KR20090061555A - A nicuzn ferrite and its manufacturing methods thereof - Google Patents

A nicuzn ferrite and its manufacturing methods thereof Download PDF

Info

Publication number
KR20090061555A
KR20090061555A KR1020080052891A KR20080052891A KR20090061555A KR 20090061555 A KR20090061555 A KR 20090061555A KR 1020080052891 A KR1020080052891 A KR 1020080052891A KR 20080052891 A KR20080052891 A KR 20080052891A KR 20090061555 A KR20090061555 A KR 20090061555A
Authority
KR
South Korea
Prior art keywords
oxide
zinc ferrite
mol
nickel
ferrite
Prior art date
Application number
KR1020080052891A
Other languages
Korean (ko)
Other versions
KR101016501B1 (en
Inventor
푸 빈
멩 키앙
판 종캉
판 리앙산
카오 주키앙
Original Assignee
루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드 filed Critical 루유안 동양구앙 마그네틱 머티리얼 컴퍼니 리미티드
Publication of KR20090061555A publication Critical patent/KR20090061555A/en
Application granted granted Critical
Publication of KR101016501B1 publication Critical patent/KR101016501B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A NiCuZn ferrite and a manufacture method thereof are provided to show relatively high initial permeability in a wide temperature range and high saturation flux density with high Curie temperature. A NiCuZn ferrite is composed of a main component and a minor component. The main component indicates ferric oxide, nickel monoxide, zinc oxide and copper oxide. More particularly, the main component comprises 48mol%-50mol% of Fe2O3, 13mol%-16mol% of NiO, 29mol%-31.5mol% of ZnO and 4.5mol%-6.5mol% of CuO. The minor component contains vanadium oxide, molybdenum oxide and titanium oxide. The total content of the minor components is 0.01wt%-0.08wt% on the basis of the total content of the main components. The minor components are converted to V2O5, MoO3 and TiO2 respectively.

Description

일종의 니켈 동 아연 페라이트 및 그 제조방법{A NiCuZn ferrite and its manufacturing methods thereof}A kind of nickel copper zinc ferrite and its manufacturing method {A NiCuZn ferrite and its manufacturing methods}

본 발명은 일종의 니켈아연계 페라이트 및 그 제조방법에 관련것이며, 더 구체적으로 말하면 본 발명은 일종의 고자속밀도, 높은 퀴리온도, 비교적 높은 투자율, 저손실의 니켈 동 아연 페라이트 및 그 제조방법에 관한 것이다.The present invention relates to a kind of nickel zinc ferrite and a method of manufacturing the same, and more particularly, the present invention relates to a kind of high magnetic flux density, high Curie temperature, relatively high permeability, low loss nickel copper zinc ferrite and a method of manufacturing the same.

수많은 전기기구 설비 중에서 변압기가 아주 큰 면적을 차지하며 변압기의 전기에너지 소모도 전기기구 정체적인 소모의 상당한 대부분을 차지하고 있는데 변압기의 체적, 전기에너지로 볼 때 연자성페라이트 자성재료가 그 중에서 중요한 작용을 일으키고 있다. 전원변압기, 사무자동화, 통신 등 전자설비가 날로 얇고 가벼우며 작고 이동적이며 집성적이고 다기능적인 방향으로 발전함에 따라 체적이 더 작고 효능이 더욱 높은 변압기의 시장수요가 더욱 커질 것이다. 따라서 고파자수, 비교적 광범한 온도범위, 고투자율, 고포화자속밀도, 고퀴리온도, 고저항, 저공률손실 등 종합성능이 우수한 페라이트 자성재료가 그 중에서 없어서는 안될 소자로 될 것이며 지금 이 분야의 연구도 점점 더 심화되고 광범하게 되었다.Among many electrical equipments, transformers occupy a very large area, and the electrical energy consumption of transformers accounts for most of the static consumption of electrical equipment. In view of the volume and electrical energy of transformers, soft magnetic ferrite magnetic material plays an important role among them. It's happening. As electronic equipment such as power transformers, office automation, and telecommunications develop into thinner, lighter, smaller, more mobile, integrated, and multifunctional systems, the market demand for transformers with smaller volume and higher efficiency will increase. Therefore, ferrite magnetic materials with high overall performance such as high wave count, relatively wide temperature range, high permeability, high saturation magnetic flux density, high Curie temperature, high resistance and low porosity loss will be indispensable among them. It has become more and more extensive and widespread.

예를 들면 중국 소비류 전자제품 가운데서 줄곧 주도적인 위치를 차지하는 컬러텔레비전은 전 세계 산량이 1.7억대 좌우이며 2010년에는 2억대에 도달할 것이다. 그 중에서 중국 산량은 8083만대이며 2010년에는 1억대를 초과할 것이다. 금후의 발전방향은 고화질, 큰 스크린, 디지털화로 과도하게 되며 또한 평면텔레비전이 약 60%좌우를 차지하게 될 것이다. 이런 추세는 자성재료 제품에 대해 아래와 같이 더욱 엄격한 요구를 제출하였다. 1. 고화질: 전원변압기 공률이 온정해야 하고 재료의 공률손실이 작고 자화강도가 커야 한다. 2. 영상이 온정하고 색채가 선명해야 한다: 고투자율 재료, 전자파장애방지 연자성 자심, 고성능집광판을 사용할 것을 요구한다. 3. 디지털화 발전: 연자성재료의 공률손실, 투자율, 사용주파수에 대한 요구가 모두 시물레이션에 비해 제고되었다. 4. 주파수 고구간화:페라이트 자심이 비교적 높은 작업 주파수를 구비할 것을 요구한다. 5. 저공률손실: 국제 에너지부서에서 컬러텔레비전의 스탠바이공률을 1와트로 절감시키도록 규정되어 페라이트재료에 대해 더욱 낮은 공률손실의 새로운 요구를 제출하였다. 그러므로 전지가 공급한 직류전압을 전기회로가 수요하는 직류전압으로 전환시키는 DC-DC컨버터, 액정 백라이트 고압 교류전압에 사용되는 DC-AC인버터 등 감응부품은 반드시 그중 페라이트 자심의 자기손실을 대폭적으로 절감시켜야 하며 전자설비의 발열을 낮추고 에너지를 대폭 절약하는 목적에 도달해야 한다.For example, color television, which continues to be a leading player in consumer electronics products in China, will be the world's largest producer of 200 million units, reaching 200 million units in 2010. Among them, China's production volume is 80.83 million, and will exceed 100 million by 2010. Future development direction will be excessive due to high definition, big screen and digitalization, and flat TV will occupy about 60%. This trend puts stricter demands on magnetic material products as follows. 1. High quality: Power transformer power should be stable, material power loss is small and magnetization strength should be large. 2. The image should be warm and clear: High permeability materials, soft magnetic cores to prevent electromagnetic interference, and high performance light collecting panels are required. 3. Digital development: The demand for power loss, permeability, and frequency of use of soft magnetic materials are all higher than that of simulation. 4. High frequency division: Requires ferrite magnetic cores to have a relatively high working frequency. 5. Low Power Loss: The International Energy Department is required to reduce the standby power of color television to 1 watt, thus submitting a new demand for lower power loss for ferrite materials. Therefore, the DC-DC converter which converts the DC voltage supplied by the battery to the DC voltage required by the electric circuit, and the DC-AC inverter used for the liquid crystal backlight high voltage AC voltage must reduce the magnetic loss of the ferrite magnetic core among them. It has to reach the goal of reducing the heat generation of electronic equipment and greatly saving energy.

