nutritional and health functionalities, but is not limited thereto. The red ginseng extract is preferably added to 5 to 8% of the total nutrition bar content, and more preferably to add 7% is not limited thereto.

본 발명자들은 홍삼엑기스 농도에 따른 영양바의 관능평가에 미치는 영향을 알아보기 위해, 홍삼엑기스 농도가 다양한 영양바들을 각각 감마선으로 조사한 후 관능평가를 실시하였다. 그 결과, 홍삼엑기스의 첨가량이 증가할수록 맛과 전체적 인 수용도가 감소하였으며, 8%로 첨가하였을 때 쓴맛이 나타나기 시작하여 전체적인 수용도가 유의적으로 감소하기 시작하였으며 감마선이 전체적으로 쓴맛을 감소시켜 맛에 대한 점수를 높이는 것을 알 수 있었다. 따라서 본 발명의 영양바는 홍삼엑기스의 첨가량이 5 내지 8%일 때 품질적으로 적절한 것임을 알 수 있었다(표 2 참조).The present inventors conducted a sensory evaluation after irradiating gamma rays on the various nutrition bars of the red ginseng extract concentration to determine the effect on the nutrition bar according to the red ginseng extract concentration. As the amount of red ginseng extract increased, the taste and overall water solubility decreased, and when added at 8%, the bitter taste began to appear, and the overall water solubility began to decrease significantly. It was found that to increase the score for. Therefore, the nutrition bar of the present invention was found to be quality appropriate when the amount of red ginseng extract added 5 to 8% (see Table 2).

상기 제조방법에 있어서, 단계 1)의 영양바의 제조는 상기 기재된 방법에 한정되는 것은 아니며, 당업계에 알려진 일반적인 영양바의 제조방법을 모두 이용할 수 있다.In the manufacturing method, the production of the nutrition bar of step 1) is not limited to the method described above, it is possible to use all the methods of manufacturing a general nutrition bar known in the art.

상기 제조방법에 있어서, 단계 2)의 포장은 함기포장, 진공포장 및 질소가스 치환포장으로 구성된 군으로부터 선택된 어느 하나의 방법을 이용하여 포장하는 것이 바람직하나 진공포장 방법을 사용하는 것이 더욱 바람직하다. 상기 포장은 폴리에틸렌 (Polyethylene, PE), 알루미늄라미네이트-저밀도폴리에틸렌(Aluminium-laminated low density polyethylene, Al-LDPE), 폴리프로필렌(Polypropylene, PP), 폴리비닐클로라이드(Polyvinyl chloride, PVC), 폴리비닐이덴클로라이드(Polyvinylidene chloride, PVDC), 폴리에틸렌터프탈레이트(Polyethylene terphthalate, PET), 폴리카르보네이트(Polycarbonates, PC) 또는 나일론(Nylon)으로 구성된 군으로부터 선택된 어느 하나의 포장지를 사용하는 것이 바람직하고 폴리에틸렌을 사용하는 것이 더욱 바람직하나 이에 한정되지 않는다. 폴리에틸렌이 바람직한 이유는 상기 폴리에틸렌이 시판되는 대부분의 진공포장지의 원재료로 사용되고 있고, 열접착성이 우수하며, 다양한 폴리머들의 조합에 의해 산소투과도를 조절하기 쉽기 때문이다.In the above production method, the packaging of step 2) is preferably packaged by using any one method selected from the group consisting of air-containing packaging, vacuum packaging and nitrogen gas substitution packaging, but it is more preferable to use the vacuum packaging method. The packaging is polyethylene (PE), aluminum-laminated low density polyethylene (Al-LDPE), polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene It is preferable to use one of the packaging materials selected from the group consisting of polyvinylidene chloride (PVDC), polyethylene terphthalate (PET), polycarbonates (PC) or nylon (Nylon), and polyethylene is used. More preferably, but not limited to. The reason polyethylene is preferable is that the polyethylene is used as a raw material of most vacuum packaging papers on the market, and is excellent in thermal adhesiveness and easy to control oxygen permeability by a combination of various polymers.

본 발명자들은 포장방법이 영양바의 관능적 품질에 미치는 영향을 평가하기 위하여, 진공포장 및 함기포장한 영양바를 각각 감마선으로 조사한 후 관능평가를 실시하였다. 그 결과, 진공포장 시료의 감마선 조사 후의 관능적 품질이 함기포장의 시료보다 우수함을 알 수 있었다. 따라서 본 발명의 영양바는 산소를 제거한 진공포장이 방사선 조사에 의한 품질저하를 최소화할 수 있음을 알 수 있다(표 3 참조). 일반적으로 식품의 감마선 조사시 산소가 존재할 경우 식품의 산화작용을 촉진시켜 품질을 저하시킬 수 있는데, 진공포장과 같이 포장지 내 산소를 제거할 경우 감마선에 의한 산화를 억제하기 때문에 품질변화를 최소화하는데 효과적인 것으로 알려져 있으며, 이는 육류, 채소류 및 분말식품 등 다양한 식품에 대한 실증 연구를 통해 입증된바 있다(박재남 등, 식품영양과학회지, 609-615, 2007; Jin-Gyu Park et al., Radiation Physics an Chemistry, 497-502, 2007; Jea-Hun Kim et al., Food Control, 56-61, 2008; J. Parkars et al., International journal of Food Microbiology , 145-152, 1993).In order to evaluate the effect of the packaging method on the sensory quality of the nutrition bar, the inventors conducted a sensory evaluation after irradiating the vacuum packed and the packed nutrition bar with gamma rays, respectively. As a result, it was found that the sensory quality after the gamma ray irradiation of the vacuum packaged sample was superior to the sample of the air-packed sample. Therefore, it can be seen that the nutrition bar of the present invention can minimize the deterioration of quality due to radiation vacuum packaging (refer to Table 3). In general, when oxygen is present during food gamma ray irradiation, the oxidation of the food may be promoted and the quality thereof may be degraded. When oxygen is removed from the packaging such as vacuum packaging, it is effective to minimize the quality change because it inhibits oxidation by gamma ray. is known, and it has been proven through empirical research on a variety of foods such as meat, vegetables and powdered products (including bakjaenam, Journal of Food Science and nutrition, 609-615, 2007;. Jin- Gyu Park et al, Radiation Physics an Chemistry , 497-502, 2007; Jea-Hun Kim et al., Food Control , 56-61, 2008; J. Parkars et al., International journal of Food Microbiology , 145-152, 1993).

