KR20090052415A - 레이저 무기용 광집속장치 - Google Patents

레이저 무기용 광집속장치 Download PDF

Info

Publication number
KR20090052415A
KR20090052415A KR1020070118888A KR20070118888A KR20090052415A KR 20090052415 A KR20090052415 A KR 20090052415A KR 1020070118888 A KR1020070118888 A KR 1020070118888A KR 20070118888 A KR20070118888 A KR 20070118888A KR 20090052415 A KR20090052415 A KR 20090052415A
Authority
KR
South Korea
Prior art keywords
laser beam
laser
optical
telescope
alignment
Prior art date
Application number
KR1020070118888A
Other languages
English (en)
Inventor
김정주
이수상
박성언
엄해동
Original Assignee
두산디에스티주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산디에스티주식회사 filed Critical 두산디에스티주식회사
Priority to KR1020070118888A priority Critical patent/KR20090052415A/ko
Publication of KR20090052415A publication Critical patent/KR20090052415A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/005Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being a laser beam

Abstract

입사된 레이저빔(4)을 표적을 향해 지향하고 집속하기 위한 레이저 무기용 광집속장치(3)가 개시된다. 본 발명에 따른 레이저 무기용 광집속장치(3)는 상기 입사된 레이저빔(4)을 표적을 향해 집속시키는 망원경(10)과, 상기 레이저빔(4)이 항상 표적을 향하도록 망원경(10)을 소정의 회전축 중심으로 이동시키는 구동장치(20)와, 상기 레이저빔(4) 자체의 요동으로 인한 광경로 오차(자체 요동 오차)와, 광집속장치(3)의 구동과 외부 외란에 의한 광경로 오차(외적 요동 오차)를 보정하기 위한 빔정렬장치(30)와, 상기 빔정렬장치(30)에서 상기 망원경(10)까지 레이저빔(4)을 전달하고 상기 광집속장치(3)의 구동 중에도 레이저빔(4)의 광경로가 바뀌지 않도록 쿠데(Coude)식 광 경로를 제공하는 연결광학장치(50)를 포함하는 것을 특징으로 한다.
광집속장치, 레이저, 빔, 지향성, 무기