일반적으로 연자성 페라이트 재료은 주요하게 망간아연 페라이트와 니켈아연 페라이트가 있다. 그 중 망간아연 페라이트가 니켈아연 페라이트보다 포화자속밀도Bs가 높고 초투자율 μi가 높으며 손실이 작은 등 특점을 가지고 있다. 하지만 망 간아연 재료의 결정립구조가 치밀하여 저항율이 일반적으로 106Ωm 수량급이고 그 자화과정은 자벽이동을 위주로 하며 저주파수에서 자벽공명 현상이 발생하므로 망간아연 페라이트 자심의 응용주파수와 저항율이 비교적 낮으며 전자설비가 날로 소형화, 고주파수화 되는 추세하에서 감응부품의 자심은 인접한 동선과 아주 쉽게 고압파괴를 발생한다. 그래서 자심과 코일 단자, 인출선 사이에 반드시 상당히 큰 절연거리를 보증해야 하거나 혹은 엄밀한 절연조치를 취해야만 필요한 절연내전압을 확보할수 있는데 이렇게 하면 필연코 변압기의 체적이 커지게 된다. 이와 반대로 니켈아연 재료는 다공질의 미세한 결정립구조에 속하며 그 저항율이 높아서 일반적으로 107Ωm 수량급이며 그 자화과정은 자화회전을 위주로 하는데 자화회전을 위주로 하면 고주파수하에서 자연공명이 발생하게 되므로 니켈아연 재료는 저항율이 높을 뿐만아니라 응용주파수 구간도 망간아연 재료보다 높다. 만일 저항율이 107Ωm이상인 니켈아연계 페라이트를 채용하면 상술한 절연, 내전압 문제를 쉽게 해결할수 있지만 현유의 퀴리온도가 비교적 높은 니켈아연 페라이트 재료는 그 포화자속밀도Bs, 초투자율 μi이 또한 너무 낮고 게다가 자심손실이 상대적으로 비교적 높다. 그러므로 일부 전자설비중 출력전압이 매우 높은 변압기 특히 액정 백라이트의 주파수 변환기 자심에 대하여 종래의 상술한 두가지 페라이트재질의 자심 중에서 어느 한가지도 모두 실제적으로 소형화, 집성화, 다기능화, 고주파수화 발전의 수요를 만족시킬 수 없다.In general, soft magnetic ferrite materials are mainly manganese zinc ferrite and nickel zinc ferrite. Among them, manganese zinc ferrite has higher saturation magnetic flux density Bs, higher initial magnetic permeability μi and lower loss than nickel zinc ferrite. However, because the grain structure of manganese zinc material is dense, the resistivity is generally 10 6 Ωm, and the magnetization process is based on the movement of the magnetic walls. In the trend of miniaturization and high frequency of electronic equipments, magnetic cores of sensitive components easily break down high voltage with adjacent copper wires. Therefore, a very large insulation distance must be guaranteed between the core and coil terminals and lead wires, or strict insulation measures can be used to ensure the necessary insulation withstand voltage, which inevitably increases the volume of the transformer. On the contrary, nickel zinc material belongs to porous fine grain structure and its resistivity is high, so it is generally 10 7 Ωm quantity class. The magnetization process is based on magnetization rotation, and when the magnetization rotation is focused, natural resonance occurs under high frequency. In addition to high resistivity, the application frequency range is higher than that of manganese zinc. If the nickel zinc ferrite with resistivity is more than 10 7 Ωm, the above insulation and breakdown voltage problem can be easily solved. However, nickel sinter ferrite materials with relatively high Curie temperature have very low saturation magnetic flux density Bs and ultra-permeability μi. In addition, the core loss is relatively high. Therefore, any of the above-mentioned two magnetic cores of the ferrite material, which are related to the frequency converter core of the transformer, especially the liquid crystal backlight, which has a very high output voltage in some electronic equipments, will practically meet the demand for miniaturization, aggregation, multifunction, and high frequency generation. Can't satisfy

관련된 상술한 분야에서 공개번호가 JP2003-300774A인 일본특허 출원서류에 서 일종의 자성페라이트 재료를 공개하였는데 그 중에는 아래와 같은 주성분을 함유한다. 산화철을 Fe2O3로 환산하면 그 함량은 48.5-50.5mol% 범위 내에 있고 산화동을 CuO으로 환산하면 그 함량은 3-12mol% 범위 내에 있으며 산화아연을 ZnO으로 환산하면 24-36mol% 범위 내에 있고 그 나머지는 일산화니켈이며 부성분으로는 V2O5이 0.15wt% 이하이다. 이 자성페라이트 재료는 20-140℃의 온도범위 내에서 자심 공률손실의 최소치가 있으며 50kHz, 150mT 조건에서 측정한 자심손실 최소치는 250kW/m3 이하이며 포화자속밀도는 300mT 이상이다.In the above-mentioned related fields, a type of magnetic ferrite material has been disclosed in a Japanese patent application document with publication number JP2003-300774A, which contains the following main components. When iron oxide is converted into Fe 2 O 3 , its content is in the range of 48.5-50.5 mol%, when copper oxide is converted into CuO, the content is in the range of 3-12 mol%, and zinc oxide is in the range of 24-36 mol% when converted into ZnO. the rest of the nickel monoxide and subcomponent is a V 2 O 5 is less than 0.15wt%. This magnetic ferrite material has a minimum magnetic core power loss within the temperature range of 20-140 ℃, the minimum magnetic core loss measured at 50kHz and 150mT is 250kW / m 3 or less and the saturation magnetic flux density is 300mT or more.

이외에 출원서 번호가 CN200510060652.5인 중국특허 출원서류에서 일종의 고초투자율, 저손실의 니켈아연 페라이트 재료 및 그 제조방법을 공개하였으며 이 페라이트의 주성분을 산화물로 계산하면 Fe2O3 40-50mol%, NiO 10-18mol%, ZnO 30-38mol%, CuO 0-10mol%, 보조성분 V2O5 0-1wt%,Mo2O3 0-0.5wt%이다. 이 발명은 초투자율이 2500보다 크고 특정손실인자가 20*10-6(100KHz)보다 작으며 특정온도계수가 4*10-6/℃(25-65℃)보다 작으며 퀴리온도가 100℃보다 큰 고투자율 니켈아연 페라이트 재료를 제조할 수 있다고 한다.In addition, a Chinese patent application document with the application number CN200510060652.5 discloses a kind of high initial permeability, low loss nickel zinc ferrite material and a method of manufacturing the same. When the main component of this ferrite is calculated as an oxide, 40-50 mol% of Fe 2 O 3 , NiO 10 a -18mol%, ZnO 30-38mol%, CuO 0-10mol%, the secondary component V 2 O 5 0-1wt%, Mo 2 O 3 0-0.5wt%. The invention has an initial permeability of more than 2500, a specific loss factor of less than 20 * 10 -6 (100KHz), a specific temperature coefficient of less than 4 * 10 -6 / ℃ (25-65 ℃), and a Curie temperature of more than 100 ℃. It is said that high permeability nickel zinc ferrite materials can be produced.