상기 제조방법에 있어서, 단계 3)의 방사선은 고에너지의 감마선, X-선 또는 전자선을 이용하는 것이 바람직하고 감마선을 이용하는 것이 더욱 바람직하나 이에 한정되지 않는다. 식품의 방사선 조사에 사용되는 방사선원으로는 특정 종류의 방사선원인, Co-60 또는 Ce-137의 방사성핵종, 5백만 전자 볼트(5MeV)이하의 에너지를 가진 엑스선발생장치, 또는 10MeV이하의 에너지를 가진 전자선 장치를 이용할 수 있으며, Co-60를 방사선원을 사용하는 것이 더욱 바람직하나 이에 한정되지 않 는다. 상기 방사선의 조사선량은 12kGy ~ 20kGy인 것이 바람직하고 14kGy ~ 16kGy인 것이 더욱 바람직하나 이에 한정되지 않는다. 이는 조사선량이 12kGy 미만이면, 완전한 멸균효과가 나타나지 않으며 20kGy를 초과하면 관능적 품질이 매우 저하되는 문제가 생길 수 있기 때문이다. In the above manufacturing method, the radiation of step 3) preferably uses high energy gamma rays, X-rays or electron beams, and more preferably gamma rays, but is not limited thereto. Radiation sources used to irradiate foods include radionuclides of certain types, radioactive nuclei of Co-60 or Ce-137, x-ray generators with energy of 5 million electron volts (5 MeV), or energy of 10 MeV or less. An electron beam apparatus may be used, and Co-60 is more preferably used as a radiation source, but is not limited thereto. The irradiation dose of the radiation is preferably 12kGy ~ 20kGy, more preferably 14kGy ~ 16kGy, but is not limited thereto. This is because if the radiation dose is less than 12kGy, there is no complete sterilization effect, and if it exceeds 20kGy, the sensory quality may be very degraded.

본 발명자들은 방사선의 조사선량이 영양바의 미생물 생육에 미치는 영향을 알아보기 위하여, 영양바에 감마선을 조사한 후 미생물 생육을 측정하였다. 그 결과, 12 kGy 이상의 조사선량에서 총균수, 곰팡이/효모 및 포자 형성균이 완전사멸되는 것을 알 수 있었다(표 4 및 도 3 참조). 이는 러시아의 우주식품 인증기관인 러시아 우주항공청 산하 IBMP(Institute of Biomedical Problems)가 제시하는 우주식품의 미생물 기준을 만족하는 것이다.The present inventors measured the microbial growth after irradiating gamma rays to the nutrition bar in order to determine the effect of the radiation dose to the microorganism growth of the nutrition bar. As a result, it was found that the total number of bacteria, mold / yeast and spore forming bacteria were completely killed at the irradiation dose of 12 kGy or more (see Table 4 and FIG. 3). This satisfies the microbial standards for space food proposed by the Institute of Biomedical Problems (IBMP) of the Russian Space Agency.

본 발명자들은 방사선의 조사선량이 영양바의 관능적 품질에 미치는 영향을 알아보기 위해, 다양한 조사선량의 감마선을 조사한 후 관능적 품질을 평가하였다. 그 결과, 감마선의 조사선량이 증가할수록 전체적인 기호도는 감소하나 20kGy 이하로 조사된 시료 모두의 기호도가 중간 평점 이상으로 나타나 20kGy까지의 감마선 조사는 관능적으로 수용 가능함을 알 수 있었다. 또한, 16kGy부터 조직감에 대한 기호도가 감소하기 시작하였고 18kGy부터 홍삼 고유의 풍미가 감소하기 시작하였다. 따라서 비조사구에 준하는 관능적 품질을 가지는 방사선 조사선량는 12 내지 20kGy이며, 미생물학적 안전성과 관능적 품질을 유지하는 최적조건은 14 내지 16kGy임을 알 수 있다(표 5 참조).The present inventors evaluated the sensory quality after irradiating gamma rays of various irradiation doses to determine the effect of the radiation dose on the sensory quality of the nutrition bar. As a result, as the irradiation dose of gamma rays increased, the overall acceptability decreased, but the acceptability of all samples irradiated below 20 kGy was higher than the median grade, indicating that gamma irradiation up to 20 kGy was acceptable. In addition, the palatability of texture began to decrease from 16kGy, and the flavor of red ginseng began to decrease from 18kGy. Therefore, the radiation dose having a sensory quality comparable to the non-irradiated area is 12 to 20 kGy, and the optimum conditions for maintaining microbiological safety and sensory quality are 14 to 16 kGy (see Table 5).