Description

레이저 무기용 광집속장치{BEAM DIRECTOR FOR LASER WEAPON SYSTEM}
본 발명은 지향성 에너지 무기에 관한 것으로서, 더 구체적으로는 여러 가지 탄도무기나 포탄 등의 위협적인 공격무기로부터 방어지역을 방어하기 위해 레이저빔을 표적에 지향하고 집속시켜서 공격용 무기를 무력화시키기 위한 광집속장치에 관한 것이다.
일반적으로 지향성 에너지 무기는 도 1에 도시된 것과 같이, 레이저 발생장치(1)와, 상기 레이저 발생장치(1)에서 나온 레이저빔(4)의 떨림을 안정화시키고 레이저빔(4)의 품질을 향상시키는 레이저 전송장치(2)와, 레이저빔(4)을 표적(5)으로 지향 및 집속시키는 광집속장치(3)로 구성된다.
이 중에서 본 발명과 관련된 부분인 광집속장치(3)는 기존의 운동성 무기인 탄, 포탄, 미사일 등을 사용하는 것과는 달리 레이저를 이용하므로, 레이저를 전달하고 표적(5)의 영상을 획득하기위한 광학부품이나 광학장치를 포함한다는 점에서 기존의 재래식 무기와의 기술적인 차이점이 있다.
한편, 광집속장치와 관련된 기술은 국내에서는 아직 적용이 된 바가 없으며 해외에서는 미국과 이스라엘이 공동으로 전술 고에너지 레이저(THEL: Tactical High Energy Laser) 무기체계를 2001년 개발하였다. 이 후 기동성과 소형화를 보완한 모델이 미국특허번호 제 6,785,315호에 개시되어있으며 이 문헌 중 추적조준장치(Pointer tracker)가 광집속장치에 해당한다.
상기 문헌에서의 추적조준장치(Pointer tracker)는 표적으로 지향하고 레이저빔을 확대 및 집속시키는 빔디렉터(beam director)와, 레이저의 시선(line of sight)과 빔디렉터의 조준선(bore sight)을 정렬하고 레이저빔 요동을 안정화시키는 빔 정렬 및 안정화 어셈블리(Beam Alignment & Stabilization Assembly)와, 움직이는 표적을 추적하는 표적 추적장치(Coarse and Fine Tracker)와, 상기 추적조준장치의 신호를 통제하는 제어장치(Director & Tracker Controller)로 구성된다.
이와 같은 광집속장치에서는 레이저빔을 표적에 안정적이고 효과적으로 집속을 시키는 것이 중요한 과제인 바, 레이저빔의 집속을 방해하는 원인은 크게 레이저빔 자체의 흔들림으로 인한 '자체 요동'과, 레이저빔이 표적까지 가는 경로 중에 광집속장치에 가해지는 외란에 의해 유발되는 '외적 요동'으로 크게 나눌 수 있다.
그러나, 종래의 광집속장치에서 사용되는 빔 정렬 및 안정화 어셈블리에서의 오차 보정은 단순히 레이저빔 집속 오차(결과)를 확인한 후, 레이저빔의 시선과 빔디렉터의 시선을 일치시키는 소위 대증(對症)적 보정을 하는데에 불과한 것으로서, 레이저빔의 집속 오차 원인(레이저빔 '자체 요동' 또는 외력에 의한 '외적 요동')을 고려하지 않은 것이었다.
본 발명은 이러한 종래의 문제점을 해소하기 위해 안출된 것으로서, 지향성 에너지 무기에 사용되는 광집속장치에 있어서 레이저빔의 집속 오차의 원인에 따라 그 오차를 효과적으로 보정함으로써 광집속장치의 광집속효율을 높이는 것을 기술적 과제로 한다.
상기의 과제를 해결하기 위해 본 발명에서는 레이저빔을 표적에 효과적으로 집속을 시키기 위해서 세 가지 방법을 적용하였다.
첫째, 주경(11)과 부경(12)의 반사면을 각각 포물면 형상과 쌍곡면 형상으로 제작하여 구면수차를 제거하였다.
둘째, 레이저 발생장치(1)로부터 발생된 레이저빔 자체의 흔들림(자체 요동 오차)을 빔정렬 광학장치(31)를 구성하여 제거하였다.
셋째, 레이저빔이 표적까지 가는 경로 중에 외란에 의해서 빔이 흔들리는 것(외적 요동 오차)을 광학정렬 광학장치(32)를 사용하여 제거하였다.
더 구체적으로 본 발명은 입사된 레이저빔(4)을 표적을 향해 지향하고 집속하기 위한 레이저 무기용 광집속장치(3)로서, 상기 입사된 레이저빔(4)을 표적을 향해 집속시키는 망원경(10)과, 상기 레이저빔(4)이 항상 표적(5)을 향하도록 망원경(10)을 소정의 회전축 중심으로 이동시키는 구동장치(20)와, 상기 레이저빔(4) 자체의 요동으로 인한 광경로 오차(자체 요동 오차)와, 광집속장치(3)의 구동과 외 부 외란에 의한 광경로 오차(외적 요동 오차)를 보정하기 위한 빔정렬장치(30)와, 상기 빔정렬장치(30)에서 상기 망원경(10)까지 레이저빔(4)을 전달하고 상기 광집속장치(3)의 구동 중에도 레이저빔(4)의 광경로가 바뀌지 않도록 쿠데(Coude)식 광 경로를 제공하는 연결광학장치(50)를 포함하는 것을 특징으로 한다.
또한, 상기 빔정렬장치(30)는, 상기 자체 요동 오차를 검출하기 위한 빔정렬 광학장치(31)와, 상기 외적 요동 오차를 검출하기 위한 광학정렬 광학장치(32)와, 표적의 영상을 검출하기 위한 조준 광학장치(33)를 포함하는 것이 바람직하다.
또한, 상기 빔정렬 광학장치(31)는, 입사된 레이저빔(4)의 일부를 상기 빔정렬 광학장치(31)로 투과시키는 빔샘플러(31-1)와, 상기 빔샘플러(31-1)로부터 입사된 레이저빔(4)으로부터 자체 요동 오차를 측정하기 위한 적외선 위치감지센서(IR-PSD)(31-2)와, 상기 적외선 위치감지센서(31-2)에 초점을 맺기 위한 적외선 투과용 렌즈(31-3)와, 상기 적외선 위치감지센서(31-2)에서 측정된 자체 요동 오차를 보상하기 위해 조종거울(13)에 제어 신호를 보내는 제어시스템을 포함하는 것이 바람직하다.
