KR20090069983A - Coating solution for forming insulating film, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it - Google Patents
Coating solution for forming insulating film, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it Download PDFInfo
- Publication number
- KR20090069983A KR20090069983A KR1020070137829A KR20070137829A KR20090069983A KR 20090069983 A KR20090069983 A KR 20090069983A KR 1020070137829 A KR1020070137829 A KR 1020070137829A KR 20070137829 A KR20070137829 A KR 20070137829A KR 20090069983 A KR20090069983 A KR 20090069983A
- Authority
- KR
- South Korea
- Prior art keywords
- phosphate
- insulating film
- steel sheet
- forming
- electrical steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/74—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/084—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/20—Orthophosphates containing aluminium cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/76—Applying the liquid by spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
- C23C22/77—Controlling or regulating of the coating process
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Treatment Of Metals (AREA)
- Laminated Bodies (AREA)
Abstract
Description
본 발명은 절연피막 형성용 피복조성물에 관한 것으로서, 보다 상세하게는 무방향성 전기강판의 절연피막 형성용 피복조성물에 관한 것이다. 무방향성 전기강판 코팅제에 있어 그 성분이 Cr을 포함하지 않으며, 후막 도포에 따른 표면 광택저하를 방지함으로써 표면광택과 절연성이 매우 우수하고, 아울러 내식성과 피막 밀착성이 우수한 무방향성 절연코팅 방법에 관한 것이다. 보다 상세하게는 무방향성 전기강판 피막형성 후 절연성이 좋으면서 표면광택과 내식성이 우수하며, 응력제거소둔(Stress Relief Annealing: SRA) 후, 피막 밀착성이 우수한 절연피막을 형성하기 위한 피복 조성물 및 이를 이용한 무방향성 전기강판의 절연피막 형성방법에 관한 것이다.The present invention relates to a coating composition for forming an insulating coating, and more particularly to a coating composition for forming an insulating coating of a non-oriented electrical steel sheet. In the non-oriented electrical steel coating material, the composition does not contain Cr and prevents the surface gloss decrease due to the application of the thick film, thereby providing excellent surface gloss and insulation properties, and a non-directional insulation coating method having excellent corrosion resistance and film adhesion. . More specifically, after forming the non-oriented electrical steel sheet coating, the coating composition for forming an insulating coating having excellent insulation and excellent surface gloss and corrosion resistance, and excellent stress film adhesion after stress relief annealing (SRA), and using the same The present invention relates to a method for forming an insulating coating of a non-oriented electrical steel sheet.
전기강판은 다양한 용도에 사용되기 때문에, 그 용도에 따라 여러 가지의 절연피막의 개발이 행해지고 있다. 전기강판 중에서 무방향성 전기강판은 전동기나 발전기의 철심에 사용되고 있는 소재이다. 제품의 마무리 제조공정에 해당하는 코팅은 층간 저항뿐만 아니라, 가공 성형시 요구되는 펀칭, 전단, 굽힘 특성을 제공한다. 이렇게 소정의 형상으로 타발 가공 후 다수를 적층하여 철심으로 만들 때 금형의 마모를 억제하는 연속타발 가공성이 요구된다. 또한, 강판의 가공 응력을 제거하여 자기적 특성을 회복시키는 SRA 과정 후 철심강판간 밀착하지 않는 내 스티키(sticky)성을 요구한다.Since electrical steel sheet is used for various uses, development of various insulating films is performed according to the use. Among electrical steel sheets, non-oriented electrical steel sheets are materials used for iron cores of electric motors and generators. Coatings, which correspond to the final manufacturing process of the product, provide not only the interlaminar resistance, but also the punching, shear and bending properties required for work forming. As described above, continuous punching workability that suppresses abrasion of a mold is required when stacking a plurality of punchings into a predetermined shape to form an iron core. In addition, after the SRA process of removing the work stress of the steel sheet to restore the magnetic properties, it requires a sticky resistance that does not adhere between the steel core steel sheet.
상기에서 설명한 바와 같이 무방향성 절연피막은 적층 되는 철판 사이의 층간 절연을 목적으로 하고 있다. 그러나 소형전동기기의 사용이 확대되면서 절연성보다도 가공성, 용접성, 내식성에 유리한 피막성능을 주요한 물성으로 평가하게 되었으며, 최근 들어서는 강판표면의 품질 또한 사용특성에 영향을 미치면서 표면 품질이 우수한 전기강판을 요구하게 되었다.As described above, the non-directional insulating film is intended for the interlayer insulation between the iron plates to be laminated. However, as the use of small electric equipment has been expanded, the film performance, which is more favorable for workability, weldability and corrosion resistance than insulation, has been evaluated as the main physical property.In recent years, the quality of the steel plate surface also affects the use characteristics, requiring an electric steel sheet with excellent surface quality. Was done.
최근에는 무방향성 전기강판의 자성 특성 향상에 따른 고급 제품의 출현으로 대형 풍력발전기나 화력발전기용으로 사용되고 있으며, 이에 따라 강판 간의 고절연성이 요구되고 있다. 이 결과 무방향성 절연코팅의 내열성, 절연성 등을 보강하기 위해 인산염, 크롬산염 등의 무기질계의 결점을 보완한 유기 무기 복합 코팅제가 개발되었다. Recently, due to the emergence of high-quality products due to the improvement of the magnetic properties of non-oriented electrical steel sheet has been used for large wind turbines or thermal power generators, high insulation between steel sheets is required accordingly. As a result, in order to reinforce the heat resistance and insulation of the non-directional insulating coating, an organic inorganic composite coating agent was developed to compensate for the shortcomings of inorganic systems such as phosphate and chromate.
그러나, 기존코팅액 조성은 크롬산화물 함유가 필수적이고, 이에 따라 환경규제가 강화되고 있는 현실에 비추어 그 용도가 제한적일 수밖에 없는 실정이다. 최근 전기강판 코팅제의 무크롬화가 활발히 진행되고 있는데 크게 크롬산염 부재에 따른 내식성 및 밀착성 약화를 보강하기 위해 인산염을 도입하는 방법과 콜로이달 실리카 도입을 통한 배리어 효과를 유도하는 방법으로 구분될 수 있다. 전자는 인산 Al, 인산 Ca, 인산 Zn을 적절히 혼합한 인산염을 사용하여 밀착성과 내식성을 향상하였다. 그러나 금속 인산염을 사용할 경우 금속인산염에 존재하는 자유인산이 피막의 스티키(sticky)성을 유발할 수 있는데, 자유인산의 스티키(sticky)성을 방지하기 위해서 유기산을 첨가하는 기술이 제안되었다.However, the existing coating liquid composition is required to contain chromium oxide, and thus the situation is limited to the use in view of the reality that environmental regulations are being strengthened. Recently, the chromium-free coating of electrical steel coatings is actively progressing, and it can be divided into a method of introducing phosphate and a method of inducing a barrier effect through the introduction of colloidal silica to reinforce corrosion and adhesion weakening due to the lack of chromate. The former improved the adhesiveness and corrosion resistance by using the phosphate which mixed Al phosphate, Ca phosphate, and Zn phosphate appropriately. However, when metal phosphate is used, free phosphoric acid present in the metal phosphate may cause sticky property of the film. In order to prevent sticky property of free phosphoric acid, a technique of adding an organic acid has been proposed.
한편, 콜로이달 실리카 첨가로 배리어 효과를 높이기 위하여, 콜로이드 실리카, 알루미나 솔, 산화 지르코늄 1 종류 또는 2종류 이상 혼합된 무기물을 사용하여 SRA후 내식성, 밀착성 및 평활성을 확보하고 실란 커플링(coupling)제 등을 첨가하여 밀착성이나 내용제성을 향상시킨 기술이 제안되었다. 또한, 수지와 실리카의 표면적 비율이 적당한 경우, 미세한 분산 피막 구조의 형성이 가능하여 밀착성 및 내식성 향상될 수 있다. 그러나 상기에서 설명된 인산염 또는 콜로이달 실리카를 주축으로 하는 Cr-free 코팅제 모두 인산염이 가지고 있는 스티키(sticky)성 및 콜로이달 실리카가 가지고 있는 내식성 향상의 한계를 각각 가지고 있으며 이를 이용하여 완벽한 크롬 산화물 대체기술의 상용화는 아직 어려운 상태이다.On the other hand, in order to increase the barrier effect by adding colloidal silica, colloidal silica, alumina sol, zirconium oxide, one or two or more kinds of inorganic materials are used to secure corrosion resistance, adhesion and smoothness after SRA, and a silane coupling agent. The technique which improved adhesiveness and solvent resistance by adding etc. was proposed. In addition, when the ratio of the surface area of the resin and the silica is appropriate, it is possible to form a fine dispersion film structure to improve the adhesion and corrosion resistance. However, the Cr-free coatings mainly based on phosphate or colloidal silica described above have limitations on stickyness of phosphate and corrosion resistance improvement of colloidal silica, respectively. Commercialization of the technology is still difficult.
