KR20090067763A - 로켓 연소기의 재생냉각채널 모사 시편 - Google Patents

로켓 연소기의 재생냉각채널 모사 시편 Download PDF

Info

Publication number
KR20090067763A
KR20090067763A KR1020070135524A KR20070135524A KR20090067763A KR 20090067763 A KR20090067763 A KR 20090067763A KR 1020070135524 A KR1020070135524 A KR 1020070135524A KR 20070135524 A KR20070135524 A KR 20070135524A KR 20090067763 A KR20090067763 A KR 20090067763A
Authority
KR
South Korea
Prior art keywords
copper alloy
tube
stainless steel
alloy tube
steel tube
Prior art date
Application number
KR1020070135524A
Other languages
English (en)
Inventor
임병직
한영민
김홍집
김종규
강동혁
최환석
Original Assignee
한국항공우주연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공우주연구원 filed Critical 한국항공우주연구원
Priority to KR1020070135524A priority Critical patent/KR20090067763A/ko
Publication of KR20090067763A publication Critical patent/KR20090067763A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/02Investigating or analyzing materials by the use of thermal means by investigating changes of state or changes of phase; by investigating sintering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference
    • G01N7/16Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference by heating the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

본 발명은, 환상의 구리합금 관으로 내부 유로를 와이어 커팅하여 형성되는 구리합금 튜브와; 환상의 스테인리스 스틸 관으로 내경이 상기 구리합금 튜브가 삽입 가능한 크기로 와이어 커팅하여 형성되고, 길이방향을 따라 상기 구리합금 튜브의 표면 온도를 검출하기 위한 적어도 하나의 온도센서 장착용 슬롯이 형성되며, 상기 구리합금 튜브보다 일정 길이 짧게 형성되는 스테인리스 스틸 튜브와; 상기 스테인리스 스틸 튜브의 내경에 삽입시 관통되는 상기 구리합금 튜브의 양측이 삽입배치 및 결합 가능하게 형성되고, 상기 스테인리스 스틸 튜브의 양단이 각각 안착 결합 가능한 한 쌍의 전원 연결부를; 포함하여 이루어지고, 상기 구리합금 튜브의 유로로 탄화수소계 연료를 가압 공급함과 동시에 상기 구리합금 튜브의 금속온도를 상승시켜 구리합금과 탄화수소계 연료의 반응에 의한 코킹 현상과 구리합금의 열 손상을 측정하는 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편을 제공한다.
이상과 같은 본 발명의 로켓 연소기의 재생냉각채널 모사 시편에 의하면, 로켓 연소기의 연소실 내벽 소재인 구리합금과 탄화수소계 연료의 반응을 모사 시편을 통해 실제 현상과 동일한 환경에서 측정함으로써 실제로 로켓 연소기를 설계하고 제작시 그 실폐율을 낮출 수 있으며, 생산비용 및 개발시간을 절감할 수 있는 장점이 있다.
로켓, 연소기, 재생냉각채널, 시편, 코킹현상