또한, 상기 광학정렬 광학장치(32)는, 정렬용 레이저빔을 방출하는 He-Ne 레이저 발생장치(32-1)와, 상기 정렬용 He-Ne 레이저 발생장치(32-1)으로부터 입사된 He-Ne 레이저를 링 형상으로 바꾸어주는 엑시콘 렌즈(32-2)와, 상기 정렬용 He-Ne 레이저 발생장치(32-1)로부터 입사된 후, 상기 망원경(10)의 환형 반사경(14)에서 반사된 다음 되돌아오는 He-Ne 레이저를 검출하여 외적 요동 오차를 측정하는 가시광선 위치센서(PSD; 32-3)와, 상기 가시광선 위치센서(32-3)에서 측정된 외적 요동 오차를 보상하기 위해 조종거울(13)에 제어 신호를 보내는 제어시스템을 더 포함하는 것이 바람직하다.
또한, 상기 빔정렬장치(30)의 정렬용 레이저빔은 상기 레이저빔(4)에 의해 형성되는 광경로를 함께 공유하도록 구성함으로써 장치의 구성을 간소화할 수 있다.
또한, 상기 조준 광학장치(33)는, 상기 망원경(10)을 통해서 입사된 표적의 영상을 검출하기 위한 상기 CCD 카메라(33-1)와, 상기 CCD 카메라로 표적 영상의 광 경로를 바꾸기 위한 상기 빔분할기(33-2)와, 상기 CCD 카메라에 초점을 맺기 위한 조준광학 렌즈(33-3)를 포함하는 것이 바람직하다.
또한, 상기 망원경(10)은, 레이저빔(4)을 표적으로 지향하고 집속하기 위한 주경(11)과, 상기 망원경(10)에 입사된 레이저빔(4)을 상기 주경(11)으로 전달하기 위한 부경(12)과, 상기 망원경(10)으로 입사된 레이저빔(4)을 상기 부경(12)으로 전달하고, 상기 빔정렬장치로(30)로부터 전달받은 신호에 따라 각도가 조종됨으로써 상기 자체 요동 오차 및 상기 외적 요동 오차를 제거하는 조종거울(13)을 포함하는 것이 바람직하다.
또한, 상기 망원경(10)은, 상기 주경(11) 및 부경(12) 사이의 거리를 조절할 수 있는 초점거리 조절 수단(16)을 더 포함하도록 구성될 수도 있다.
또한, 상기 주경(11)과 부경(12)의 반사면을 각각 포물면 형상과 쌍곡면 형상으로 제작하여 구면 수차를 최소화하도록 구성하는 것이 바람직하다.
또한, 상기 망원경(10)은, 상기 정렬용 레이저빔을 주경(11)으로 반사시키고 다시 되받아 빔정렬장치(30)로 되돌려 보내어주는 환형 반사경(14)을 더 포함하도록 구성될 수도 있다.
또한, 바람직한 실시예에 따르면, 상기 망원경(10)은, 상기 부경(12)을 상기 망원경(10)에 지지하는 베인(18)과, 상기 베인(18)에 상기 레이저빔(4)이 직접 닿지 않도록 하기 위한 베인 반사경(19)을 더 포함하는 것이 바람직하다.
또한, 상기 구동장치(20)는, 방위각 회전축(A1)을 중심으로 상기 망원경(10)을 방위각 방향으로 회전시키기 위한 방위각 구동부(20-1)와, 고저각 회전축(A2)을 중심으로 상기 망원경(10)을 고저각 방향으로 회전시키기 위한 고저각 구동부(20-2)와, 상기 방위각과 고저각의 위치와 속도를 제어하는 제어시스템을 더 포함하는 것이 바람직하다.
또한, 상기 연결광학장치(50)는, 상기 빔정렬 장치(30)로부터 유출된 레이저빔(4)을 받아들이는 제3 연결 거울(53)과, 상기 제3 연결 거울(53)으로부터 반사되어 받은 레이저빔(4)을 반사하여 광경로를 변경시키는 제2 연결 거울(52)과, 상기 제2 연결 거울(52)로부터 반사된 레이저빔(4)을 반사하여 상기 망원경(10)으로 상기 레이저빔(4)을 전달하기 위한 제1 연결 거울(51)을 포함하는 것이 바람직하다.
바람직한 실시예에 따르면, 상기 제1 연결거울(51)과 상기 망원경(10)을 연결하는 레이저빔(4)의 광경로는 상기 구동 장치(20)의 고저각 회전축(A2)과 일치하고, 상기 제3 연결거울(53)과 상기 빔정렬장치(30)를 연결하는 레이저빔(4)의 광경로는 상기 구동 장치(20)의 방위각 회전축(A1)과 일치하도록 구성함으로써 망원경(10)이 고저각 또는 방위각 방향으로 회전하더라도 광경로가 변하지 않도록 한다.
본 발명에 따른 레이저 무기용 광집속장치(3)에서는 레이저빔(4)의 집속 오차의 원인(레이저빔의 '자체 요동 오차' 및 외란으로 인한 '외적 요동 오차')에 따라 효과적으로 오차를 보정할 수 있는 빔정렬장치(30)를 마련함으로써 오차의 원인을 고려하지 않고 오차의 결과만을 보정하였던 종래의 광집속장치에 비하여 레이저빔의 집속능력이 향상되는 효과가 있다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대하여 구체적으로 설명한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
이하의 설명에서 '자체 요동 오차'는 레이저빔(4) 자체의 요동으로 인한 레이저빔의 광경로 오차를 의미하고, '외적 요동 오차'는 광집속장치의 구동 또는 외부 외란에 의한 광 경로 오차를 의미한다.
본 발명은 레이저 발생장치(1)에서 발생한 레이저빔(4)을 표적(5)으로 지향 및 집속시키는 레이저 무기용 광집속장치에 관한 것으로서, 도 2는 본 발명에 따른 레이저 무기용 광집속장치의 구성도이고, 도 3은 본 발명에 따른 레이저 무기용 광집속장치의 광계통도이다.
도 2 및 도 3에 도시된 것과 같이, 광집속장치는 망원경(10), 구동장치(20), 빔정렬장치(30), 연결광학장치(50)로 구성된다.
망원경(10)은 레이저빔(4)을 표적에 집속시키기 위한 것으로서, 주경(11), 부경(12), 조종거울(13), 환형 반사경(14)으로 구성되며, 바람직한 실시예에서는 베인 반사경(19, 도 8)을 더 포함할 수 있다.
주경(11)은 망원경(10)에 입사된 레이저빔(4)을 표적으로 지향하고 집속하기 위한 것이며, 부경(12)은 상기 망원경(10)에 입사된 레이저빔(4)을 반사하여 상기 주경(11)으로 전달하기 위한 구성이다. 여기서, 주경(11)과 부경(12)의 반사면은 각각 포물면 형상과 쌍곡면 형상으로 제작함으로써 구면수차를 제거하도록 구성되는 것이 바람직하다.