하지만 상술한 종래기술로 제조한 페라이트 재료의 종합성능은 진정하게 전자설비를 소형화, 이동화, 집성화, 다기능화 방향으로 발전하도록 추진시킬 수 없다.However, the overall performance of the above-described ferrite materials manufactured in the prior art cannot truly propel electronic equipment to develop in miniaturization, mobility, aggregation, and multifunctionalization.

종래기술의 상술한 결점을 극복하기 위하여 본 발명의 목적은 일종의 니켈 동 아연 페라이트 및 그 제조방법을 제공하는 것이며 이 니켈 동 아연 페라이트는 아래와 같은 우수한 종합성능을 구비하여야 한다. 더욱 높은 퀴리온도를 가지고 있으며 비교적 광범한 온도범위하에서 비교적 높은 초투자율, 높은 포화자속밀도, 비교적 낮은 손실을 구비함으로 하여 진정하게 전자설비를 소형화, 이동화, 집성화, 다기능화 방향으로 발전하도록 추진시키는 것이다.SUMMARY OF THE INVENTION In order to overcome the above-mentioned drawbacks of the prior art, an object of the present invention is to provide a kind of nickel copper zinc ferrite and a method of manufacturing the same, and the nickel copper zinc ferrite should have excellent comprehensive performance as follows. It has higher Curie temperature and has relatively high super-permeability, high saturation flux density, and relatively low loss over a relatively wide temperature range, so that the electronic equipment can be truly developed in the direction of miniaturization, mobility, aggregation, and multifunction. It is to let.

그리하여 본 발명의 기술적 해결방안의 하나는 바로 일종의 니켈 동 아연 페라이트이며 이 페라이트는 주성분과 부성분을 포함한다. 주성분은 각각 산화철, 일산화니켈, 산화아연, 산화동이며 서술한 주성분을 각자의 표준물로 계산하면 그 함량은 Fe2O3: 48mol%-50mol%, NiO: 13mol%-16mol%, ZnO: 29mol%-31.5mol%, CuO: 4.5mol%-6.5mol% 이다. 서술한 부성분은 산화바나듐, 산화몰리브덴, 산화티타늄을 포함하며 서술한 부성분을 각자의 표준물 V2O5、MoO3、TiO2로 계산하면 총함량은 0.01wt%-0.08wt% 이다.Thus, one of the technical solutions of the present invention is a kind of nickel copper zinc ferrite, which contains a main component and a subcomponent. The main components are iron oxide, nickel monoxide, zinc oxide, and copper oxide, respectively. The main components described above are calculated by their standard, and the content is Fe 2 O 3 : 48mol% -50mol%, NiO: 13mol% -16mol%, ZnO: 29mol% -31.5 mol%, CuO: 4.5 mol%-6.5 mol%. The subcomponents described above include vanadium oxide, molybdenum oxide, and titanium oxide. The subcomponents described above are 0.01wt% -0.08wt% based on the respective standards V 2 O 5 , MoO 3 , TiO 2 .

실험이 증명한바 본 발명은 합리적인 성분 배합비율과 최적화한 잡질의 복합적인 혼합에 적당한 공예(예를 들면 제분 샌딩의 평균사이즈 제어, 소결 곡선과 보온 온도의 제어 등)를 사용하여 결정립의 크기가 균일하고 이상적인 결정립이 없으 며 미관적인 구조가 우량한 니켈 동 아연 페라이트를 제조하였으며 이 니켈 동 아연 페라이트 자심은 비교적 높은 퀴리온도와 비교적 광범한 작업 온도범위를 가지고 있음과 동시에 투자율과 포화자속밀도가 대폭 제고되었으며 공률손실이 비교적 낮다. 구체적으로 말하면 본 발명은 퀴리온도가 160℃ 보다 높은 자심을 제조하였으며 게다가 그 초투자율은: 1200±20%(100KHz, 0.1V, 25℃±3℃)로 대폭 제고되었으며 또한 50KHz, 150mT, 20℃-140℃ 온도구역내에서 공률손실 최소치가 250kW/m3 이하이며 H=1600A/m, 25℃±3℃ 에서 포화자속밀도는 360mT 이상이다. 본 발명의 자심 종합성능이 우수하며 초투자율, 포화자속밀도, 공률손실, 저항율 등 성능이 모두 각종 전자설비의 발전수요를 만족시킬 수 있다. 본 발명 자심의 퀴리온도가 비교적 높기 때문에 가령 소형화, 이동화, 집성화, 다기능화 전자설비 중에서 작업과 환경의 온도로 인하여 자심의 발열이 80-100℃ 심지어 더욱 높을지라도 여전히 본 발명 자심의 퀴리온도보다 훨씬 낮으므로 본 발명 자심의 기타 성능에 영향을 미치지 않는다. 그리하여 본 발명 자심은 실제적으로 소형화, 이동화, 집성화, 다기능화의 전자설비에 채용될 수 있으므로 전자설비의 소형화, 이동화, 집성화, 다기능화를 대대적으로 추진시킬 수 있다. Experiments have demonstrated that the present invention is uniform in size of grains using a suitable formulation (e.g., average size control of milling sanding, control of sintering curve and warming temperature, etc.) suitable for complex mixing of rational ingredients and optimized miscellaneous materials. Nickel copper zinc ferrite was manufactured with no ideal crystal grains and excellent aesthetic structure. The nickel copper zinc ferrite magnetic core has a relatively high Curie temperature and a relatively wide working temperature range, and greatly improved permeability and saturation magnetic flux density. Power loss is relatively low. Specifically, the present invention produced a magnetic core with a Curie temperature higher than 160 ° C., and its initial permeability was greatly improved to 1200 ± 20% (100KHz, 0.1V, 25 ° C. ± 3 ° C.), and also 50KHz, 150 mT, 20 ° C. porosity loss minimum value in the temperature zone -140 ℃ is 250kW / m 3 or less and the saturation magnetic flux density at H = 1600A / m, 25 ℃ ± 3 ℃ not less than 360mT. The magnetic core comprehensive performance of the present invention is excellent, and the performance such as ultra-permeability, saturation magnetic flux density, power loss, resistivity, etc. can all satisfy the power generation demand of various electronic equipment. Since the Curie temperature of the magnetic core of the present invention is relatively high, for example, the Curie temperature of the magnetic core of the present invention is still high even though the heat generation of the magnetic core is 80-100 ° C. even higher due to the temperature of the work and the environment among the miniaturized, mobile, integrated, and multifunctionalized electronic equipment. Much lower and does not affect the other performance of the present invention. Thus, the magnetic core of the present invention can be substantially employed in electronic equipment of miniaturization, mobileization, aggregation, and multifunctionalization, and can greatly promote miniaturization, mobility, aggregation, and multifunctionalization of electronic equipment.