Description

로켓 연소기의 재생냉각채널 모사 시편 {A specimen simulating regenerative cooling channel of rocket combustion chamber}
본 발명은 로켓 연소기의 재생냉각채널 모사 시편에 관한 것으로서, 더욱 상세하게는 로켓 연소기에 적용되는 재생냉각채널에서 냉각유체로 탄화수소계 연료를 이용함으로써 발생할 수 있는 코킹현상을 모사 실험할 수 있도록 형성한 로켓 연소기의 재생냉각채널 모사 시편에 관한 것이다.
일반적으로 로켓에 사용되는 연소기는 연소실에서 발생되는 고밀도의 에너지를 버텨내야 하는 가혹한 환경에서 운영된다. 이와 같은 이유로 연소기는 열내구성이 우수한 재질을 사용하여 손상이 없도록 하며, 열전도성이 우수한 재질을 이용하여 냉각이 잘 이루어지도록 제작한다.
즉, 열내구성이 우수한 재질임에도 불구하고 로켓 연소기에서 발생되는 열량과 유속을 견뎌내는 것이 불가능하기 때문에 열전도성이 우수한 재질을 이용하고 냉각하는 방식을 적용한다.
이러한 상기 냉각 방식으로는 추진제 중 일부를 연소실 내벽으로 공급하는 막냉각 방식과, 연소실에서 내벽으로 전달되는 열량을 냉각채널을 통해 흐르는 추 진제로 흡수하는 재생냉각 방식이 있다.
이 중 상기 재생냉각 방식은 연소기의 연소실 내벽은 열전도성이 우수하여 연소실에서 발생되는 열량을 내벽을 통해 냉각유체로 빠르게 전달하여야 한다. 이와 같은 특성에 가장 적합한 재질이 구리로서 연소실 내벽 재질로서 가장 일반적으로 사용되며 강도를 향상시키기 위해 불순물을 첨가한 구리합금이 이용된다.
한편, 연소기에 사용되는 연료는 저장성과 안정성이 우수한 탄화수소계 연료가 이용되고 있는데, 연소실 벽면 재질인 구리합금과, 추진제로서 저장성, 안정성이 우수한 케로신, 프로탄, 메탄 등의 탄화수소계 연료의 조합에서는 그 장점을 상쇄시키는 문제가 발생하는 것으로 알려져 있다.
즉, 탄화수소계 연료와 고온의 구리합금이 접하게 되면 구리성분과 연료 내의 불순물(황)이 반응하여 침착물이 생성되는 코킹현상이 발생하는 것이다. 코킹현상이 발생하면 생성된 침착물은 연소실 내벽에서 냉각유체로의 열전달을 감소시키는 열저항으로 작용한다. 이와 같은 현상은 연소실에서 발생되는 고밀도 에너지를 연소실 벽면에 축적시키게 되고 일정 한계에 다다르게 되면 연소실 내벽 손상의 원인이 되는 문제가 있다.
본 발명은 상기한 문제점을 감안하여 안출된 것으로서, 구리합금과 탄화수소계 연료의 반응에 의한 코킹현상 발생 여부와 그에 따른 구리합금의 손상 여부를 모사 시편을 통해 확인하여 실제 로켓 연소기의 재생냉각 채널 제작에 활용하는데 그 목적이 있다.
상기한 목적을 달성하기 위해 본 발명은, 환상의 구리합금 관으로 내부 유로를 와이어 커팅하여 형성되는 구리합금 튜브와; 환상의 스테인리스 스틸 관으로 내경이 상기 구리합금 튜브가 삽입 가능한 크기로 와이어 커팅하여 형성되고, 길이방향을 따라 상기 구리합금 튜브의 표면 온도를 검출하기 위한 적어도 하나의 온도센서 장착용 슬롯이 형성되며, 상기 구리합금 튜브보다 일정 길이 짧게 형성되는 스테인리스 스틸 튜브와; 상기 스테인리스 스틸 튜브의 내경에 삽입시 관통되는 상기 구리합금 튜브의 양측이 삽입배치 및 결합 가능하게 형성되고, 상기 스테인리스 스틸 튜브의 양단이 각각 안착 결합 가능한 한 쌍의 전원 연결부를; 포함하여 이루어지고, 상기 구리합금 튜브의 유로로 탄화수소계 연료를 가압 공급함과 동시에 상기 구리합금 튜브의 금속온도를 상승시켜 구리합금과 탄화수소계 연료의 반응에 의한 코킹 현상과 구리합금의 열 손상을 측정하는 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편을 제공한다.