또한, 위에서 언급한 중요 물성인 절연저항면에서 보면, 대부분 기존에 제안된 무방향성 코팅제의 경우 두께가 박막형으로 기본 절연 저항이 900mA 정도로 발전기용으로 사용되기에는 절연 저항 물성을 만족할 수 없는 형편이다. 절연 저항을 높일 수 있는 종래의 방법으로는 무수 크롬산(CrO3), 산화 마그네슘(MgO) 및 산화칼슘(CaO) 중 1종, 이온수, 아크릴(Acryl)계 수지 또는 아크릴(Acryl)- 스티렌(Styrene) 공중합체 수지 중 1종, 및 환원제로 부틸 카비톨(Butyl Carbitol) 로 이루어진 것을 특징으로 하며, 상온 및 고온에서 코팅용액 안정성 및 코팅 작업성이 향상되고, 무방향성 전기강판의 내식성과 절연성이 향상된다.In addition, in terms of insulation resistance, which is an important property mentioned above, most of the conventionally proposed non-directional coatings have a thickness of a thin film type, and thus the insulation resistance properties cannot be satisfied because the basic insulation resistance is about 900 mA. Conventional methods for increasing insulation resistance include one of chromic anhydride (CrO 3 ), magnesium oxide (MgO) and calcium oxide (CaO), ionized water, acryl-based resins or acryl-styrene 1) Copolymer resin, and characterized in that consisting of butyl carbitol (Butyl Carbitol) as a reducing agent, improve the coating solution stability and coating workability at room temperature and high temperature, and improve the corrosion resistance and insulation of non-oriented electrical steel sheet do.
한국특허 출원번호 제1997-0051755호(공개번호 제1996-056917호)에는 무수크롬산(CrO3)과 금속산화물인 산화칼슘(CaO) 및 산화 마그네슘(MgO) 중 1종을 합성하여 중크롬산 마그네슘 및 중크롬산 칼슘을 제조하였다. 상기 특허에는 연속도포 작업시 용액 안정성을 향상시키기 위해서 첨가제로 계면활성제, 소포제 등이 첨가하였고, 전기 절연성을 향상시키기 위해 초미립 상태의 마이카 분말을 첨가하였다.Korean Patent Application No. 1997-0051755 (Publication No. 1996-056917) synthesizes one of chromic anhydride (CrO3), and metal oxides of calcium oxide (CaO) and magnesium oxide (MgO) to synthesize magnesium dichromate and calcium dichromate. Was prepared. In the patent, a surfactant, an antifoaming agent, and the like were added as additives to improve solution stability during continuous coating, and ultrafine mica powder was added to improve electrical insulation.
그러나, Cr-type의 코팅제의 경우 앞에서 논의된 바와 같이 엄격해 지는 환경규제에 적극적으로 대처하기 힘들며 특히 전술된 대부분의 코팅제에 사용된 중크롬산염 용액은 pH값이 1 이하의 강산성을 나타내기 때문에 수지 및 유기 환원제를 중크롬산염 용액에 첨가하면 겔화(gellation) 반응이 짧은 시간에 발생하는 결점을 갖고 있다.However, in the case of Cr-type coatings, it is difficult to actively cope with stringent environmental regulations, as discussed above. Especially, since the dichromate solution used in most of the coatings described above has a strong acidity of 1 or less, And the addition of an organic reducing agent to the dichromate solution has the drawback that the gelation reaction occurs in a short time.
따라서, Cr이 배제되고 후막코팅이 가능함과 동시에 표면 광택과 절연이 매우 우수한 코팅제 후막용 Cr-free 코팅제의 개발이 요구되고 있다.Accordingly, there is a need for development of a Cr-free coating agent for a thick film, which is excellent in surface gloss and insulation while simultaneously eliminating Cr and allowing thick film coating.
본 발명의 목적은 크롬이 배제된 절연피막 형성용 피복조성물, 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a coating composition for forming an insulating film without chromium, a method for forming an insulating film of an non-oriented electrical steel sheet, and a non-oriented electrical steel sheet.
상기 절연피막 형성용 피복조성물은 제 1 인산 알루미늄(Al(H2PO4)3)과 제 1 인산 아연(Zn(H2PO4)2)이 1:1 로 혼합된 인산염 용액에, 코발트 하이드록사이드(cobalt hydroxide) 및 스트론튬 하이드록사이드(strontium hydroxide), 폴리 에스터 에멀젼 수지, 알루미늄 실리케이트, 및 Ti 계통의 킬레이트(chelate) 첨가제를 첨가하되, 상기 폴리 에스터 에멀젼 수지는 분자량이 2,000~15,000이다.The coating composition for forming the insulating film is cobalt hydride in a phosphate solution in which first aluminum phosphate (Al (H 2 PO 4 ) 3 ) and first zinc phosphate (Zn (H 2 PO 4 ) 2 ) are mixed in a 1: 1 ratio. Cobalt hydroxide and strontium hydroxide, polyester emulsion resin, aluminum silicate, and Ti-based chelate additives are added, wherein the polyester emulsion resin has a molecular weight of 2,000 to 15,000.
상기 폴리 에스터 에멀젼 수지는 Tg(유리전이온도)가 40~50℃이고, 고형분비가 15~25%이며, 점도는 100~500cp이며, pH는 4~5이다.The polyester emulsion resin has a Tg (glass transition temperature) of 40 to 50 ° C, a solid content of 15 to 25%, a viscosity of 100 to 500cp, and a pH of 4 to 5.
상기 제 1 인산 아연은 2.75M, 52.5%의 고형분을 가지며, 상기 혼합된 인산염 용액은 고형분비가 55~60중량%이고, 점도가 30~70cp이다.The first zinc phosphate has a solid content of 2.75M, 52.5%, the mixed phosphate solution has a solid content of 55 to 60% by weight and a viscosity of 30 to 70cp.
상기 혼합된 인산염 용액 100g에 대하여, 상기 코발트 하이드록사이드 및 스트론튬 하이드록사이드는 1:1의 비율로 0.5~5g이 첨가되며, 상기 폴리 에스터 에멀젼 수지는 150~300g이 첨가되고, 상기 알루미늄 실리케이트는 3~10g이 첨가되고, 상기 Ti 계통의 킬레이트 첨가제는 0.1~6.0g이 첨가된다.For 100 g of the mixed phosphate solution, 0.5-5 g of cobalt hydroxide and strontium hydroxide are added at a ratio of 1: 1, 150-300 g of the polyester emulsion resin is added, and the aluminum silicate is 3-10 g is added, and 0.1-6.0 g of the chelating additive of the Ti system is added.
상기 Ti 계통의 킬레이트 첨가제는 Triethanolamine titanate(트리에탄올아민 티타네이트), Titanium 2,2,2-nitrilotrisethanolate(2-2-2 티타늄 니트릴로트리세타놀레이트), Mixture organic titanate and inorganic phophrous compounds(유뮤기 티타네이트-다공질 복합물) 중에서 선택된 어느 하나일 수 있다.The chelating additives of the Ti system include Triethanolamine titanate, Titanium 2,2,2-nitrilotrisethanolate (2-2-2 titanium nitrilotricetanolate), Mixture organic titanate and inorganic phophrous compounds (organic titanate) Porous composition).
상기 무방향성 전기강판의 절연피막 형성방법은 절연피막 형성용 피복조성물을 편면당 2.0~6.0g/㎡을 강판 상에 도포하고, 350~700℃의 온도에서 10~50초 동안 가열처리하여 절연피막을 형성하는 것을 특징으로 한다.In the method of forming an insulating film of the non-oriented electrical steel sheet, a coating composition for forming an insulating film is coated on a steel sheet with 2.0 to 6.0 g / m 2 per one side, and heated at a temperature of 350 to 700 ° C. for 10 to 50 seconds to insulate the insulating film. It characterized in that to form.
본 발명의 실시예에 따르면, Cr이 배제되었으면서도 후막도포가 가능하도록 코팅제의 물성을 제어하여 절연성과 내식성이 우수한 무방향성 전기강판의 코팅이 구현된다. 이를 위해 cobalt hydroxide와 strontium hydroxide 첨가된 제 1인산 알루미늄(Al(H2PO4)3) 그리고 제1 인산아연 (Zn(H2PO4)2) 혼합형태의 인산염을 에스터 계통의 수지와 혼합한 뒤 알루미늄 실리케이트와 Ti계통은 chelate 첨가제를 기본으로 하는 코팅제를 사용하여 무방향성 전기강판 절연피막을 형성하였을 경우 표면광택과 절연성이 특히 우수하며 아울러 내식성과 SRA후 피막밀착성이 우수한 크롬프리 무방향성 전기강판 절연피막을 형성할 수 있다.According to the embodiment of the present invention, the coating of the non-oriented electrical steel sheet excellent in insulation and corrosion resistance is implemented by controlling the physical properties of the coating agent to enable the thick film coating while excluding Cr. To this end, phosphates in the form of cobalt hydroxide and strontium hydroxide added aluminum monophosphate (Al (H 2 PO 4 ) 3 ) and first zinc phosphate (Zn (H 2 PO 4 ) 2 ) mixed with an ester resin In the case of aluminum silicate and Ti system, chromium-free non-oriented electrical steel sheet having excellent surface gloss and insulation property and excellent corrosion resistance and film adhesion after SRA when the non-oriented electrical steel sheet is formed using a coating agent based on chelate additive. An insulating film can be formed.