조종 거울(13)은 상기 망원경(10)으로 입사된 레이저빔(4)을 상기 부경(12)으로 전달하는 역할을 수행하며, 상기 빔정렬장치(30)로부터 전달받은 신호에 따라 각도가 조종됨으로써 상기 자체 요동 오차 및 상기 외적 요동 오차를 제거한다.
환형 반사경(14)은 He-Ne 레이저 발생장치(32-1)로부터 방출된 정렬용 레이저빔을 주경(11)으로 반사시킨다음 다시 되받아서 빔정렬장치(30)로 되돌려 보내는 역할을 수행한다.
베인 반사경(19)은 부경을 망원경에 지지하는 베인(18)에 레이저빔이 직접 닿지 않도록 하기 위한 반사경이다(도 8 참조).
구동장치(20)는 레이저빔(4)이 항상 표적을 향하도록 망원경(10)을 움직여주는 장치이다.
여기서, 공간에 있는 표적이 어느 방향으로 있더라도 망원경(10)을 표적에 지향 가능하도록 하기 위해서는 구동장치(20)는 2축 회전이 되어야 한다. 이를 위해 본 발명에 따른 구동장치(20)에서는 방위각 회전축(A1)과 고저각 회전축(A2)이 서로 직교하며 그 교차점이 조종거울(13)의 반사면 위에 위치한다. 이러한 구성에 의해 망원경(10)이 지표면 위의 어떤 방향이든지 지향을 할 수 있으며 망원경(10)의 위치가 변하더라도 구동장치(20)의 조정에 의해 레이저빔(4)의 경로는 변하지 않게 된다.
구동장치(20)의 상세한 구성에 대해서는 도 4의 구동장치(20)의 분해사시도를 참조로 설명한다.
도 4에 도시된 것과 같이, 구동장치(20)는 방위각 회전축(A1)을 중심으로 망원경(10)을 회전시키기 위한 방위각 구동부(20-1)와, 고저각 회전축(A2)을 중심으로 망원경(10)을 회전시키기 위한 고저각 구동부(20-2)와, 요크 구조물(26)과, 베이스 구조물(25)로 구성된다.
방위각 구동부(20-1)는 방위각 방향으로 구동하기 위한 방위각 구동모터(21), 방위각 베어링(22), 방위각 동력전달장치(23), 방위각 엔코더(24)로 구성된다. 고저각 구동부(20-2)는 고저각 방향으로 구동하기 위한 고저각 구동모터(21a), 고저각 베어링(22a), 고저각 동력전달장치(23a), 고저각 엔코더(24a) 및 방위각과 고저각의 위치와 속도를 제어하는 제어시스템으로 구성된다.
요크 구조물(26)은 상기 망원경(10), 고저각 구동부(20-2), 연결광학장치(50)를 지지한다.
베이스 구조물(25)은 상기 망원경(10), 방위각 구동부(20-1), 고저각 구동 부(20-2), 연결광학장치(50) 및 요크 구조물(26)을 지지한다.
고저각 구동모터(21a)가 회전을 하면 고저각 동력전달장치(23a)를 거쳐서 고저각 베어링(22a)에 위치한 기어가 움직여서 망원경(10)이 고저각 회전축(A2)을 중심으로 회전된다. 한편 방위각 구동모터(21)가 회전을 하면 방위각 동력전달장치(23)를 거쳐서 방위각 베어링(24)에 위치한 기어가 움직여서 방위각 베어링(24)의 상부에 있는 요크 구조물(26), 고저각 구동장치(20-2) 및 그에 연결된 망원경(10)이 방위각 회전축(A1)을 중심으로 회전을 하게 된다.
도 2 및 도 3을 다시 참조하면, 빔정렬장치(30)는 광집속장치를 운용하는 중에 외란에 의한 요동(외적 요동 오차)이나 레이저빔의 자체에서 발생한 요동(자체 요동 오차)에 의해서 발생할 수 있는 광축의 변형을 실시간으로 모니터링하여 광축의 변형량을 복원시키는 역할을 할 뿐만 아니라 표적의 영상을 획득하여 정밀 조준을 하는 기능을 한다.
도시된 것과 같이, 빔정렬장치(30)는 레이저빔(4)의 요동에 의한 요동량(자체 요동 오차)을 실시간으로 측정하는 빔정렬 광학장치(31)와, 구동장치(20)의 구동이나 외부의 외란에 의해 광집속장치를 구성하는 광경로가 변하는 변형량(외적 요동 오차)을 실시간으로 측정하는 광학정렬 광학장치(32)와, 정밀 조준을 위하여 표적의 영상을 획득하는 조준 광학장치(33)로 구성된다.
빔정렬 광학장치(31)는 도 3에 도시된 것과 같이 빔샘플러(31-1), 적외선 위치감지센서(IR-PSD: Infra Red - Position Sensitive Detector)(31-2), 그리고 적외선 위치감지센서(31-2)에 초점을 맺게 하기 위한 적외선 투과용 렌즈(31-3)들로 구성된다. 또한, 빔정렬 광학장치(31)는 빔정렬 광학장치(31)에서 측정된 레이저빔 자체의 요동오차를 망원경 내에 설치된 조종거울(13)로 보상하는 제어시스템을 포함한다.
빔정렬 광학장치(31)의 작동에 대해서는 도 3과, 도 6a 및 도 6b를 참조로 설명한다. 도 6a 및 도 6b는 각각 빔정렬 광학장치(31)가 작동하지 않는 경우와 작동하는 경우의 광계통도를 도시한다.
도 3에 도시된 것과 같이, 레이저 전송장치(2)로부터 입사되는 레이저빔(4)은 빔샘플러(31-1)에서 대부분의 빔이 반사되어 연결광학장치(50)로 향하고 나머지는 투과된 다음, 적외선 투과용 렌즈(31-3)들을 지나서 적외선 위치감지센서(31-2)에 초점을 맺게 된다.
이 때 도 6a에 도시된 것과 같이 레이저빔(4)의 자체 요동 오차를 제거하지 않으면 표적에 집속된 빔도 흔들리게 되며 이러한 흔들림은 광집속장치에서 표적까지의 거리가 멀수록 증가하므로, 결과적으로 집속의 효과가 줄어든다.
빔정렬 광학장치(31)는 이러한 레이저빔(4) 자체 요동 오차를 보정하기 위한 것으로서, 도 6b에 도시된 것과 같이, 레이저빔(4)이 흔들리면서 입사하는 경우 적외선 위치감지센서(31-2)에 맺힌 초점의 위치가 초기에 정렬이 된 위치에서 벗어나게 되면 이 양을 측정한 다음, 빔정렬장치(30)의 제어기로 피드백시켜서 조종거울(13)을 조종(A)함으로써 레이저빔(4)의 자체 요동 오차를 제거한다.