본 발명은 상기 제조방법에 의해 제조된 우주환경에서 취식이 가능한 영양바를 제공한다(도 1 참조).The present invention provides a nutrition bar that can be eaten in the space environment prepared by the manufacturing method (see Fig. 1).

본 발명의 제조방법에 의해 제조된 우주환경에서 취식이 가능한 영양바는 다양하고 풍부한 영양소를 포함하고 비타민류, 생식분말 및 홍삼엑기스를 추가적으로 첨가하여 기능적으로 향상시켜 우주인의 영양결핍을 해소할 수 있으며, 진공포장 및 방사선 조사를 이용하여 제품의 품질에 미치는 영향을 최소화하면서 미생물을 완전히 살균함으로써 우주식품으로써 갖추어야할 조건을 충족시킬 수 있다.Nutrition bar that can be eaten in the space environment prepared by the manufacturing method of the present invention contains a variety of rich nutrients and add vitamins, raw powder and red ginseng extract to improve functionally to eliminate nutritional deficiency of astronauts. In addition, vacuum packaging and irradiation can be used to meet the requirements of space food by completely sterilizing microorganisms with minimal impact on product quality.

본 발명자들은 본 발명의 영양바의 관능적 품질 및 저장능력을 평가한 결과, 완전무균 상태로 무처리군과의 관능적 차이가 거의 없었으며, 제조 직후 50℃에서 2시간 및 35℃에서 3개월간 가속저장한 후에도 어떠한 미생물 생육이 관찰되지 않았고, 가속저장 중 관능적 품질 평가에서도 무처리군과 유의적인 차이를 나타내지 않음을 확인하였다.The present inventors evaluated the sensory quality and storage capacity of the nutrition bar of the present invention, there was almost no sensory difference with the untreated group in the complete sterile state, accelerated storage at 50 ℃ for 2 hours and 35 ℃ for 3 months immediately after manufacture No microbial growth was observed and the sensory quality evaluation during accelerated storage did not show any significant difference with the untreated group.

이하, 본 발명을 실시예 및 실험예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by Examples and Experimental Examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited to the following Examples and Experimental Examples.

<실시예 1> 우주영양바의 제조방법Example 1 Manufacturing Method of Space Nutrition Bar

<1-1> 영양바의 제조<1-1> Preparation of Nutrition Bars

팽화미 50 중량%, 견과류 17 중량%, 시럽 15 중량%, 홍삼엑기스 5 중량%, 건포도 5 중량%, 동결건조된 생식분말 5 중량% 및 비타민류 3 중량%의 비율로 각각의 분말원료들을 잘 혼합한 후 약 100℃의 끊는 시럽에 투입하여 혼합하였다. 상기 혼합한 원료를 상온에서 냉각 후 바형태로 잘라 영양바 샘플을 제조하였다. 50% by weight of expanded rice, 17% by weight of nuts, 15% by weight of syrup, 5% by weight of red ginseng extract, 5% by weight of raisins, 5% by weight of lyophilized raw powder and 3% by weight of vitamins After mixing, the mixture was added to a cutting syrup at about 100 ° C. The mixed raw materials were cooled to room temperature, and then cut into bars to prepare a nutrient bar sample.

<1-2> 제조된 영양바의 진공포장<1-2> Vacuum packaging of the manufactured nutrition bar

상기 실시예 <1-1>에 의해 제조된 영양바를 폴리에틸렌 라미네이트 필름 포장지로 진공포장하였다. The nutrition bar prepared in Example <1-1> was vacuum packed with polyethylene laminate film wrapper.

<1-3> 방사선 조사<1-3> irradiation

상기 실시예 <1-2>에 의해 포장된 영양바를 한국원자력연구원 정읍 방사선과학연구소의 감마선 조사시설(선원 30만 Ci, Co-60)을 이용하여 실온(12 ± 1℃)에서 분당 125Gy의 선량율로 방사선 조사하였다. 감마선 조사선량은 0, 5, 10, 12, 14, 16, 18 및 20kGy의 총 흡수선량을 얻도록 하였으며, 흡수선량 확인은 세릭-세로스 선량계(ceric-cerous dosimeter)를 사용하였고, 총 흡수선량의 오차는 ± 0.1kGy였다.A dose rate of 125 Gy / min at room temperature (12 ± 1 ° C) using a gamma ray irradiation facility (300,000 Ci, Co-60) of the Nutritional Bar of Jeongeup Institute of Radiation Science, Korea Atomic Energy Research Institute Irradiation with. The gamma-irradiation dose was obtained to obtain total absorbed doses of 0, 5, 10, 12, 14, 16, 18 and 20 kGy, and the absorbed dose was checked using a ceric-cerous dosimeter. The error of was ± 0.1 kGy.

상기의 감마선 조사된 우주영양바를 이용하여 하기의 다양한 실험예에 사용하였고, 모든 실험은 5회 반복하였으며, 일원 배치 분산분석(One-way Analysis of Variance; ANOVA)을 통계분석시스템(SAS Version 5 edition)을 사용하여 실시하였다. 던칸(Duncan)의 다중 검정법을 이용하여 평균값의 유의성을 5% 이내의 한계로 유의성을 검증하였으며, 평균값과 표준오차를 나타내었다(도 1 및 도 2).The gamma-irradiated space nutrient bar was used in various experimental examples below, and all experiments were repeated five times. One-way analysis of variance (ANOVA) was used for statistical analysis system (SAS Version 5 edition). ) Was used. Duncan's multiple tests were used to verify the significance of the mean value within 5% limits, and the mean value and standard error were shown (FIGS. 1 and 2).