이하에서는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있도록 본 발명의 실시예를 첨부된 도면을 참조하여 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 기술적 사상이 충분히 전달될 수 있도록 제공되는 것이다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed contents may be thorough and complete, and the technical spirit of the present invention may be sufficiently delivered to those skilled in the art.
본 발명은 무방향성 전기강판 제조에 있어서 크롬 화합물을 함유하지 않는 코팅제를 제조함과 동시에 2㎛ 이상의 피막두께에서도 형성된 피막이 광택이 우수하고 높은 절연성 및 타발성, 밀착성, 점적 등 가공 특성이 우수한 유무기 절연피막제를 가지는 무방향 전기강판 제품과 코팅제 및 그것을 이용한 절연피막 형성방법에 관한 것이다.The present invention provides a coating agent that does not contain a chromium compound in the production of non-oriented electrical steel sheet, and at the same time, the film formed even at a film thickness of 2 μm or more has excellent gloss and excellent processing properties such as high insulation and punchability, adhesion, and droplets. It relates to a non-oriented electrical steel sheet product and coating agent having an insulating coating agent and an insulating coating method using the same.
무방향성 전기강판을 모터나 트랜스의 철심에 사용되는 경우에는, 제품을 규격대로 타발한 후 일정량 매수를 겹쳐 쌓아올리고 용접 또는 접착에 의하여 철심이 된다. 이러한 작업에서 경우에 따라 SRA가 행해지며 따라서 SRA 공정이 수반되는 경우는 특히 소둔 후의 밀착성, 절연성, 내식성 등도 중요해진다. 무방향성 전기강판 피막의 경우 크롬을 함유하고 있으며, 이러한 경우 SRA후 피막물성을 향상시키는데 많은 도움을 준다. 한편, 크롬을 함유하지 않는 코팅제의 경우 크롬의 대체 물질로서 인산염이 도입되는데 이때 피막 중에 잔존하는 미량의 자유인산에 의한 흡습성이나 그것에 의한 소둔시의 접착성의 문제가 발생할 수 있다 (식 1 참조). 나아가서 크롬 화합물에 의한 특유의 피막충전 효과에 의한 치밀성 등의 효과를 볼 수 없기 때문에 피막물성 저하를 막는데 한계가 있다. In the case where non-oriented electrical steel sheet is used for iron core of motor or transformer, the product is punched to the standard and then piled up a certain number of sheets to be iron core by welding or bonding. In these operations, SRA is performed on a case-by-case basis, and therefore, the adhesion, insulation, corrosion resistance, etc., after annealing become particularly important when an SRA process is involved. The non-oriented electrical steel film contains chromium, and in this case, it helps to improve the film properties after SRA. On the other hand, in the case of a coating agent containing no chromium, phosphate is introduced as a substitute for chromium. At this time, there may be a problem of hygroscopicity due to the trace amount of free phosphoric acid remaining in the coating or adhesion during annealing (see Equation 1). Furthermore, since the effect, such as the compactness by the unique film filling effect by a chromium compound, cannot be seen, there exists a limit in preventing a film physical property fall.
CrO3 + 2H3PO4 → Cr(PO4)2 + 6 H2O ------(1)CrO 3 + 2H 3 PO 4 → Cr (PO 4 ) 2 + 6 H 2 O ------ (1)
위에서 언급한 코팅제의 내식성 및 SRA후 밀착성 저하의 원인을 피막 중에 존재하는 인산염이 피막건조 후 자유인산으로 존재하고 이 자유인산이 피막형성 후 습기 등을 흡습하여 내식성을 저하시킨다. 또한 SRA 후 피막밀착성의 저하 원인은 코팅제의 주성분인 에멀젼 유기수지와 금속 인산염과의 상용성(相溶性) 정도이다. 이러한 상용성의 정도를 에멀젼 수지의 분자량에 따른 유변학적 점탄성 및 도포 후 표면광택과의 관계를 통하여 해결한다.As a cause of the corrosion resistance of the coating agent mentioned above and the adhesion decrease after SRA, the phosphate present in the film exists as free phosphoric acid after drying the film, and this free phosphoric acid absorbs moisture after forming the film, thereby lowering the corrosion resistance. In addition, the cause of the decrease in film adhesion after SRA is the degree of compatibility between the emulsion organic resin, which is the main component of the coating agent, and the metal phosphate. The degree of compatibility is solved through the relationship between the rheological viscoelasticity according to the molecular weight of the emulsion resin and the surface gloss after application.
따라서, 본 발명에서는 코팅제에 크롬을 배제할 경우 생길 수 있는 내식성 및 밀착성을 극복하고 SRA 후 피막밀착성을 향상시키기 위해 제 1인산 알루미늄(Al(H2PO4)3) 그리고 제1 인산아연 (Zn(H2PO4)2) 혼합형태의 인산염에 cobalt hydroxide와 strontium hydroxide을 첨가한다. 이때의 고형분비는 인산염 총 중량 대비 55 ~ 60wt%이다. 상기 인산 100 g에 중량평균분자량 2,000 ~ 15,000이며 고형분 중량이 20 ~ 25wt%인 폴리에스터 에멀젼 수지 150 ~ 300g 과 알루미늄 실리케이트 3 ~ 10 g, 그리고 Ti계통은 킬레이트(chelat)e 첨가제 0.5 ~ 6.0 g을 첨가하여 코팅제가 제조된다. 이와 같이 제조된 상기 조성물을 편면당 2.0~6.0 g/m2 범위가 되도록 도포한 후, 350 ~ 700 ℃의 온도 범위에서 10 ~ 30 초간 가열 처리하여 절연 피막이 형성된다.Therefore, in the present invention, in order to overcome corrosion and adhesion that may occur when chromium is excluded from the coating agent and to improve film adhesion after SRA, first monophosphate (Al (H 2 PO 4 ) 3 ) and first zinc phosphate (Zn) (H 2 PO 4 ) 2 ) Add cobalt hydroxide and strontium hydroxide to the mixed phosphate. Solid content at this time is 55 ~ 60wt% relative to the total weight of phosphate. 100 g of phosphoric acid, the weight average molecular weight of 2,000 ~ 15,000 and the solid content of 20 ~ 25wt% polyester emulsion resin 150 ~ 300g, aluminum silicate 3 ~ 10g, and Ti system 0.5 ~ 6.0 g of chelate additive By addition a coating is prepared. The composition thus prepared is coated so as to be in a range of 2.0 to 6.0 g / m 2 per one side, and then heat treated for 10 to 30 seconds at a temperature range of 350 to 700 ° C. to form an insulating coating.
다음과 같은 방법을 통하여 도포량이 증가함에 따른 표면광택 저하 방지 및 SRA 후 피막밀착성이 향상된다.Through the following method, the surface gloss reduction and the film adhesion after SRA are improved as the coating amount is increased.
코발트 하이드록사이드(Cobalt hydroxide)와 스트론튬 하이드록사이드(strontium hydroxide)가 첨가된 인산 알루미늄(Al(H2PO4)3) 그리고 인산아연 (Zn(H2PO4)2) 혼합형태의 인산염과 중량평균분자량 2,000 ~ 15,000이며, 고형분 중량이 15 ~ 25wt%인 폴리에스터 에멀젼 수지를 첨가함으로써, 후막 도포시 광택을 확보할 수 있었다. 금속 인산염은 코팅제의 성분으로 도입될 경우, 유무기 복합성분으로 구성된 코팅제와 모재인 강판과의 바인더 역할을 함으로써 코팅제의 밀착성을 향상시킬 뿐만 아니라 내열성이 우수한 피막 형성제로서 중요한 역할을 가진다.Phosphates in the form of a mixture of aluminum phosphate (Al (H 2 PO 4 ) 3 ) and zinc phosphate (Zn (H 2 PO 4 ) 2 ) with cobalt hydroxide and strontium hydroxide By adding a polyester emulsion resin having a weight average molecular weight of 2,000 to 15,000 and a solid content weight of 15 to 25 wt%, glossiness was secured during thick film application. When the metal phosphate is introduced as a component of the coating agent, the metal phosphate plays an important role as a film forming agent having excellent heat resistance as well as improving adhesion of the coating agent by acting as a binder between the coating agent composed of an organic-inorganic composite component and the base steel sheet.