광학정렬 광학장치(32)는 도 3에 도시된 것과 같이, 정렬용 He-Ne 레이저 발생장치(32-1), 엑시콘 렌즈(32-2), 가시광선 위치센서(PSD; 32-3)로 구성된다. 또 한, 광학정렬 광학장치(32)는 구동장치(20)를 방위각 또는 고저각으로 구동을 할 때, 또는 외부의 외란에 의해 발생되는 광 경로 오차를 광학정렬 광학장치(32)에서 측정하여 조종거울(13)로 보상하는 제어시스템을 포함한다.
광학정렬 광학장치(32)는 광집속장치의 구동이나 외부의 외란에 의해 광 경로가 변경되는 것을 실시간으로 측정하여 이를 보정하는 장치로서 빔정렬장치(30) 내에 있는 정렬용 He-Ne 레이저 발생장치(32-1)를 사용한다. 정렬용 레이저빔의 진행 경로는 먼저 빔의 단면 형상이 점인 상태의 He-Ne 레이저가 He-Ne 레이저 발생장치(32-1)에서 나오면 엑시콘 렌즈(32-2)를 지나면서 레이저의 단면 형상이 링(ring) 형태로 바뀌게 된다. 이 링 형태의 빔이 빔샘플러(31-1)까지 진행하는 동안 렌즈를 통과하면서 환형 반사경(14) 크기의 링으로 확대가 된다.
빔샘플러(31-1)를 통과한 빔은 연결광학장치(50)와 조종거울(13)을 지나서 환형 반사경(14)까지 진행을 하고 여기서 반사된 링 형태의 빔은 주경(11)에서 반사되어 다시 환형 반사경(14)으로 되돌아온다. 되돌아 온 빔은 역으로 조종거울(13), 연결광학장치(50), 빔샘플러(31-1)를 지나서 가시광선 위치감지센서(PSD)(32-3)까지 진행하여 초점을 맺는다.
광학정렬 광학장치(32)의 작동 원리에 대해서는 도 7a 및 도 7b를 참조로 설명한다. 도 7a 및 도 7b는 각각 광학정렬 광학장치(32)가 작동하지 않는 경우와 작동하는 경우의 광계통도를 도시한다.
도 7a에 도시된 것과 같이 만약 광집속장치의 구동이나 외부의 외란(B)에 의해 광경로가 흔들리게 되면 가시광선 위치감지센서(32-3)에 맺힌 초점도 함께 흔들 리게 된다. 그러나, 도 7b에 도시된 것과 같이 광학정렬 광학장치(32)가 외부의 외란(B)에 의해 유발된 가시광선 위치감지센서(32-3)에 맺힌 초점의 변형량을 측정하여 조종거울(13)로 조종(A)을 하면 광집속장치의 광축을 외부의 외란에 무관하게 유지시킬 수 있다.
다음으로, 조준 광학장치(33)는 도 3에 도시된 것과 같이, CCD 카메라(33-1), 빔분할기(33-2), 조준광학 렌즈(33-3)로 구성된다.
조준 광학장치(33)의 표적영상 전달 경로는 차례대로 주경(11), 부경(12), 조종거울(13), 연결광학장치(50)를 지나서 빔 분할기(32-4)까지는 광학정렬 광학장치(32)에서와 동일한 경로로 오다가 빔 분할기(33-2)에서 반사되어 CCD 카메라(33-1)에서 초점을 맺는다.
조준 광학장치(33)에서 검출된 영상 신호는 좁은 시야각에서 표적을 확대하여 정밀 조준을 하는데 사용된다. 즉, 조준 광학장치(33)로부터 획득한 영상정보로부터 표적의 조준위치가 결정이 되면 조종거울(13)을 이용하여 레이저빔(4)을 조준위치로 움직일 수가 있다.
상술한 것과 같이 본 발명에서 빔정렬장치(30)를 구성하는 세 가지 광학장치(즉 빔정렬 광학장치(31), 광학정렬 광학장치(32) 및 조준 광학장치(33))의 기능에 사용되는 레이저빔(4)의 광경로는 주 광경로(즉, 레이저 전송장치(2)로부터 광집속장치(3)로 입사되어 연결광학장치(50)를 통해 망원경(10)으로 출사되는 경로)와 함께 공유된다. 이러한 구성에 의해 장치의 구조와 기능을 단순화하여 효율성 및 공간 집약도를 높였다.
한편, 다시 도 3을 참조하면, 연결광학장치(50)는 빔정렬 장치(30)로부터 유출된 레이저빔(4)을 받아들이는 제3 연결 거울(53)과, 상기 제3 연결 거울(53)으로부터 반사된 레이저빔(4)을 반사하여 광경로를 변경시키는 제2 연결 거울(52)과, 상기 제2 연결 거울(52)로부터 반사된 레이저빔(4)을 반사하여 상기 망원경(10)으로 레이저빔(4)을 전달하기 위한 제1 연결 거울(51)을 포함한다.
연결광학장치(50)는 빔정렬장치(30)에서 망원경(10)까지 레이저빔(4)을 전달하고 광집속장치가 구동 중에도 광 경로가 바뀌지 않도록 쿠데(Coude)식 광 경로를 형성하도록 한다.
즉, 도 2에 도시된 것과 같이, 망원경(10)의 조종거울(13)과 제1 연결거울(51)을 지나는 레이저빔(4)의 중심축을 고저각 회전축(A2)과 일치시키면 망원경(10)이 고저각 방향으로 회전하더라도 광 경로는 변하지 않는다. 또한, 제3 연결거울(53)과 빔정렬장치(30)를 지나는 레이저빔(4)의 중심축을 방위각 회전축(A1)과 일치시키면 망원경(10)이 방위각 방향으로 회전하더라도 광 경로는 변하지 않는다.
또한, 바람직한 실시예에 따르면 본 발명에 따른레이저 무기용 광집속장치에 사용되는 반사경은 일반적으로 고출력 레이저를 사용하기 때문에 반사경의 박막이 손상되지 않기 위하여 레이저 손상 문턱(LIDT:Laser Induced Damage Threshold)이 10 ㎾/㎠ 인 것을 사용하는 것이 바람직하다. 레이저 손상 문턱이란 레이저를 반사경에 조사하였을 때 반사경의 박막이 손상되는 레이저 출력을 말하며 단위면적당 출력으로 표현한다.
이러한 구성에 의해 본 발명에 따른 광집속장치가 작동하는 원리에 대하여 도 3을 참조로 설명한다.