실험은 부성분을 선택하고 부성분 함량을 한정한 기초상에서 본 발명 주성분에 대한 한정은 아래와 같다. Fe2O3: 만일 48mol% 보다 작으면 자심손실이 크며 50mol%를 초과하면 저항이 신속히 절감된다. NiO: 만일 13mol% 보다 작으면 투자율이 낮고 16mol%를 초과하면 원가가 높아지고 손실이 높아진다. ZnO: 만일 29mol% 보다 작으면 투자율이 낮고 31.5mol%를 초과하면 퀴리온도가 낮아진다. CuO: 만일 4.5mol% 보다 작으면 소결온도가 높아서 이상적인 결정립을 형성하게 되며 6.5mol%를 초과하면 퀴리온도가 낮아진다. 또한 만약 부성분이 너무 많으면 저온도하에서 스피넬상을 생성하기 쉬우며 기공을 형성하기도 쉬우며 결정립의 크기가 균일하지 않으며, 부성분이 너무 적으면 CuO을 결정핵으로 하여 Cu2 +은 전부 격자에 들어갈 수 없으며 이질적이다.The experiment is limited to the main component of the present invention on the basis of selecting the subcomponent and limiting the subcomponent content is as follows. Fe 2 O 3 : If less than 48 mol%, the magnetic core loss is large, and if it exceeds 50 mol%, the resistance is rapidly reduced. NiO: If it is less than 13 mol%, the permeability is low. If it exceeds 16 mol%, the cost is high and the loss is high. ZnO: If less than 29 mol%, the permeability is low and if it exceeds 31.5 mol%, the Curie temperature is lowered. CuO: If less than 4.5 mol%, the sintering temperature is high to form an ideal grain, and if it exceeds 6.5 mol%, the Curie temperature is lowered. In addition, if the sub-component is too high, said low temperature is easy also form pores is easy to produce the spinel phase under the size of the crystal grains not uniform, subcomponent a is too small in the CuO as nucleation Cu 2 + can enter the whole grid It is heterogeneous.

본 발명 니켈 동 아연 페라이트는 또한 진일보로 아래와 같은 구체적인 개진을 포함한다.The nickel copper zinc ferrite of the present invention also includes the following specific details.

서술한 부성분은 그 각자 표준물 V2O5, MoO3, TiO2으로 계산하면 함량은 각각 V2O5: 0.004wt%-0.03wt%, MoO3: 0.003wt%-0.02wt%, TiO2: 0.003wt%-0.03wt% 이다.The subcomponents described above are calculated by the standards V 2 O 5 , MoO 3 and TiO 2 , respectively, and the content is V 2 O 5 : 0.004wt% -0.03wt%, MoO 3 : 0.003wt% -0.02wt%, TiO 2 : 0.003wt% -0.03wt%.

서술한 부성분은 또한 산화망간, Bi2O3, Nb2O5 중의 한가지 혹은 한가지 이상을 포함한다.The subcomponents described also include one or more of manganese oxide, Bi 2 O 3 , Nb 2 O 5 .

서술한 산화망간은 탄산망간의 형식으로 첨가되며 서술한 주성분 총량에 상대하여 서술한 부성분의 첨가량은 각각 탄산망간: 0.01wt%-0.8wt%, Bi2O3: 0 wt%-0.02wt%, Nb2O5: 0 wt%-0.04wt% 이다.The manganese oxide described above is added in the form of manganese carbonate, and the added amount of the subcomponents relative to the total amount of the main components described above are manganese carbonate: 0.01wt% -0.8wt%, Bi 2 O 3 : 0wt% -0.02wt% , Nb 2 O 5 : 0 wt%-0.04wt%.

서술한 니켈 동 아연 페라이트의 퀴리온도Tc는 160℃ 보다 낮지 않으며 실온하에서 초투자율 μi는 1200±20% 이고 포화자속밀도Bs는 360mT 보다 낮지 않으며 저항율은 107 Ωm 보다 낮지 않다.The Curie temperature Tc of the nickel copper zinc ferrite described above is not lower than 160 ° C, the super-permeability μi is 1200 ± 20% at room temperature, the saturation magnetic flux density Bs is not lower than 360 mT and the resistivity is not lower than 10 7 Ωm.

상응하게 본 발명의 또 하나의 기술적 해결방안은 일종의 상술한 니켈 동 아연 페라이트의 제조방법이며 이 방법은 차례로 아래와 같은 단계를 포함한다.Correspondingly, another technical solution of the present invention is a method of producing nickel copper zinc ferrite as described above, which method in turn includes the following steps.

A. 4가지 주성분 Fe2O3, NiO, ZnO, CuO 입자를 혼합한 다음 1차 샌딩하여 주성분 가루를 제조한다.A. Four main components Fe 2 O 3 , NiO, ZnO, CuO particles are mixed and then first sanded to prepare a main powder.

B. 서술한 주성분 가루를 건조, 프리파이어링 후 물, 분산제와 부성분을 첨가한 다음 함께 2차 샌딩을 진행하며 2차 샌딩과정 중에 접착제와 소포제를 첨가하며 입자의 평균 직경φ가 0.6μm-1.2μm인 혼합가루를 제조한다.B. After drying and pre-firing the above-mentioned main ingredient powder, add water, dispersant and subcomponents, and then carry out the second sanding together. Prepare μm of mixed flour.

C. 혼합가루를 건조시키고 압제성형하여 블랭크를 제조하며 블랭크를 공기가마 중에 넣고 1030℃-1110℃ 온도하에서 2시간-6시간 온도를 유지하면서 소결한 다음 냉각시켜 니켈 동 아연 페라이트 제품을 제조한다.C. The mixed powder is dried and pressed to make a blank. The blank is placed in an air kiln and sintered at a temperature of 1030 ° C.-1110 ° C. for 2 hours to 6 hours, followed by cooling to prepare a nickel copper zinc ferrite product.

실험을 거쳐 증명한바 본 발명 제조방법으로 제조한 니켈 동 아연 페라이트 가루는 우수한 성형성능을 가지며 소결제품은 예기한 기술적 지표에 도달할 수 있다.Experimental proved that the nickel copper zinc ferrite powder produced by the production method of the present invention has excellent molding performance and sintered products can reach the expected technical indicators.

본 발명의 제조방법은 또한 진일보로 이하의 구체적인 개진을 포함한다.The production method of the present invention further includes the following specific details.

서술한 단계B 중에서 서술한 건조과정은 분무방법을 채용하며 서술한 프리파이어링 온도는 830℃-910℃ 이다.The drying process described in step B described above employs a spraying method and the prefiring temperature described is 830 ° C-910 ° C.

서술한 단계C 중에서 서술한 압제성형하여 제조한 블랭크 밀도는 3.20±0.20g/cm3이다.The blank density produced by the press molding as described in step C described above is 3.20 ± 0.20 g / cm 3 .

서술한 제조방법은 서술한 주성분 가루중에 탄산망간을 첨가하는 것을 포함하며 탄산망간의 첨가는 서술한 단계 A, B중의 샌딩 전 혹은 샌딩과정 중에 진행한다.The production method described above includes adding manganese carbonate to the above described main ingredient powder, and the addition of manganese proceeds before sanding or during the sanding process in steps A and B described above.