상기 인산염은 제1인산 알루미늄(Al(H2PO4)3)과 제1인산아연 (Zn(H2PO4)2) 혼합형태의 인산 수소염이다. 이러한 상기 인산염 용액들은 제1인산아연 (Zn(H2PO4)2)의 경우 2.75M, 52.5% 고형분을 가진다. 이외에 제1인산 알루미늄(Al(H2PO4)3)의 제조방법은 한정하지 않으나 그들 간의 배합비는 밀착성과 관계가 있는 점도와 매우 밀접한 관련을 갖으며, 배합비에 따른 용액점도는 후술되는 표 1에서 보는 바와 같다.The phosphate salt is a hydrogen phosphate salt in the form of a mixture of aluminum phosphate (Al (H 2 PO 4 ) 3 ) and zinc phosphate (Zn (H 2 PO 4 ) 2 ). These phosphate solutions have 2.75 M, 52.5% solids for mono zinc phosphate (Zn (H 2 PO 4 ) 2 ). In addition, the manufacturing method of the first aluminum phosphate (Al (H 2 PO 4 ) 3 ) is not limited, but the mixing ratio between them is very closely related to the viscosity related to adhesion, and the solution viscosity according to the mixing ratio is described in Table 1 below. As seen from
에멀젼 수지는 중량평균분자량 2,000 ~ 15,000이며 고형분 중량이 20 ~ 25wt%인 폴리에스터 에멀젼 수지이다. 통상적으로 분자량이 1,000 이상의 중합체를 폴리머 또는 유기 수지라고 하며, 후막 도포시 표면 광택 저하는 이러한 에멀젼 수지의 자체적인 특성 및 금속 인산염과의 혼화성 즉 상용성과 밀접한 관계가 있는 것으로 밝혀졌다. 즉 특정 분자량에서의 에멀젼 수지와 금속 인산염을 혼합함으로 써 후막 도포시 광택의 저하 현상을 막을 수 있었으며, 이를 통해 외관이 우수한 Cr-free 후막 코팅제를 제조할 수 있었다. The emulsion resin is a polyester emulsion resin having a weight average molecular weight of 2,000 to 15,000 and a solid weight of 20 to 25 wt%. A polymer having a molecular weight of 1,000 or more is commonly referred to as a polymer or an organic resin, and it has been found that the surface gloss degradation in thick film application is closely related to its own properties and compatibility with metal phosphate, that is, compatibility. In other words, by mixing the emulsion resin and the metal phosphate at a specific molecular weight it was possible to prevent the degradation of the gloss when applying the thick film, it was possible to prepare a Cr-free thick film coating with excellent appearance.
또한, 금속 인산염과 에멀젼 수지의 상용성은 SRA 후 피막밀착성과 관계가 있는데, 두 성분 간의 상용성이 좋지 않으면 코팅제 제조 직후 육안으로 관찰되지 않는 미세한 상분리 현상 또는 두 성분 간의 엉김 현상 등이 발생될 수 있다. 이렇게 제조된 코팅제를 이용하여 피막을 형성시킨 후 750℃ 2시간 정도의 SRA 과정을 거치게 되면 시편 표면에 검은재와 같은 이물질들이 남아있게 되는 현상을 관찰할 수 있다. 이러한 현상이 발견되는 최종 제품을 이용하여 모터나 콤프레서를 제작할 경우 냉각유의 급수관을 막히게 함은 물론 제품의 수명에 치명적인 영향을 미칠 수 있다. 본 발명에서는 이러한 문제점을 해결하고자 위에서 언급한 에멀젼 수지의 분자량 조절을 통한 금속 인산염과의 상용성 향상과 더불어 Ti계통 chelate 첨가제를 이용하여 코팅제의 주요성분들인 유기수지와 금속인산염의 상용성 및 코팅제와 소재 간의 밀착성이 향상된다.In addition, the compatibility of the metal phosphate and the emulsion resin is related to the film adhesion after the SRA, if the compatibility between the two components is not good may cause a fine phase separation phenomenon or the entanglement between the two components that are not observed immediately after the coating preparation. . After forming the film using the coating agent prepared as described above, the SRA process at about 750 ° C. for 2 hours can be observed that foreign substances such as black ash remain on the surface of the specimen. When the motor or compressor is manufactured using the final product where this phenomenon is found, it may not only block the water supply line of the cooling oil but also have a fatal effect on the life of the product. In the present invention, in order to solve this problem, the compatibility of the main components of the coating agent with the organic resin and the metal phosphate of the coating agent and the coating agent by using the Ti-based chelate additive with the improvement of compatibility with the metal phosphate by controlling the molecular weight of the emulsion resin mentioned above Adhesion between materials is improved.
이하 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
무방향성 전기강판용 절연코팅으로서의 요구조건으로서 가장 대표적인 성질은 내식성을 들 수 있는데, 이러한 피막의 요구특성을 부여하기 위한 절연피막 처리 약제로 산화크롬을 통상 함유시키게 된다. 그러나 크롬사용에 따른 절연코팅액 제조 및 라인에서의 도포처리시 피부접촉 등에 의한 인체에의 악영향과 폐수배출시 환경문제 유발이 우려되고 피막내 잔류 크롬 6가로 인한 타발 가공시 금형의 이상마모에 따른 수명단축 등이 발생하므로 절연코팅액 제조초기부터 사용을 배제하는 것이 이상적이다.Corrosion resistance is the most typical property as a requirement for insulating coating for non-oriented electrical steel sheet, which usually contains chromium oxide as an insulating coating treatment agent for imparting the required characteristics of the coating. However, there is a concern about the adverse effects on the human body due to skin contact, etc. during the production of insulating coating liquids and the application of chromium on the line, and the environmental problems when the waste water is discharged. Since shortening occurs, it is ideal to exclude the use from the beginning of the production of insulating coating liquid.
산화크롬의 배제로 인한 내식성 및 피막치밀성 저하를 막기 위하여 본 발명에서는 금속인산염 도입을 필수로 하는데 제1인산 알루미늄(Al(H2PO4)3)과 제1인산아연 (Zn(H2PO4)2) 혼합형태의 인산 수소염이 사용되었다. 이러한 상기 인산염 용액들은 제1인산아연 (Zn(H2PO4)2)의 경우 2.75M, 52.5% 고형분을 가지며, 이외에 제1인산 알루미늄(Al(H2PO4)3)의 제조방법은 한정하지 않으나 그들 간의 배합비는 내식성 및 밀착성과 관계가 있는 점도와 매우 밀접한 관련을 가지므로, 제조 후 적당한 점도가 유지됨을 기본으로 한다. 본 발명에서는 다양한 금속 인산염 즉 제1인산 알루미늄(Al(H2PO4)3)과 제1인산아연 (Zn(H2PO4)2), 그리고 제1인산 마그네슘(Mg(H2PO4)2)등 다양한 금속 인산염을 대상으로 여러 조합을 만들어 에스터 계통의 수지와 혼합한 후 내식성 시험을 거친 결과 제1인산 알루미늄(Al(H2PO4)3 과 제1인산아연 (Zn(H2PO4)2) 50/50 혼합용액이면서 이때의 고형분비가 60wt%, 점도가 30~70 cp일 때 내식성에 가장 좋은 특성을 나타내었다 (표 1 참고). 제1인산 알루미늄(Al(H2PO4)3)이 높은 경우에는 적정 점도를 유지할 수 없으며 또한 건조 후 sticky한 성질을 나타내었으며 제1인산아연 (Zn(H2PO4)2)의 비율이 높으면 내식성의 감소를 가져와 소기의 목적을 달성 할 수 없었다. 따라서 금속 인산염의 최적 혼합비율은 제1인산 알루미늄(Al(H2PO4)3 과 제1인산아연 (Zn(H2PO4)2) 50/50 혼합용액이 면서 이때의 고형분비가 60wt%, 점도가 30~70 cp, 특히 50 cp 정도가 가장 최적의 물성을 나타나 있다.In order to prevent corrosion and film denseness due to the exclusion of chromium oxide, the present invention requires the introduction of metal phosphate, but the first monophosphate (Al (H 2 PO 4 ) 3 ) and the first zinc phosphate (Zn (H 2 PO 4) 2 ) Mixed hydrogen phosphate salts were used. These phosphate solutions have 2.75 M, 52.5% solids in the case of the first zinc phosphate (Zn (H 2 PO 4 ) 2 ), in addition to the production method of the first aluminum phosphate (Al (H 2 PO 4 ) 3 ) is limited However, the blending ratio between them is very closely related to the viscosity related to corrosion resistance and adhesion, so that the proper viscosity is maintained after preparation. In the present invention, various metal phosphates, that is, mono aluminum phosphate (Al (H 2 PO 4 ) 3 ) and mono zinc phosphate (Zn (H 2 PO 4 ) 2 ), and mono magnesium phosphate (Mg (H 2 PO 4 )) 2 ) Various combinations of various metal phosphates, etc. were prepared and mixed with the resin of the ester system, and tested for corrosion resistance. The results were as follows: monobasic aluminum phosphate (Al (H 2 PO 4 ) 3 and zinc phosphate (Zn (H 2 PO)). 4) 2) 50 the solid mixture while the ratio of 60wt%, exhibited the best characteristics in corrosion resistance, when a viscosity of 30 ~ 70 cp (Table 1). the first aluminum phosphate (Al (H 2 PO 4 3) 3) it can not maintain an appropriate viscosity when the high also showed a sticky properties after drying the first zinc phosphate (Zn (H 2 PO 4) 2) the higher the ratio gets the decrease in corrosion resistance to achieve the expected object of the Therefore, the optimum mixing ratio of the metal phosphate was monophosphate (Al (H 2 PO 4 ) 3 and mono zinc phosphate (Zn (H 2 PO 4). 2 ) 50/50 mixed solution with solid content of 60wt%, viscosity 30 ~ 70 cp, especially 50 cp.