<비교예 1> 홍삼엑기스의 첨가량이 다른 영양바의 제조Comparative Example 1 Preparation of Nutritional Bars with Different Amount of Red Ginseng Extract

상기 실시예 <1-1>에서 홍삼엑기스의 첨가량의 비율이 5% 대신 6, 7 및 8%로 늘리고 이에 맞게 팽화미의 첨가량을 49, 48 및 47%로 각각 설정된 것을 제외하고 상기 <실시예 1>와 동일한 방법으로 영양바들을 제조하였다.Except that the ratio of the amount of red ginseng extract added in Examples <1-1> is increased to 6, 7 and 8% instead of 5% and the amount of expanded rice is set to 49, 48 and 47%, respectively, according to the above <Example Nutrition bars were prepared in the same manner as 1>.

<비교예 2> 함기포장한 영양바의 제조Comparative Example 2 Preparation of Nutritional Bar Packed

상기 실시예 <1-2>에서 진공포장 대신 함기포장한 것을 제외하고 상기 <실시예>와 동일한 방법으로 제조하였다.In Example <1-2> it was prepared in the same manner as in <Example> except that the packaging instead of vacuum packaging.

<< 실험예Experimental Example 1>  1> 홍삼엑기스Red Ginseng Extract 농도에 따른  According to concentration 영양바의Nutritional bar 관능평가  Sensory evaluation

상기 <실시예 1> 및 <비교예 1>의 영양바들을 각각 0 및 10kGy 조사선량의 감마선으로 조사한 후 관능평가를 실시하였다. 상기 관능평가는 미리 훈련된 12명의 관능평가요원에게 상기 영양바들을 제공하여 색택, 조직감, 맛, 향 및 전체적인 기호도를 평가하였다. The nutrition bars of <Example 1> and <Comparative Example 1> were irradiated with gamma rays of 0 and 10 kGy irradiation doses, respectively, and then sensory evaluation was performed. The sensory evaluation provided the nutrition bars to 12 previously trained sensory evaluation personnel to evaluate color selection, texture, taste, aroma and overall palatability.

홍삼엑기스Red Ginseng Extract 농도에 따른  According to concentration 영양바의Nutritional bar 관능평가 Sensory evaluation 시료sample color 조직감Organization flavor incense 전체적 기호도Overall preference 0kGy0kGy 5%5% 6.6±0.46.6 ± 0.4 6.7±0.66.7 ± 0.6 6.9±0.56.9 ± 0.5 6.7±0.26.7 ± 0.2 6.8±0.76.8 ± 0.7 6%6% 6.8±0.66.8 ± 0.6 6.8±0.56.8 ± 0.5 6.5±0.76.5 ± 0.7 6.8±0.56.8 ± 0.5 6.4±0.36.4 ± 0.3 7%7% 6.7±0.56.7 ± 0.5 6.6±0.56.6 ± 0.5 6.1±0.36.1 ± 0.3 6.8±0.66.8 ± 0.6 6.2±0.66.2 ± 0.6 8%8% 6.8±0.46.8 ± 0.4 6.8±0.36.8 ± 0.3 5.9±0.65.9 ± 0.6 6.9±0.36.9 ± 0.3 6.1±0.56.1 ± 0.5 10kGy10kGy 5%5% 5.7±0.25.7 ± 0.2 6.6±0.46.6 ± 0.4 6.1±0.66.1 ± 0.6 6.2±0.36.2 ± 0.3 6.1±0.46.1 ± 0.4 6%6% 5.5±0.55.5 ± 0.5 6.3±0.76.3 ± 0.7 6.2±0.56.2 ± 0.5 6.4±0.76.4 ± 0.7 6.3±0.56.3 ± 0.5 7%7% 5.3±0.35.3 ± 0.3 6.4±0.66.4 ± 0.6 6.6±0.46.6 ± 0.4 6.6±0.56.6 ± 0.5 6.5±0.46.5 ± 0.4 8%8% 5.6±0.65.6 ± 0.6 6.7±0.56.7 ± 0.5 6.3±0.36.3 ± 0.3 6.5±0.66.5 ± 0.6 6.3±0.36.3 ± 0.3

그 결과, 상기 표 2에 나타난 바와 같이 비조사구의 경우 홍삼엑기스의 첨가량이 증가할수록 맛과 전체적인 수용도가 감소하였으며, 8%로 첨가하였을 때 쓴맛이 나타나기 시작하여 전체적인 수용도가 유의적으로 감소하기 시작하였다(p<0.05). 또한, 10kGy의 감마선의 경우 전체적으로 쓴맛이 감소하여 맛에 대한 항목의 점수가 높아졌다. 따라서 본 발명의 영양바는 전체적인 선호도에서 가장 높은 점수을 나타내는 홍삼엑기스 7%를 첨가하는 것이 가장 적절하고, 상기 홍삼엑기스의 첨가량이 5 내지 8%일 때 적절한 것임을 알 수 있었다(표 2).As a result, as shown in Table 2, in the non-irradiated area, as the amount of red ginseng extract added increased, the taste and overall water solubility decreased, and when added at 8%, the bitter taste began to appear and the overall water solubility significantly decreased. Started (p <0.05). In addition, in the case of gamma rays of 10 kGy, the bitterness of the whole decreased, and the score of the item for the taste was increased. Therefore, the nutrition bar of the present invention was most appropriate to add the red ginseng extract 7% showing the highest score in the overall preference, it was found that it is appropriate when the addition amount of the red ginseng extract is 5 to 8% (Table 2).