전술한 바와 같이 본 발명에 따르면, 로켓 연소기의 연소실 내벽 소재인 구리합금과 탄화수소계 연료의 반응을 모사 시편을 통해 실제 현상과 동일한 환경에서 측정함으로써 실제로 로켓 연소기를 설계하고 제작시 그 실폐율을 낮출 수 있으며, 생산비용 및 개발시간을 절감할 수 있는 장점이 있다.
이하, 첨부된 도면을 참조로 본 발명의 일 실시예에 따른 로켓 연소기의 재생냉각채널 모사 시편에 대해 상세하게 살펴본다.
도 1은 본 발명의 일 실시예에 따른 로켓 연소기의 재생냉각채널 모사 시편의 사시도이며, 도 2는 도 1의 단면도이다.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들은 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도면에 도시된 바와 같이, 본 발명의 로켓 연소기의 재생냉각채널 모사 시편(100)은 구리합금 튜브(110)와, 스테인리스 스틸 튜브(120)와, 전원 연결부(130)와, 유로 연결부(140), 및 온도센서 고정부(150)를 포함하여 이루어진다.
상기 구리합금 튜브(110)는 환상의 구리합금 관으로서 침착물 생성의 가장 중요한 요소이다. 따라서 그 표면의 온도와 유로(110a) 상의 유속을 실제와 같은 조건으로 형성하기 위해 단면적과 내부 유로(110a) 면적을 가공을 통해 맞춰야 한다. 이를 위해서 본 발명에서는 상기 구리합금 튜브(110)의 내경을 2 mm, 두께를 0.8 mm 및 길이를 300 mm로 가공한다. 특히, 길이는 스테인리스 스틸 튜브(120)보다 길게 형성되어 구리합금 튜브(110)의 양측 일부가 후술할 전원 연결부(130)의 관통홈(130a)에 삽입 배치되게 형성된다. 또한, 치수에서 알 수 있듯이, 길이에 비해 지름과 두께가 미세하기 때문에 일반적인 드릴로는 작업이 불가능한 것인바, 내경 가공에 대해서는 후술하기로 한다.
상기 스테인리스 스틸 튜브(120)는 환상의 스테인리스 스틸 관으로 내경이 상기 구리합금 튜브(110)의 외경과 동일하도록 3.6 mm로 가공되며, 두께는 3 mm로 가공된다. 이러한 스테인리스 스틸 튜브(120) 상에는 구리합금 튜브(110)의 표면온도를 측정하기 위한 온도센서(미도시)가 장착되도록 온도센서 장착용 슬롯(120a)이 길이방향을 따라 다수개 형성되며, 상기 슬롯(120a)의 외측으로 온도센서 고정부(150)가 용접결합되어 이루어진다. 또한, 본 스테인리스 스틸 튜브(120)는 그 내경 측으로 상기 구리합금 튜브(110)가 구부러지지 않고 안전하게 좌우에서 끼워져 삽입되도록 이등분되어 제작됨이 바람직하다.
상기 전원 연결부(130)는 상기 구리합금 튜브(110)를 가열하기 위해 외부 전원(미도시)과 연결되는 부분으로 일반적인 동합금 재질로 한 쌍이 제작되며, 열이 발생되지 않도록 대략 큰 단면적을 가지도록 형성된다. 이때 전원 연결부(130)의 서로 마주보는 일측단에는 환상의 턱(131)이 형성되어 상기 스테인리스 스틸 튜브(120)가 턱(131)의 안쪽면에 안착되고 용접 가능하도록 한다. 또한, 상기 턱(131)의 안쪽면에서 각 전원 연결부(130)의 타측단으로 통과되는 관통홈(130a)을 형성하여 상기 구리합금 튜브(110)의 양측 일부가 상기 관통홈(130a)에 삽입 배치되도록 한다. 또한, 전원 연결부(130)의 타측단에도 환상의 턱(133)이 형성되어 후술할 유로 연결부(140)의 일단이 상기 턱(133)의 안쪽면에 안착되고 용접가능하게 이루어진다. 더욱이, 각 전원 연결부(130) 타측단의 턱(133) 안쪽면에는 삽입 배치된 구리합금 튜브(110)의 양측단 외주와 용접되는 환상의 용접용 요홈(130b)이 형성되어 이루어진다.