전술한 것과 같이, 레이저 전송장치(2)로부터 입사되는 레이저빔(4)은 빔샘플러(31-1)에서 대부분의 빔이 반사되어 연결광학장치(50)로 향하고 나머지는 투과되어 적외선 투과용 렌즈(31-3)들을 지나서 적외선 위치감지센서(31-2)에 초점을 맺게 된다.
한편, 레이저 전송장치(2)로부터 입사되어 빔샘플러(31-1)에서 반사된 대부분의 레이저빔(4)은 연결광학장치(50)로 입사된다.
연결광학장치(50)로 입사된 레이저빔(4)은 제1, 제2 및 제3 연결 거울(51, 52, 53)에서 반사된 다음 망원경(10)으로 입사된다.
연결광학장치(50)로부터 망원경(10)으로 입사된 레이저빔(4)의 진행 경로는 먼저 주경(11)과 부경(12) 사이에 위치한 조종거울(13)에서 부경(12)으로 반사된다. 부경(12)에서 반사된 빔은 주경(11)으로 진행을 하면서 빔의 크기가 확대되고 주경(11)에서 반사된 빔은 표적에서 집속이 된다.
여기서, 레이저빔(4)을 확대하는 이유는 표적 표면에서의 단위면적당 에너지 집속율을 높이기 위해서이다. 즉, 집속되는 빔의 크기는 망원경(10)의 배율과 반비례하므로, 확대되어 고에너지를 포함한 빔을 작은 면적으로 집속할수록 표적 표면에서의 단위면적당 에너지 집속율을 높일 수 있기 때문이다.
한편, 바람직한 실시예에 따르면 광집속장치로부터 표적까지의 거리가 변하더라도 항상 표적 표면에 레이저빔이 집속되도록 하기위해 주경(11)과 부경(12)의 거리를 조정하도록 구성할 수 있다.
이를 구현하기 위하여 도 5에 도시된 것과 같이 부경(12)에 초점 거리 조절 수단(16)을 포함한다. 초점 거리 조절 수단(16)은 리니어 모터(16-1)와 리니어 베어링(16-2)으로 구성될 수 있다. 부경(12)의 위치가 주경(11)과 가까워지는 방향(12a, 도면의 우측)으로 이동하면 집속거리가 멀어지며, 부경(12)의 위치가 주경(11)과 멀어지는 방향(도면의 좌측)이면 집속거리가 가까워진다.
또 한편, 도 8에 도시된 것과 같이 주경(11)에서 반사된 레이저빔(4)이 표적으로 진행할 때 일부의 빔은 부경(12)을 지지하기 위하여 설치된 베인(18)에 의해 차단된다. 이 때 사용된 레이저의 출력이 높을 경우 베인(18)이 가열되고 열팽창에 의해서 변형이 생기게 되며, 그 결과 부경(12)의 위치가 변하여 표적에서의 조준위치에 집속되지 않을 뿐 아니라 집속효율을 떨어뜨리게 된다.
이를 방지하기 위하여 본 발명의 바람직한 실시예에서는 레이저빔(4)이 접촉하는 베인(18)상의 위치에 베인 반사경(19)을 부착하여 베인(18)에 레이저빔(4)이 직접 접촉하지 않도록 구성할 수 있다. 베인(18)의 단면은 삼각형 단면 형상인 것이 바람직하나 단면의 형상은 이에 한정되는 것이 아니고 베인(18)에 레이저빔이 직접 닿지 않도록 하는 기능을 수행할 수 있는 다양한 형상이 채용가능하다
또한, 본 발명의 바람직한 실시예에 따르면 도 2에 도시된 것과 같이, 망원경 외부에 광시야 카메라(15)를 장착하여 움직이는 표적을 추적하는데 사용할 수 있다.
광시야 카메라(15)는 주간관측뿐만 아니라 야간관측이 가능한 적외선 카메라 를 함께 포함하도록 구성할 수 있다. 광시야 카메라(15)의 영상정보와 추적 알고리즘을 이용하여 표적의 이동량을 계산한 후, 구동장치(20)로 구동 명령을 내림으로써 움직이는 표적을 추적할 수 있게 된다.   
이상, 본 발명의 특정 실시예에 대하여 상술하였지만, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것이 아니라, 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 것이다.
따라서, 이상에서 기술한 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이므로, 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 하며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
도 1은 지향성 에너지 무기의 일반적 구성도.
도 2는 본 발명에 따른 레이저 무기용 광집속장치의 개요도.
도 3은 본 발명에 따른 레이저 무기용 광집속장치의 광 계통도.
도 4는 본 발명의 구동장치(20)의 구성도.
도 5는 초점거리 조절수단(16)을 도시한 도면.
도 6은 빔정렬 광학장치(31)에 의한 레이저빔 자체 요동 오차 제어의 개념도.
도 7은 광학정렬 광학장치(32)에 의한 외적 요동 오차 제어의 개념도.
도 8은 베인 반사경(19)을 설명하기 위한 도면.
<도면의 주요 참조 부호에 대한 설명>
1: 레이저 발생장치 2: 레이저 전송장치
3: 광집속장치 4: 레이저빔
5: 표적 10: 망원경
11: 주경 12: 부경
13: 조종거울 14: 환형 반사경
15: 광시야 카메라 16: 초점거리 조절 수단
16-1: 리니어 모터 16-2: 리니어 베어링
18: 베인 19: 베인 반사경
20: 구동장치 21: 방위각 구동 모터
21a: 고저각 구동 모터 22: 방위각 베어링
22a: 고저각 베어링 23: 방위각 동력전달장치
23a: 고저각 동력전달장치 24: 방위각 엔코더
24a: 고저각 엔코더 25: 베이스 구조물
26: 요크 구조물 30: 빔정렬장치
31: 빔정렬 광학장치 31-1: 빔샘플러
31-2: 적외선 위치감지센서(IR-PSD) 31-3: 적외선 투과용 렌즈
32: 광학정렬 광학장치 32-1: He-Ne 레이저 발생장치
32-2: 엑시콘 렌즈 32-3: 가시광선 위치감지센서(PSD)
33: 조준 광학장치 33-1: CCD 카메라
33-2: 빔 분할기 33-3: 조준광학 렌즈
50: 연결광학장치 51, 52, 53: 제1, 제2, 제3 연결 거울