<< 실험예Experimental Example 2> 포장방법에 따른  2> According to the packing method 영양바의Nutritional bar 관능평가 Sensory evaluation

포장방법이 영양바의 관능적 품질에 미치는 영향을 평가하기 위하여, 상기 <실시예 1> 및 <비교예 1>의 영양바를 각각 10 kGy의 감마선에 조사한 후 관능평가를 실시하였다.In order to evaluate the effect of the packaging method on the sensory quality of the nutrition bar, the nutrition bars of Example 1 and Comparative Example 1 were irradiated with gamma rays of 10 kGy, respectively, and then sensory evaluation was performed.

포장방법에 따른 According to the packing method 영양바의Nutritional bar 관능평가 Sensory evaluation 시료sample color 조직감Organization flavor incense 전체적 기호도Overall preference 진공포장Vacuum packing 6.5±0.46.5 ± 0.4 6.5±0.66.5 ± 0.6 6.9±0.56.9 ± 0.5 6.8±0.26.8 ± 0.2 6.8±0.76.8 ± 0.7 함기포장Aircraft Packaging 5.6±0.25.6 ± 0.2 6.6±0.46.6 ± 0.4 6.2±0.66.2 ± 0.6 6.1±0.36.1 ± 0.3 6.1±0.46.1 ± 0.4

그 결과, 상기 표 3에 나타난 바와 같이 진공포장 시료의 감마선 조사 후의 관능적 품질이 함기포장의 시료보다 우수함을 알 수 있었다. 따라서 본 발명의 영양바는 함기포장 보다 산소를 제거한 진공포장이 방사선 조사에 의한 품질저하를 최소화할 수 있음을 알 수 있었다(표 3).As a result, as shown in Table 3, it was found that the sensory quality after the gamma ray irradiation of the vacuum packaged sample was superior to the sample of the air-packed sample. Therefore, the nutrition bar of the present invention was found that the vacuum packaging from which oxygen is removed than the packaging of air can minimize the deterioration of quality due to irradiation (Table 3).

<< 실험예Experimental Example 3> 감마선  3> gamma ray 조사선량에On irradiation dose 따른  According 영양바의Nutritional bar 미생물수Microbial count 측정 Measure

감마선 조사가 영양바의 미생물 생육에 미치는 효과를 평가하기 위하여, 감마선 조사선량에 의한 미생물수를 측정하였다. 상기 <실시예 1>의 영양바 시료 10g을 시료균질용 멸균 봉투에 넣고 미리 멸균시켜 준비한 펩톤수(0.9% peptone) 90 mL을 넣은 후 미생물 분석용 시료균질기(Stomacher)에서 3분간 균질하였다. 상기 시료균질액을 10분간 정치한 다음 상등액 1mL을 취하여 10배 희석법을 실시하여 희석시킨 다음, 미리 멸균하여 준비한 플레이트 카운트 한천배지(plate count agar)에 각각의 희석액 1mL을 넣어 잘 도말한 다음 35℃ 항온배양기에서 48시간 배양한 다음 미생물 군락수를 계수하였다. 미생물이 발견되지 않은 배지는 같은 배양조건에서 24시간 더 배양하여 미생물 생육을 관찰하였다.In order to evaluate the effect of gamma irradiation on microbial growth of nutrition bars, the number of microorganisms by gamma irradiation dose was measured. 10 g of the nutrient bar sample of <Example 1> was placed in a sterile bag for sample homogenization, and 90 mL of peptone water (0.9% peptone) prepared in advance for sterilization was homogenized for 3 minutes in a sample homogenizer for analysis of microorganisms (Stomacher). The sample homogenate was allowed to stand for 10 minutes, followed by diluting with 1 mL of the supernatant and performing a 10-fold dilution method. Then, 1 mL of each dilution was added to a plate count agar prepared in advance and sterilized, and then plated well at 35 ° C. After 48 hours of incubation in the incubator, the number of microbial communities was counted. The culture medium was not found microorganisms were further cultured for 24 hours under the same culture conditions to observe the growth of microorganisms.

감마선 조사에 따른 미생물수의 변화(단위: Changes in Microbial Count due to Gamma Irradiation (Unit: CFUCFU /g)/ g) 방사선 조사선량(kGy)Radiation dose (kGy) 총균수Total bacteria 포자 형성균Spore forming bacteria 곰팡이 및 효모Mold and Yeast 00 7.4×103 7.4 × 10 3 7.0×102 7.0 × 10 2 1.0×102 1.0 × 10 2 55 2.0×102 2.0 × 10 2 NDND NDND 1010 1.0×101 1.0 × 10 1 NDND NDND 1212 NDND NDND NDND 1414 NDND NDND NDND 1616 NDND NDND NDND 1818 NDND NDND NDND 2020 NDND NDND NDND