상기 유로 연결부(140)는 일반적으로 많이 사용되는 피팅을 이용하기 위해 치수에 맞게 가공되었으며, 상기 전원 연결부(130)와 결합되는 부분이 긴밀하게 연결되도록 전원 연결부(130)의 턱(133)과 그 둘레를 용접하여 고정한다.
이하, 전술한 바와 같이 구성되는 본 발명의 로켓 연소기의 재생냉각채널 모사 시편(100)은 다음과 같이 제작되어 이루어진다.
우선, 구리합금 튜브(110)를 내부 유로(110a)가 가공되지 않은 상태로 외경 가공을 수행하며, 스테인리스 스틸 튜브(120)를 외경 가공하고 와이어 커팅을 통해 구리합금 튜브(110) 외경과 동일하게 내경 가공을 수행하여 한 쌍을 제작한다.
다음, 상기 한 쌍의 스테인리스 스틸 튜브(120)의 외경 표면에 온도센서를 장착하기 위한 슬롯(120a)을 다수개 천공하고, 외경 가공된 구리합금 튜브(110)를 한 쌍의 스테인리스 스틸 튜브(120)의 내경 측으로 각각 끼워 넣는다.
이때, 구리합금 튜브(110)에 5 내지 10 ㎛ 정도로 니켈 코팅을 수행하여 이후 브레이징 용접시 스테인리스 스틸 튜브(120)와 접합이 되도록 한다.
이와 같이, 구리합금 튜브(110)와 스테인리스 스틸 튜브(120)가 조립 완료된 후 브레이징 용접으로 접합하고, 이후 기계 가공을 통해 스테인리스 스틸(120) 부분을 마무리하며, 구리합금 튜브(110)의 유로(110a)를 와이어 커팅을 통해 원하는 직경으로 가공한다. 상기한 와이어 커팅을 하기 위해서는 구리합금 튜브(110)에 얇은 관통구가 필요한데 이 관통구은 슈퍼 드릴을 이용하여 양쪽에서 각각 수행하여 와이어 커팅시 최종적으로 중앙이 만나도록 가공된다.
상술한 바와 같이, 브레이징과 와이어 커팅을 통해 구리합금 튜브(110)와 스테인리스 스틸 튜브(120)가 조립 완료된 후, 각 단부측이 전원 연결부(130)와 용접을 통해 접합이 되는데, 스테인리스 스틸 튜브(120)와는 TIG 용접(T)을 통해 고정이 되고, 구리합금 튜브(110)와는 제살용접(G)을 통해 접합된다.
이처럼 구리합금 튜브(110)와 스테인리스 스틸 튜브(120)의 각 단부측을 모두 전원 연결부(130)와 용접하는 것은 열팽창이 다른 두 금속이 접합된 상태로 인해 고온 상태에서 전원 연결부(130)와 접합이 떨어지지 않도록 하기 위해서이다.
최종적으로 유로 연결부(140)와 전원 연결부(130)가 TIG 용접을 통해 접합이 되면 제작이 완료된다.
이와 같이, 제작이 완료된 이후에 기밀시험을 통해 구리합금 튜브(110)와 전원 연결부(130) 사이의 기밀을 확인하고, 높은 압력을 가하여 강도시험을 수행한 다.
완성된 본 로켓 연소기의 재생냉각채널 모사 시편(100)은 가압식 연료 공급설비(미도시)와 연결되어 케로신, 프로탄, 메탄 등의 탄화수소계 연료가 흐르는 상태에서 전원을 공급하여 시험을 수행하게 된다. 시험수행에 있어 탄화수소계 연료의 전, 후단 압력과 온도를 측정하고, 구리합금 튜브(110) 표면에서의 온도를 측정하며, 공급되는 유량도 측정하게 된다.
이때, 구리합금 튜브(110) 표면에서 측정되는 온도 조건을 실제 연소기에서 발생되는 현상과 동일하게 유지하기 위해 전원 공급을 조절하게 되며, 또한 탄화수소계 연료의 온도와 유속에 따른 현상을 확인하기 위해서 공급 유량을 조절하면서 측정하게 되는 것이다.
도 1은 본 발명의 일 실시예에 따른 로켓 연소기의 재생냉각채널 모사 시편의 사시도이다.
도 2는 도 1의 단면도이다.

Claims (4)

  1. 환상의 구리합금 관으로 내부 유로를 와이어 커팅하여 형성되는 구리합금 튜브와;
    환상의 스테인리스 스틸 관으로 내경이 상기 구리합금 튜브가 삽입 가능한 크기로 와이어 커팅하여 형성되고, 길이방향을 따라 상기 구리합금 튜브의 표면 온도를 검출하기 위한 적어도 하나의 온도센서 장착용 슬롯이 형성되며, 상기 구리합금 튜브보다 일정 길이 짧게 형성되는 스테인리스 스틸 튜브와;
    상기 스테인리스 스틸 튜브의 내경에 삽입시 관통되는 상기 구리합금 튜브의 양측이 삽입배치 및 결합 가능하게 형성되고, 상기 스테인리스 스틸 튜브의 양단이 각각 안착 결합 가능한 한 쌍의 전원 연결부를; 포함하여 이루어지고,
    상기 구리합금 튜브의 유로로 탄화수소계 연료를 가압 공급함과 동시에 상기 구리합금 튜브의 금속온도를 상승시켜 구리합금과 탄화수소계 연료의 반응에 의한 코킹 현상과 구리합금의 열 손상을 측정하는 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편.
  2. 제 1항에 있어서, 상기 탄화수소계 연료는,
    케로신, 프로탄 및 메탄 중 선택된 어느 하나인 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편.
  3. 제 1항에 있어서, 상기 전원연결부는,
    상기 구리합금 튜브의 양단과 제살 용접되고 상기 스테인레스 스틸 튜브의 양단과 TIG 용접되어 기밀하게 결합되는 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편.
  4. 제 1항에 있어서, 상기 구리합금 튜브는,
    그 외경 표면에 5 내지 10 ㎛의 니켈이 코팅되어 상기 스테인리스 스틸 튜브의 내경에 삽입되며 브레이징 용접으로 서로 결합되는 것을 특징으로 하는 로켓 연소기의 재생냉각채널 모사 시편.
KR1020070135524A 2007-12-21 2007-12-21 로켓 연소기의 재생냉각채널 모사 시편 KR20090067763A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070135524A KR20090067763A (ko) 2007-12-21 2007-12-21 로켓 연소기의 재생냉각채널 모사 시편

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070135524A KR20090067763A (ko) 2007-12-21 2007-12-21 로켓 연소기의 재생냉각채널 모사 시편

Publications (1)

Publication Number Publication Date
KR20090067763A true KR20090067763A (ko) 2009-06-25

Family

ID=40995445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070135524A KR20090067763A (ko) 2007-12-21 2007-12-21 로켓 연소기의 재생냉각채널 모사 시편

Country Status (1)

Country Link
KR (1) KR20090067763A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389036A (zh) * 2019-07-26 2019-10-29 中国航发沈阳发动机研究所 模拟航空发动机外部管路真实安装坐标的通用试验平台

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110389036A (zh) * 2019-07-26 2019-10-29 中国航发沈阳发动机研究所 模拟航空发动机外部管路真实安装坐标的通用试验平台

Similar Documents

Publication Publication Date Title
US20210229269A1 (en) Extension tool having a plurality of links
US11613003B2 (en) Line assembly for an extension tool having a plurality of links
US20150174710A1 (en) Method of manufacturing heat exchanger cooling passages in aero propulsion structure
US20040114665A1 (en) Cantilevered thermocouple rake
CN112555057A (zh) 火箭发动机喷管喉衬的测试装置
CN112382421A (zh) 模拟核反应堆燃料棒的试验装置
US9417048B2 (en) Capacitive sensor device and method of manufacture
KR20090067763A (ko) 로켓 연소기의 재생냉각채널 모사 시편
US9739487B2 (en) Glow plug
JP6798874B2 (ja) 圧力検出装置
Chandrasekhar et al. Experimental investigations of hydrocarbon fueled scramjet combustor by employing high temperature materials for the construction of fuel injection struts
US3996070A (en) Thermocouple installation
JP6502941B2 (ja) 管をコネクタに固定する方法と連結キット
JP5819402B2 (ja) 材料のサーモメカニカル疲労の評価装置
Beranek et al. Characterization of 63Sn37Pb and 80Au2OSn solder sealed optical fiber feedthroughs subjected to repetitive thermal cycling
CN110100163A (zh) 隔热涂覆的试验方法以及试验片
KR20100004831U (ko) 일체형 압력전달 장치
KR102241473B1 (ko) 연구용 원자로의 재료 조사 시험용 계장캡슐
JP6817058B2 (ja) 圧力検出装置の製造方法および圧力検出装置
JPH06160580A (ja) 模擬燃料棒における上部端栓
JP2011153857A (ja) 燃料被覆管のシール機構
CN113470862A (zh) 一种基于元件中孔的辐照装置
EP3736553A1 (en) Pressure transducer including kovar integrated packages
BR102013021099A2 (pt) Processo para produção de um detector de medição para determinação de pelo menos uma propriedade de um gás de medição
D'Elia Development of Local Transient Heat Flux Measurements in an Axisymmetric Hybrid Rocket Nozzle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application