그러나, 코팅제에 인산염을 사용할 경우 상기에서 언급한 바와 같이 자유인산에 의한 표면 sticky 또는 분말형태의 석출이 문제가 된다. 따라서 본 발명에서는 이러한 문제를 해결하고 식(1)에서와 같이 산화크롬과 자유인산의 반응을 대신하는 물질을 찾고자 광범위한 금속산화물 또는 수산화물을 적용하여 그 효과를 cobalt hydoroxide와 strontium hydroxide가 산화크롬을 대신하여 자유인산의 석출 및 피막의 치밀성을 향상시키는 것으로 확인된다. 특히, cobalt hydoroxide와 strontium hydroxide를 적절히 혼합하였을 때 표면 sticky, 분말 석출 방지 및 내식성을 향상시킬 수 있다.However, when phosphate is used in the coating agent, as mentioned above, surface sticky or powdery precipitation by free phosphoric acid is a problem. Therefore, in the present invention, cobalt hydoroxide and strontium hydroxide replace chromium oxide by applying a wide range of metal oxides or hydroxides to solve such problems and to find a substance which substitutes chromium oxide and free phosphoric acid as shown in Equation (1). It is confirmed to improve the precipitation of free phosphoric acid and the film density. In particular, when cobalt hydoroxide and strontium hydroxide are properly mixed, surface sticky, powder precipitation prevention and corrosion resistance can be improved.
한편, 최근에는 무방향성 전기강판의 자성 특성 향상에 따른 고급 제품의 출현으로 대형 풍력발전기나 화력발전기용으로 사용되고 있으며, 이에 따라 강판 간의 고절연성이 요구되고 있다. 그러나 전술한 바와 같이 코팅제의 후막의 도포시 표면광택이 현저히 저하됨은 물론 이렇게 도포된 제품이 고객사 가공 및 SRA 처리 공정이 수반될 경우 심각한 표면 불량을 발생시킬 수 있다. 이러한 현상의 원인으로 본 발명자는 금속 인산염과 에멀젼 수지의 상용성에 주목하였다. 즉 두 성분 간의 상용성은 SRA 후 피막밀착성과 매우 밀접한 관련이 있다. 현상학적으로, 두 성분 간의 상용성이 좋지 않으면 코팅제 제조 직후 육안으로 관찰되지 않는 미세한 상분리 현상 또는 두 성분간의 엉김 현상 등이 발생될 수 있다. 또한 이렇게 제조된 코팅제로 피막을 형성하였을 경우 1 ㎛이하의 박막의 경우 대부분 일반 무방향 성 코팅제와 비교하여 표면 광택에서 동등한 수준의 제품을 얻을 수 있으나 2㎛ 이상의 후막으로 형성하였을 경우 표면 광택이 현저히 떨어지고 SRA후 피막 밀착성도 매우 불량하다. On the other hand, in recent years, due to the emergence of high-quality products in accordance with the improvement of the magnetic properties of non-oriented electrical steel sheet has been used for large wind turbines or thermal power generators, high insulation between the steel sheets is required accordingly. However, as described above, not only the surface gloss is significantly lowered when the thick film of the coating agent is applied, but the coated product may cause serious surface defects when it is accompanied by a customer processing and an SRA treatment process. As a cause of this phenomenon, the present inventors paid attention to the compatibility of the metal phosphate and the emulsion resin. In other words, compatibility between the two components is closely related to the film adhesion after SRA. Phenomenologically, if the compatibility between the two components is not good, a fine phase separation phenomenon or a entanglement between the two components that may not be observed with the naked eye immediately after the coating preparation may occur. In addition, when the film is formed with the coating agent prepared as described above, most of the thin film of 1 μm or less can obtain the same level of product in surface gloss as compared to the general non-directional coating agent. The film adhesion after the SRA is very poor.
이러한 현상의 근본적인 영향인자는 에멀젼 수지의 분자량으로 이해될 수 있다. 일반적으로 에멀젼 수지를 포함한 고분자 용액은 물과 같은 점성 (뉴튼성) 유체와 달리 점탄성 (비뉴튼성) 거동을 보인다. 유체의 점탄성 거동이란 물질의 유동과 변형에 관한 성질로서 에멀젼 수지의 분자량이 커지면 유체의 탄성이 커지게 된다. 물질의 점탄성 성질은 레오미터로 측정하며, 에멀젼 수지의 분자량에 따른 탄성성질은 측정기기로부터 나타나는 G'(저장 모듈러스)값으로 알 수 있다. 도 1은 분자량에 따른 에멀젼 수지의 저장 탄성율을 나타내고 있으며 분자량이 증가함에 따라 도 1의 A 영역 즉 낮은 주파수 영역에서 저장 탄성율이 증가하는 현상을 보이고 있으며, 이러한 현상은 이론적으로 탄성입자를 포함한 유체의 거동을 모사하는 에멀젼 모델로도 예측이 가능하다.The fundamental influencer of this phenomenon can be understood as the molecular weight of the emulsion resin. In general, polymer solutions containing emulsion resins exhibit viscoelastic (non-Newtonian) behavior unlike viscous (Newtonian) fluids such as water. The viscoelastic behavior of fluids is a property of the flow and deformation of the material. As the molecular weight of the emulsion resin increases, the fluid elasticity increases. The viscoelastic properties of the materials are measured by rheometers, and the elastic properties according to the molecular weight of the emulsion resin can be seen by the G '(storage modulus) value that is displayed from the measuring device. Figure 1 shows the storage modulus of the emulsion resin according to the molecular weight and shows the phenomenon that the storage modulus increases in the A region, that is, low frequency region of Figure 1 as the molecular weight increases, this phenomenon is theoretically the Prediction is also possible with emulsion models that simulate behavior.
위의 실험을 통하여 에멀젼 수지 분자량의 증가에 따라 유체의 탄성 성질이 증가하고 이에 따라 코팅제의 또 다른 주요 성분인 금속 인산염과의 상용성이 저해되는 결과를 얻었으며 이에 대한 결과 데이터는 실시예에 상세히 기술하였다. 따라서 본 발명에서는 탄성성질이 증가되지 않는 범위 (중량평균분자량 2,000 ~ 15,000)의 폴리에스터 수지를 이용하여 금속 인산염과 상용성을 향상시켰으며, 결과적으로 후막 도포시 우수한 표면광택과 SRA 후 피막밀착성을 향상시킬 수 있다.Through the above experiments, the elastic properties of the fluid increased with the increase of the molecular weight of the emulsion resin, and thus the compatibility with the metal phosphate, another main component of the coating agent, was inhibited. Described. Therefore, in the present invention, the compatibility with the metal phosphate was improved by using a polyester resin in a range in which elasticity was not increased (weight average molecular weight 2,000 to 15,000), and as a result, excellent surface gloss and thick film adhesion after SRA were applied in thick film coating. Can be improved.
아울러 후막 도포 제품의 SRA 후 표면에 검은재가 발생하는 것을 방지하기 위해 Ti계통은 chelate 첨가제를 도입하였다. 사용된 Ti 계통의 chelate 첨가제는 Triethanolamine titanate, Titanium 2,2,2-nitrilotrisethanolate, Mixture organic titanate and inorganic phophrous compounds 중 어느 하나일 수 있다.In addition, in order to prevent black ash from occurring on the surface after SRA of the thick film coating product, the Ti system introduced a chelate additive. The Ti-based chelate additive used may be any one of Triethanolamine titanate, Titanium 2,2,2-nitrilotrisethanolate, Mixture organic titanate and inorganic phophrous compounds.
따라서, 크롬을 배제할 경우 생길 수 있는 내식성 및 밀착성을 극복하고 SRA후 피막밀착성을 향상시키기 위해 제 1 인산 알루미늄(Al(H2PO4)3) 그리고 제 1 인산아연 (Zn(H2PO4)2) 혼합형태의 인산염에 cobalt hydroxide와 strontium hydroxide을 첨가 하였으며 이때의 고형분비가 인산염 총 중량 대비 55 ~ 60wt%가 되도록 하였다. 상기 인산 100 g에 기존 박막형 Cr-free 코팅제에서 구현할 수 없었던 표면광택과 절연성이 우수한 성질을 나타낼 수 있도록 탄성 성질이 강하지 않은 폴리에스터 에멀젼 수지 150 ~ 300g 과 알루미늄 실리케이트 3 ~ 10 g, 그리고 Ti계통은 chelate 첨가제 0.5 ~ 6.0 g을 함유하는 코팅제를 제조하였으며, 이와 같이 제조된 상기 조성물을 편면당 2.0 ~ 6.0 g/m2 범위가 되도록 도포한 후, 350 ~ 700 ℃의 온도 범위에서 10 ~ 30 초간 가열 처리하여 절연피막을 형성하였다.Therefore, in order to overcome corrosion and adhesion that may occur when chromium is excluded and to improve film adhesion after SRA, first aluminum phosphate (Al (H 2 PO 4 ) 3 ) and first zinc phosphate (Zn (H 2 PO 4) 2 ) Cobalt hydroxide and strontium hydroxide were added to the mixed phosphate, and the solid secretion was 55 ~ 60wt% of the total phosphate weight. The polyester emulsion resin 150 ~ 300g and the aluminum silicate 3 ~ 10g, and the Ti system is not strong elasticity to exhibit excellent surface gloss and insulation properties that could not be implemented in the conventional thin film Cr-free coating agent to 100 g of phosphoric acid A coating agent containing 0.5 to 6.0 g of a chelate additive was prepared, and the composition thus prepared was applied so as to be in a range of 2.0 to 6.0 g / m 2 per one side, and then heat-treated for 10 to 30 seconds at a temperature range of 350 to 700 ° C. To form an insulating coating.
이때 사용한 폴리에스터 수지는 에멀젼 상태로 중량평균 분자량은 중량평균분자량 2,000 ~ 15,000, Tg는 40 ~ 50 ℃, 그리고 고체분율은 20% 인 물질을 사용한다. 폴리에스터 수지의 분자량이 2,000 이하의 경우 점도가 너무 낮아 코팅제로 제조되었을 경우 후막 도포가 어려우며, 반대로 분자량이 15,000 이상의 경우 에멀젼 수지의 탄성 성질이 강해 금속 인산염과 혼합시 상분리가 일어날 수 있으며, 후막 도포시 제품의 광택을 저하시킬 수 있는 것으로 확인된다. 또한 분자량 2,000 ~ 15,000 영역의 에멀젼 수지를 사용함에 있어 고형분 중량으로 30 g 이하가 사용되었을 경우, 상대적으로 인산염으로 분율이 높아져 내식성에는 유리하나 sticky성 및 분말 석출의 위험이 있으며, 반면, 100g 이 사용되었을 때는 내식성과 상용성이 현저히 저하되는 것이 확인된다. At this time, the polyester resin used in the emulsion state, the weight average molecular weight of the weight average molecular weight 2,000 ~ 15,000, Tg is 40 ~ 50 ℃, and the solid fraction is used a material of 20%. When the molecular weight of the polyester resin is 2,000 or less, the viscosity is too low, so that it is difficult to apply a thick film when the coating agent is prepared. On the contrary, when the molecular weight is 15,000 or more, the elasticity of the emulsion resin is strong and phase separation may occur when mixed with the metal phosphate. It is confirmed that the gloss of the prototype can be reduced. In addition, when an emulsion resin having a molecular weight of 2,000 to 15,000 is used, when the weight of the solid is less than 30 g, the fraction is relatively increased with phosphate, which is advantageous for corrosion resistance, but there is a risk of stickyness and powder precipitation, whereas 100 g is used. In this case, it is confirmed that the corrosion resistance and compatibility are significantly reduced.
실리카에 대해서는 수성의 알루미나 콜로이달 실리카가 사용되었으며, 고체분율은 20 % 이었다. 코팅제에 사용된 양은 고체중량으로 3 ~ 10 g 으로 3g 이하가 사용되었을 경우 피막의 조막성 및 내식성이 저하되며 반면에 10g이상 코팅제의 상분리를 가속화시켜 SRA 전후 밀착성의 저하가 관찰 되었다.For silica, aqueous alumina colloidal silica was used and the solid fraction was 20%. When the amount used for the coating agent was 3 to 10 g in solid weight, the film formation and the corrosion resistance of the coating were lowered, whereas the phase separation of the coating agent was accelerated by more than 10 g to decrease the adhesion between before and after SRA.
본 발명에서는 상기와 같이 구성된 처리액을 방향성 전기강판 표면에 건조 피막 두께가 편면당 2.0~6.0g/m2 범위에서, 350 ~ 700℃의 온도 범위에서 10 ~ 30 초 간 가열처리하면 무방향성 전기강판 절연코팅제가 갖추어야 할 밀착성과 내식성이 우수한 절연코팅이 형성된다.In the present invention, the non-oriented electrical steel sheet is heat treated for 10 ~ 30 seconds in the temperature range of 350 ~ 700 ℃ in the range of 2.0 ~ 6.0 g / m2 per side, dry film thickness on the surface of the grain-oriented electrical steel sheet configured as described above Insulation coating excellent in adhesion and corrosion resistance which the insulation coating agent should have is formed.
(실시예)(Example)
중량비로 Si 0.1%를 함유하고, 판 두께 0.50mm 무방향성 전기강판 (120*60 mm)을 공시재로 하고, 그 위에 각종 처리액을 코팅바를 이용하여 2.0~6.0 g/m2 범위에서 도포하였다. 또한 이렇게 도포된 시편을 650℃ 에서 수초 간 건조한 뒤 공냉한다.It contains 0.1% of Si by weight, and a 0.50 mm non-oriented electrical steel sheet (120 * 60 mm) was used as a test material, and various treatment liquids were applied thereon in a range of 2.0 to 6.0 g / m 2 using a coating bar. . In addition, the applied specimen is dried for several seconds at 650 ℃ and air-cooled.
이에 대한 평가방법은 다음과 같다.The evaluation method is as follows.
SRA는 건조한 100% N2 가스분위기에 750℃, 2시간 열처리하였으며, 절연성은 300PSI 압력하에서 입력 0.5V, 1.0A의 전류를 통하였을 때의 수납 전류값으로 나타 낸다. 밀착성은 SRA 전, 후 시편을 10, 20, 30 ~ 100 mmΦ인 원호에 접하여 180o 구부릴 때 피막박리가 없는 최소원호직경으로 나타낸 것이다. 피막 외관은 줄무늬, 광택 유무 등을 육안 관찰하여 평가한 것이다. 내식성은 5%, 35℃, NaCl 용액에 8시간 동안 시편의 녹 발생 유무를 평가하는 것으로써, 본 시험에서는 녹 발생면적이 5% 이하일 경우 우수, 20% 이하일 경우 양호, 20 ~ 50% 약간불량, 50% 이상에서는 불량으로 표시하였다. 또한 SRA후 피막강도는 SRA후 피막상에 일정크기의 점착테이프를 부쳤다 떼었을 때 나타나는 피막 박리분의 부착 유무 및 테이프의 오염정도를 이미지 프로세싱 기법을 이용하여 정량화(%)하였다. 예를 들어, 0 이면 SRA 후 피막표면으로부터 피막 박리분이 없다는 것을 의미하며 100이면 테이프 면적의 전체가 피막 박리분으로 오염되어있다는 것을 의미한다. 따라서 이 숫자가 높을수록 피막강도가 좋지 않음을 나타낸다.SRA was annealed at 750 ℃ for 2 hours in a dry 100% N2 gas atmosphere. Insulation was expressed as the received current value when the input was 0.5V, 1.0A at 300PSI pressure. Adhesion is shown by the minimum arc diameter without film peeling when the specimen is bent 180 ° by contacting an arc of 10, 20, 30 to 100 mmΦ before and after SRA. The appearance of the film was evaluated by visual observation of the presence of streaks and luster. Corrosion resistance is assessed for 5 hours at 35 ℃ and NaCl solution for 8 hours. In this test, it is excellent at less than 5% rust area, good at less than 20%, and slightly poor at 20 to 50%. More than 50% was marked as bad. In addition, the film strength after SRA was quantified (%) by the image processing technique to determine the adhesion of the film peeling powder and the degree of contamination of the tape when the adhesive tape of a certain size was attached to the film after the SRA. For example, 0 means that there is no film peeling off from the film surface after SRA, and 100 means that the entire tape area is contaminated with film peeling off. Therefore, the higher this number, the better the film strength.