ND: 미생물 생육이 검출되지 않은 시료ND: Sample without microbial growth detected

그 결과, 상기 표 4에 나타난 바와 같이 비조사구의 경우 총균수는 103(CFU/g)수준으로 나타났고, 내생포자 및 곰팡이/효모는 각각 102(CFU/g) 수준으로 나타났다. 그러나 12 kGy 이상의 조사선량에서는 모든 미생물이 완전사멸되는 것으로 나타났다. 따라서 본 발명의 영양바는 방사선의 조사선량이 12kGy 내지 20kGy인 것이 적절한 것임을 알 수 있었다(표 4 및 도 3).As a result, as shown in Table 4, in the non-irradiated group, the total bacterial count was found to be 10 3 (CFU / g), and endospores and fungi / yeast were 10 2 (CFU / g), respectively. Level appeared. However, at doses above 12 kGy, all microorganisms were completely killed. Therefore, the nutrition bar of the present invention was found to be appropriate that the radiation dose of radiation is 12kGy to 20kGy (Table 4 and Figure 3).

<< 실험예Experimental Example 4> 감마선  4> gamma ray 조사선량에On irradiation dose 따른  According 영양바의Nutritional bar 관능적 품질 평가 Sensory quality rating

진공포장 후 방사선 조사에 따른 영양바의 관능적 품질을 7점 평가법을 사용하여 평가하였다. 진공포장된 영양바를 감마선 조사선량 0, 10, 12, 14, 16, 18 및 20kGy로 각각 조사한 후 미리 훈련된 12명의 관능평가요원에게 색택, 조직감, 맛, 향, 불쾌취(방사선 조사취) 및 전체적인 기호도를 평가하였다. After the vacuum packaging, the sensory quality of the nutrition bar following irradiation was evaluated using a 7-point evaluation method. The vacuum-packed nutrition bars were irradiated with gamma radiation doses of 0, 10, 12, 14, 16, 18 and 20 kGy, respectively, and 12 pre-trained sensory personnel were selected for color, texture, taste, aroma, odor (radiation) and Overall acceptability was evaluated.

감마선 Gamma rays 조사선량에On irradiation dose 따른  According 우주영양바의Space nutrition 관능품질 평가  Sensory quality evaluation 방사선 조사선량(kGy)Radiation dose (kGy) 색택Color 조직감Organization flavor incense 불쾌치Discomfort 전체적 기호도Overall preference 00 5.83±1.175.83 ± 1.17 5.33±1.755.33 ± 1.75 4.67±1.864.67 ± 1.86 5.17±2.325.17 ± 2.32 3.80±2.683.80 ± 2.68 5.17±2.325.17 ± 2.32 1010 5.83±0.755.83 ± 0.75 5.50±1.385.50 ± 1.38 4.17±1.174.17 ± 1.17 5.17±1.835.17 ± 1.83 3.80±2.593.80 ± 2.59 4.67±1.514.67 ± 1.51 1212 5.83±0.755.83 ± 0.75 5.33±1.215.33 ± 1.21 4.33±0.824.33 ± 0.82 5.17±1.335.17 ± 1.33 4.00±2.004.00 ± 2.00 4.67±1.034.67 ± 1.03 1414 5.83±0.755.83 ± 0.75 5.00±0.635.00 ± 0.63 4.50±0.554.50 ± 0.55 5.33±1.035.33 ± 1.03 3.80±1.923.80 ± 1.92 4.50±0.844.50 ± 0.84 1616 5.50±0.845.50 ± 0.84 4.67±0.824.67 ± 0.82 4.00±0.894.00 ± 0.89 5.00±0.895.00 ± 0.89 3.80±1.303.80 ± 1.30 4.17±0.754.17 ± 0.75 1818 5.33±0.825.33 ± 0.82 5.00±0.635.00 ± 0.63 4.00±1.794.00 ± 1.79 5.00±0.895.00 ± 0.89 3.40±1.523.40 ± 1.52 4.33±1.214.33 ± 1.21 2020 5.17±0.985.17 ± 0.98 4.83±0.754.83 ± 0.75 3.83±1.943.83 ± 1.94 5.00±0.895.00 ± 0.89 3.40±1.823.40 ± 1.82 4.00±1.794.00 ± 1.79

그 결과, 상기 표 5에 나타난 바와 같이 감마선의 조사선량이 증가할수록 전체적인 기호도는 감소하나 20kGy 이하로 조사된 시료 모두의 기호도가 중간 평점(4점) 이상이었다. 이는 20kGy까지의 감마선 조사는 관능적으로 수용 가능함을 시사한다. 그러나 16kGy부터 조직감에 대한 기호도가 감소하기 시작하였으며 18kGy부터 홍삼 고유의 풍미가 감소하기 시작하였다. 따라서 비조사구에 준하는 관능적 품질을 가지는 방사선 조사선량는 12 내지 20kGy로 판단하여 우주영양바를 제조하였으며, 14 내지 16kGy일 때 미생물학적 안전성과 관능적 품질을 유지하는 최적조건인 것임을 알 수 있었다(표 5).As a result, as shown in Table 5, as the irradiation dose of gamma rays increases, the overall acceptability decreases, but the acceptability of all samples irradiated with 20 kGy or less was higher than the median rating (4 points). This suggests that gamma irradiation up to 20 kGy is sensually acceptable. However, the preference for texture was reduced from 16kGy and the flavor of red ginseng began to decrease from 18kGy. Therefore, the radiation dose with sensory quality comparable to the non-irradiated area was determined to be 12 to 20 kGy to produce a space nutrition bar.

