KR20090090188A - Bio-reactor auto-sensing system - Google Patents

Bio-reactor auto-sensing system

Info

Publication number
KR20090090188A
KR20090090188A KR1020080015501A KR20080015501A KR20090090188A KR 20090090188 A KR20090090188 A KR 20090090188A KR 1020080015501 A KR1020080015501 A KR 1020080015501A KR 20080015501 A KR20080015501 A KR 20080015501A KR 20090090188 A KR20090090188 A KR 20090090188A
Authority
KR
South Korea
Prior art keywords
water quality
water
tank
quality measurement
sample
Prior art date
Application number
KR1020080015501A
Other languages
Korean (ko)
Other versions
KR100945554B1 (en
Inventor
이승목
최규만
Original Assignee
관동대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 관동대학교산학협력단 filed Critical 관동대학교산학협력단
Priority to KR1020080015501A priority Critical patent/KR100945554B1/en
Publication of KR20090090188A publication Critical patent/KR20090090188A/en
Application granted granted Critical
Publication of KR100945554B1 publication Critical patent/KR100945554B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • C02F2209/008Processes using a programmable logic controller [PLC] comprising telecommunication features, e.g. modems or antennas

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

An auto-measuring system of water quality in a bio-reactor is provided to transfer data by on-line and monitor the status of the bio-reactor at the same time. An auto-measuring system of water quality in a bio-reactor comprises: a water quality analyzing part (10) which is installed near the bio-reactor (T); a SV analyzing part (20) which is installed near a water quality measuring bath (11); a sampling part (30) which collects sample of the bio-reactor and provides to water quality analyzing part and SV analyzing part; a washing part (40) for discharging discharged water to the bio-reactor; and a computation control part (50) which controls washing and discharging.

Description

생물반응조 자동수질측정장비{Bio-reactor auto-sensing system}Bio-reactor auto-sensing system

본 발명은 하수처리과정에서 생물반응조의 운전상태를 확인하기 위하여 수질을 자동으로 측정하는 장비에 관한 것으로, 더 자세하게는 고형물이 다량 함유되어 있는 생물반응조의 시료를 안정적으로 샘플링하여 생물반응조의 수질을 연속적이면서 효율적으로 모니터링할 수 있는 생물반응조 자동수질측정장비에 관한 것이다.The present invention relates to a device for automatically measuring the water quality in order to check the operating state of the bioreactor in the sewage treatment process, and more particularly, to stably sample the sample of the bioreactor containing a large amount of solids to improve the water quality of the bioreactor. The present invention relates to a biological reactor automatic water quality measurement equipment that can be continuously and efficiently monitored.

산업기술의 발전과 생활수준의 향상에 따라 환경 오염에 대한 관심이 높아짐에 따라 각종 오염물의 배출에 대한 규제가 점차 엄격해 지고 있는데, 특히 우리나라는 향후 물 부족 국가로 분류되고 있는 만큼 물의 오염에 대한 충분한 관심과 관리는 매우 중요하다.As the interest in environmental pollution increases with the development of industrial technology and the improvement of living standards, the regulations on the emission of various pollutants are getting stricter. Especially, Korea is classified as a water-deficient country in the future. Sufficient care and management are very important.

물의 경우, 그 오염은 크게 두 가지 측면에서 구분될 수 있는 바, 하나는 각 산업현장에서 발생되는 오·폐수 및 하수이며, 다른 하나는 가정 등에서 배출되는 생활하수로서, 정상적인 경우 각 산업현장에서 발생되는 오·폐수 및 하수는 각 공장에서 정화 처리하여 방류하도록 되어 있고, 생활 하수는 국가나 지방자치단체에서 하수처리장을 설치하여 관리하고 있다.In the case of water, the pollution can be classified into two aspects: one is wastewater and sewage generated at each industrial site, and the other is living sewage discharged from home, etc. Wastewater and sewage are purified and discharged at each factory, and domestic and local sewage treatment facilities are installed and managed by national or local governments.

전술한 바와 같이, 향후 물 부족 국가인 우리나라는 수자원의 효율적 관리를 위해서도 식수원과 생활 용수원이 되는 하천수의 오염을 적극적으로 방지하여야 하기 때문에, 하수나 오·폐수 처리장의 처리 효율은 매우 중요한 실정인 바, 하수나 오·폐수 처리장에서의 처리과정을 살펴 보면 다음과 같다.As mentioned above, Korea, which is a water-deficient country in the future, must actively prevent pollution of river water, which is a source of drinking water and living water, for the efficient management of water resources. Therefore, the treatment efficiency of sewage and wastewater treatment plants is very important. The treatment process in sewage, sewage and wastewater treatment plants is as follows.

설명에 앞서, 용어상의 편의를 위하여 처리장으로 유입되는 하수나 오·폐수를 "처리대상수"라 하고, 처리장으로 유입된 후 처리과정 중에 있는 하수 또는 오·폐수를 "처리수"라 하기로 한다.Prior to the description, for the sake of convenience, the sewage or wastewater flowing into the treatment plant is referred to as "treatment water", and the sewage or wastewater in the treatment process after entering the treatment plant is referred to as "treatment water". .

하수나 오·폐수 처리장으로 유입된 처리대상수는, 침사지→최초 침전지→폭기조(aeration tank)→최종 침전지→소독 설비를 순차적으로 통과한 후 방류되는 바, 침사지에서는, 처리대상수와 함께 유입된 흙, 모래 등과 같이 비중이 비교적 큰 물질이 침전되고, 플라스틱이나 병 등과 같이 뷰유하는 물질은 스크린에 의해 걸러지게 되며, 최초 침전지에서는, 침사지로부터 유입된 처리수가 수 시간 체류하면서 침전성 고형물이 침전된다.The treated water flowing into the sewage or sewage treatment plant is discharged after passing through the sedimentation site → initial sedimentation site → aeration tank → final sedimentation site → sterilization equipment. Materials with a relatively high specific gravity, such as soil and sand, are precipitated, and materials such as plastic and bottles are filtered out by the screen. In the first sedimentation basin, sedimentary solids are precipitated as the treated water flows from the sedimentation basin for several hours. .