표 1은 금속인산염의 성분과 금속산화물에 따른 내식성을 나타내었다. 일단 후막 코팅이 가능할 수 있는 금속 인산염과 에멀젼 수지(분자량 14,000 정도)의 중량비를 예비시험을 통하여 얻었으며 그 결과는 금속인산염/에멀젼 수지의 비가 1/2 정도임을 확인하였다. 이 후 크롬프리 코팅제를 제조하기 위해서는 금속 인산염의 효과적인 조합을 통해 내식성과 밀착성을 확보해야 하며 또한 크롬을 대신하여 첨가하는 금속산화물이 인산염의 sticky성 및 발분현상을 억제할 수 있어야 한다. 본 발명에 사용된 금속인산염은 알루미늄 또는 아연산화물과 인산의 몰비로 조정되며 이렇게 제조된 각각의 금속인산염을 서로 혼합하게 되면 성분비에 따라 점도가 다 른 금속인산염 조합을 만들 수 있다.Table 1 shows the corrosion resistance of the metal phosphate components and metal oxides. Once the weight ratio of the metal phosphate and the emulsion resin (molecular weight 14,000) that can be thick film coating was obtained through a preliminary test, the results confirmed that the ratio of the metal phosphate / emulsion resin is about 1/2. Subsequently, in order to prepare the chromium-free coating agent, corrosion resistance and adhesion must be secured through an effective combination of metal phosphate, and the metal oxide added in place of chromium should be able to suppress sticky and development of phosphate. The metal phosphate used in the present invention is adjusted to the molar ratio of aluminum or zinc oxide and phosphoric acid. When the metal phosphates prepared in this way are mixed with each other, metal phosphate combinations having different viscosities can be made according to the component ratios.
표 1에서 보는 바와 같이 제1인산 알루미늄(Al(H2PO4)3)과 제1인산아연 (Zn(H2PO4)2)을 혼합하여 내식성을 확인한 결과 두 금속인산염이 50/50 혼합된 상태이며 특히 인산염이면서 이때의 고형분비가 60wt%, 점도가 30~70 cp, 특히 50 cp 정도인 용액 100g에 cobalt hydoroxide와 strontium hydroxide를 50/50 혼합고체를 고체중량비로 2 g 정도가 첨가되었을 때 인산염으로 표면 sticky, 분말 석출 방지 및 내식성을 향상시킴을 알 수 있다 (표 1의 시험재 15).As shown in Table 1, the aluminum metal phosphate (Al (H 2 PO 4 ) 3 ) and the first zinc phosphate (Zn (H 2 PO 4 ) 2 ) were mixed to confirm corrosion resistance. When 2 g of cobalt hydoroxide and strontium hydroxide are added to 100 g of a solution having a solid phosphate content of 60wt%, a viscosity of 30 to 70 cp, especially 50 cp, and a 50/50 mixed solid in a solid weight ratio It can be seen that the phosphate improves surface sticky, prevention of powder precipitation and corrosion resistance (Test Material 15 in Table 1).
(물성판정- 우수: ◎ , 양호: O , 보통: △ , 약간불량: ▽ , 불량: × )(Physical Determination-Excellent: ◎, Good: O, Normal: △, Slightly defective: ▽, Poor: ×)
표 1로부터 도출된 제1인산 알루미늄(Al(H2PO4)3)과 제1인산아연 (Zn(H2PO4)2) 혼합 인산염 100g (고형분비 60wt%)에 분자량이 다른 에멀젼 수지 200g과 혼합하여 코팅제를 제조, 후막코팅 (2.5㎛)을 형성하였을 때 표면의 광택 및 SRA 후 피막 밀착성의 결과를 표 2에 나타내고 있다. 200 g of emulsion resins having different molecular weights in 100 g of solid phosphate (60 wt%) of mixed aluminum phosphate (Al (H 2 PO 4 ) 3 ) and zinc phosphate (Zn (H 2 PO 4 ) 2 ) derived from Table 1 Table 2 shows the results of surface gloss and film adhesion after SRA when a coating agent was prepared by mixing with a thick film to form a thick film (2.5 μm).
(물성판정- 우수: ◎ , 양호: O , 보통: △ , 약간불량: ▽ , 불량: × )(Physical Determination-Excellent: ◎, Good: O, Normal: △, Slightly defective: ▽, Poor: ×)
표 2에서 보는 바와 같이 에멀젼 수지의 분자량이 1,500 정도에서는 표면광택과 SRA 후 밀착성이 양호한 결과를 보였지만 수지의 점도가 너무 낮아 향후 양산용 코팅제로서 작업되기에는 후막 도포의 어려움이 예상되며, 분자량 1,500이상 15,000 이하의 에멀젼 수지들에서는 후막도포 시에도 표면광택을 저하시키지 않으며 SRA 후 밀착성도 비교적 양호한 피막을 얻을 수 있었다. 특히 에멀젼 분자량 5,100에서는 표면 광택이 가장 미려한 피막을 얻을 수 있었다. 반면 15,000 이상의 에멀젼 수지들을 이용하여 제조된 코팅제에서는 분자량이 증가함에 따라 후막 도포시 불투명하고 표면광택이 매우 불량한 제품이 얻어졌으며, 이는 상기에서 설명한 바와 같이 15,000 이상의 에멀젼 수지에서는 분자량이 증가함에 따라 탄성성질이 증가하면서 (도 1의 A 영역) 금속인산염과 상용성을 저해하여 코팅제 내에 상분리를 유발하는 것으로 사료된다. 이렇게 상용성이 저하된 코팅제로 후막코팅을 수행할 경우 표면 광택은 물론 SRA 후 밀착성까지 매우 불량해지는 것으로 나타났다.As shown in Table 2, when the molecular weight of the emulsion resin is about 1,500, the surface gloss and the adhesion after SRA showed good results, but the viscosity of the resin is so low that it may be difficult to apply a thick film to be used as a mass production coating in the future. Emulsion resins of 15,000 or less did not degrade the surface gloss even at the time of thick film coating, and a relatively good adhesion after SRA was obtained. In particular, the emulsion molecular weight of 5,100 was able to obtain a film with the best surface gloss. On the other hand, in coatings prepared using emulsion resins of 15,000 or more, a product having opaque and very poor surface gloss was obtained at the time of thick film application as the molecular weight was increased, and as described above, in the emulsion resin of 15,000 or more, the elasticity was increased as the molecular weight was increased. With this increase (area A in Fig. 1), it is thought to inhibit the compatibility with the metal phosphate and cause phase separation in the coating. In this case, when the thick film coating is performed with the coating having lower compatibility, the surface gloss as well as the adhesion after the SRA are very poor.
그러나 표 1에서 보는 바와 같이 Cr-type과 동등한 물성을 나타내기 위해선 최종적으로 SRA 후 피막밀착성의 향상이 필요하였으며, 따라서 표 2에서 보는 바와 같이 Ti chelate 첨가제와 콜로이달 실리카 도입으로 이러한 문제를 해결한다. 표 3에서는 cobalt hydroxide와 strontium hydroxide 첨가된 제 1인산 알루미늄(Al(H2PO4)3) 그리고 제1 인산아연 (Zn(H2PO4)2) 50/50 혼합형태의 인산염 100 g에 분자량 5,100 폴리에스터 에멀젼 수지 200g에 알루미늄 실리케이트와 Ti계통 chelate 첨가제 양을 달리하여 코팅제를 제조하였으며, 표 4에서는 이렇게 제조된 코팅제를 이용하여 후막 (2.5㎛) 도포한 코팅제들의 피막의 특성을 나타내고 있다.However, in order to show the physical properties equivalent to Cr-type as shown in Table 1, it was finally necessary to improve the film adhesion after SRA. Thus, as shown in Table 2, the introduction of Ti chelate additive and colloidal silica solved this problem. . Table 3 shows the molecular weight of cobalt hydroxide and strontium hydroxide added to 100 g of phosphate mixed with aluminum monophosphate (Al (H 2 PO 4 ) 3 ) and primary zinc phosphate (Zn (H 2 PO 4 ) 2 ) 50/50. A coating agent was prepared by varying the amount of aluminum silicate and Ti-based chelate additive in 200 g of 5,100 polyester emulsion resin, and Table 4 shows the characteristics of the coating films coated with a thick film (2.5 μm) using the coating agent thus prepared.