방사선기술을 기반으로 한 첨단 우주식품 제조공정은 방사선 조사에 의해 발생할 수 있는 관능적 품질 저하를 방지하면서 우주조건과 같은 극한환경에서 장기적으로 안전하게 저장할 수 있는 우주영양바의 제조기술로 이용될 수 있다. 상기 기술을 바탕으로 영양바와 유사한 특성을 지닌 식품들의 장기안전 저장 제조에도 이용될 수 있으므로, 우주식품 분야뿐만 아니라 군용 전투식량, 스포츠식품 및 무균환자식 등 특수식품개발 분야의 기술 개발에 유용하게 이용될 수 있다.Advanced space food manufacturing process based on radiation technology can be used as a space nutrition bar manufacturing technology that can be stored safely in the long term in extreme environments such as space conditions while preventing sensory quality degradation caused by irradiation. Based on the above technology, it can be used in the long-term safe storage manufacturing of foods with similar characteristics to nutrition bars, so it is useful for the development of technology not only in space food but also in special food development field such as military combat food, sports food and aseptic patient food. Can be.

도 1은 본 발명의 우주영양바의 제품을 나타낸 그림이다. 1 is a diagram showing a product of the space nutrition bar of the present invention.

도 2는 본 발명의 우주영양바 제조공정단계를 도식화하여 나타낸 그림이다. Figure 2 is a schematic diagram showing the process of manufacturing a space nutrition bar of the present invention.

도 3은 본 발명의 우주영양바를 진공포장 후 무처리군(A) 및 감마선 조사(B, 14 kGy)군을 5주 동안 가속저장한 후 일반세균 평판계수용 한천배지(plate count agar)에서 미생물 생육에 대한 100% 살균 여부를 나타낸 그림이다.Figure 3 shows the microbial growth in agar plate count agar after the accelerated storage of the untreated group (A) and gamma-irradiation (B, 14 kGy) group for 5 weeks after vacuum packaging the space nutrition bar of the present invention The figure shows whether 100% sterilization was done.

Claims (12)

1) 영양바를 제조하는 단계;1) preparing a nutrition bar; 2) 상기 단계 1)의 영양바를 포장하는 단계; 및2) packing the nutrition bar of step 1); And 3) 상기 단계 2)의 포장된 영양바에 방사선을 조사하는 단계를 포함하는 우주환경에서 취식이 가능한 영양바의 제조방법.3) A method of producing a nutrition bar that can be eaten in a space environment comprising the step of irradiating the packaged nutrition bar of step 2). 제 1항에 있어서, 단계 1)의 영양바는 곡류, 야채류, 채소류, 견과류, 과일류, 식물 또는 동물 기원 단백분말, 및 이를 이용한 가공품으로 구성된 군으로부터 선택된 어느 하나 이상을 원료로 포함하는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the nutrition bar of step 1) comprises any one or more selected from the group consisting of cereals, vegetables, vegetables, nuts, fruits, plant or animal-derived protein powder, and processed products using the same as a raw material. Method of manufacturing nutrition bars that can be eaten in the space environment. 제 1항에 있어서, 단계 1)의 영양바는 비타민류, 홍삼엑기스 또는 생식분말을 추가적으로 포함하는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the nutrition bar of step 1) further comprises vitamins, red ginseng extract or raw powder. 제 3항에 있어서, 홍삼엑기스는 전체 영양바의 함량에 대한 5 ~ 8%를 첨가하 는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 3, wherein the red ginseng extract is added to the content of 5 to 8% of the total nutrition bar content. 제 1항에 있어서, 단계 2)의 포장은 함기포장, 진공포장 및 질소가스 치환포장으로 구성된 군으로부터 선택된 어느 하나의 방법을 사용하는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the packaging of step 2) comprises any one method selected from the group consisting of air packing, vacuum packing and nitrogen gas substitution packing. 제 4항에 있어서, 상기 포장은 진공포장 방법을 사용하는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.5. The method of claim 4, wherein the packaging is a vacuum packaging method. 제 1항에 있어서, 단계 2)의 포장은 폴리에틸렌(Polyethylene, PE), 알루미늄라미네이트-저밀도폴리에틸렌(Aluminium-laminated low density polyethylene, Al-LDPE), 폴리프로필렌(Polypropylene, PP), 폴리비닐클로라이드(Polyvinyl chloride, PVC), 폴리비닐이덴클로라이드(Polyvinylidene chloride, PVDC), 폴리에틸렌터프탈레이트(Polyethylene terphthalate, PET), 폴리카르보네이트(Polycarbonates, PC) 또는 나일론(Nylon)으로 구성된 군으로부터 선택된 어느 하나의 재질을 사용하는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the packaging of step 2) is made of polyethylene (PE), aluminum-laminated low density polyethylene (Al-LDPE), polypropylene (PP), polyvinyl chloride chloride, PVC), polyvinylidene chloride (PVDC), polyethylene terphthalate (PET), polycarbonates (PC) or nylon (Nylon) Method of producing a nutrition bar that can be eaten in the space environment, characterized in that using the. 제 1항에 있어서, 단계 3)의 방사선은 감마선, 전자선(베타선) 및 엑스선으로 이루어진 군으로부터 선택된 어느 하나인 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the radiation of step 3) is any one selected from the group consisting of gamma rays, electron beams (beta rays) and X-rays. 제 8항에 있어서, 상기 방사선은 감마선인 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.10. The method of claim 8, wherein the radiation is gamma rays. 제 1항에 있어서, 단계 3)의 방사선은 12 내지 20 kGy 범위의 조사선량으로 조사되는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 1, wherein the radiation of step 3) is irradiated with an irradiation dose in the range of 12 to 20 kGy. 제 10항에 있어서, 상기 방사선은 14 내지 16 kGy 범위의 조사선량으로 조사되는 것을 특징으로 하는 우주환경에서 취식이 가능한 영양바의 제조방법.The method of claim 10, wherein the radiation is irradiated at a radiation dose in the range of 14 to 16 kGy. 제 1항의 제조방법에 의해 제조되는 우주환경에서 취식이 가능한 영양바.Nutrition bar that can be eaten in the space environment prepared by the method of claim 1.
KR1020080032181A 2008-04-07 2008-04-07 A manufacturing method of nutrient-bar usable in space environment using irradiation technology KR20090106813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080032181A KR20090106813A (en) 2008-04-07 2008-04-07 A manufacturing method of nutrient-bar usable in space environment using irradiation technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080032181A KR20090106813A (en) 2008-04-07 2008-04-07 A manufacturing method of nutrient-bar usable in space environment using irradiation technology