Claims (13)

  1. 입사된 레이저빔(4)을 표적(5)을 향해 지향하고 집속하기 위한 레이저 무기용 광집속장치(3)로서,
    상기 입사된 레이저빔(4)을 표적(5)을 향해 집속시키는 망원경(10)과,
    상기 레이저빔(4)이 항상 표적(5)을 향하도록 망원경(10)을 소정의 회전축 중심으로 이동시키는 구동장치(20)와,
    상기 레이저빔(4) 자체의 요동으로 인한 광경로 오차(자체 요동 오차)와, 광집속장치(3)의 구동과 외부 외란에 의한 광경로 오차(외적 요동 오차)를 보정하기 위한 빔정렬장치(30)와,
    상기 빔정렬장치(30)에서 상기 망원경(10)까지 레이저빔(4)을 전달하고 상기 광집속장치(3)의 구동 중에도 레이저빔(4)의 광경로가 바뀌지 않도록 쿠데(Coude)식 광 경로를 제공하는 연결광학장치(50)를 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  2. 청구항 1에 있어서, 상기 빔정렬장치(30)는,
    상기 자체 요동 오차를 검출하기 위한 빔정렬 광학장치(31)와,
    상기 외적 요동 오차를 검출하기 위한 광학정렬 광학장치(32)와,
    표적(5)의 영상을 검출하기 위한 조준 광학장치(33)를 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  3. 청구항 2에 있어서, 상기 빔정렬 광학장치(31)는
    입사된 레이저빔(4)의 일부를 상기 빔정렬 광학장치(31)로 지향시키는 빔샘플러(31-1)와,
    상기 빔샘플러(31-1)로부터 입사된 레이저빔(4)으로부터 자체 요동 오차를 측정하기 위한 적외선 위치감지센서(IR-PSD)(31-2)와,
    상기 적외선 위치감지센서(31-2)에 초점을 맺기 위한 적외선 투과용 렌즈(31-3)와,
    상기 적외선 위치감지센서(31-2)에서 측정된 자체 요동 오차를 보상하기 조종거울(13)에 제어 신호를 보내는 제어시스템을 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  4. 청구항 2에 있어서, 상기 광학정렬 광학장치(32)는,
    정렬용 레이저빔을 방출하는 He-Ne 레이저 발생장치(32-1)와,
    상기 정렬용 He-Ne 레이저 발생장치(32-1)으로부터 입사된 He-Ne 레이저의 단면 형상을 링(ring) 형태로 바꾸어주는 엑시콘 렌즈(32-2)와,
    입사된 He-Ne 레이저로부터 외적 요동 오차를 측정하기 위한 가시광선 위치센서(PSD; 32-3)와,
    상기 가시광선 위치센서(32-4)에서 측정된 외적 요동 오차를 보상하기 위해 조종거울(13)에 제어 신호를 보내는 제어시스템을 더 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  5. 청구항 4에 있어서,
    상기 광학정렬 광학장치(32)의 정렬용 레이저빔은 상기 레이저빔(4)과 광경로를 함께 공유하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  6. 청구항 4에 있어서,
    상기 빔분할기(32-3)는 상기 광집속장치(3)로 입사된 후, 상기 망원경(10)으로부터 반사된 다음 되돌아오는 레이저빔(4)의 일부를 상기 조준 광학장치(33)로 지향시키고,
    상기 조준 광학장치(33)는,
    표적(5)의 영상을 검출하기 위한 CCD 카메라(33-1)와 빔분할기(33-2)를 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  7. 청구항 1에 있어서, 상기 망원경(10)은,
    레이저빔(4)을 표적(5)으로 지향하고 집속하기 위한 주경(11)과,
    상기 망원경(10)에 입사된 레이저빔(4)을 상기 주경(11)으로 전달하기 위한 부경(12)과,
    상기 망원경(10)으로 입사된 레이저빔(4)을 상기 부경(12)으로 전달하고, 상기 빔정렬장치로(30)로부터 전달받은 신호에 따라 각도가 조종됨으로써 상기 자체 요동 오차 및 상기 외적 요동 오차를 제거하는 조종거울(13)을 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  8. 청구항 7에 있어서, 상기 망원경(10)은,
    상기 주경(11) 및 부경(12) 사이의 거리를 조절할 수 있는 초점거리 조절 수단(16)을 더 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  9. 청구항 7에 있어서, 상기 망원경(10)은,
    상기 정렬용 레이저빔을 주경(11)으로 반사시키고 다시 되받아 빔정렬장치(30)로 되돌려 보내어주는 환형 반사경(14)을 더 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  10. 청구항 7에 있어서, 상기 망원경(10)은,
    상기 부경(12)을 상기 망원경(10)에 지지하는 베인(18)과,
    상기 베인(18)에 상기 레이저빔(4)이 직접 닿지 않도록 하기 위한 베인 반사경(19)을 더 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  11. 청구항 1에 있어서, 상기 구동장치(20)는,
    방위각 회전축(A1)을 중심으로 상기 망원경(10)을 방위각 방향으로 회전시키기 위한 방위각 구동부(20-1)와,
    고저각 회전축(A2)을 중심으로 상기 망원경(10)을 고저각 방향으로 회전시키기 위한 고저각 구동부(20-2)와,
    상기 방위각과 고저각의 위치와 속도를 제어하는 제어시스템을 더 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  12. 청구항 11에 있어서, 상기 연결광학장치(50)는,
    상기 빔정렬 장치(30)로부터 유출된 레이저빔(4)을 받아들이는 제3 연결 거울(53)과,
    상기 제3 연결 거울(53)으로부터 반사되어 받은 레이저빔(4)을 반사하여 광경로를 변경시키는 제2 연결 거울(52)과,
    상기 제2 연결 거울(52)로부터 반사되어 받은 레이저빔(4)을 반사하여 상기 망원경(10)으로 상기 레이저빔(4)을 전달하기 위한 제1 연결 거울(51)을 포함하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
  13. 청구항 12에 있어서,
    상기 제1 연결거울(51)과 상기 망원경(10)을 연결하는 레이저빔(4)의 광경로는 상기 구동 장치(20)의 고저각 회전축(A2)과 일치하고,
    상기 제3 연결거울(53)과 상기 빔정렬장치(30)를 연결하는 레이저빔(4)의 광경로는 상기 구동 장치(20)의 방위각 회전축(A1)과 일치하는 것을 특징으로 하는 레이저 무기용 광집속장치(3).
KR1020070118888A 2007-11-21 2007-11-21 레이저 무기용 광집속장치 KR20090052415A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070118888A KR20090052415A (ko) 2007-11-21 2007-11-21 레이저 무기용 광집속장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070118888A KR20090052415A (ko) 2007-11-21 2007-11-21 레이저 무기용 광집속장치