(물성판정- 우수: ◎ , 양호: O , 보통: △ , 약간불량: ▽ , 불량: × )(Physical Determination-Excellent: ◎, Good: O, Normal: △, Slightly defective: ▽, Poor: ×)
표 4에서 보는 바와 같이 시험재 15-3-8 번과 15-3-9번과 같이 cobalt hydroxide와 strontium hydroxide 첨가된 제 1인산 알루미늄(Al(H2PO4)3) 그리고 제1 인산아연 (Zn(H2PO4)2) 혼합형태의 인산염 100g 에 알루미늄 실리케이트 1.0~3.0 g, 그리고 Ti계통은 chelate 첨가제 0.1~0.5 g 을 첨가하였을 때 내식성 및 피막 밀착성이 향상됨을 확인하였다. 이는 기존의 크롬 타입의 코팅제 대비 동등 이상의 수준으로 평가된다.As shown in Table 4, cobalt hydroxide and strontium hydroxide added monobasic aluminum phosphate (Al (H 2 PO 4 ) 3 ) and primary zinc phosphate (as test samples 15-3-8 and 15-3-9). It was confirmed that corrosion resistance and film adhesion were improved when 1.0-3.0 g of aluminum silicate was added to 100 g of Zn (H 2 PO 4 ) 2 ) mixed phosphate and 0.1-0.5 g of chelate additive. This is estimated to be equivalent to or higher than that of conventional chromium type coatings.
도 1은 낮은 주파수 영역(A)에서 분자량에 따른 저장 탄성율(G')이 증가하는 것을 나타내는 그래프이다.1 is a graph showing an increase in storage modulus (G ′) according to molecular weight in the low frequency region (A).
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070137829A KR101025008B1 (en) | 2007-12-26 | 2007-12-26 | Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it |
JP2010540555A JP5568479B2 (en) | 2007-12-26 | 2008-11-10 | COATING COMPOSITION FOR FORMING INSULATION COATING, INSULATION COATING FORMATION METHOD FOR NONDIRECTIONAL ELECTRIC STEEL AND NONDIRECTIONAL ELECTRIC STEEL USING THE SAME |
PCT/KR2008/006620 WO2009082088A1 (en) | 2007-12-26 | 2008-11-10 | Coating solution for forming insulating film, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it |
CN2008801224055A CN101910464B (en) | 2007-12-26 | 2008-11-10 | Coating solution for forming insulating film, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070137829A KR101025008B1 (en) | 2007-12-26 | 2007-12-26 | Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090069983A true KR20090069983A (en) | 2009-07-01 |
KR101025008B1 KR101025008B1 (en) | 2011-03-25 |
Family
ID=40801355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070137829A KR101025008B1 (en) | 2007-12-26 | 2007-12-26 | Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5568479B2 (en) |
KR (1) | KR101025008B1 (en) |
CN (1) | CN101910464B (en) |
WO (1) | WO2009082088A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012011442A1 (en) * | 2010-07-23 | 2012-01-26 | 新日本製鐵株式会社 | Electromagnetic steel sheet and process for production thereof |
CN103045058B (en) * | 2011-10-11 | 2015-06-03 | 攀钢集团攀枝花钢铁研究院有限公司 | Insulation coating and electrical steel material, and preparation method thereof |
BR112017013098B1 (en) * | 2014-12-26 | 2022-06-14 | Nippon Steel Corporation | ELECTRIC STEEL SHEET |
CN104562026A (en) * | 2014-12-30 | 2015-04-29 | 芜湖协诚金属制品有限公司 | Protective agent for austenite 304 in sheet metal process |
CN104562027A (en) * | 2014-12-31 | 2015-04-29 | 芜湖协诚金属制品有限公司 | Preparation method of metal welding spot protective agent |
CN104805442A (en) * | 2014-12-31 | 2015-07-29 | 芜湖协诚金属制品有限公司 | Protection method of welding spots during cold-rolled sheet metal welding |
EP3072936A1 (en) * | 2015-03-24 | 2016-09-28 | Voestalpine Stahl GmbH | Coil and electrical strip or sheet |
CN105603401A (en) * | 2016-02-16 | 2016-05-25 | 攀枝花学院 | Anti-corrosion treatment liquid for surface of galvanized substrate and preparation method and anti-corrosion treatment method thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3117846B2 (en) * | 1993-07-26 | 2000-12-18 | 新日本製鐵株式会社 | Non-oriented electrical steel sheet with excellent film properties and surface treatment agent for the steel sheet |
JP3386338B2 (en) * | 1997-07-02 | 2003-03-17 | 新日本製鐵株式会社 | Method of forming insulating film on grain-oriented silicon steel sheet |
JP3412540B2 (en) * | 1998-11-20 | 2003-06-03 | Jfeエンジニアリング株式会社 | Organic coated steel sheet with excellent corrosion resistance |
JP3471642B2 (en) * | 1999-01-12 | 2003-12-02 | 住友金属工業株式会社 | Insulating film forming treatment liquid and insulating film forming method |
KR100411279B1 (en) * | 1999-08-19 | 2003-12-18 | 주식회사 포스코 | A coating solution for making insulation film on non-oriented electrical steel sheet and a method for making the insulation film on non-oriented electrical steel sheet by using it |
JP4264362B2 (en) * | 2004-01-15 | 2009-05-13 | 新日本製鐵株式会社 | Insulating coating agent for grain-oriented electrical steel sheet not containing chromium and grain-oriented electrical steel sheet having an insulating film not containing chromium |
KR100762465B1 (en) * | 2006-08-02 | 2007-10-04 | 주식회사 포스코 | Coating solution for forming insulating film with excellent corrosion resistance property and film close adhesion property without cr and a method for making the insulation film on non-oriented electrical steel sheet by using it |
-
2007
- 2007-12-26 KR KR1020070137829A patent/KR101025008B1/en active IP Right Grant
-
2008
- 2008-11-10 WO PCT/KR2008/006620 patent/WO2009082088A1/en active Application Filing
- 2008-11-10 JP JP2010540555A patent/JP5568479B2/en not_active Expired - Fee Related
- 2008-11-10 CN CN2008801224055A patent/CN101910464B/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP5568479B2 (en) | 2014-08-06 |
CN101910464A (en) | 2010-12-08 |
WO2009082088A1 (en) | 2009-07-02 |
CN101910464B (en) | 2012-11-14 |
JP2011508086A (en) | 2011-03-10 |
KR101025008B1 (en) | 2011-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101025008B1 (en) | Method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it | |
JP4731625B2 (en) | Chromium-free coating liquid for forming an insulating film excellent in corrosion resistance, film adhesion and film strength, and a method for forming an insulating film on a non-oriented electrical steel sheet using the same | |
KR101324260B1 (en) | Insulation coating material for non-oriented electrical steel sheet and method for manufacturing the same | |
KR100762465B1 (en) | Coating solution for forming insulating film with excellent corrosion resistance property and film close adhesion property without cr and a method for making the insulation film on non-oriented electrical steel sheet by using it | |
KR101006033B1 (en) | Electromagnetic steel sheet having insulating coating film and method for producing same | |
EP2597177B1 (en) | Electromagnetic steel sheet and process for production thereof | |
KR101264231B1 (en) | Coating solution with excellent insulating property, method for forming insulating film of non-oriented electrical steel sheet and non-oriented electrical steel sheet by using it | |
EP1967611A1 (en) | Electromagnetic steel sheet having insulating coating film and method for producing same | |
KR20170107568A (en) | Electronic steel sheet | |
JP5423465B2 (en) | Electrical steel sheet and method for producing electrical steel sheet | |
KR100817157B1 (en) | Method for manufacturing of cr-free coating solution for non-oriented electrical steel sheet with excellent solution stability | |
JP7112350B2 (en) | Painted galvanized steel sheet | |
WO2016098629A1 (en) | Aqueous two layer-coated metal plate | |
KR100762466B1 (en) | Coating solution for forming insulating film with excellent film close adhesion property and film intensity without cr and a method for making the insulation film on non-oriented electrical steel sheet by using it | |
KR100733367B1 (en) | Thick-film coating solution for a non-oriented electrical steel sheet with excellent solution stability and method for manufacturing non-oriented electrical steel sheet having resistance against corrosion and insulation property using the same | |
JP7166955B2 (en) | Painted galvanized steel sheet | |
EP4450678A1 (en) | Insulating coating composition for electrical steel sheet, electrical steel sheet, and method for manufacturing same | |
KR101308731B1 (en) | Tension coating agent for forming insulating film with excellent punching, processing and tension properties oriented electrical steel sheet and method for forming insulation film using that, and oriented ecectrical steel sheet with coated insulating film that method | |
JP7235556B2 (en) | Painted galvanized steel sheet | |
JP7112349B2 (en) | Painted galvanized steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
AMND | Amendment | ||
B601 | Maintenance of original decision after re-examination before a trial | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20100324 Effective date: 20110223 |
|
S901 | Examination by remand of revocation | ||
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140318 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150311 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160314 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180206 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20190128 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20200312 Year of fee payment: 10 |