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020100034433A Division KR20100045432A (en) 2010-04-14 2010-04-14 A Manufacturing method of nutrient―bar usable in space environment using irradiation technology

Publications (1)

Publication Number Publication Date
KR20090106813A true KR20090106813A (en) 2009-10-12

Family

ID=41536693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080032181A KR20090106813A (en) 2008-04-07 2008-04-07 A manufacturing method of nutrient-bar usable in space environment using irradiation technology

Country Status (1)

Country Link
KR (1) KR20090106813A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440468B1 (en) * 2013-01-25 2014-09-17 재단법인 진안홍삼연구소 A ginseng energy bar using ginseng powder
KR20170022402A (en) 2015-08-20 2017-03-02 한국원자력연구원 Manufacturing method of oat meal porridge using irradiation technology
WO2017126710A1 (en) * 2016-01-18 2017-07-27 동의초석잠영농조합법인 Method for manufacturing stachys sieboldii miq. energy bar
KR102038293B1 (en) * 2019-09-10 2019-10-30 유한회사 백제동성농업회사법인 Method for producing energy bar using black ginseng and black garlic
KR102214607B1 (en) * 2020-04-10 2021-02-15 안봉진 Method and apparatus for packaging dry seafood

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440468B1 (en) * 2013-01-25 2014-09-17 재단법인 진안홍삼연구소 A ginseng energy bar using ginseng powder
KR20170022402A (en) 2015-08-20 2017-03-02 한국원자력연구원 Manufacturing method of oat meal porridge using irradiation technology
WO2017126710A1 (en) * 2016-01-18 2017-07-27 동의초석잠영농조합법인 Method for manufacturing stachys sieboldii miq. energy bar
KR102038293B1 (en) * 2019-09-10 2019-10-30 유한회사 백제동성농업회사법인 Method for producing energy bar using black ginseng and black garlic
KR102214607B1 (en) * 2020-04-10 2021-02-15 안봉진 Method and apparatus for packaging dry seafood

Similar Documents

Publication Publication Date Title
Thayer et al. Radiation pasteurization of food
Lung et al. Microbial decontamination of food by electron beam irradiation
KR100788456B1 (en) A manufacturing method of space kimchi with shelf stability under the severe environment
Mostafavi et al. The potential of food irradiation: Benefits and limitations
KR20090106813A (en) A manufacturing method of nutrient-bar usable in space environment using irradiation technology
Zehi et al. The effects of X-ray irradiation on safety and nutritional value of food: A systematic review article
Kalyani et al. Food irradiation–technology and application
KR101023811B1 (en) Manufacturing method of Bibimbap edible in space environment using irradiation technology
KR101033277B1 (en) A Manufacturing method of Ramen usable in space environment
EFSA Panel on Biological Hazards (BIOHAZ) Scientific Opinion on the efficacy and microbiological safety of irradiation of food
KR20100045432A (en) A Manufacturing method of nutrient―bar usable in space environment using irradiation technology
KR101179154B1 (en) Manufacturing method of bulgogi for storage in severe environment using irradiation technology
Feliciano et al. Microbiological quality of brown rice, ready-to-eat pre-cut fresh fruits, and mixed vegetables irradiated for immuno-compromised patients
Singh et al. Applications of food irradiation technology
Kebede et al. Review on radiation as a means of food preservation and its challenge
KR101191887B1 (en) Freeze-dried seaweed soup consumable in aerospace environment and method for preparing the same
KR101423709B1 (en) Method for manufacturing of charcoal-cooked dakgalbi for storage in severe environments
KR101296870B1 (en) Composition for mulberry beverage consumable in aerospace environment and method for preparing the same
Moreira et al. Irradiation applications in fruit and other fresh produce processing
Josephson et al. The use of ionizing radiation for preservation of food and feed products
Woods Food irradiation
Harder et al. Effects of gamma radiation for microbiological control in eggs
Talib et al. Modern trends and techniques for food preservation
Irawati et al. The role of medium radiation dose on microbiological safety and shelf-life of some traditional soups
KR101221546B1 (en) Preparation method of sterilized Tarakjuk with excellent nutrition and sensory quality

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
A107 Divisional application of patent
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100315

Effective date: 20101125