그리고 폭기조에서는 송풍기 등으로부터 공급되는 충분한 공기에 의해 호기성 미생물이 처리수 중의 유기 물질을 영양분으로 하여 배양, 응집되어 플록을 형성하는 곳으로서 생물반응조(이하에서는 "생물반응조"라고 함)라고도 한다.In the aeration tank, aerobic microorganisms are cultured and aggregated using organic substances in the treated water as nutrients with sufficient air supplied from a blower or the like to form flocs, also referred to as bioreactors (hereinafter referred to as "bioreactors").

최종 침전지에서는, 상기 생물반응조에서 이송된 처리수가 수 시간 동안 체류하게 되는 바, 이 과정에서, 침전되기 쉬운 활성슬러지는 침전되어 일부는 다시 생물반응조로 반송되고, 잉여 오니는 농축조로 보내지며, 깨끗한 상등수는 방류가 이루어진다.In the final sedimentation basin, the treated water transferred from the bioreactor stays for several hours. In this process, the activated sludge which is susceptible to sedimentation is precipitated and part is returned to the bioreactor, and the surplus sludge is sent to the concentration tank, The supernatant is discharged.

상기와 같이 연속된 일련의 과정을 통하여 이루어지는 처리대상수의 처리과정에서 가장 중요한 단계는, 처리대상수의 양에 따라 최소 1조에서 대부분의 경우 3∼8조 정도 설치되어 호기성 미생물 배양에 의한 플록이 형성되는 생물반응조에서의 처리과정으로서, 이와 같이 생물반응조를 이용한 하수처리를 활성슬러지 공정이라 하며, 하수를 활성슬러지 공정으로 처리하는 경우, 생물반응조에서 최고의 정화효율을 얻기 위해서는 활성슬러지 및 공기의 양을 적절히 조절해 주어야 한다.The most important step in the treatment of the water to be treated through the continuous series as described above, according to the amount of the water to be treated is at least 1 to most cases 3 to 8 trillion installed floc by aerobic microbial culture In this process, the sewage treatment using the bioreactor is called activated sludge process, and when the sewage is treated by the activated sludge process, in order to obtain the best purification efficiency in the bioreactor, The amount should be adjusted properly.

그런데 활성슬러지에 의한 정화속도는 항상 일정하지 않고 BOD(Biochemical Oxygen Demand, 생화학적 산소 요구량), MLDO(Mixed Liquor Dissolved Oxygen, 혼합용액 중의 용존산소농도), MLSS(Mixed Liquor Suspended Solid, 혼합부유고형물), pH(수소이온농도의 역수에 대한 상용로그값), SV30(sludge volume 30, 1리터의 메스실린더에 시료를 30분간 정체시켰을 때 시료량에 대한 침전슬러지량의 배분율), 수온 등의 여러 인자에 의해 영향을 받는 바, 각 생물반응조에서 생물학적 반응에 의한 처리수의 처리과정이 적절히 이루어지고 있는 가를 계속적으로 살펴 보기 위하여서는 생물반응조에서 처리 중인 처리수에 대한 상기의 인자들을 주기적으로 분석, 기록 및 관리하여야 한다.However, the rate of purification by activated sludge is not always constant, but BOD (Biochemical Oxygen Demand), MLDO (Mixed Liquor Dissolved Oxygen, dissolved oxygen concentration in mixed solution), MLSS (Mixed Liquor Suspended Solid) , pH (commercial logarithm of the reciprocal of hydrogen ion concentration), SV30 (sludge volume 30, the ratio of settling sludge to sample volume when the sample is left in a 1 liter measuring cylinder for 30 minutes), and water temperature In order to continue to check whether the treatment of treatment water by biological reaction is properly performed in each bioreactor, the above factors for the treatment water being treated in the bioreactor are periodically analyzed, recorded and It must be managed.

따라서 활성슬러지의 정화속도에 영향을 미치는 인자들을 효율적으로 관리하기 위하여 국내 대부분의 하수처리장에서는 생물반응조에 수질계측 시스템을 설치하여 수질변화를 검사하고 있다.Therefore, in order to efficiently manage the factors affecting the purification rate of activated sludge, most domestic sewage treatment plants have installed water quality measurement system in the bioreactor to check the water quality change.

그러나 상기와 같은 방법의 경우 현장에 직접 설치하기 때문에 시료의 이송 등에 의해 원수수질변화가 발생하지 않아 실제 값에 가장 근접한 데이터를 얻을 수 있다는 장점에도 불구하고, 각각의 센서를 현장에 설치해야 하기 때문에 초기투자비가 많이 소요될 뿐만 아니라 고형물질 및 협잡물 등에 의한 센서오염으로 정확한 데이터를 얻지 못하는 단점을 가지고 있다.However, in the case of the above-mentioned method, since the raw water quality change does not occur due to the transfer of the sample, the data closest to the actual value can be obtained, but each sensor must be installed in the field. Not only does it cost a lot of initial investment, but it also has a drawback that it is impossible to obtain accurate data due to sensor contamination by solid materials and contaminants.

또한 정확한 데이터를 얻기 위해서는 센서의 세정 및 보정에 많은 인력과 시간이 소요되는 단점을 가지고 있어 현장에서는 고가의 장비를 설치하고도 방치하고 있는 실정이다.In addition, it takes a lot of manpower and time to clean and calibrate the sensor in order to obtain accurate data, so the site is left with expensive equipment installed.

이러한 이유로 일선에서는 계측기의 측정값을 신뢰하지 못하고 필요에 따라 관리자가 수작업으로 수질을 분석하여 처리장 운영 자료로 활용하고 있기 때문에, 객관적이고도 연속적인 처리장 운전조건자료를 확보하지 못하는 경우가 많다.For this reason, there are many cases where objective and continuous plant operating condition data cannot be secured because some companies do not trust the measured values of the instrument and the manager analyzes the water quality manually and uses it as the plant operation data as needed.

상기와 같이 현장에 계측기를 직접 설치하는데 따른 문제를 해결하기 위하여 생물반응조에 샘플링 배관을 설치한 후 이를 통하여 간헐적으로 시료를 이송하여 분석하는 시스템이 시도되고 있으나, 이송거리가 길어 시료의 성상이 변화될 뿐만 아니라, 유입배관의 막힘 현상, 동절기 동파 등의 문제가 있어 연속적인 수질분석에 많은 어려움이 있기 때문에 확실한 대안이 되지는 못하는 있다.In order to solve the problem of installing the measuring instrument directly in the field as described above, a system has been attempted to transfer and analyze the sample intermittently through the installation of the sampling pipe in the bioreactor, but the characteristics of the sample change due to the long transfer distance. In addition, there is a problem such as blockage of the inlet pipe, freezing of winter, etc., so that there is a lot of difficulties in the continuous water quality analysis is not a sure alternative.

또한 국내 대다수의 하수처리장에 설치되어있는 수질측정 시스템은 하수 중에 포함된 고형물질로 인하여 연속적인 측정이 어렵고, 유지보수에 많은 비용과 인력이 필요한 실정이다.In addition, the water quality measurement system installed in most sewage treatment plants in Korea is difficult to continuously measure due to the solid matter contained in the sewage, and requires much cost and manpower for maintenance.

본 발명은, 종래 하수처리장의 생물반응조 모니터링 방법이 가지고 있는 제반 문제점들을 해결하기 위하여 창안된 것으로, 현장에 각종 계측기를 직접 설치하는 방식의 장점과 샘플링 방식의 장점을 활용하여 안정적이면서도 연속적인 수질 분석이 가능한 생물반응조 자동수질측정장비를 제공함에 본 발명의 목적이 있다.The present invention was devised to solve all the problems of the conventional method for monitoring a bioreactor in a sewage treatment plant, and utilizes the advantages of a method of directly installing various measuring instruments in the field and the advantages of a sampling method to provide stable and continuous water quality analysis. It is an object of the present invention to provide such a bioreactor automatic water quality measurement equipment.

그리고 현장에 가까운 위치에 계측기를 설치하고 연속적인 샘플링을 통해 시료의 변성을 지양하면서도 센서의 오염에 의한 계측기 측정값의 신뢰도를 향상시킬 수 있는 기술 및 처리장의 운전인자를 미리 관리하여 오염물질 초과 배출을 사전에 예방하여 최적의 방류수를 배출할 수 있는 보다 능동적인 자동수질측정장비를 제공함에 본 발명의 또다른 목적이 있다.In addition, by installing the instrument close to the site and avoiding the denaturation of the sample through continuous sampling, it is possible to manage the technology and process factors in advance to improve the reliability of the measurement value caused by the contamination of the sensor. It is another object of the present invention to provide a more active automatic water quality measurement equipment that can be discharged in advance to prevent the optimal discharge water.

본 발명의 상기 목적은, 센서의 신뢰도를 저해하는 센서의 오염문제와 시료의 이송거리가 멀어짐에 따라 초래되는 시료의 성상 변화문제 등을 해결할 수 있는 근접 자동 샘플링과, 센서 등에 대한 주기적인 자동세척에 의하여 달성된다.The above object of the present invention, the proximity automatic sampling and the periodic automatic cleaning for the sensor and the like that can solve the problem of contamination of the sensor and the problem of the change in the properties of the sample caused by the distance of the transport of the sample, which hinders the reliability of the sensor Is achieved.

본 발명의 생물반응조 자동수질측정장비는, MLSS, MLDO, SV30, pH, 수온 등을 한 번에 측정하고 SVI 등의 값을 자동연산할 수 있으며 24시간 무인자동 측정이 가능할 뿐만 아니라, 데이터를 실시간 분석 및 저장하면서 온라인으로 데이터 전송하기 때문에, 실험실과 감시반은 물론 그 외의 원격지에서도 동시에 모니터링 할 수 있는 장점이 있다.The bioreactor automatic water quality measurement device of the present invention can measure MLSS, MLDO, SV30, pH, water temperature, etc. at once, and automatically calculate the values of SVI, etc. Because data is transmitted online while analyzing and storing, it has the advantage of being able to be monitored simultaneously in the laboratory, monitoring station, and other remote locations.

그리고 자동세척이 가능하기 때문에 운영보수시간이 최소화됨은 물론 유지관리가 편리하고 장비설치공간이 작으며, 계측기 사용을 통하여 측정조건을 일정하게 유지할 수 있기 때문에 데이터의 객관성이 확보되는 이점이 있다.In addition, since the automatic cleaning is possible, the maintenance time is minimized, the maintenance is convenient, the equipment installation space is small, and the measurement conditions can be kept constant through the use of the instrument, thereby ensuring the objectivity of data.

도 1은 본 발명 일실시예 장비의 설치도.1 is an installation diagram of an embodiment of the present invention equipment.

도 2는 본 발명 일실시예 장비의 구성도.Figure 2 is a block diagram of an embodiment of the present invention equipment.

도 3은 본 발명 장비를 구성하는 일실시예 시료채취관과 협잡물흡입방지망 및 브러시를 보인 것으로,Figure 3 shows an embodiment of the present invention constituting the sample collection tube and the contaminants intake prevention net and brush,

(가)는 처리수 시료 채취 시의 결합도이고,  (A) is the degree of binding at the time of sampling the treated water,

(나)는 협잡물흡입방지망 세척 시의 결합도이다.  (B) is the degree of coupling when cleaning the infiltration net.

((도면의 주요 부분에 대한 부호의 설명))                  ((Explanation of symbols for main part of drawing))

10. 수질분석부 11. 수질측정조 12. 수질측정센서      10. Water Quality Analysis Unit 11. Water Quality Measuring Tank 12. Water Quality Sensor

20. SV 분석부 21. SV 측정조 22. 광원      20. SV analyzer 21. SV measuring tank 22. Light source

23. 광도측정센서 30. 샘플링부 31. 시료채취관      23. Photometric sensor 30. Sampling unit 31. Sample collection tube

32. 처리수펌프 33. 협잡물흡입방지망 34. 브러시       32. Treated water pump 33. Anti-fog inhalation net 34. Brush

40. 세척부 41. 세척수펌프 42 배출배관      40. Washing section 41. Washing water pump 42 Exhaust pipe

50. 연산제어부 S. 교반기 N. 세척수노즐      50. Operation control part S. Stirrer N. Washing water nozzle

H. 시료채취공 T. 생물반응조      H. Sampler T. Bioreactor

본 발명은, 생물반응조 내에서의 생물학적 반응이 적절하게 이루어지고 있는 가를 지속적으로 살펴 보기 위하여 생물반응조의 수질을 자동으로 측정하는 장비에 관한 것이다.The present invention relates to a device for automatically measuring the water quality of a bioreactor in order to continuously check whether the biological reaction in the bioreactor is properly performed.

본 발명의 장비는, 생물반응조 인접한 곳에 설치됨으로써 생물반응조에서 채취한 처리수의 이동에 따른 성상변화를 최소화한 상태에서 수질상태를 측정하고, 이를 온라인 상으로 전송할 수 있도록 하는 동시에, 처리수를 채취하는 샘플링장치와 수질을 측정하는 각종 수질측정장치를 자동으로 세척할 수 있도록 한 구조에 기술적 특징이 있다.The equipment of the present invention is installed adjacent to the bioreactor to measure the water quality while minimizing the change in the properties caused by the movement of the treated water collected in the bioreactor, and to transmit it online, while simultaneously collecting the treated water. There is a technical feature in the structure to automatically clean the sampling device and the various water quality measuring devices for measuring the water quality.

본 발명의 생물반응조 자동수질측정장비는, 고형물질이 많은 생물반응조의 처리수 시료를 채취하는 샘플링부와; 채취된 시료로부터 수질상태를 측정하는 수질분석부 및 SV 분석부와; 수질분석부와 SV분석부 및 샘플링부를 주기적으로 자동 세척하기 위한 세척부와; 분석부의 측정값을 기록, 저장 및 외부로 전송하며, 샘플링부와 분석부 및 세척부의 작동을 제어하기 위한 연산제어부; 등으로 구성되는 바, 각각을 살펴보면 다음과 같다.Biological reactor automatic water quality measurement equipment of the present invention, the sampling unit for collecting the treated water sample of the bioreactor with a lot of solid matter; A water quality analysis unit and an SV analysis unit for measuring a water quality state from the collected sample; A washing unit for periodically and automatically cleaning the water quality analyzing unit, the SV analyzing unit, and the sampling unit; An operation control unit for recording, storing, and transmitting the measured value of the analysis unit to the outside, and controlling the operation of the sampling unit, the analysis unit, and the cleaning unit; It consists of, etc. Looking at each as follows.

샘플링부는, 생물반응조에서 처리 중인 처리수로부터 시료를 채취하는 역할을 하는 것으로, 생물반응조에 잠기는 시료채취관과; 시료채취관을 감싸는 협잡물흡입방지망; 등으로 구성되는 바, 생물반응조 내의 처리수는 불필요한 협잡물이 협잡물흡입방지망에 걸러진 상태로 시료채취공을 통하여 흡입된 후 이하에서 설명될 수질분석부와 SV 분석부로 공급된다.The sampling unit serves to collect a sample from the treated water being processed in the bioreactor, and the sample collection pipe is immersed in the bioreactor; Anti-fogging inhalation network surrounding the sampling tube; The treatment water in the bioreactor is sucked through the sampling hole in the state in which unnecessary contaminants are filtered through the inhalation trap network and then supplied to the water quality analysis unit and the SV analysis unit which will be described below.

수질분석부는, 샘플링부에서 채취된 처리수 시료로부터 즉시 측정이 가능한 수질인자 즉, MLDO, MLSS, pH, 수온 등을 측정하기 위한 것으로, 수질측정조와; MLDO 측정센서, MLSS 측정센서, pH 측정센서 및 수온센서 등 다수의 각종 수질측정센서; 로 구성되며, 수질측정조 내에는 각 측정센서에 세척수를 분사하기 위한 세척수분사수단이 구비된다.The water quality analysis unit, which measures water quality factors that can be immediately measured from the sample of treated water collected by the sampling unit, that is, MLDO, MLSS, pH, water temperature, etc., includes: a water quality measurement tank; Many kinds of water quality measurement sensors such as MLDO, MLSS, pH and water temperature sensors; Consists of, the water quality measuring tank is provided with a washing water spraying means for spraying the washing water to each measuring sensor.

SV 분석부는 채취된 시료를 일정시간 정체시킨 후 측정해야 하는 SV30을 측정하기 위한 것으로, 메스실린더의 역할을 하는 SV 측정조와; SV 측정조 외부 일 측에 SV 측정조의 높이방향을 따라 설치되는 선형 광원과; SV 측정조 외부 타측에 설치되어 SV 측정조의 높이방향을 따라 왕복이동 가능하며, SV 측정조를 통과한 광원의 광도를 감지하는 광도측정센서; 등으로 구성된다.SV analysis unit for measuring the SV30 that should be measured after a certain amount of time to the collected sample, the SV measuring tank that serves as a measuring cylinder; A linear light source installed at one side of the SV measuring tank along a height direction of the SV measuring tank; A photometric sensor installed at the other outside of the SV measuring tank and capable of reciprocating along the height direction of the SV measuring tank, the light measuring sensor sensing the light intensity of the light source passing through the SV measuring tank; And the like.

즉 샘플링부에서 채취된 처리수 시료는 상기 수질측정조와 SV 측정조로 공급되는 바, 수질측정조로 공급된 시료로부터 MLDO, MLSS, pH, 수온 등이 측정되고, SV 측정조로 공급된 시료로부터는 정체 30분 경과 후 SV30이 측정된다.That is, the treated water sample collected from the sampling unit is supplied to the water quality measuring tank and the SV measuring tank, and MLDO, MLSS, pH, water temperature, etc. are measured from the sample supplied to the water measuring tank, and from the sample supplied to the SV measuring tank, After 30 minutes the SV30 is measured.

이때 SV30이 측정되는 방법을 살펴보면, 시료가 공급된 후 30분이 경과하면 슬러지가 가라앉게 되는데, SV 측정조 외부 일측에 설치된 광원의 빛은 슬러지가 가라앉은 SV 측정조 상부로는 다량 통과할 수 있으나, 슬러지가 가라앉아 쌓인 SV 측정조의 하부로는 통과할 수 없거나 적은 극히 적은 양만이 통과할 수 있는 상태가 되는 바, SV 측정조 외부 타측에 설치된 광도측정센서가 SV 측정조를 통과한 광원의 광도를 감지하면서 하향이동한 후 광도가 급격히 감소하는 부분에서 정지함으로써, 광도측정센서의 이동거리를 산출하여 SV30을 계산하게 된다.At this time, when the SV30 is measured, the sludge sinks 30 minutes after the sample is supplied. The light from the light source installed on one side of the outside of the SV measuring tank may pass through the upper part of the SV measuring tank where the sludge has subsided. When the sludge sinks and accumulates, the lower part of the SV measuring tank cannot pass or only a small amount can pass.The photometric sensor installed on the other side of the SV measuring tank passes through the SV measuring tank. After moving downward while sensing, the luminosity stops at a sharply decreasing part, and the SV30 is calculated by calculating the moving distance of the photometric sensor.

세척부는, 샘플링부의 시료채취관과 협잡물흡입방지망, 각종 센서, SV측정조 및 시료공급배관 등을 세척하기 위한 것이며, 연산제어부는 처리수 시료를 채취하고 MLDO, MLSS, pH, 수온 및 SV30 등의 측정값을 입력받아 이를 저장, 기록 및 전송하는 동시에 샘플링부와 세척부 및 분석부 등을 제어하는 역할을 한다.The washing unit is for cleaning the sampling tube, the sampling inlet of the contaminant, the various sensors, the SV measuring tank, and the sample supply pipe. It receives the measured value, stores, records and transmits it, and controls the sampling unit, the cleaning unit and the analysis unit.

상기와 같이 구성되는 본 발명의 장비에서, 샘플링부, 수질분석부, SV 분석부, 세척부 및 연산제어부는 서로 배관이나 전선으로 연결되며, 각각의 작동을 자동화하기 위하여 자동으로 제어될 수 있는 모터, 펌프, 밸브 등이 배관에 구비되는 바, 이는 자동화 장비에서 당연히 구비되어야 하는 기본적인 요소로서 상기에서는 그 설명을 생략하였다.In the equipment of the present invention configured as described above, the sampling unit, water quality analysis unit, SV analysis unit, washing unit and operation control unit are connected to each other by a pipe or a wire, the motor which can be automatically controlled to automate each operation , Pumps, valves, etc. are provided in the pipe, which is a basic element that must be provided in the automation equipment as a description thereof has been omitted.

상기 본 발명의 목적과 기술적 구성을 비롯한 그에 따른 작용 효과에 관한 자세한 사항은 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 아래의 설명에 의해 명확하게 이해될 것이다.Details of the effects and the resulting effects, including the object and technical configuration of the present invention will be clearly understood by the following description with reference to the drawings showing a preferred embodiment of the present invention.

도 1에 본 발명 장비의 설치도를, 도 2에 본 발명 장비의 구성도를 도시하였다.1 is a diagram illustrating the installation of the present invention equipment, and FIG. 2 is a block diagram of the present invention equipment.

도시된 바와 같이 본 발명의 생물반응조 자동수질측정장비는,As shown in the biological reactor automatic water quality measurement equipment of the present invention,

생물반응조(T) 인접한 장소에 설치되는 수질측정조(11)와, 수질측정조(11)내에 채워지는 처리수 시료에 잠기도록 수질측정조(11)에 구비되는 다수의 수질측정센서(12)로 이루어진 수질분석부(10)와;A plurality of water quality measurement sensors 12 provided in the water quality measurement tank 11 so as to be immersed in the water quality measurement tank 11 installed in the biological reaction tank (T) adjacent place and the treated water sample filled in the water quality measurement tank 11. Water quality analysis section 10 consisting of;

상기 수질측정조(11)와 인접하여 설치되는 SV 측정조(21)와, SV 측정조(21) 외부 일측에 SV 측정조(21)의 높이방향으로 설치되는 선형 광원(22)과, SV 측정조(21) 외부 타측에 SV 측정조(21)의 높이방향을 따라 왕복이동 가능하게 설치되는 광도측정센서(23)로 이루어진 SV 분석부(20)와;SV measuring tank 21 provided adjacent to the water quality measuring tank 11, linear light source 22 provided in the height direction of the SV measuring tank 21 on one side of the SV measuring tank 21, and SV measurement An SV analyzer 20 formed of a photometric sensor 23 installed on the other outer side of the tank 21 so as to reciprocate along the height direction of the SV measuring tank 21;

상기 생물반응조(T)의 처리수에 잠기게 되는 시료채취관(31)과, 시료채취관(31)을 통하여 처리수 시료를 채취하여 수질측정조(11)와 SV 측정조(21)로 공급하는 처리수펌프(32)와, 시료채취관(31)을 감싸는 협잡물흡입방지망(33) 등으로 이루어진 샘플링부(30)와; A sample of the treated water is collected through the sample collection tube 31 and the sample collection tube 31 which is immersed in the treated water of the bioreactor T and supplied to the water quality measuring tank 11 and the SV measuring tank 21. A sampling unit 30 comprising a treated water pump 32 and a contaminant suction prevention network 33 surrounding the sample collection pipe 31;

상기 수질측정조(11)와 SV 측정조(21)에 세척수를 공급 및 분사하는 세척수펌프(41)와, 수질측정조(11)와 SV 측정조(21)에서 배출되는 처리수 시료와 세척수를 포함한 모든 배출수를 생물반응조(T)로 배출하기 위하여 수질측정조(11)와 SV 측정조(21)에서 생물반응조(T)로 연결되는 배출배관(42) 등으로 이루어진 세척부(40)와;Washing water pump 41 for supplying and spraying the washing water to the water quality measuring tank 11 and the SV measuring tank 21, the treated water sample and the washing water discharged from the water quality measuring tank 11 and the SV measuring tank 21 A washing unit 40 including a discharge pipe 42 connected to the bioreactor T from the water quality measurement tank 11 and the SV measurement tank 21 to discharge all the discharged water to the bioreactor T;

상기 수질분석부(10), SV 분석부(20), 샘플링부(30) 및 세척부(40)와 전기적으로 연결되어 처리수 시료로부터 분석된 각종 측정값을 입력받아 이를 저장, 기록 및 외부로 전송하며, 처리수 채취와 세척 및 배출을 제어하는 연산제어부(50); 등으로 구성된다.It is electrically connected to the water quality analysis unit 10, the SV analysis unit 20, the sampling unit 30 and the washing unit 40 receives various measured values analyzed from the treated water sample, and stores, records and sends them to the outside. A transmission control unit 50 which transmits and controls the collection and washing and discharge of the treated water; And the like.

이때 상기 다수의 수질측정센서(12)는, MLDO 측정센서, MLSS 측정센서, pH 측정센서 및 수온센서 등으로서, 측정하고자 하는 수질항목에 따라 수질측정센서(12)의 수는 가감될 수 있다.At this time, the plurality of water quality measurement sensors 12, MLDO measurement sensor, MLSS measurement sensor, pH measurement sensor and water temperature sensor, etc., the number of the water quality measurement sensor 12 according to the water quality items to be measured can be added or subtracted.

그리고 SV30 측정의 경우 광도측정센서(23)의 이동거리가 연산제어부(50)로 입력되고, 이를 기준으로 연산제어부(50)에서 SV30을 연산하게 된다.In the case of the SV30 measurement, the moving distance of the photometric sensor 23 is input to the calculation controller 50, and the calculation controller 50 calculates the SV30 based on this.

상기 수질분석부(10)와 SV 분석부(20) 및 연산제어부(50)를 함체상의 하우징(또는 케이스, 100) 내부에 결합한 후 하우징(100)을 생물반응조(T) 인접한 곳에 설치하는 것도 바람직하다.It is also preferable to combine the water quality analysis unit 10, the SV analysis unit 20, and the operation control unit 50 inside the housing (or case) 100 on the housing, and then install the housing 100 near the bioreactor T. Do.

상기와 같은 경우, 생물반응조(T)에 설치되는 샘플링부(30)는 하우징(100)으로 배관연결되며, 외부의 세척수공급원에 연결되는 세척부(40)는 하우징(100) 및 생물반응조(T)로 배관연결된다.In this case, the sampling unit 30 installed in the bioreactor T is piped to the housing 100, and the washing unit 40 connected to the external washing water supply source is the housing 100 and the bioreactor T. Is connected to the pipe.

그리고 처리수펌프(32)와 세척수펌프(41)는 하우징(100)에 내장될 수도 있고 하우징(100) 외부에 설치될 수도 있다.In addition, the treatment water pump 32 and the washing water pump 41 may be built in the housing 100 or may be installed outside the housing 100.

상기와 같이 구성되는 본 발명의 생물반응조 자동수질측정장비는, 연산제어부(50)의 명령에 의해 연속적으로 또는 주기적으로 생물반응조(T)의 처리수 시료를 수질분석부(10)와 SV 분석부(20)로 공급하여 각종 수질상태값을 측정한 후 측정이 완료된 처리수 시료를 생물반응조(T)로 배출하게 된다.In the biological water reactor automatic water quality measurement apparatus of the present invention configured as described above, the treated water sample of the bioreactor T continuously or periodically by the command of the operation control unit 50, the water quality analyzer 10 and the SV analyzer. After supplying to (20) to measure the various water quality values, the treated water sample is discharged to the bioreactor (T).

따라서 처리수의 상태를 매회 정확히 측정하기 위하여서는 처리수 시료 공급배관, 수질측정조(11), 수질측정센서(12), SV 측정조(21) 등을 주기적으로 세척해 주어야 하고, 세척은 다양한 방법으로 실시될 수 있는 바, 세척수를 시료 공급배관내로 주입하여 세척할 수도 있고, 역세를 실시할 수도 있다.Therefore, in order to accurately measure the condition of the treated water every time, the treated water sample supply pipe, the water quality measuring tank 11, the water quality measuring sensor 12, and the SV measuring tank 21 should be periodically cleaned. As can be carried out by the method, the washing water may be injected into the sample supply pipe for washing or backwashing.

특히 수질측정조(11) 내에 설치되는 수질측정센서(12)를 깨끗이 세척해 주어야 하는 바, 수질측정센서(12)에 세척수를 직접 분사할 수 있는 세척수노즐(N)을 수질측정조(11) 내에 구비하는 것이 바람직하며, 수질측정조(11) 내부를 세척하기 위하여 수질측정조(11) 내부에 연산제어부(50)에 의해 작동이 제어되는 교반기(S)를 설치하는 것도 좋다.In particular, the water quality measurement sensor 12 installed in the water quality measurement tank 11 should be washed cleanly. The water quality measurement tank 11 includes a washing water nozzle N capable of directly spraying the washing water onto the water quality measurement sensor 12. It is preferable to provide the inside, and in order to wash the inside of the water quality measuring tank 11, you may install the stirrer S by which the operation control part 50 is controlled by the operation control part 50 inside the water quality measuring tank 11.

즉 수질분석이 완료되면, 처리수 시료를 배출한 후 수질측정조(11) 내에 세척수를 채운 상태에서 교반기(S)를 가동하여 잔류 처리수 및 고형물이 세척수에 혼합되도록 한 후 배출하고, 세척수노즐(N)을 이용하여 수질측정센서(12)에 세척수를 분사함으로써, 수질측정조(11)와 수질측정센서(12)를 세척할 수 있으며, SV 측정조(21)는 SV 측정조(21)의 상부에서 하부로 세척수를 강하게 분사하는 방법으로 그 내부를 세척할 수 있다.That is, when the water quality analysis is completed, the treated water sample is discharged, and then the stirrer (S) is operated in the state of filling the wash water in the water quality measurement tank 11 so that the residual treated water and solids are mixed with the wash water and discharged. By spraying the washing water to the water quality measuring sensor 12 using (N), the water quality measuring tank 11 and the water quality measuring sensor 12 can be washed, and the SV measuring tank 21 is the SV measuring tank 21. It can be cleaned inside by spraying the washing water strongly from the top to the bottom.

상기 SV 측정조(21) 상부에서 배출배관(42)으로 연결되는 배관은 오버플로우(overflow) 배관이다.The pipe connected to the discharge pipe 42 from the upper portion of the SV measuring tank 21 is an overflow pipe.

이때 처리수 시료를 공급하기 위한 배관과 세척수를 공급하기 위한 배관을 별도로 구성할 수도 있으나, 처리수펌프(32)와 세척수펌프(41)를 인접설치하고, 각 펌프에 연결되는 배관의 연결단부 부근에서부터 각 펌프로 연결되는 두 배관을 합류시켜 세척수와 시료의 공급이 펌프와 인접한 곳에서부터 단일배관으로 구성되도록 하는 것도 바람직하다.At this time, the piping for supplying the treated water sample and the piping for supplying the washing water may be separately configured, but the treatment water pump 32 and the washing water pump 41 are installed adjacent to each other, and near the connection end of the pipe connected to each pump. It is also desirable to combine the two pipes from the pump to each pump so that the supply of wash water and sample consists of a single pipe from the vicinity of the pump.

또한 수질측정조(11)와 SV 측정조(21)의 각 하부에서 배출배관(42)으로 연결되는 배관에 자동밸브(V)를 각각 결합하고, 자동밸브(V)의 개폐작동을 제어연산부(50)에서 제어하도록 함으로써, 사용된 처리수 시료와 세척수, 즉 배출수를 생물반응조(T)로 자동배출할 수 있다. 물론 처리수펌프(32)와 세척수펌프(41) 역시 제어연산부(50)에 의해 제어된다.In addition, the automatic valve (V) is coupled to the pipes connected to the discharge pipes 42 at the lower portions of the water quality measuring tank 11 and the SV measuring tank 21, respectively, and controls the opening and closing operation of the automatic valve V. By controlling in step 50), the treated water sample and the wash water, that is, the discharged water can be automatically discharged into the bioreactor T. Of course, the treatment water pump 32 and the washing water pump 41 are also controlled by the control operation unit 50.

샘플링부(30)를 구성하는 시료채취관(31)의 경우 적절한 크기의 시료채취공(H)을 구비함으로써 처리수에 함유된 각종 협잡물이 시료채취관(31) 내부로 유입되지 않도록 할 수도 있으나, 시료채취관(31)의 시료채취공(H)이 쉽게 막힐 수도 있는 바, 시료채취관(31)보다 큰 내용적을 가진 협잡물흡입방지망(32)으로 시료채취관(31)을 감싸도록 하는 것이 바람직하다.In the case of the sampling tube 31 constituting the sampling unit 30, the sampling hole H of appropriate size may be provided to prevent various contaminants contained in the treated water from flowing into the sampling tube 31. , The sampling hole (H) of the sampling tube (31) may be easily blocked, so that the sample collection tube (31) is enclosed with a contaminant inhalation prevention network (32) having a larger content than the sampling tube (31). desirable.

그리고 상기 세척수첨프(41)로서 시료채취관(31) 측으로 역세하는 방법으로 시료채취관(31)과 협잡물흡입방지망(32)을 세척할 수 있으며, 협잡물흡입방지망(32)의 외면에 부착된 각종 협잡물을 더욱 효과적으로 제거하기 위하여서는, 도 3에 도시된 바와 같이, 원통형 브러시(34)를 고정 구비하고, 시료채취관(31)과 협잡물흡입방지망(33)을 함께 브러시(34) 내경부에서 왕복이동시켜 협잡물 등의 고형물을 제거할 수도 있다.And it can wash the sample collection pipe 31 and the contaminant inhalation prevention net 32 by the method of backwashing to the sample collection pipe 31 as the washing water dope 41, and the various kinds attached to the outer surface of the contaminant intake prevention network (32) In order to remove the contaminants more effectively, as shown in FIG. 3, the cylindrical brush 34 is fixedly provided, and the sampling tube 31 and the contaminant inhalation prevention net 33 are reciprocated together at the inner diameter of the brush 34. It can also be moved to remove solids such as impurities.

Claims (5)

생물반응조(T)에 인접 설치되는 수질측정조(11)와, 수질측정조(11)에 채워지는 시료에 잠기도록 결합되는 수질측정센서(12)로 이루어진 수질분석부(10)와;A water quality analysis unit 10 including a water quality measurement tank 11 disposed adjacent to the biological reaction tank T, and a water quality measurement sensor 12 coupled to be immersed in a sample filled in the water quality measurement tank 11; 상기 수질측정조(11)에 인접 설치되는 SV 측정조(21)와, SV 측정조(21) 외부 일측에 설치되는 광원(22)과, SV 측정조(21) 외부 타측에 설치되어 수직왕복이동 가능한 광도측정센서(23)로 이루어진 SV 분석부(20)와;SV reciprocating tank 21 installed adjacent to the water quality measuring tank 11, a light source 22 provided on one side of the outside of the SV measuring tank 21, and installed on the other outside of the SV measuring tank 21, vertical reciprocating movement SV analysis unit 20 made of a photometric sensor 23 possible; 상기 생물반응조(T)의 처리수에 잠기는 시료채취관(31)과, 시료채취관(31)으로 흡입되는 처리수 시료를 수질측정조(11)와 SV 측정조(21)로 공급하는 처리수펌프(32)로 이루어진 샘플링부(30)와; Treatment water for supplying the sample collection pipe 31 immersed in the treated water of the biological reaction tank (T) and the treated water sample sucked into the sample collection pipe 31 to the water quality measurement tank 11 and the SV measurement tank 21 A sampling unit 30 composed of a pump 32; 상기 수질측정조(11)와 SV 측정조(21)로 세척수를 공급하는 세척수펌프(41)와, 수질측정조(11)와 SV 측정조(21)에서 나오는 배출수를 생물반응조(T)로 배출하기 위한 배출배관(42)으로 이루어진 세척부(40)와;Discharging the water discharged from the wash water pump 41 and the water quality measurement tank 11 and the SV measurement tank 21 to supply the wash water to the water quality measurement tank 11 and the SV measurement tank 21 to the biological reaction tank (T). Washing unit 40 consisting of a discharge pipe 42 for; 상기 분석부(10)(20), 샘플링부(30) 및 세척부(40)와 전기적으로 연결되어 시료에서 얻어진 측정값과 신호를 입력받아 연산, 저장, 기록 및 외부로 전송하며, 시료채취와 세척 및 배출을 제어하는 연산제어부(50); 를 포함하여 구성된 것을 특징으로 하는 생물반응조 자동수질측정장비.It is electrically connected to the analysis unit 10, 20, the sampling unit 30 and the washing unit 40 receives the measured values and signals obtained from the sample, and calculates, stores, records and transmits them to the outside. Operation control unit 50 for controlling the washing and discharge; Bioreactor automatic water quality measurement equipment, characterized in that configured to include. 제 1항에 있어서, 상기 수질분석부(10)와 SV 분석부(20) 및 연산제어부(50)는 함체상의 하우징(100) 내부에 결합된 것을 특징으로 하는 생물반응조 자동수질측정장비.According to claim 1, wherein the water quality analysis unit 10, SV analysis unit 20 and operation control unit 50 is a biological reactor automatic water quality measurement equipment, characterized in that coupled to the interior of the housing 100. 제 1항에 있어서, 상기 수질측정조(11) 내에는, 연산제어부(50)에 의해 제어되는 교반기(S)가 부가적으로 설치된 것을 특징으로 하는 생물반응조 자동수질측정장비.The biological water tank automatic water quality measurement equipment according to claim 1, wherein an agitator (S) controlled by the operational control unit (50) is additionally installed in the water quality measurement tank (11). 제 1항에 있어서, 상기 수질측정조(11) 내에는, 수질측정센서(12)에 세척수를 분사하기 위한 세척수노즐(N)이 구비된 것을 특징으로 하는 생물반응조 자동수질측정장비.The biological water tank automatic water quality measurement equipment according to claim 1, characterized in that the water quality measuring tank (11) has a washing water nozzle (N) for spraying the washing water to the water quality measuring sensor (12). 제 1항에 있어서, 상기 시료채취관(31)은, 협잡물흡입방지망(32)으로 감싸진 것을 특징으로 하는 생물반응조 자동수질측정장비.According to claim 1, wherein the sample collection pipe (31), biological reaction tank automatic water quality measurement equipment, characterized in that wrapped in the trap of the inhalation trap (32).
KR1020080015501A 2008-02-20 2008-02-20 Bio-reactor auto-sensing system KR100945554B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080015501A KR100945554B1 (en) 2008-02-20 2008-02-20 Bio-reactor auto-sensing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080015501A KR100945554B1 (en) 2008-02-20 2008-02-20 Bio-reactor auto-sensing system

Publications (2)

Publication Number Publication Date
KR20090090188A true KR20090090188A (en) 2009-08-25
KR100945554B1 KR100945554B1 (en) 2010-03-08

Family

ID=41208117

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080015501A KR100945554B1 (en) 2008-02-20 2008-02-20 Bio-reactor auto-sensing system

Country Status (1)

Country Link
KR (1) KR100945554B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381253A3 (en) * 2010-04-22 2015-10-21 University-industry Cooperation Foundation Kangwon National University Apparatus for detecting toxicity in water using sulfur-oxidizing bacteria
KR101723552B1 (en) * 2016-10-24 2017-04-10 삼보과학 주식회사 Apparatus for evaluating soundness of small sewage treatment plant
WO2018074746A1 (en) * 2016-10-20 2018-04-26 삼보과학 주식회사 Composite device for measuring sludge sedimentation and microbial respiration rate by using single reactor
CN110231314A (en) * 2019-06-28 2019-09-13 葛洲坝水务(滨州)有限公司 Activated sludge on-line monitoring device
KR20220001582A (en) * 2020-06-30 2022-01-06 비엘프로세스(주) Water analysis apparatus of wastewater treatment plant
KR20220016725A (en) * 2020-08-03 2022-02-10 이엠씨 주식회사 Easy moving sample collection and analysis device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100753089B1 (en) 1999-12-20 2007-08-31 삼성전자주식회사 A controling method of a video display system with muti signal source
KR101244712B1 (en) 2011-02-16 2013-03-18 강원대학교산학협력단 A seperated measuring type device for detecting toxicity of water using sulphur oxidizing bacteria
KR102124123B1 (en) 2018-07-25 2020-06-17 농업회사법인(주)제이케이크래프트 Fermented material manufacturing system for beauty products based on fermentation
KR102176901B1 (en) 2019-01-11 2020-11-10 농업회사법인(주)제이케이크래프트 Fermented material manufacturing system for beauty products having low irritation function
KR102305950B1 (en) 2020-02-27 2021-09-29 (주)그린시스템 Aeration water quality measuring device for sewage and wastewater
KR102352765B1 (en) * 2021-11-01 2022-01-18 서정범 Apparatus for measuring water quality

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200334942Y1 (en) 2003-07-04 2003-12-01 이배복 Transfer Media Moduel System
KR100519694B1 (en) 2003-10-07 2005-10-10 한국과학기술연구원 Small-scale Sewage Disposal Facility

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2381253A3 (en) * 2010-04-22 2015-10-21 University-industry Cooperation Foundation Kangwon National University Apparatus for detecting toxicity in water using sulfur-oxidizing bacteria
WO2018074746A1 (en) * 2016-10-20 2018-04-26 삼보과학 주식회사 Composite device for measuring sludge sedimentation and microbial respiration rate by using single reactor
KR101723552B1 (en) * 2016-10-24 2017-04-10 삼보과학 주식회사 Apparatus for evaluating soundness of small sewage treatment plant
WO2018080026A1 (en) * 2016-10-24 2018-05-03 삼보과학 주식회사 Sewage treatment plant soundness determination device
CN110231314A (en) * 2019-06-28 2019-09-13 葛洲坝水务(滨州)有限公司 Activated sludge on-line monitoring device
KR20220001582A (en) * 2020-06-30 2022-01-06 비엘프로세스(주) Water analysis apparatus of wastewater treatment plant
KR20220016725A (en) * 2020-08-03 2022-02-10 이엠씨 주식회사 Easy moving sample collection and analysis device

Also Published As

Publication number Publication date
KR100945554B1 (en) 2010-03-08

Similar Documents

Publication Publication Date Title
KR100945554B1 (en) Bio-reactor auto-sensing system
KR102172981B1 (en) Smart sewage treatment Operation System
CN202936241U (en) Device capable of circularly cleaning MBR (Membrane Biological Reactor) membrane unit in offline way
CA2681714C (en) The ultra filtration system for on-line analyzer
KR100945652B1 (en) Remote Water Quality Monitoring System
KR100997526B1 (en) A automatic control system implementing measuring water quality for sewage treatment plants
EP1992946A1 (en) Automated sampler device to carry out analytical experiments, particularly in waste water treatment plants
KR102311657B1 (en) Smart management system for wastewater treatment
JP2015534064A (en) Equipment for monitoring wastewater treatment
KR102305950B1 (en) Aeration water quality measuring device for sewage and wastewater
KR100446250B1 (en) Control apparatus for sewage and wastewater equipment
CN117049744A (en) Intelligent management system for modularized sewage treatment
CN105865845B (en) A kind of water process on-line period analysis system
CN213171947U (en) Intelligent sewage treatment device
CN206457387U (en) A kind of integrated sewage treating apparatus
JP3475513B2 (en) Intake water quality control device
CN109734259B (en) Environment-friendly distributed sewage treatment system and method
KR200395649Y1 (en) The measuring apparatus for active sludge volume
KR102563943B1 (en) Monitoring system for bioreactor
CN203053955U (en) Sewage biological toxicity on-line monitoring system
KR20080071838A (en) The water tank for sampling waste water
KR101091073B1 (en) Performance testing apparatus for treating waste water
KR100594839B1 (en) The monitoring apparatus for a bioreactor
CN209428344U (en) A kind of processing device system that domestic sewage in rural areas is integrated
CN210953907U (en) Sewage treatment plant toxicity of intaking on-line measuring device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140217

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150225

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170324

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 9