서술한 탄산망간의 제1차 첨가량은 제2차 첨가량의 2-3배이며 서술한 단계A중에서 서술한 주성분 가루의 입자 평균직경을 1.00μm±0.20μm로 제어한다.The primary addition amount of manganese carbonate described is 2-3 times the secondary addition amount, and the particle average diameter of the main component powder described in step A described above is controlled to 1.00 μm ± 0.20 μm.

본 발명의 니켈 동 아연 페라이트는 더욱 높은 퀴리온도를 가지고 있으며 비교적 광범한 온도범위에서 초투자율이 비교적 높고 포화자속밀도가 높으며 손실이 비교적 낮으므로 전자설비를 소형화, 이동화, 집성화, 다기능화 방향에로 발전시키는 종합성능 요구를 더욱 잘 만족시킬 수 있다.Nickel copper zinc ferrite of the present invention has a higher Curie temperature, relatively high initial permeability, high saturation magnetic flux density, and low loss in a relatively wide temperature range, thus miniaturizing, mobilizing, converging, and multifunctional electronic equipment. It can better meet the demands of comprehensive performance.

아래 구체적인 실시예로 본 발명에 대해 진일보 설명한다.Hereinafter, the present invention will be described in further detail with reference to specific examples.

실시예1 Example 1

49.5mol%의 Fe2O3, 14.3mol%의 NiO, 30.2mol%의 ZnO, 6.0mol%의 CuO을 취한다. 상술한 원료를 혼합한 후 함께 샌딩기에 넣고 교반을 진행하되 입자의 평균직경을 1.00μm±0.20μm로 제어하며 1차 분무 후 880℃±10℃ 온도하에서 전열식 회전가마에 넣고 프리파이어링을 진행한다. 그다음 프리파이어링한 재료를 샌딩기에 넣고 2차 샌딩을 진행하며 샌딩과정 중에 물, 분산제, 소포제를 첨가하며 또 첨가제도 첨가하되 서술한 주성분 총량에 상대하여 서술한 첨가제중의 각 물질의 중량 비 함량은 각각 V2O5 0.01wt%, MoO3 0.01wt%, TiO2 0.02wt% 이며 샌딩시 입자의 평균직경 φ를 1.00μm±0.10μm로 제어한다. 나중에 2차 분무를 진행하여 니켈 동 아연 페라이트 입자가루를 제조한다.49.5 mol% Fe 2 O 3 , 14.3 mol% NiO, 30.2 mol% ZnO, 6.0 mol% CuO. After mixing the above-mentioned raw materials, put them together in a sanding machine and proceed with stirring, while controlling the average diameter of the particles to 1.00μm ± 0.20μm, and after preliminary spraying, put them in an electrothermal rotary kiln at 880 ℃ ± 10 ℃ and proceed with prefiring. do. Then, the prefired material is placed in a sanding machine and subjected to the second sanding. During the sanding process, water, a dispersant, and an antifoaming agent are added, and an additive is added, but the weight ratio of each substance in the additives described in relation to the total amount of the main components described. Are 0.01 wt% of V 2 O 5, 0.01 wt% of MoO 3 , and 0.02 wt% of TiO 2 , respectively, and control the average diameter φ of the particles during sanding to 1.00 μm ± 0.10 μm. Afterwards, secondary spraying is performed to prepare nickel copper zinc ferrite powder.

이 입자가루를 취하여 φ25mm×φ15mm×7.5mm의 고리형 자심으로 성형압제하며 성형밀도는 3.20±0.20g/cm3이며 공기가마 중에서 1050℃±10℃ 온도하에서 4시간-5시간 소결을 진행한 다음 냉각한다.Take this powder and pressurize it with annular magnetic core of φ25mm × φ15mm × 7.5mm. Molding density is 3.20 ± 0.20g / cm 3 and sintering at 1050 ℃ ± 10 ℃ in air kiln for 4 hours-5 hours. Cool.

상술한 과정을 거쳐 제조한 자심을 미국 2330 공률계, HP4284 인던턴스측정기, 항온박스 등 의기로 자심의 유관 성능을 측정한 결과는 표1과 같다.Magnetic cores manufactured through the above-described process were measured using a magnetic core such as a US 2330 power meter, an HP4284 inductance meter, a constant temperature box, and the like.

실시예2Example 2

성분 배합비율과 공예절차는 실시예1과 기본상 같으며 부성분은 또 MnCO3: 0.60wt%를 포함하며 두 번 첨가하되 1차 샌딩시에 0.45wt%를 첨가하고 2차 샌딩시에 또 0.15wt%를 첨가한다.The compounding ratio and the crafting procedure are the same as those of Example 1, and the sub-components also contain MnCO 3 : 0.60wt% and add twice, 0.45wt% in the first sanding and 0.15wt in the second sanding Add%

실시예3Example 3

49.0mol%의 Fe2O3, 14.6mol%의 NiO, 30.4mol%의 ZnO, 5.6mol%의 CuO을 취한다. 상술한 원료를 혼합한 후 함께 샌딩기에 넣고 교반을 진행하되 입자의 평균직경을 1.00μm±0.20μm로 제어하며 1차 분무 후 890℃±10℃ 온도하에서 전열식 회전가마에 넣고 프리파이어링을 진행한다. 그 다음 프리파이어링한 재료를 샌딩기에 넣고 2차 샌딩을 진행하며 샌딩과정 중에 물, 분산제, 소포제를 첨가하며 또 첨가제도 첨가하되 서술한 주성분 총량에 상대하여 서술한 첨가제중의 각 물질의 중량 비 함량은 각각V2O5 0.02wt%, MoO3 0.018wt%, TiO2 0.01wt%,Bi2O3 0.02%이며 샌딩시 입자의 평균직경 φ를 0.95μm±0.1μm로 제어한다. 나중에 2차 분무를 진행하여 니켈 동 아연 페라이트 입자가루를 제조한다.49.0 mol% Fe 2 O 3 , 14.6 mol% NiO, 30.4 mol% ZnO, 5.6 mol% CuO. After mixing the above-mentioned raw materials, put them together in a sanding machine and proceed with stirring, while controlling the average diameter of the particles to 1.00μm ± 0.20μm, and after preliminary spraying, put them in an electrothermal rotary kiln at 890 ℃ ± 10 ℃ and proceed with prefiring. do. Then, the prefired material is placed in a sanding machine and subjected to the second sanding. During the sanding process, water, a dispersant, an antifoaming agent is added, and an additive is added, but the weight ratio of each substance in the additives described in relation to the total amount of the main components described. The contents are 0.02 wt% of V 2 O 5 , 0.018 wt% of MoO 3 , 0.01 wt% of TiO 2 , and 0.02% of Bi 2 O 3. The average diameter of the particles during sanding is controlled to 0.95 μm ± 0.1 μm. Afterwards, secondary spraying is performed to prepare nickel copper zinc ferrite powder.

이 입자가루를 취하여 φ25mm×φ15mm×7.5mm의 고리형 자심으로 성형압제하며 성형밀도는 3.20±0.20g/cm3이며 1080℃±10℃ 온도하에 공기가마중에서 3시간-4시간 소결을 진행한 다음 냉각한다.Take this powder and pressurize it with a ring-shaped magnetic core of φ25mm × φ15mm × 7.5mm. Molding density is 3.20 ± 0.20g / cm 3 and sintering in air kiln at 1080 ℃ ± 10 ℃ for 3-4 hours. Cool.

실시예4Example 4

성분 배합비율과 공예절차는 실시예3과 기본상 같으며 부성분은 또 MnCO3 0.40wt%를 포함하며 두 번 첨가하되 1차 샌딩시에 0.28wt%를 첨가하고 2차 샌딩시에 또 0.12wt%를 첨가한다. 동시에 2차 샌딩시에 실시예3의 기초상에서 또 Nb2O5 0.013wt%를 첨가한다.The compounding ratio and the crafting procedure are the same as in Example 3, and the sub-components also contain 0.40 wt% of MnCO 3 and are added twice, adding 0.28 wt% for the first sanding and 0.12 wt% for the second sanding. Add. At the same time, 0.013 wt% of Nb 2 O 5 is added on the basis of Example 3 during the second sanding.

실시예5Example 5

48.8mol%의 Fe2O3, 15.1mol%의 NiO, 30.7mol%의 ZnO, 5.4mol%의 CuO을 취한다. 상술한 원료를 혼합한 후 함께 샌딩기에 넣고 교반을 진행하되 입자의 평균직경을 1.00μm±0.20μm로 제어하며 1차 분무 후 860℃±10℃ 온도하에서 전열식 회전가마에 넣고 프리파이어링을 진행한다. 그 다음 프리파이어링한 재료를 샌딩기에 넣고 2차 샌딩을 진행하며 샌딩과정 중에 물, 분산제, 소포제를 첨가하며 또 첨가제도 첨가하되 서술한 주성분 총량에 상대하여 서술한 첨가제중의 각 물질의 중량 비 함량은 각각 V2O5 0.015wt%, MoO3 0.01wt%, TiO2 0.01wt%,Nb2O5 0.02 wt% 이며 샌딩시 입자의 평균직경 φ를 0.90μm±0.10μm로 제어한다. 나중에 2차 분무를 진행하여 니켈 동 아연 페라이트 입자가루를 제조한다.Take 48.8 mol% Fe 2 O 3 , 15.1 mol% NiO, 30.7 mol% ZnO, 5.4 mol% CuO. After mixing the above-mentioned raw materials, put them together in a sanding machine and proceed with stirring, while controlling the average diameter of the particles to 1.00μm ± 0.20μm, and after preliminary spraying, put them in an electrothermal rotary kiln at 860 ℃ ± 10 ℃ and proceed with prefiring. do. Then, the prefired material is placed in a sanding machine and subjected to the second sanding. During the sanding process, water, a dispersant, an antifoaming agent is added, and an additive is added, but the weight ratio of each substance in the additives described in relation to the total amount of the main components described. The content is 0.015wt% of V 2 O 5 , 0.01wt% of MoO 3, 0.01wt% of TiO 2 , 0.02 wt% of Nb 2 O 5 and the average diameter of the particles during sanding is controlled to 0.90μm ± 0.10μm. Afterwards, secondary spraying is performed to prepare nickel copper zinc ferrite powder.

이 입자가루를 취하여 φ25mm×φ15mm×7.5mm의 고리형 자심으로 성형압제하며 성형밀도는 3.20±0.20g/cm3이며 1080℃±10℃ 온도하에 공기가마중에서 3시간-4시간 소결을 진행한 다음 냉각한다.Take this powder and pressurize it with a ring-shaped magnetic core of φ25mm × φ15mm × 7.5mm. Molding density is 3.20 ± 0.20g / cm 3 and sintering in air kiln at 1080 ℃ ± 10 ℃ for 3-4 hours. Cool.

상술한 과정을 거쳐 제조한 자심을 미국 2330 공률계, HP4284 인던턴스측정기, 항온박스 등 의기로 자심의 유관 성능을 측정한 결과는 표1과 같다.Magnetic cores manufactured through the above-described process were measured using a magnetic core such as a US 2330 power meter, an HP4284 inductance meter, a constant temperature box, and the like.

본 발명 고리형 자심재료 성능The present invention annular magnetic core material performance 항목Item 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 초투자율 μi (100kHz,0.1V,10Ts)Ultra Permeability μi (100kHz, 0.1V, 10Ts) 25℃25 ℃ 12501250 13501350 12001200 11801180 12051205 포화자속밀도Bs(mT)H=1600A/m)Saturated Magnetic Flux Density Bs (mT) H = 1600A / m 25℃25 ℃ 367367 373373 370370 369369 375375 공률손실 Pv(kW/m3)(100kHz,200mT)Power Loss Pv (kW / m 3 ) (100kHz, 200mT) 25℃25 ℃ 300300 290290 310310 320320 328328 100℃100 ℃ 240240 230230 240240 250250 256256 120℃120 ℃ 260260 250250 270270 280280 275275 퀴리온도Tc(℃)Curie temperature Tc (℃) 165165 165165 162162 162162 163163 저항율(Ωm)Resistivity (Ωm) 2×10 7 2 × 10 7 1.8×10 7 1.8 × 10 7 2×10 7 2 × 10 7 1.8×10 7 1.8 × 10 7 1.9×10 7 1.9 × 10 7 특정손실인자tanθ/μi (100kHz,0.1V,10Ts ,25℃)Specific loss factor tanθ / μi (100kHz, 0.1V, 10Ts, 25 ℃) 12×10 -6 12 x 10 -6 14×10 -6 14 x 10 -6 10×10 -6 10 x 10 -6 8×10 -6 8 x 10 -6 7×10 -6 7 × 10-6

표1에서 표시한바 본 발명의 니켈 동 아연 페라이트는 아주 높은 퀴리온도와 더욱 광범한 작업온도범위에서 초투자율 μi, 포화자속밀도 Bs가 대폭 제고되었으며 25℃-120℃ 온도범위내에서 공률손실 최소치는 250kW/m3 이하이다. 이 자심으로 제조한 주파수 변환기는 많은 액정 백라이트를 진일보 소형화, 이동화, 집성화, 다기능화 하는 종합성능의 요구를 만족시킬 수 있다.As shown in Table 1, the nickel copper zinc ferrite of the present invention has significantly improved the initial permeability μi and the saturation magnetic flux density Bs at a very high Curie temperature and a wider working temperature range, and has a minimum porosity loss within the temperature range of 25 ° C to 120 ° C. 250 kW / m 3 or less. This self-contained frequency converter can meet the needs of comprehensive performance for further miniaturizing, mobilizing, integrating, and multifunctionalizing many liquid crystal backlights.

Claims (10)

일종의 니켈 동 아연 페라이트에 관한 것이며, It is about a kind of nickel copper zinc ferrite, 상기 페라이트는 주성분과 부성분을 포함하며 주성분은 각각 산화철, 일산화니켈, 산화아연, 산화동이며 그 특징은 서술한 주성분을 각자 표준물로 계산하면 그 함량은 Fe2O3: 48mol%-50mol%, NiO: 13mol%-16mol%, ZnO: 29mol%-31.5mol%, CuO: 4.5mol%-6.5mol% 이며 서술한 부성분은 산화바나듐, 산화몰리브덴, 산화티타늄을 포함하며 서술한 주성분 총량에 상대하여 서술한 부성분을 각자 표준물 V2O5, MoO3, TiO2로 계산하면 총함량은 0.01wt%-0.08wt% 인 것을 특징으로 하는 니켈 동 아연 페라이트.The ferrite includes a main component and a subcomponent, and the main components are iron oxide, nickel monoxide, zinc oxide, and copper oxide, respectively. The characteristics of the ferrite are calculated by using the standard components of Fe 2 O 3 : 48mol% -50mol%, NiO : 13 mol%-16 mol%, ZnO: 29 mol%-31.5 mol%, CuO: 4.5 mol%-6.5 mol% The subcomponents mentioned include vanadium oxide, molybdenum oxide, and titanium oxide, and are described with respect to the total amount of the principal component described. Nickel copper zinc ferrite, characterized in that the total content is 0.01wt% -0.08wt% when the subcomponents are calculated by the standard V 2 O 5 , MoO 3 , TiO 2 . 청구항1에서,In claim 1, 상기 부성분을 각자 표준물 V2O5, MoO3, TiO2로 계산하면 그 함량은 각각 V2O5: 0.004wt%-0.03wt%, MoO3: 0.003wt%-0.02wt%, TiO2: 0.003wt%-0.03wt% 인 것을 특징으로 하는 니켈 동 아연 페라이트.The subcomponents were calculated as the standards V 2 O 5 , MoO 3 and TiO 2 , respectively, and the contents thereof were V 2 O 5 : 0.004 wt% -0.03 wt%, MoO 3 : 0.003 wt%-0.02 wt%, and TiO 2 : Nickel copper zinc ferrite, characterized in that 0.003wt% -0.03wt%. 청구항1 또는 청구항2에서, In claim 1 or 2, 상기 부성분은 또한 산화망간, Bi2O3, Nb2O5 중의 한가지 혹은 한가지 이상을 포함하는 것을 특징으로 하는 니켈 동 아연 페라이트.The copper sub-component nickel nickel zinc ferrite, characterized in that it further comprises one or more of manganese oxide, Bi 2 O 3 , Nb 2 O 5 . 청구항3에서, In claim 3, 상기 산화망간은 탄산망산의 형식으로 첨가되며 서술한 주성분 총량에 상대하여 서술한 부성분의 첨가량은 각각 탄산망간: 0.01wt%-0.8wt%, Bi2O3: 0 wt%-0.02wt%, Nb2O5: 0 wt%-0.04wt% 인 것을 특징으로 하는 니켈 동 아연 페라이트.The manganese oxide is added in the form of manganese carbonate, and the added amount of the sub-component described relative to the total amount of the main component described above is manganese carbonate: 0.01wt% -0.8wt%, Bi 2 O 3 : 0wt% -0.02wt%, Nb 2 O 5 : Nickel copper zinc ferrite, which is 0 wt% -0.04wt%. 청구항1에서, In claim 1, 상기 니켈 동 아연 페라이트의 퀴리온도Tc는 160℃ 보다 낮지 않으며 실온하에서 초투자율 μi 는 1200±20% 이고 포화자속밀도 Bs는 360mT 보다 낮지 않으며 저항율은 107Ωm 보다 낮지 않은 것을 특징으로 하는 니켈 동 아연 페라이트.The Curie temperature Tc of the nickel copper zinc ferrite is not lower than 160 ° C., at room temperature, the initial permeability μi is 1200 ± 20%, the saturation magnetic flux density Bs is not lower than 360 mT, and the resistivity is not lower than 10 7 Ωm. ferrite. 일종의 청구항 1-5중에서 서술한 니켈 동 아연 페라이트의 제조방법에 관한 것이며 이는 순서에 따라 이하 단계를 포함한다.It relates to a method for producing nickel copper zinc ferrite described in claim 1-5, which includes the following steps in order. A. 4가지 주성분 Fe2O3, NiO, ZnO, CuO 입자를 혼합한 다음 1차 샌딩하여 주성분 가루를 제조한다.A. Four main components Fe 2 O 3 , NiO, ZnO, CuO particles are mixed and then first sanded to prepare a main powder. B. 서술한 주성분 가루를 건조, 프리파이어링 후 물, 분산제와 부성분을 첨가한 다음 함께 2차 샌딩을 진행하며 2차 샌딩과정중에 접착제와 소포제를 첨가하며 입자의 평균직경 φ가 0.60μm-1.20μm인 혼합가루를 제조한다.B. After drying and prefiring the above-mentioned main ingredient powder, add water, dispersant and subsidiary ingredients, and then carry out the second sanding together, add the adhesive and the antifoaming agent during the second sanding process, and the average diameter of the particles is 0.60μm-1.20. Prepare μm of mixed flour. C. 혼합가루를 건조시키고 압제성형하여 블랭크를 제조하며 블랭크를 공기가마중에 넣고 1030℃-1110℃ 온도하에서 2시간 - 6시간 온도를 유지하면서 소결한 다음 냉각시켜 니켈 동 아연 페라이트 제품을 제조한다.C. The mixed powder is dried and pressed to make a blank. The blank is placed in an air kiln and sintered at a temperature of 1030 ° C.-1110 ° C. for 2 hours to 6 hours, followed by cooling to prepare a nickel copper zinc ferrite product. . 청구항6에서, In claim 6, 서술한 니켈 동 아연 페라이트의 제조방법에 있어서 그 특징은 서술한 단계B 중에서 서술한 건조과정은 분무방법을 채용하였으며 서술한 프리파이어링 온도는 830℃-910℃ 인 것을 특징으로 하는 니켈 동 아연 페라이트의 제조방법.In the method for producing nickel copper zinc ferrite described above, the drying process described in step B described above employs a spraying method, and the prefiring temperature described is 830 ° C-910 ° C. Manufacturing method. 청구항6에서, In claim 6, 상기 단계C 중에서 서술한 압제성형하여 제조한 블랭크 밀도는 3.20±0.20g/cm3 인 것을 특징으로 하는 니켈 동 아연 페라이트의 제조방법.The blank density produced by the pressing molding described in the step C is 3.20 ± 0.20 g / cm 3 The production method of nickel copper zinc ferrite. 청구항6에서, In claim 6, 상기 주성분 가루 중에 탄산망간을 첨가하는 것을 포함하며 또한 탄산망간의 첨가는 각각 서술한 단계 A, B 중의 샌딩 전 혹은 샌딩과정 중에 진행하는 것을 특징으로 하는 니켈 동 아연 페라이트의 제조방법.And adding manganese carbonate to the main ingredient powder, wherein the addition of manganese carbonate is carried out before sanding or during sanding in steps A and B, respectively. 청구항9에서, In claim 9, 상기 탄산망간의 제1차 첨가량은 제2차 첨가량의 2-3배이며 서술한 단계A 중에서 서술한 주성분 가루의 입자 평균직경을 1.00μm±0.20μm로 제어하는 것을 특징으로 하는 니켈 동 아연 페라이트의 제조방법.The primary addition amount of the manganese carbonate is 2-3 times the secondary addition amount, the nickel copper zinc ferrite, characterized in that to control the particle average diameter of the main component powder described in step A described above to 1.00μm ± 0.20μm Manufacturing method.
KR1020080052891A 2007-12-11 2008-06-05 A NiCuZn ferrite and its manufacturing methods thereof KR101016501B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007101249628A CN101236819B (en) 2007-12-11 2007-12-11 A nickel-copper-zinc ferrite and its making method
CN200710124962.8 2007-12-11

Publications (2)

Publication Number Publication Date
KR20090061555A true KR20090061555A (en) 2009-06-16
KR101016501B1 KR101016501B1 (en) 2011-02-24

Family

ID=39920359

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080052891A KR101016501B1 (en) 2007-12-11 2008-06-05 A NiCuZn ferrite and its manufacturing methods thereof

Country Status (3)

Country Link
KR (1) KR101016501B1 (en)
CN (1) CN101236819B (en)
HK (1) HK1122135A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302782A (en) * 2020-03-27 2020-06-19 北京捷安通达科贸有限公司 Physical signal isolation and protection device for motor-driven field electronic equipment
CN116477934A (en) * 2023-05-16 2023-07-25 苏美尔磁性电子(惠州)有限公司 Preparation process of nickel-zinc ferrite core

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101996742B (en) * 2009-08-20 2012-08-22 上海康顺磁性元件厂有限公司 Surface-mounted transformer magnetic core for liquid crystal display
CN101996741B (en) * 2009-08-20 2012-07-25 上海康顺磁性元件厂有限公司 Transformer CI magnetic core for multi-specification liquid crystal display
CN102262950A (en) * 2010-05-31 2011-11-30 比亚迪股份有限公司 Soft nickel-zinc-copper magnetic ferrite and preparation method thereof
JP5898313B2 (en) * 2012-06-26 2016-04-06 京セラ株式会社 Ferrite sintered body, ferrite core and coil component
CN104529423B (en) * 2014-12-23 2016-07-20 天通控股股份有限公司 A kind of low temperature factor resistance to stress nickel-zinc ferrite and preparation method thereof
CN104803667A (en) * 2015-04-22 2015-07-29 深圳振华富电子有限公司 Predicting method for sintering schedule of Ni-Cu-Zn ferrite
CN104891976A (en) * 2015-04-24 2015-09-09 马鞍山科信咨询有限公司 Low-loss nickel-zinc ferrite material and preparation method
CN105016720A (en) * 2015-07-16 2015-11-04 中山市东晨磁性电子制品有限公司 Nickel-zinc magnetic material formula applicable in wide frequency range
CN106348744A (en) * 2016-08-25 2017-01-25 天长市中德电子有限公司 Soft magnetic ferrite material with high initial permeability and preparation method thereof
CN109234678B (en) * 2018-08-01 2020-08-25 浙江大学 Copper-doped barium titanate/nickel zinc ferrite multiphase film material and preparation method thereof
CN109912302B (en) * 2019-02-20 2021-11-16 三桥惠(佛山)新材料有限公司 High-performance NiZn ferrite material and preparation method thereof
CN110357610B (en) * 2019-07-26 2020-12-29 横店集团东磁股份有限公司 Nickel-zinc ferrite material, and preparation method and application thereof
CN113816734B (en) 2021-10-08 2023-02-17 横店集团东磁股份有限公司 NiCuZn ferrite material and preparation method and application thereof
CN114907106B (en) * 2022-03-30 2023-06-02 电子科技大学 Preparation method of high-mechanical-strength wide-temperature broadband MnZn power ferrite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684622A (en) * 1992-09-04 1994-03-25 Tokin Corp Radio wave absorber
JP2002141215A (en) * 2000-11-07 2002-05-17 Sumitomo Metal Ind Ltd Oxide magnetic material, its manufacturing method, and laminated chip inductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302782A (en) * 2020-03-27 2020-06-19 北京捷安通达科贸有限公司 Physical signal isolation and protection device for motor-driven field electronic equipment
CN111302782B (en) * 2020-03-27 2024-05-07 北京捷安通达科技有限公司 Physical signal isolation precaution device for motor-driven field electronic equipment
CN116477934A (en) * 2023-05-16 2023-07-25 苏美尔磁性电子(惠州)有限公司 Preparation process of nickel-zinc ferrite core

Also Published As

Publication number Publication date
CN101236819A (en) 2008-08-06
CN101236819B (en) 2010-08-11
HK1122135A1 (en) 2009-05-08
KR101016501B1 (en) 2011-02-24

Similar Documents

Publication Publication Date Title
KR101016501B1 (en) A NiCuZn ferrite and its manufacturing methods thereof
CN105565790B (en) YR950 wide-temperature high-direct-current superposition low-power-consumption manganese-zinc ferrite material and preparation method thereof
CN101807463B (en) MnZn ferrite material of high initial permeability and low loss and preparation method thereof
CN102603279B (en) High-strength high-Bs (saturation magnetic induction intensity) nickel-zinc ferrite and preparation method thereof
CN103058643B (en) Mn-Zn soft magnetic ferrite material with high, temperature, high superposition and low power consumption, and preparation method of Mn-Zn soft magnetic ferrite material
EP2707883B1 (en) Procedure for magnetic grain boundary engineered ferrite core materials
CN104891982A (en) Rare earth high-magnetic-permeability soft magnetic ferrite and preparation method thereof
CN112979301B (en) High-frequency high-temperature low-loss MnZn power ferrite material and preparation method thereof
CN103951411A (en) Wide-temperature-range low-power-consumption high-Curie-temperature manganese/zinc ferrite material and preparation method thereof
CN101575206A (en) High-frequency high-power Ni-Zn base magnetic ferrite material and manufacturing method thereof
CN100425570C (en) Mn-Zn ferrite with wide temperature range and high magnetic conductivity and its prepn process
CN112479699B (en) Low-loss nano ferrite magnetic material and preparation method thereof
CN102603280A (en) High-Q value nickel and zinc ferrite with initial permeability of 70 and preparation method thereof
JP2018517288A (en) Soft magnetic MnZn-based power ferrite
CN114105627B (en) Wide-temperature low-loss ferrite and preparation method thereof
CN102063989B (en) High-saturation magnetic flux, high-direct current superposition and low-loss soft magnetic material and preparation method thereof
CN108774056B (en) NiZn ferrite magnetic sheet and preparation method and application thereof
JP2002141215A (en) Oxide magnetic material, its manufacturing method, and laminated chip inductor
CN102290185A (en) Soft magnetic material with high saturation magnetic flux density, high transmission capability and high direct current superposition-resisting property and preparation method thereof
CN102311263A (en) Ferrite material with high frequency, low loss and high Bs for LED lighting and switch power transformer
CN110467450A (en) A kind of high frequency Mn-Zn soft magnetic ferrite and its preparation method and application
CN108711481B (en) MnZn ferrite magnetic sheet and preparation method and application thereof
JP2015117174A (en) Ferrite plate, member for antenna element and antenna element
JP2009215152A (en) Sintered ferrite material
JP4031886B2 (en) Method for producing Ni-Zn ferrite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee