KR20090049642A - High strength microalloyed steel composition for connecting rod and manufacturing of fracture splittable connecting rods using the same - Google Patents

High strength microalloyed steel composition for connecting rod and manufacturing of fracture splittable connecting rods using the same Download PDF

Info

Publication number
KR20090049642A
KR20090049642A KR1020070115813A KR20070115813A KR20090049642A KR 20090049642 A KR20090049642 A KR 20090049642A KR 1020070115813 A KR1020070115813 A KR 1020070115813A KR 20070115813 A KR20070115813 A KR 20070115813A KR 20090049642 A KR20090049642 A KR 20090049642A
Authority
KR
South Korea
Prior art keywords
weight
connecting rod
less
manufacturing
steel composition
Prior art date
Application number
KR1020070115813A
Other languages
Korean (ko)
Other versions
KR100952010B1 (en
Inventor
이창구
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070115813A priority Critical patent/KR100952010B1/en
Publication of KR20090049642A publication Critical patent/KR20090049642A/en
Application granted granted Critical
Publication of KR100952010B1 publication Critical patent/KR100952010B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Abstract

본 발명은 고강도 비조질강 조성물과 이를 이용한 커넥팅로드 제조방법에 관한 것으로서, 더욱 상세하게는 기존에 커넥팅로드 제조를 위한 조질강 및 비조질강을 대체하여, 원가 절감 및 피로강도 향상에 따른 경량화를 실현할 수 있도록 한 고강도 비조질강 조성물과 이를 이용한 커넥팅로드 제조방법에 관한 것이다.The present invention relates to a high-strength non-coated steel composition and a connecting rod manufacturing method using the same, and more particularly, to replace the existing coarse steel and non-coated steel for manufacturing the connecting rod, it is possible to realize a weight reduction according to cost reduction and fatigue strength improvement It relates to a high strength non-coated steel composition and a connecting rod manufacturing method using the same.

이를 위해, 본 발명은 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.30~0.40 중량%, 규소(Si) 0.50~0.80 중량%, 망간(Mn) 0.90~1.20 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.06~0.10 중량%, 크롬(Cr) 0.30중량% 이하, 몰리브덴(Mo) 0.10 중량% 이하, 니켈(Ni) 0.20 중량% 이하, 알루미늄(Al) 0.040 중량% 이하, 바나듐(V) 0.10~0.30 중량%, 질소(N) 0.05~0.3 중량%로 조성된 소재를 용융시켜 용탕으로 만든 후, 탈산 및 탈황, 진공 탈가스 처리를 통한 청정과정을 거쳐 연속적인 주조공정을 통해 주조재로 제조하는 단계와; 상기 주조재를 1100℃ 이상의 재가열하여 압연공정을 통해 압연재로 제조하는 단계와; 상기 압연재를 1200℃ 이상으로 재가열한 후, 1100℃ 이상에서 단조성형을 실시한 다음, 트리밍 가공을 실시하는 단계와; 상기 트리밍 가공후 1100℃에서 600℃ 근처까지 80~200℃/min의 냉각속도로 냉각을 하여, 페라이트+펄라이트 2상 조직이 형성되도록 제어냉각을 실시하는 단계와; 제어냉각된 단조소재를 커넥팅 로드로 가공하되, 커넥팅 로드의 대단부 내경에 노치를 주어 강제 파단을 실시하여 최종 커넥팅 로드로 제조하는 단계; 를 포함하여 이루어진 것을 특징으로 하는 고강도 비조질강 조성물을 이용한 파단분할 커넥팅로드 제조방법을 제공한다.To this end, the present invention is based on iron (Fe), carbon (C) 0.30 to 0.40% by weight, silicon (Si) 0.50 to 0.80% by weight, manganese (Mn) 0.90 to 1.20% by weight, phosphorus (P) ) 0.045 wt% or less, sulfur (S) 0.06 to 0.10 wt%, chromium (Cr) 0.30 wt% or less, molybdenum (Mo) 0.10 wt% or less, nickel (Ni) 0.20 wt% or less, aluminum (Al) 0.040 wt% Hereinafter, the material composed of 0.10 to 0.30% by weight of vanadium (V) and 0.05 to 0.3% by weight of nitrogen (N) is melted to form a molten metal, followed by continuous casting through deoxidation, desulfurization, and vacuum degassing. Manufacturing the cast material through a process; Reheating the cast material to 1100 ° C. or more to produce a rolled material through a rolling process; Reheating the rolled material to 1200 ° C. or higher, then performing forging molding at 1100 ° C. or higher, and then performing trimming processing; Cooling to 80 to 200 ° C./min from 1100 ° C. to 600 ° C. after the trimming, and performing controlled cooling to form a ferrite + pearlite two-phase structure; Processing the control-cooled forged material into the connecting rod, but notifying the inner diameter of the large end of the connecting rod to perform a forced fracture to manufacture the final connecting rod; It provides a method for producing a fractured split connecting rod using a high strength non-coated steel composition, characterized in that made.

비조질강, 파단분할, 커넥팅 로드, 압연재, 단조, 주조재 Non-Steel Steel, Break Split, Connecting Rod, Rolled Material, Forgings, Casting Materials

Description

고강도 비조질강 조성물과 이를 이용한 커넥팅로드 제조방법{High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same}High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same}

본 발명은 고강도 비조질강 조성물과 이를 이용한 커넥팅로드 제조방법에 관한 것으로서, 더욱 상세하게는 기존에 커넥팅로드 제조를 위한 조질강 및 비조질강을 대체하여, 원가 절감 및 피로강도 향상에 따른 경량화를 실현할 수 있도록 한 고강도 비조질강 조성물과 이를 이용한 커넥팅로드 제조방법에 관한 것이다.The present invention relates to a high-strength non-coated steel composition and a connecting rod manufacturing method using the same, and more particularly, to replace the existing coarse steel and non-coated steel for manufacturing the connecting rod, it is possible to realize a weight reduction according to cost reduction and fatigue strength improvement It relates to a high strength non-coated steel composition and a connecting rod manufacturing method using the same.

차량용 커넥팅로드의 제조를 위한 소재로서, 조질강 및 비조질강이 사용되고 있으며, 국내외 완성차 업체는 하기의 표 1 및 표 2에 기재된 성분을 갖는 조질강 및 비조질강을 사용하고 있다.As a material for manufacturing a vehicle connecting rod, tempered steels and non-quenched steels are used, and domestic and overseas automobile companies use tempered steels and tempered steels having the components shown in Tables 1 and 2 below.

Figure 112007081496784-PAT00001
Figure 112007081496784-PAT00001

Figure 112007081496784-PAT00002
Figure 112007081496784-PAT00002

고탄소계 비조질강은 고탄소에 따른 인성의 감소와, 단조시 적절한 제어냉각으로 기지는 균일한 펄라이트 조직으로 고강도화하고, 입계는 망상 페라이트 분율을 줄여 파단분할을 용이하게 하는 것이다.High carbon-based non-coated steel is to reduce the toughness according to the high carbon, and to enhance the strength of the uniform pearlite structure by the appropriate controlled cooling during forging, and the grain boundary is to reduce the fraction of the reticulated ferrite to facilitate the breakage.

그러나, 기본적으로 탄소의 함량이 높아 고경도에 따른 가공성의 저하를 우려하여, 고강도를 위한 V, Mn 등의 성분 첨가에 한계를 가지고 있다.However, since the carbon content is high, there is a concern about the deterioration of workability due to high hardness, and there is a limit to the addition of components such as V and Mn for high strength.

따라서, 피로강도 45kgf/㎟ 이상의 고강도화가 요구되는 고출력 엔진의 적용에는 경량화를 이룰 수 없다.Therefore, weight reduction cannot be achieved in the application of a high-power engine that requires a high strength of 45 kgf / mm 2 or more.

더불어 기존 조질강(SCM440)은 단조분할 비조질강에 비해 대당 25% 이상의 원가상승을 초래하여 양산 적용에 어려움이 있다.In addition, the existing tempered steel (SCM440) has a cost increase of more than 25% per unit compared to forging-split non-thick steel, making it difficult to apply the mass production.

본 발명은 상기와 같은 점을 감안하여, 기존 고탄소계 비조질강 대비 고강도화를 실현하고, 조질 합금강 대비 원가절감을 이룰 수 있는 중탄소계 단조분할 비조질강 커넥팅로드를 제공하고자 한 것으로서, 강도 향상, 파단분할성 향상, 가공성 확보 등의 효과를 얻을 수 있는 고강도 비조질강 조성물과 이를 이용한 파단분할 커넥팅로드 제조방법을 제공하는데 그 목적이 있다.In view of the above, the present invention is to provide a medium-carbon forged split non-coated steel connecting rod capable of realizing high strength compared to existing high carbon-based non-coated steel and achieving cost reduction compared to co-alloyed steel. An object of the present invention is to provide a high-strength non-coarse steel composition capable of improving partitioning properties, securing workability, and a method of manufacturing a split split connecting rod using the same.

상기한 목적을 달성하기 위한 본 발명의 일 구현예는: 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.30~0.40 중량%, 규소(Si) 0.50~0.80 중량%, 망간(Mn) 0.90~1.20 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.06~0.10 중량%, 크롬(Cr) 0.30중량% 이하, 몰리브덴(Mo) 0.10 중량% 이하, 니켈(Ni) 0.20 중량% 이하, 알루미늄(Al) 0.040 중량% 이하, 바나듐(V) 0.10~0.30 중량%, 질소(N) 0.05~0.3 중량%가 함유된 것을 특징으로 하는 고강도 비조질강 조성물을 제공한다.One embodiment of the present invention for achieving the above object is: iron (Fe) as a main component, carbon (C) 0.30 to 0.40% by weight, silicon (Si) 0.50 to 0.80% by weight, manganese (Mn) 0.90 to 1.20 wt%, phosphorus (P) 0.045 wt% or less, sulfur (S) 0.06 to 0.10 wt%, chromium (Cr) 0.30 wt% or less, molybdenum (Mo) 0.10 wt% or less, nickel (Ni) 0.20 wt% Hereinafter, 0.040% by weight or less of aluminum (Al), 0.10 to 0.30% by weight of vanadium (V), and 0.05 to 0.3% by weight of nitrogen (N) are provided.

상기한 목적을 달성하기 위한 본 발명의 다른 구현예는: 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.30~0.40 중량%, 규소(Si) 0.50~0.80 중량%, 망간(Mn) 0.90~1.20 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.06~0.10 중량%, 크롬(Cr) 0.30중량% 이하, 몰리브덴(Mo) 0.10 중량% 이하, 니켈(Ni) 0.20 중량% 이하, 알루미늄(Al) 0.040 중량% 이하, 바나듐(V) 0.10~0.30 중량%, 질소(N) 0.05~0.3 중량%로 조성된 소재를 용융시켜 용탕으로 만든 후, 탈산 및 탈황, 진공 탈가스 처리를 통한 청정과정을 거쳐 연속적인 주조공정을 통해 주조재로 제조하는 단계와; 상기 주조재를 1100℃ 이상의 재가열하여 압연공정을 통해 압연재로 제조하는 단계와; 상기 압연재를 1200℃ 이상으로 재가열한 후, 1100℃ 이상에서 단조성형을 실시한 다음, 트리밍 가공을 실시하는 단계와; 상기 트리밍 가공후 1100℃에서 600℃ 근처까지 80~200℃/min의 냉각속도로 냉각을 하여, 페라이트+펄라이트 2상 조직이 형성되도록 제어냉각을 실시하는 단계와; 제어냉각된 단조소재를 커넥팅 로드로 가공하되, 커넥팅 로드의 대단부 내경에 노치를 주어 강제 파단을 실시하여 최종 커넥팅 로드로 제조하는 단계; 를 포함하여 이루어진 것을 특징으로 하는 고강도 비조질강 조성물을 이용한 파단분할 커넥팅로드 제조방법을 제공한다.Another embodiment of the present invention for achieving the above object is: iron (Fe) as a main component, carbon (C) 0.30 to 0.40% by weight, silicon (Si) 0.50 to 0.80% by weight, manganese (Mn) 0.90 to 1.20 wt%, phosphorus (P) 0.045 wt% or less, sulfur (S) 0.06 to 0.10 wt%, chromium (Cr) 0.30 wt% or less, molybdenum (Mo) 0.10 wt% or less, nickel (Ni) 0.20 wt% Hereinafter, a material composed of 0.040% by weight or less of aluminum (Al), 0.10 to 0.30% by weight of vanadium (V), and 0.05 to 0.3% by weight of nitrogen (N) is melted into a molten metal, followed by deoxidation, desulfurization, and vacuum degassing. Manufacturing a cast material through a continuous casting process through a clean process through; Reheating the cast material to 1100 ° C. or more to produce a rolled material through a rolling process; Reheating the rolled material to 1200 ° C. or higher, then performing forging molding at 1100 ° C. or higher, and then performing trimming processing; Cooling to 80 to 200 ° C./min from 1100 ° C. to 600 ° C. after the trimming, and performing controlled cooling to form a ferrite + pearlite two-phase structure; Processing the control-cooled forged material into the connecting rod, but notifying the inner diameter of the large end of the connecting rod to perform a forced fracture to manufacture the final connecting rod; It provides a method for producing a fractured split connecting rod using a high strength non-coated steel composition, characterized in that made.

상기한 과제 해결 수단을 통하여, 본 발명은 다음과 같은 효과를 제공할 수 있다.Through the above problem solving means, the present invention can provide the following effects.

기존의 조질강을 대체하여, QT 열처리 생략에 따른 원가 절감 및 생산 싸이클 타임 감소로 25% 이상의 원가 절감을 실현할 수 있다.By replacing the existing tempered steel, cost savings over QT heat treatment and production cycle time can be achieved, saving more than 25%.

기존의 비조질강을 대체하여, 피로강도 30% 향상에 따른 10% 이상 경량화 및 숏피닝 공정 생략에 따른 원가 절감을 실현할 수 있다.By replacing the existing non-coated steel, it is possible to realize cost reduction by reducing the weight by more than 10% and eliminating the shot peening process by increasing the fatigue strength by 30%.

이하, 본 발명을 보다 구체적으로 살펴보기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 비조질강은 하기의 표 1에 기존재와 대비하여 기재된 조성 성분비를 가지며, 기존 고탄소계 대비 항복강도 및 피로강도의 향상, 파단분할성 향상 및 가공성 확보를 위한 아래와 같이 성분 설계를 하였다.The non-alloyed steel according to the present invention has a compositional component ratio described in comparison with the existing materials in Table 1 below, and the following component design was performed to improve yield strength and fatigue strength, improve breakage property, and processability compared to existing high carbon systems. .

① 강도 향상(피로강도, 항복강도) : 기존의 비조질강보다 강도가 우수하고 고출력 엔진에 대응하기 위해서는 SCM440급의 조질 합금강을 대체할 수 있는 45kgf/㎟ 이상의 고강도가 요구되므로 페라이트 조직을 강화하고, 결정입도 미세화를 위해 V, Si, Mn의 함량을 증가시켰다.① Strength Improvement (Fatigue Strength, Yield Strength): It is superior in strength to existing non-thick steel, and in order to cope with high-power engines, it is required to have a high strength of 45kgf / mm2 or more, which can replace SCM440 grade alloy steel. In order to refine the grain size, the content of V, Si, Mn was increased.

② 파단분할성 향상 : 양호한 파단분할 특성을 갖는 조직을 확보하기 위해서는 파단분할시에 연성파괴가 아닌 입계파괴가 일어나야 한다. 이에 V과 Si 함량을 증가시켜 페라이트를 강화하고 펄라이트와 결정입계를 취하시켜 입계파괴를 조장하고자 하였다.② Improvement of fracture splitting: In order to secure a structure having good fracture splitting characteristics, grain breakdown must occur at the time of fracture splitting, not ductile fracture. In order to increase the V and Si content, ferrite was strengthened, and pearlite and grain boundaries were dropped to promote grain boundary fracture.

③ 가공성 확보 : 가공성은 가공공정시의 비용절감과 생산성을 위해 중요하다. 기존 비조질강은 C 함량이 높아 가공성의 한계를 가지고 있었다. 이에 본 발명의 비조질강에는 C 함량을 줄이고 S 함량을 높여 기존재와 동등 이상의 가공 특성을 확보하고자 하였다.③ Processability: Machinability is important for cost reduction and productivity in the machining process. Conventional non-steel has a high C content and has limited workability. Therefore, to reduce the C content and increase the S content in the non-coated steel of the present invention was to secure the processing characteristics or more equivalent to the existing material.

Figure 112007081496784-PAT00003
Figure 112007081496784-PAT00003

여기서, 본 발명의 주요 구성원소 및 그 함량의 한정 이유에 대해 설명하면 다음과 같다.Here, the main components of the present invention and the reason for limitation of the content are described as follows.

1) 탄소(C) 0.30~0.40 중량%1) Carbon (C) 0.30 ~ 0.40 wt%

탄소는 소입성에 가장 영향을 미치는 원소로서, 강도를 증가시켜 주고 열처리를 가능하게 하는 주요 원소이나, 0.40 중량% 이상 첨가시 가공성에 악영향을 미치므로 0.30~0.40 중량%의 범위로 첨가하기로 한다.Carbon is the element that most affects hardenability. It is the main element that increases the strength and enables heat treatment. However, carbon has an adverse effect on the workability when it is added more than 0.40% by weight. Therefore, carbon should be added in the range of 0.30 to 0.40% by weight. .

2) 규소(Si) 0.50~0.80 중량%2) Silicon (Si) 0.50 ~ 0.80 wt%

규소는 페라이트 강화 효과와 피로강도를 증가시키기 위하여, 그리고 커넥팅 로드의 파단 분할을 용이하게 하는 인성 감소를 위하여 첨가하였으며, 본 발명에서는 0.50~0.80 중량%로 한정하였다.Silicon was added to increase the ferrite strengthening effect and the fatigue strength, and to reduce the toughness that facilitates the fracture splitting of the connecting rod, and was limited to 0.50 to 0.80 wt% in the present invention.

3) 망간(Mn) 0.90~1.20 중량% 3) Manganese (Mn) 0.90 ~ 1.20 wt%

망간(Mn)은 고용강화 효과에 의한 강도를 확보하기 위해서 첨가하였으며, 함량이 높아지면 편석을 생성시킬 수 있기 때문에 첨가량을 0.90~1.20 중량%로 제한하였다.Manganese (Mn) was added to secure strength due to the solid solution strengthening effect, and the content was limited to 0.90 to 1.20% by weight because segregation could be generated.

4) 인(P) 0.045 중량% 이하4) Phosphorus (P) 0.045 wt% or less

인은 불순물 개념이다. 즉, 없으면 좋지만 제강기술상의 문제점 때문에 일반적으로 상한치만 규제하게 된다.Phosphorus is an impurity concept. In other words, it is good to be absent, but due to problems in steelmaking technology, the upper limit is generally restricted.

5) 황(S) 0.06~0.10 중량%5) Sulfur (S) 0.06 ~ 0.10 wt%

황(S)은 강중에서 Mn과 결합하여 MnS 개재물을 형성하여 가공성을 향상시키는 원소로서 가공성을 향상시키기 위해서 첨가하였으며, 과도하게 첨가하면 과다한 개재물을 생성하기 때문에 0.06~0.10 중량%로 한정한다.Sulfur (S) is an element that combines with Mn in the steel to form MnS inclusions to improve the processability, and was added to improve the processability. When excessively added, the sulfur (S) is limited to 0.06 to 0.10 wt%.

6) 크롬(Cr) 0.30중량% 이하6) chromium (Cr) 0.30% by weight or less

크롬은 강도 향상을 위해 첨가하였으며, 본 발명에서는 0.30중량% 이하로 상한치만 한정하기로 한다.Chromium was added to improve strength, and in the present invention, the upper limit is limited to 0.30% by weight or less.

7) 몰리브덴(Mo) 0.10 중량% 이하7) Molybdenum (Mo) 0.10 wt% or less

몰리브덴은 강도 향상을 위해 첨가하였으며, 본 발명에서는 0.01 중량%로 한정하기로 한다.Molybdenum was added to improve the strength, in the present invention will be limited to 0.01% by weight.

8) 니켈(Ni) 0.20 중량% 이하8) Nickel (Ni) 0.20 wt% or less

니켈은 고온물성을 향상시키는데 첨가되는 대표적인 원소로 그 첨가시, 고온에서는 강도 뿐만 아니라 연신율 및 연성을 증대시키는데 큰 영향을 주는 원소이지만, 가격이 매우 고가이므로 0.02중량 이하로 한정하기로 한다.Nickel is a representative element that is added to improve the high temperature properties, and when added, it is an element that greatly affects not only strength but also elongation and ductility at high temperatures, but is limited to 0.02 weight or less because the price is very expensive.

9) 알루미늄(Al) 0.040 중량% 이하9) Aluminum (Al) 0.040 wt% or less

알루미늄 함량이 높으면 오스테나이트 조대화를 유발하기 때문에 본 발명에서는 0.040 중량% 이하로 제한하였다.High aluminum content causes austenite coarsening, so it is limited to 0.040% by weight or less in the present invention.

10) 바나듐(V) 0.10~0.30 중량%10) Vanadium (V) 0.10 ~ 0.30 wt%

바나듐은 미세한 탄질화물을 석출시켜 재료의 강도를 향상시키기 때문에 첨가하였으며, 본 발명에서는 0.1~0.30 중량%로 한정하기로 한다.Vanadium was added because it precipitates fine carbonitrides to improve the strength of the material, in the present invention will be limited to 0.1 to 0.30% by weight.

11) 질소(N) 0.05~0.3 중량%11) Nitrogen (N) 0.05 ~ 0.3 wt%

질소는 비조질강 중에서, 알루미늄과 결합하여 질화물을 형성하게 되는데, 그 함유량이 0.05중량% 미만이면 충분한 질화물이 형성되지 않고, 0.3중량%를 초과하면 고용질소량이 증가하여 인성을 해치게 되므로 그 함유량은 0.05~0.3중량%로 제한하는 것이 바람직하다.Nitrogen combines with aluminum to form nitrides in the crude steel. If the content is less than 0.05% by weight, sufficient nitrides are not formed. If the content exceeds 0.3% by weight, the amount of solid solution nitrogen increases and the toughness is impaired. It is preferable to limit it to -0.3 weight%.

여기서, 상기와 같은 조성으로 이루어진 본 발명의 비조질강을 이용한 커넥팅 로드 제조 방법을 설명하면 다음과 같다.Here, a method of manufacturing a connecting rod using the non-coarse steel of the present invention having the composition as described above is as follows.

① 압연재 제조공정① Rolling material manufacturing process

철(Fe)을 주성분으로 하고, 여기에 로 조성된 소재를 용융시켜 용탕으로 만든 후, 탈산 및 탈황, 진공 탈가스 처리를 통한 청정과정을 거쳐 연속적인 주조공정을 통해 주조재로 제조한다.Iron (Fe) as a main component, and the material formed in the melt to make a molten, and then produced by casting through a continuous casting process through a clean process through deoxidation, desulfurization, vacuum degassing.

상기 주조재를 1100℃ 이상의 재가열하여 압연공정을 통해 압연재로 제조한다.The cast material is reheated at 1100 ° C. or higher to produce a rolled material through a rolling process.

② 단조공정 : 압연재를 1200℃ 이상으로 가열한 후 1100℃ 이상에서 단조성형을 실시하고, 이어 트리밍 가공을 한다.② Forging process: After the rolled material is heated to above 1200 ℃, perform forging molding at above 1100 ℃ and then trimming.

트리밍 후 제어냉각을 실시하는데, 1100℃에서 600℃ 근처까지 80~200℃/min의 냉각속도로 냉각을 하여 페라이트+펄라이트 2상 조직이 형성하여야 하며, 이에 따른 비조질강의 주요 강화기구인 고용강화 및 석출강화를 이룰 수 있다. After trimming, controlled cooling is carried out, and cooling is performed at a cooling rate of 80 ~ 200 ℃ / min from 1100 ℃ to around 600 ℃ to form ferrite + pearlite two-phase structure. And precipitation strengthening can be achieved.

단조공정 후, 커넥팅로드의 모습은 도 1과 같다.After the forging process, the appearance of the connecting rod is shown in FIG.

③ 가공공정 : 단조재를 선삭, 밀링, 드릴링 공정을 통해 요구하는 무게 및 사이즈를 맞추며, 크랭크 핀과 결합을 위해 커넥팅 로드의 대단부 내경에 노치를 주어 강제 파단을 실시한다.③ Machining process: Forging material is matched with the required weight and size through turning, milling and drilling process, and forcibly broken by giving notch to the inner diameter of the large end of the connecting rod for coupling with the crank pin.

파단된 커넥팅 로드는 일정한 압력에 의해 볼트를 체결하고, 최종 선삭, 밀링 등의 공정을 통해 가공 완성품을 제조하였으며, 그 최종 제조된 커넥팅 로드의 모습은 도 2와 같다.The broken connecting rod was fastened to a bolt by a constant pressure, and manufactured a finished product by a process such as final turning and milling, and the final manufactured connecting rod is shown in FIG. 2.

이하, 본 발명의 실시예를 비교예와 함께 더욱 상세하게 설명하겠는바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the embodiment of the present invention will be described in more detail with a comparative example, but the present invention is not limited to the following examples.

실시예Example

탄소(C) 0.35 중량%, 규소(Si) 0.70 중량%, 망간(Mn) 1.00 중량%, 인(P) 0.045 중량%, 황(S) 0.08 중량%, 크롬(Cr) 0.30중량%, 몰리브덴(Mo) 0.10 중량%, 니켈(Ni) 0.20 중량%, 알루미늄(Al) 0.040 중량%, 바나듐(V) 0.20 중량%, 질소(N) 0.1 중량%로 조성된 소재를 상기와 같이 압연재 제조공정, 단조공정(단조 온도 : 1100~1300 ℃, 냉각조건 : 공냉, 강제 공냉), 가공공정을 통하여 커넥팅 로드로 제조하였다.0.35 wt% carbon (C), 0.70 wt% silicon (Si), 1.00 wt% manganese (Mn), 0.045 wt% phosphorus (P), 0.08 wt% sulfur (S), 0.30 wt% chromium (Cr), molybdenum ( Mo) 0.10% by weight, nickel (Ni) 0.20% by weight, aluminum (Al) 0.040% by weight, vanadium (V) 0.20% by weight, nitrogen (N) 0.1% by weight of the composition as described above, Forging process (forging temperature: 1100 ~ 1300 ℃, cooling conditions: air cooling, forced air cooling), was manufactured by connecting rod through the processing process.

비교예Comparative example

탄소(C) 0.70 중량%, 규소(Si) 0.30 중량%, 망간(Mn) 0.50 중량%, 인(P) 0.045 중량%, 황(S) 0.05 중량%, 크롬(Cr) 0.20중량%, 몰리브덴(Mo) 0.10 중량%, 니켈(Ni) 0.50 중량%, 알루미늄(Al) 0.010 중량%, 바나듐(V) 0.30 중량%로 조성된 소재를 상기와 같이 압연재 제조공정, 단조공정, 가공공정을 통하여 커넥팅 로드로 제조하였다.0.70% by weight of carbon (C), 0.30% by weight of silicon (Si), 0.50% by weight of manganese (Mn), 0.045% by weight of phosphorus (P), 0.05% by weight of sulfur (S), 0.20% by weight of chromium (Cr), molybdenum ( Mo) 0.10% by weight, 0.50% by weight of nickel (Ni), 0.010% by weight of aluminum (Al), 0.30% by weight of vanadium (V) as described above through the rolling material manufacturing process, forging process, processing process Made by rod.

실험예1Experimental Example 1

압연재 제조 공정후, 실시예 및 비교예의 공시재 즉, 일정한 크기의 시험편용 판으로 된 공시재에 대한 물성을 통상의 장비를 이용하여 측정하였는 바, 그 결과는 아래의 표 4에 기재된 바와 같다.After the rolling material manufacturing process, the physical properties of the specimens of the Examples and Comparative Examples, that is, the specimens of the test specimen plate of a certain size were measured using a conventional equipment, and the results are shown in Table 4 below. .

Figure 112007081496784-PAT00004
Figure 112007081496784-PAT00004

위의 표 4에 기재된 내용은 압연재 상태에서 본 발명재와 기존재의 공시재 조건에 따른 기계적성질을 나타낸다.Table 4 above shows the mechanical properties according to the test material conditions of the present invention and the existing material in the rolled state.

공시재는 최적 단조 조건을 찾기 위해 가열 온도별, 냉각 조건별로 달리하여 평가하였으며, 본 발명재는 가열온도 1200℃ 급냉조건에서 피로강도에 영향을 주는 인장강도, 항복강도 및 항복비(YS/TS)가 높고, 파단분할성에 영향을 주는 연신율 및 충격값이 낮아 가장 양호한 조건이었다.The test materials were evaluated by different heating temperature and cooling conditions to find the optimum forging condition. The present invention has tensile strength, yield strength and yield ratio (YS / TS) which affect the fatigue strength at 1200 ℃ quenching condition. High elongation and low impact value affecting breaking splitability were the best conditions.

또한, 본 발명재는 기존재의 가장 양호 조건인 1200℃ 급냉조건에 비해 인장강도 약 6%, 항복강도 31.5%, 항복비 14% 이상 높음을 알 수 있었다.In addition, the present invention was found that the tensile strength of about 6%, yield strength 31.5%, yield ratio 14% or more higher than 1200 ℃ quenching conditions, the best condition of the existing material.

실험예2Experimental Example 2

압연재 제조 공정후, 실시예 및 비교예의 공시재 즉, 일정한 크기의 시험편용 판으로 된 공시재에 대한 미세조직을 전자 현미경을 통해 관찰하였는 바, 그 결과는 첨부한 도 3에 도시된 바와 같다.After the rolling material manufacturing process, the microstructure of the specimens of the Examples and Comparative Examples, that is, the specimens of the test specimen plate of a certain size was observed through an electron microscope, and the results are as shown in FIG. .

도 3에서, 본 발명재는 1200℃에서의 방냉 및 급냉조건에서의 미세조직과 기존재의 급냉조건에서의 미세조직이고, 냉각속도 차이에 따른 미세조직의 차이는 확연함을 알 수 있다.In Figure 3, the present invention is a microstructure in the cooling and quenching conditions at 1200 ℃ and the quenching conditions of the existing material, it can be seen that the difference in the microstructure according to the cooling rate difference.

급냉조건은 방냉조건 대비 결정립 크기가 미세화했으며, 페라이트 분율도 50% 이상 줄어 위의 표 4의 기계적성질 결과와 상응하고 있음을 알 수 있었다.In the quenching condition, the grain size was refined compared to the cooling condition, and the ferrite fraction was reduced by more than 50%, which corresponds to the mechanical property results of Table 4 above.

실험예3Experimental Example 3

압연재 제조 공정후, 실시예 및 비교예의 공시재 즉, 일정한 크기의 시험편용 판으로 된 공시재에 대한 인장압축 피로시험을 통상의 장비로 측정하였는 바, 그 결과는 첨부한 도 4의 그래프에 나타낸 바와 같다.After the rolling material manufacturing process, the tensile compressive fatigue test for the specimens of the Examples and Comparative Examples, that is, the specimens of the specimen plate of a certain size was measured by a conventional equipment, the results are shown in the graph of FIG. As shown.

도 4에서 보는 바와 같이, 압연재 공시재의 인장압축 피로시험결과로서, 실시예에 따른 본 발명재는 비교예에 따른 비교재에 비해 29% 피로강도 향상을 나타냄을 알 수 있었다.As shown in FIG. 4, as a result of the tensile compressive fatigue test of the rolled specimen, the present invention according to the embodiment was found to exhibit a 29% fatigue strength improvement compared to the comparative material according to the comparative example.

실험예4Experimental Example 4

압연재 제조 공정 및 단조공정후, 실시예 및 비교예의 단조재에 대한 기계적 성질을 통상의 장비를 이용하여 측정하였는 바, 그 결과는 아래의 표 5에 기재된 바와 같다.After the rolled material manufacturing process and the forging process, the mechanical properties of the forging materials of the Examples and Comparative Examples were measured using a conventional equipment, the results are as shown in Table 5 below.

Figure 112007081496784-PAT00005
Figure 112007081496784-PAT00005

위의 표 5은 표 4의 원소재에 대한 공시재 조건별 평가결과를 토대로 단조 공정 상에서 냉각 조건을 첨부한 도 5와 같이 달리하여 평가한 기계적성질 결과이다.Table 5 above is a mechanical property result evaluated differently as shown in Figure 5 attached to the cooling conditions in the forging process based on the evaluation results of the test materials conditions for the raw materials of Table 4.

실시예에 따른 본 발명재의 급냉조건은 공냉조건 대비 인장강도는 8%, 항복강도는 11% 높았으며, 기존재의 급냉조건 대비해서는 인장강도 14%, 항복강도는 50% 향상된 결과를 나타내어 압연재의 공시재 평가 결과와 일치하고 있음을 알 수 있었다.In the quenching condition of the present invention according to the embodiment, the tensile strength was 8%, the yield strength was 11% higher than the air cooling condition, and compared with the quenching condition of the existing material, the tensile strength was 14% and the yield strength was improved by 50%. The results were in good agreement with the evaluation results.

실험예5Experimental Example 5

압연재 제조 공정 및 단조공정후, 실시예 및 비교예의 단조재에 대한 조직을 관찰하였는 바, 그 결과는 첨부한 도 6의 사진에서 보는 바와 같다.After the rolled material manufacturing process and the forging process, the structure of the forging material of the Examples and Comparative Examples was observed, the results are as shown in the accompanying photo of FIG.

도 6은 단조후의 미세조직, 경도 및 페라이트 분율을 나타낸 결과로서, 본 발명재는 페라이트 함량이 기존재에 비해 많았지만 높은 V 함량에 따른 V(C,N)의 석출로 입내 페라이트 조직을 강화하여, 급냉, 공냉조건 모두 기존재에 비해 경도가 높았음을 알 수 있었고, 본 발명재의 급냉조직은 공냉조직에 비해 냉각속도가 빠름에 따라 결정립 미세화, 페라이트 분율 저하로 경도가 상승하여 위의 표 4와 같은 기계적성질 결과를 나타내었다. 6 is a result showing the microstructure, hardness and the ferrite fraction after forging, the present invention, but the ferrite content is higher than the existing material, but by strengthening the intraoral ferrite structure by the precipitation of V (C, N) according to the high V content, It was found that both the quenching and air-cooling conditions were higher in hardness than the conventional materials, and the quenching structure of the present invention had a higher cooling rate than the air-cooling structure, resulting in increased hardness due to grain refinement and lowering of ferrite fractions. The same mechanical properties were shown.

실험예6Experimental Example 6

실시예에 따른 본 발명재 급냉품과 비교예에 따른 기존재 급냉품의 파단분할 후, 커넥팅 로드의 가공완성품 파면을 관찰하였으며, 그 결과는 도 7의 사진에서 보는 바와 같다. After fracture of the present invention quenched product according to the embodiment and the existing quenched product according to the comparative example, the fracture surface of the finished workpiece of the connecting rod was observed, the results are as shown in the photo of FIG.

본 발명재는 파단 시작부와 종료부 모두 미세결정립에 따른 미세 벽개파면이 관찰되고 있으나, 기존재는 벽개파면의 크기가 크고, 파단 종료부는 결정입계를 따라 파괴속도가 빠를시에 나타나는 미세 연성파면이 관찰되고 있다. In the present invention, the micro cleavage wave surface according to the microcrystalline grains is observed at both the start and end portions of the break, but the existing material has a large cleavage wave surface, and the fine end wave fracture appears when the break end portion is fast along the grain boundary. It is becoming.

이는 V, Si 성분의 증가로 V(C,N) 석출에 따른 결정립 미세화와 입내 페라이트 조직강화, 입계조직 취화로 파단시 미세 벽개파면이 형성됨에 따른 것이다. This is due to the formation of a fine cleavage surface at the time of breakage due to the grain refinement due to V (C, N) precipitation, the enhancement of intragranular ferrite structure and the embrittlement of grain boundary due to the increase of V and Si components.

실험예7Experimental Example 7

실시예 및 비교예에 따른 커넥팅 로드에 대한 진원도를 측정하였으며, 그 결과는 표 6 및 도 8에 도시된 바와 같다.The roundness of the connecting rod according to the embodiment and the comparative example was measured, and the results are shown in Table 6 and FIG. 8.

Figure 112007081496784-PAT00006
Figure 112007081496784-PAT00006

위의 표 6은 가공 공정의 대단부 보링(a)~파단후 볼트 조립공정(d) 사이의 진원도 결과를 보여준다.Table 6 above shows the roundness results between the boring end (a) of the machining process and the bolt assembly process (d) after breaking.

각 공정상의 편차값이 적을수록 진원도는 좋다고 할 수 있다.The smaller the deviation value in each process, the better the roundness.

본 발명재 급냉품은 상기의 표 6에서 보듯이, 개발재 공냉품과 기존재 급냉품 대비 동등 이상의 진원도를 나타냄을 알 수 있었다.As shown in Table 6, the present invention material quenching product was found to exhibit a roundness equal to or higher than that of the development material air-cooling product and the existing material quenching product.

또한, 도 8에서 보듯이 개발재 급냉품이 기존재 급냉품 대비 파단후 진원도가 적었으며, 편차가 적어 양호한 양산성을 가질 수 있음으로 판단된다.In addition, as shown in FIG. 8, the developed material quenched product had a smaller roundness after fracture than the existing material quenched product, and it is judged that the developed product quenched product may have good mass productivity.

파단 분할성은 파단하중, 하중차, 시차가 작을수록 소성변형이 일어나기 어려우므로 파단이 용이하며, 파단시차가 작을수록 대단부 볼트홀 양단에서의 파단이 거의 동시에 일어나므로 파단하중의 절대값 및 하중차도 낮아진다고 알려져 있다.Fracture splitability is easy because plastic deformation is less likely to occur when the break load, load difference, and parallax are small.Because the break time is small, fracture occurs at both ends of the bolt hole at almost the same time. It is known to be low.

이러한 시험결과로 기존재의 분할조건으로 파단분할성을 평가했음에도 본 발명재 기존재 대비 동등 이상의 결과를 나타내어 본 발명재에 적합한 분할조건을 선정한다면 소성변형이 발생하지 않은 진원에 가까운 대단부가 형성됨은 물론, 로드-캡 좌면 미스매치(mismatch) 등의 불량 가능성이 줄어드리라 판단된다.As a result of this test, even if the fracture splitability was evaluated by the splitting condition of the existing material, if the splitting condition suitable for the present invention is selected by showing the result equal to or greater than that of the existing material of the present invention, the large end near the roundness without the plastic deformation is formed. Of course, it is determined that the possibility of failure such as a rod-cap seat mismatch is reduced.

도 1은 커넥팅 로드의 단조상태를 나타내는 사진,1 is a photograph showing the forging state of the connecting rod,

도 2는 커넥팅 로드의 가공완성품을 나타내는 사진,2 is a photograph showing the finished product of the connecting rod,

도 3은 실시예에 따른 본 발명재와 비교예에 따른 기존재의 압연재 공시재 미세조직 사진,Figure 3 is a microstructure photograph of the rolling material specimens of the existing material according to the present invention and the comparative example according to the embodiment,

도 4는 실시예에 따른 본 발명재와 비교예에 따른 기존재의 압연재 공시재의 인장 압축 피로시험 결과를 나타내는 그래프,Figure 4 is a graph showing the tensile compressive fatigue test results of the rolling material specimens of the present invention and the existing material according to the comparative example according to the embodiment,

도 5는 실시예에 따른 단조재의 제조 공정을 설명하는 개략도,5 is a schematic diagram illustrating a manufacturing process of a forging material according to an embodiment;

도 6은 실시예에 따른 본 발명재와 비교예에 따른 기존재의 단조재 조직을 나타내는 사진,Figure 6 is a photograph showing the forging material structure of the present invention according to the embodiment and the existing material according to the comparative example,

도 7은 본 발명재에 의한 파단 분할 커넥팅 로드의 파면과, 비교예에 따른 파단 분할 커넥팅 로드의 파면을 비교한 사진,7 is a photograph comparing the wavefront of the fracture split connecting rod according to the present invention and the fracture surface of the fracture split connecting rod according to the comparative example;

도 8은 본 발명재에 의한 파단 분할 커넥팅 로드와, 비교예에 따른 파단 분할 커넥팅 로드의 진원도를 비교한 그래프.Figure 8 is a graph comparing the roundness of the broken split connecting rod according to the present invention and the broken split connecting rod according to the comparative example.

Claims (2)

철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.30~0.40 중량%, 규소(Si) 0.50~0.80 중량%, 망간(Mn) 0.90~1.20 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.06~0.10 중량%, 크롬(Cr) 0.30중량% 이하, 몰리브덴(Mo) 0.10 중량% 이하, 니켈(Ni) 0.20 중량% 이하, 알루미늄(Al) 0.040 중량% 이하, 바나듐(V) 0.10~0.30 중량%, 질소(N) 0.05~0.3 중량%가 함유된 것을 특징으로 하는 고강도 비조질강 조성물.Iron (Fe) as a main component, 0.30 to 0.40% by weight of carbon (C), 0.50 to 0.80% by weight of silicon (Si), 0.90 to 1.20% by weight of manganese (Mn), 0.045% by weight or less of phosphorus (P), Sulfur (S) 0.06 to 0.10 wt%, Chromium (Cr) 0.30 wt% or less, Molybdenum (Mo) 0.10 wt% or less, Nickel (Ni) 0.20 wt% or less, Aluminum (Al) 0.040 wt% or less, Vanadium (V) 0.10 to 0.30% by weight, 0.05 to 0.3% by weight of nitrogen (N) is characterized in that the high-strength amorphous steel composition. 철(Fe)을 주성분으로 하고, 여기에 탄소(C) 0.30~0.40 중량%, 규소(Si) 0.50~0.80 중량%, 망간(Mn) 0.90~1.20 중량%, 인(P) 0.045 중량% 이하, 황(S) 0.06~0.10 중량%, 크롬(Cr) 0.30중량% 이하, 몰리브덴(Mo) 0.10 중량% 이하, 니켈(Ni) 0.20 중량% 이하, 알루미늄(Al) 0.040 중량% 이하, 바나듐(V) 0.10~0.30 중량%, 질소(N) 0.05~0.3 중량%로 조성된 소재를 용융시켜 용탕으로 만든 후, 탈산 및 탈황, 진공 탈가스 처리를 통한 청정과정을 거쳐 연속적인 주조공정을 통해 주조재로 제조하는 단계와; Iron (Fe) as a main component, 0.30 to 0.40% by weight of carbon (C), 0.50 to 0.80% by weight of silicon (Si), 0.90 to 1.20% by weight of manganese (Mn), 0.045% by weight or less of phosphorus (P), Sulfur (S) 0.06 to 0.10 wt%, Chromium (Cr) 0.30 wt% or less, Molybdenum (Mo) 0.10 wt% or less, Nickel (Ni) 0.20 wt% or less, Aluminum (Al) 0.040 wt% or less, Vanadium (V) Melt the material composed of 0.10 ~ 0.30% by weight and 0.05 ~ 0.3% by weight of nitrogen (N) to make molten metal, and then clean it through deoxidation, desulfurization and vacuum degassing to cast material through continuous casting process. Manufacturing step; 상기 주조재를 1100℃ 이상의 재가열하여 압연공정을 통해 압연재로 제조하는 단계와;Reheating the cast material to 1100 ° C. or more to produce a rolled material through a rolling process; 상기 압연재를 1200℃ 이상으로 재가열한 후, 1100℃ 이상에서 단조성형을 실시한 다음, 트리밍 가공을 실시하는 단계와;Reheating the rolled material to 1200 ° C. or higher, then performing forging molding at 1100 ° C. or higher, and then performing trimming processing; 상기 트리밍 가공후 1100℃에서 600℃ 근처까지 80~200℃/min의 냉각속도로 냉각을 하여, 페라이트+펄라이트 2상 조직이 형성되도록 제어냉각을 실시하는 단계와; Cooling to 80 to 200 ° C./min from 1100 ° C. to 600 ° C. after the trimming, and performing controlled cooling to form a ferrite + pearlite two-phase structure; 제어냉각된 단조소재를 커넥팅 로드로 가공하되, 커넥팅 로드의 대단부 내경에 노치를 주어 강제 파단을 실시하여 최종 커넥팅 로드로 제조하는 단계;Processing the control-cooled forged material into the connecting rod, but notifying the inner diameter of the large end of the connecting rod to perform a forced fracture to manufacture the final connecting rod; 를 포함하여 이루어진 것을 특징으로 하는 고강도 비조질강 조성물을 이용한 파단분할 커넥팅로드 제조방법.Breaking connecting rod manufacturing method using a high-strength non-coarse steel composition, characterized in that made.
KR1020070115813A 2007-11-14 2007-11-14 High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same KR100952010B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070115813A KR100952010B1 (en) 2007-11-14 2007-11-14 High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070115813A KR100952010B1 (en) 2007-11-14 2007-11-14 High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same

Publications (2)

Publication Number Publication Date
KR20090049642A true KR20090049642A (en) 2009-05-19
KR100952010B1 KR100952010B1 (en) 2010-04-08

Family

ID=40858298

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070115813A KR100952010B1 (en) 2007-11-14 2007-11-14 High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same

Country Status (1)

Country Link
KR (1) KR100952010B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000409A (en) * 2012-06-22 2014-01-03 현대자동차주식회사 Non-nomarlized steel composition, hot forging parts with improved strength comprising the same and method for manufacturing thereof
CN105463318A (en) * 2015-11-27 2016-04-06 北大方正集团有限公司 Non-quenched and non-tempered steel, production method of non-quenched and non-tempered steel and cracking connecting rod manufactured through non-quenched and non-tempered steel
CN111286670A (en) * 2020-02-17 2020-06-16 宝钢特钢韶关有限公司 Medium-carbon non-quenched and tempered steel and preparation process thereof, and connecting rod and preparation process thereof
CN117259662A (en) * 2023-11-22 2023-12-22 江苏永钢集团有限公司 Forging and cooling control process for medium-carbon microalloy non-quenched and tempered expansion connecting rod

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960006455B1 (en) * 1993-11-11 1996-05-16 포항종합제철주식회사 Making method of high strength high toughness hot forging steel with no-thermal refining
JPH09111412A (en) * 1995-10-19 1997-04-28 Sumitomo Metal Ind Ltd Non-heat treated steel having high strength, high yield ratio, and low ductility
KR100232722B1 (en) * 1996-01-24 1999-12-01 유성용 Height tension nut making method of hot forging
FR2774098B1 (en) * 1998-01-28 2001-08-03 Ascometal Sa STEEL AND PROCESS FOR THE MANUFACTURE OF SECABLE MECHANICAL PARTS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000409A (en) * 2012-06-22 2014-01-03 현대자동차주식회사 Non-nomarlized steel composition, hot forging parts with improved strength comprising the same and method for manufacturing thereof
CN105463318A (en) * 2015-11-27 2016-04-06 北大方正集团有限公司 Non-quenched and non-tempered steel, production method of non-quenched and non-tempered steel and cracking connecting rod manufactured through non-quenched and non-tempered steel
CN105463318B (en) * 2015-11-27 2017-11-03 苏州苏信特钢有限公司 Non-hardened and tempered steel, its production method and the cracking connecting rod that rises using its manufacture
CN111286670A (en) * 2020-02-17 2020-06-16 宝钢特钢韶关有限公司 Medium-carbon non-quenched and tempered steel and preparation process thereof, and connecting rod and preparation process thereof
CN117259662A (en) * 2023-11-22 2023-12-22 江苏永钢集团有限公司 Forging and cooling control process for medium-carbon microalloy non-quenched and tempered expansion connecting rod
CN117259662B (en) * 2023-11-22 2024-02-06 江苏永钢集团有限公司 Forging and cooling control process for medium-carbon microalloy non-quenched and tempered expansion connecting rod

Also Published As

Publication number Publication date
KR100952010B1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
AU2007294317B2 (en) Steel, and processing method for the production of higher-strength fracture-splittable machine components
CA2980012C (en) X80 pipeline steel with good strain-aging performance, pipeline tube and method for producing same
WO2019128286A1 (en) Method for fabricating low-cost, short-production-cycle wear-resistant steel
CN105154774A (en) Free-cutting medium-carbon non-quenching and tempering steel for fracture splitting connecting rod and manufacturing method thereof
CN111286670B (en) Medium-carbon non-quenched and tempered steel and preparation process thereof, and connecting rod and preparation process thereof
CN101892424B (en) Medium carbon non-hardened and tempered steel for fractured connecting rod
CN106939391A (en) A kind of Ca microalloyings easy-cutting high strength fractured connecting rod steel and manufacture method
CN104775081A (en) High-carbon non-tempered steel for breaking connecting rod and manufacturing method thereof
CN112981237B (en) Steel for ball cage type universal joint retainer and production method thereof
CN113862576B (en) Non-quenched and tempered steel, crankshaft and production method thereof
CN114752849B (en) High-strength and high-toughness free-cutting non-quenched and tempered round steel and manufacturing method thereof
CN110551878A (en) Ultrahigh-strength ultrahigh-toughness low-density dual-phase layered steel plate and preparation method thereof
WO2016063224A1 (en) An ultra-high strength thermo-mechanically processed steel
KR100952010B1 (en) High Strength Microalloyed Steel composition for Connecting Rod and Manufacturing of Fracture Splittable connecting rods using the same
CN111690876A (en) High-strength wire rod for bolt and production method thereof
US20180245172A1 (en) Age-hardenable steel, and method for manufacturing components using age-hardenable steel
JP5050515B2 (en) Non-tempered steel containing V for crankshaft
CN115125447A (en) Non-quenched and tempered steel for Nb-V composite reinforced high-carbon fractured connecting rod, produced fractured connecting rod and forging and cooling control process
CN115074629A (en) Non-quenched and tempered steel for Nb-Ti-V composite reinforced high-carbon expansion-fracture connecting rod, expansion-fracture connecting rod produced from non-quenched and tempered steel and forging and cooling control process
CN114231703A (en) High-strength simplified annealing cold forging steel production method
JP5233848B2 (en) Non-tempered steel bar for direct cutting
KR101185302B1 (en) High strength non-heat treated steel for forging separate connecting rod and method of manufacturing the non-heat treated steel
CN115029640B (en) Steel for Te microalloying medium carbon expansion fracture connecting rod and manufacturing method and application thereof
CN112342469B (en) High-strength and high-toughness steel for petroleum hoisting ring and preparation method thereof
CN117512448A (en) Bainite type non-quenched and tempered steel for heavy commercial vehicle steering knuckle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 10