Publications (1)

Publication Number Publication Date
KR20090052415A true KR20090052415A (ko) 2009-05-26

Family

ID=40860147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070118888A KR20090052415A (ko) 2007-11-21 2007-11-21 레이저 무기용 광집속장치

Country Status (1)

Country Link
KR (1) KR20090052415A (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522210B1 (ko) * 2014-04-14 2015-05-21 국방과학연구소 공통 광학계 시선 정렬 장치
KR102031927B1 (ko) * 2019-03-13 2019-10-14 엘아이지넥스원 주식회사 레이저의 추적 조준 장치 및 이의 일체형 빔 정렬 광학계
WO2020008465A1 (en) * 2018-07-05 2020-01-09 The State Of Israel Israel National Police Laser interceptor for low-flying airborne devices
KR102095928B1 (ko) * 2019-06-04 2020-04-01 한화시스템 주식회사 자동 시선 정렬 장치 및 방법
KR102182524B1 (ko) * 2019-06-27 2020-11-24 한화시스템 주식회사 자동 시선 정렬 장치
KR102192119B1 (ko) * 2019-07-10 2020-12-16 국방과학연구소 레이저 발사 광학계
KR102226255B1 (ko) * 2020-12-23 2021-03-10 한화시스템(주) 지향성 에너지 무기 시스템
KR102268099B1 (ko) * 2020-12-23 2021-06-22 한화시스템(주) 지향성 에너지 무기 시스템의 에너지 유통용 회전 중심축 및 이를 구비한 지향성 에너지 무기 시스템
KR20220098926A (ko) * 2021-01-05 2022-07-12 주식회사 한화 비축 망원경 광축을 이용해 광축 정렬이 가능한 레이저 표적 조사 광학 시스템 및 레이저 표적 조사 광학 시스템의 광축 정렬 방법

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522210B1 (ko) * 2014-04-14 2015-05-21 국방과학연구소 공통 광학계 시선 정렬 장치
WO2020008465A1 (en) * 2018-07-05 2020-01-09 The State Of Israel Israel National Police Laser interceptor for low-flying airborne devices
US11466966B2 (en) 2018-07-05 2022-10-11 The State Of Israel Israel National Police Laser interceptor for low-flying airborne devices
KR102031927B1 (ko) * 2019-03-13 2019-10-14 엘아이지넥스원 주식회사 레이저의 추적 조준 장치 및 이의 일체형 빔 정렬 광학계
KR102095928B1 (ko) * 2019-06-04 2020-04-01 한화시스템 주식회사 자동 시선 정렬 장치 및 방법
KR102182524B1 (ko) * 2019-06-27 2020-11-24 한화시스템 주식회사 자동 시선 정렬 장치
KR102192119B1 (ko) * 2019-07-10 2020-12-16 국방과학연구소 레이저 발사 광학계
KR102226255B1 (ko) * 2020-12-23 2021-03-10 한화시스템(주) 지향성 에너지 무기 시스템
KR102268099B1 (ko) * 2020-12-23 2021-06-22 한화시스템(주) 지향성 에너지 무기 시스템의 에너지 유통용 회전 중심축 및 이를 구비한 지향성 에너지 무기 시스템
KR20220098926A (ko) * 2021-01-05 2022-07-12 주식회사 한화 비축 망원경 광축을 이용해 광축 정렬이 가능한 레이저 표적 조사 광학 시스템 및 레이저 표적 조사 광학 시스템의 광축 정렬 방법

Similar Documents

Publication Publication Date Title
KR20090052415A (ko) 레이저 무기용 광집속장치
KR101057303B1 (ko) 레이저무기용 추적조준장치
EP2564147B1 (en) Optical transceiver built-in test (bit)
US6057915A (en) Projectile tracking system
US5973309A (en) Target-tracking laser designation
JP6654736B2 (ja) 結像およびレーザ通信を複合したシステム
US3992629A (en) Telescope cluster
US6779753B2 (en) Optical assembly with a detector and a laser
US3989947A (en) Telescope cluster
US20090223072A1 (en) Method and apparatus for collimating and coaligning optical components
CN113340279B (zh) 具有同轴射束偏转元件的勘测装置
KR102192119B1 (ko) 레이저 발사 광학계
EP3966516B1 (en) Beam director for high-energy laser (hel) weapon
US10859348B1 (en) System for active telescope alignment, focus and beam control
WO2004099849A1 (en) Optical unit and system for steering a light beam
KR900000322B1 (ko) 안정한 기준으로서 자이로 회전자를 사용하는 2-축 광학 관성 시스템
US9360680B1 (en) Electromagnetic beam or image stabilization system
EP2574970B1 (en) T3 module architecture
JP3825701B2 (ja) 測量機の光軸自動調整装置
US5107369A (en) Wide field multi-mode telescope
US5259568A (en) Command optics
RU2372628C1 (ru) Многофункциональная оптико-локационная система
JP7092950B2 (ja) 光ファイバーへの放射ビームの注入
JPH08633Y2 (ja) 光学装置
KR102449228B1 (ko) 동축형 레이저무기의 조준 시스템

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee