KR20090048618A - 광통신 시스템 - Google Patents

광통신 시스템 Download PDF

Info

Publication number
KR20090048618A
KR20090048618A KR1020097004543A KR20097004543A KR20090048618A KR 20090048618 A KR20090048618 A KR 20090048618A KR 1020097004543 A KR1020097004543 A KR 1020097004543A KR 20097004543 A KR20097004543 A KR 20097004543A KR 20090048618 A KR20090048618 A KR 20090048618A
Authority
KR
South Korea
Prior art keywords
optical
port
ports
add
network
Prior art date
Application number
KR1020097004543A
Other languages
English (en)
Inventor
얼 더블유. 스미스
윌리엄 제이. 미니스칼코
테리 에이. 도르슈너
Original Assignee
레이티언 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레이티언 캄파니 filed Critical 레이티언 캄파니
Publication of KR20090048618A publication Critical patent/KR20090048618A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29313Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide characterised by means for controlling the position or direction of light incident to or leaving the diffractive element, e.g. for varying the wavelength response
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29382Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM including at least adding or dropping a signal, i.e. passing the majority of signals
    • G02B6/29383Adding and dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • G02B6/29386Interleaving or deinterleaving, i.e. separating or mixing subsets of optical signals, e.g. combining even and odd channels into a single optical signal
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3586Control or adjustment details, e.g. calibrating
    • G02B6/3588Control or adjustment details, e.g. calibrating of the processed beams, i.e. controlling during switching of orientation, alignment, or beam propagation properties such as intensity, size or shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

노드(node)들을 구비하는 광통신 시스템은 네트워크(network)에 있는 다른 노드들로부터 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 네트워크 인풋(input) 포트(port), 상기 네트워크에 있는 목적지(destination) 노드들에 연결시키는 네트워크 아웃풋(output) 포트, 상기 네트워크에 있는 다른 노드들에 전송하기 위해 로컬(local) 소스(source)로부터 상기 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 애드(add) 포트 및 로컬 프로세싱(processing)을 위해 상기 네트워크에 있는 다른 노드들로부터 광학 에너지를 수신하는 드롭(drop) 노드를 구비하는 애드/드롭 장치를 포함한다. 파장 디멀티플렉서(demultiplexer)는 상기 네트워크 인풋 포트로부터 수신한 상기 복수의 파장들을 분리하기 위해 포함되고, 파장 멀티플렉서(multiplexer)는 상기 네트워크에 있는 다른 노드들에의 전송을 위한 상기 네트워크 아웃풋 포트에 전송하기 위해 전기적으로 조절되는 빔(beam) 조정기(steerer)로부터 수신한 상기 복수의 파장들을 결합하기 위해 포함된다.

Description

광통신 시스템{OPTICAL COMMUNICATION SYSTEM}
본 발명은 일반적으로 광통신 시스템에 관한 것으로, 보다 상세하게는 광통신 시스템에서 사용되는 광 애드/드롭 멀티플렉서(optical add/drop multiplexer, OADM)에 관한 것이다.
관련 분야에서 알려진 바와 같이, 광통신 시스템의 사용은 점점 증가하고 있다. 광통신 시스템에서, 정보(information)는 광학 에너지로 변조(modulation)되는데, 상기 광학 에너지는 광케이블 또는 광섬유케이블을 통해 통신시스템의 노드(node)와 노드사이에 전송된다. 광통신 시스템은 노드들의 네트워크(network)로 구성된다. 정보는 광섬유를 사용하여 노드들에서 네트워크에 입력되고 네트워크로부터 제거되며, 노드들 사이에 전송되기도 한다. 따라서 네트워크 노드들은 상기 두 가지의 일반적인 기능을 수행하기 위해 두 개의 일반적인 종류의 포트(port)들을 갖는다. 첫 번째 종류의 포트는 상기 시스템에 정보를 입력하고 상기 시스템으로부터 정보를 제거하기 위한 접근(애드(add)/드롭(drop)) 포트들이고, 두 번째 종류의 포트는 상기 시스템에서 주위의 노드들에게 정보를 전달하고 주위의 노드들로부터 정보를 전달받기 위한 전송 포트들이다.
관련 분야에서 알려진 바와 같이, 고밀도 파장 분할 다중화(Dense Wavelength Division Multiplexed, DWDM) 광통신 시스템은 하나의 광섬유로 많은 수(일반적으로 10 내지 100)의 독립적인 광학 채널들을 전송한다. 각각의 광학 채널은 특정 파장을 갖는 광파에 의해 전송된다. 사용되는 파장들은 국제전기통신연합-전기통신표준부문(International Telecommunications Union - Telecommunications Standardization sector, ITU-TSS)에 명기되어 있다. DWDM 네트워크에서, 광섬유는 많은 노드들을 연결하는데, 각각의 노드에서 개별적인 광섬유에 있는 광학 채널들 중에서 단지 일부분(20-30%)의 채널만이 드롭(drop), 애드(add) 또는 리플레이스(replace)를 필요로 한다. 노드에서 광학 채널을 드롭하는 것은 상기 로컬(local) 노드에서의 처리를 위해 인접한 노드들로부터의 정보를 전송하는 전송광섬유로부터 상기 채널을 제거하는 것을 필요로 한다. 광학 채널을 애드하는 것은 인접한 노드들에게 정보를 전송하는 전송광섬유에 로컬 노드에서 생성된 새로운 채널을 입력하는 것을 필요로 한다. 단지 특정 파장들만이 사용될 수 있기 때문에, 애드 및 드롭 동작은 동일한 파장에 대해 수행될 수 있을 것이다. 채널을 리플레이스하는 것은 동일 파장에서 수신한 채널의 드롭 및 인접한 노드에의 전송을 위한 새로운 채널의 애드로 구성된다.
또한 관련 분야에서 알려진 바와 같이, 광통신 시스템에서 노드들은 종종 애드/드롭 멀티플렉서(ADM)들을 포함한다. 노드에 있는 ADM은 상기 설명한 애드, 드롭 및 리플레이스 기능을 수행할 수 있다. 이러한 기능들을 수행하기 위해 가능한 한 가지 방안은, 노드로 수신되는 모든 채널들 각각을 광학 도메인(domain)에서 전기적 도메인으로 전환(conversion)하고, 다시 노드에서 전송되는 각각의 채널을 전기적 도메인에서 광학 도메인으로 전환함으로써 수신되는 모든 채널들을 종료시키는 것이다. 모든 채널들을 종료시키는 것으로 ADM을 구현하는 것은, 멀리 떨어져 있는 노드를 위한 채널이고 로컬 노드에서의 전기적인 처리를 필요로 하지 않는 채널이라 할지라도 각각의 채널에 대해 비싸고 높은 대역폭의 장치 세트를 필요로 하므로 비용이 많이 든다.
관련 분야에서 알려진 바와 같이, 광 애드/드롭 멀트플렉서(optical add/drop multiplexer, OADM)는 채널들 중에서 일부의 채널은 드롭, 애드 또는 리플레이스가 되도록 허용하고 멀리 떨어져 있는 노드들을 위한 채널들은 전기적인 전환 없이 로컬 노드를 통하여 익스프레스(express)시킴으로써 상당한 비용을 줄일 수 있다. 상기 익스프레스 채널들은 광학 도메인으로 남아 있으며 전기적 도메인에서의 처리를 필요로 하지 않는다. OADM은 로컬 노드 내부에서의 연결을 위한 광섬유에 연결되어 있는 애드 및 드롭 포트들(클라이언트 인터페이스(client interface)라고도 함)을 통해 상기 전송 시스템에 채널들을 애드하고 전송시스템으로부터 채널들을 드롭한다. 비용이 적게 들고, 애드, 드롭 또는 익스프레스될 채널들을 재구성하기 위해 비싼 수동 조작을 필요로 하지 않으며, 원격 전기적 컨트롤 하에 임의의 광섬유에 임의의 광학 채널을 연결할 수 있는 실용적(practical)이고 유연적(flexible)이며 동적인(dynamic) OADM에 대한 요구가 있다. 또한, 상기와 같은 OADM은 내재된 광성능 모니터링(optical performance monitoring, OPM)을 제공하는 것이 바람직하다. 현재 제공되고 있는 OPM은 OADM의 서비스를 방해함이 없이 다양한 광학 채널들의 양호도를 나타내며, 서비스 품질 보증의 중요한 요인이 된 다. 또한, 상기와 같은 OADM은 내재된 멀티캐스팅(multicasting)(많은 출력 방향으로 하나의 광학 채널을 보내는 것) 및 시스템 안정성의 증대를 위해 광보호 스위칭(optical protection switching)을 지원하는 것이 바람직하다.
또한 관련 분야에서 알려진 바와 같이, 여러 가지 종류의 OADM들이 사용되고 있다. 그 중 한 종류의 OADM은 고정형 OADM(fixed OADM)이다. 고정형 OADM은 현재 사용되고 있으며 초기 비용이 적게 든다. 그러나 고정형 OADM은 유연성이 없으므로 원하는 채널이 애드, 드롭 또는 노드를 통과할 수 있도록 채널들을 구성하기 위해 비싼 수동 조작을 필요로 한다. 가변형 OADM(reconfigurable OADM, ROADM)은 최근에 그 사용이 점점 증가하고 있다. ROADM에서는 채널들을 원격에서 전기적으로 재구성할 수 있기 때문에 수동 조작이 제거될 수 있다. 그러나 특정 파장은 특정 광섬유에서만 입력되거나 출력될 수 있다. 광학 채널과 상기 채널에 의해 사용되는 파장 사이의 상기 일대일 대응관계는, 원격 구성이라는 장점을 이용하기 위해 비싼 여분의 애드/드롭 송수신기의 재배치뿐만 아니라 시스템에 있는 각각의 채널에 대해 각각의 노드에 애드/드롭 포트를 필요로 한다. 광학 채널의 수가 100이 되면, 100개의 드롭 포트들 및 100개의 애드 포트들의 구비 및 관리에 대한 요구는 상당한 비용 및 광섬유 관리 문제를 야기한다. 동적이고(dynamic) 유연한(flexible) OADM은 원격 전기적 컨트롤 하에 시스템에 있는 임의의 광학 채널을 노드에 있는 임의의 애드 또는 드롭 광섬유에 연결시킬 수 있기 때문에 상기의 요구조건들을 만족한다. 따라서 동적이고 유연한 OADM은 드롭 또는 애드되는 채널들의 수만큼의 드롭 및 애드 포트들만을 필요로 한다. 그러나 종래의 동적 OADM 디자인은 매우 비쌌 고, 비싼 광증폭기들의 부가 없이 사용되는 시스템에 매우 많은 손실을 야기하였다. 더욱이, 내재된 현재 서비스되고 있는 OPM을 제공하는 디자인은 존재하지 않는다.
상기 간략히 설명한 바와 같이, 또 다른 타입의 OADM은 ROADM이다. ROADM은 노드에서 애드 또는 드롭될 채널들을 전기적으로 변경하기 위해 원격으로 조절될 수 있다. 여기서, ROADM은 시스템에 있는 임의의 채널(파장)을 애드 또는 드롭할 수 있으나, 각각의 채널은 미리 정해진 애드 또는 드롭 포트를 통해 들어가거나 나와야 하는 장치로 정의된다. 따라서 ROADM은 유연성(flexibility)이 부족하고, 시스템에 있는 모든 파장에 대해 애드/드롭 포트를 필요로 한다. 시스템에 있는 파장들(즉, 채널들)의 수가 20 내지 30 이상으로 증가하면 ROADM의 비용, 크기 및 광섬유 관리 문제는 심각해진다. 장거리 고밀도 파장 분할 다중화(long-haul DWDM) 시스템에서는 이미 상기 수준을 넘어섰고, 대도시 시스템(metropolitan system)에서는 곧 상기 수준에 도달할 것이다. ROADM의 또 다른 단점은, 특정 파장이 노드에서 생성되고 종료되기 이전에 노드에서 상기 특정 파장을 위한 송수신기를 장착하기 위해 기술자들이 여전히 필요하다는 것이다. 상기 파장이 상기 노드에서 언제 필요하게 될 것인지를 예상하여 상당한 양의 장치들을 미리 배치하는 것은 감당할 수 없는 비용을 야기한다.
본 발명에 따르면, 인접하는 노드로부터 광학 채널들을 수신하는 네트워크(network) 인풋(input) 포트(port), 광학 채널들을 인접하는 노드들에게 전송하는 네트워크 아웃풋(output) 포트, 상기 인접하는 노드에 정보를 입력하는 애드(add) 포트 및 상기 인접하는 노드로부터의 정보를 제거하는 드롭(drop) 포트를 포함하는 광 애드/드롭 멀티플렉서 장치가 제공된다. 상기 장치는 상기 네트워크 인풋 포트에서의 광학 에너지 및 상기 애드 포트들에서의 광학 에너지의 복수의 채널들을 수신하여, 상기 네트워크 인풋 포트에서의 선택된 채널들의 상기 광학 에너지를 상기 장치를 통한 전송을 제공하기 위한 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트로 전달하고, 상기 애드 포트로부터의 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 포함한다.
일 실시예에 있어서, 선택적으로 상기 광학 채널들을 전달하기 위해 사용되는 상기 빔 조정기는 광학 위상 배열(optical phased array)을 포함한다.
일 실시예에 있어서, 애드/드롭 노드를 포함하는 광통신 시스템이 제공된다. 상기 애드/드롭 노드는 시스템에 있는 인접한 노드들로부터 광학 정보를 수신하는 네트워크 또는 시스템 인풋 포트들, 상기 시스템에 있는 목적지 노드들에 연결시키는 네트워크 또는 시스템 아웃풋 포트들, 추가적인 광학 채널들을 상기 시스템에 연결시키는 애드 포트들 및 상기 전송 네트워크로부터 광학 채널들을 제거하는 드롭 포트들을 포함한다. 상기 통신 시스템은 네트워크 또는 시스템 인풋 포트에서의 광학 에너지 및 애드 포트들로부터의 광학 에너지를 수신하여, 상기 네트워크 또는 시스템 인풋 포트에 입사하는 상기 광학 에너지를 선택적으로 네트워크 또는 시스템 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트에서의 광학 에너지를 네트워크 또는 시스템 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔 조정기를 포함한다.
일 실시예에 있어서, 애드/드롭 노드를 포함하는 광통신 시스템이 제공된다. 상기 애드/드롭 노드는 네트워크에 있는 다른 노드들로부터 복수의 상이한 광파장들을 갖는 광학 에너지를 수신하는 네트워크 또는 시스템 인풋 포트, 상기 네트워크에 있는 목적지 노드들에 연결시키는 네트워크 또는 시스템 아웃풋 포트, 상기 네트워크에 입력하기 위해 복수의 상이한 광파장들을 갖는 광학 에너지를 수신하는 애드 포트들 및 상기 네트워크로부터의 광학 에너지를 지역적으로 사용가능하게 하는 드롭 포트를 포함한다. 또한, 상기 네트워크 또는 시스템 인풋 포트에서의 상기 복수의 상이한 광파장들을 갖는 상기 광학 에너지 및 상기 애드 포트들로부터의 상기 복수의 상이한 광파장들을 갖는 상기 광학 에너지를 수신하여, 상기 네트워크 또는 시스템 인풋 포트에서의 상기 복수의 상이한 광파장들을 갖는 상기 광학 에너지를 선택적으로 상기 네트워크 또는 시스템 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트로부터의 상기 복수의 상이한 광파장들을 갖는 상기 광학 에너지를 상기 네트워크 또는 시스템 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔 조정기가 제공된다.
따라서 본 발명과 함께, 필수적인 기능들을 포함하면서도 상대적으로 비싸지 않은 고정형 OADM(fixed OADM)의 비용을 갖는 동적이고(dynamic) 유연한(flexible) OADM이 제공된다. 상기 저비용은 OPA의 자기 조절 능력에 의해 가능하게 되는 줄어든 전체적인 오차 허용 범위와 함께, 상기 OPA를 제작하기 위한 성숙된 반도체 및 LCD 처리 기술의 사용의 결과이다. 또한, 본 발명에 따른 상기 OADM은 고정형 OADM에 비해 상대적으로 삽입(insertion) 손실이 적으므로 비싼 광학 증폭기들의 필요성을 경감시켜준다. 본 발명에 따른 상기 OADM은 광학 교차 연결(cross-connect)을 갖는 파장 멀티플렉서(multiplexer)/디멀티플렉서(demultiplexer)의 기능을 내재하고 있다. 본 발명의 일 실시예에 있어서, 상기 파장 멀티플렉서/디멀티플렉서는 매우 적은 비용으로 높은 처리량 및 낮은 편극 민감도를 제공하기 위해 에쉘 회절 격자(Echelle diffraction grating) 묶음(bulk)을 사용한다. 상기 광학 교차 연결은 개별적인 광학 채널들에 대응하는, 상기 OADM에 인가된 광학 에너지 빔들을 조정하기 위해 광학 위상 배열(optical phased array, OPA)을 사용한다. 상기 OPA는 광학 에너지(즉, 빛) 빔들의 안정적이고, 정확한 오픈 루프(open-loop) 조정을 제공하고, 상기 OPA는 전기적인 렌즈 및 빔 분리기로 동작할 수도 있으므로 MEMS(micro electro-mechanical systems) 기반 장치들보다 뛰어나다. OADM 대신에 MEMS를 사용하려는 시도들이 있었으나, 상기 시스템들의 성공적인 상업화는 되지 못하고 있다. 상기 OPA의 전기적으로 조절 가능한 렌즈 기능은 자유롭게 전파되는 빔들 및 광섬유들 사이에 광파 신호들의 연결을 최적화 하고 조절하는 것을 지원한다. 상기 OPA의 빔 분리 기능은 모니터링 목적을 위해 광학 채널들로부터 일 부분의 신호 전력을 광학 탐지기로 전달함으로써, 서비스되는 OPM을 가능하게 한다. 상기 OPA의 이러한 능력은 상기 장치가 광학 멀티캐스팅(multicasting)을 위해 채널을 일대다로 산개(fanout)시키는 것을 가능하게 한다. 또한, OPA 기반 장치들은 3차원 MEMS에서 필요한 폐루프(closed-loop) 조절을 필요로 하지 않고, 2차원 MEMS보다 완곡한 정렬 오차 허용 범위를 가지며, 임의의 MEMS 기반 장치보다 높은 광학 전력 관리 능력을 갖는다.
본 발명은 가장 복잡하고 기능이 많은 동적(dynamic) OADM으로 설명되지만, 정적(static) OADM, 가변형(reconfigurable) OADM 및 모든 간단한 OADM 종류들에도 적용될 수 있다. 상기 OPA의 이와 같은 사용은, 아래에서 설명될 애드(add)/드롭(drop)/익스프레스(express) 및 광성능 모니터링(optical performance monitoring) 기능들을 통합함으로써, 배경기술에서 설명한 스위칭(예를 들면, 광학 교차 연결들) 기능을 확장한다. 상기 멀티플렉싱/디멀티플렉싱 관련 기능들의 추가는 스위칭을 위해 사용되는 디자인과는 완전히 상이한 디자인을 필요로 한다.
본 발명의 하나 또는 둘 이상의 실시예들의 구체적인 내용들은 도면들 및 아래의 발명의 상세한 설명에서 설명된다. 본 발명의 다른 특징들, 목적들 및 장점들은 발명의 상세한 설명, 도면들 및 특허 청구 범위로부터 명백할 것이다.
본 발명 자체는 물론 앞에서 설명한 본 발명의 특징들은 하기 도면들에 대한 아래의 자세한 설명에 의해 보다 잘 이해될 수 있을 것이다.
도 1은 본 발명에 따른 광통신 시스템의 개략적인 스케치이다.
도 2는 본 발명에 따른 도 1의 시스템의 노드(node)들에서 사용되는 광 애드 /드롭 멀티플렉서(optical add/drop multiplexer, OADM)의 개략적인 스케치이다.
도 2A는 도 2의 OADM에서 사용되는 런처(launcher)를 나타낸다.
도 2B는 도 2의 OADM에서 사용되는 빔(beam) 조정 시스템을 나타낸다.
도 3A 및 3B는 각각 도 2의 OADM의 애드 동작을 나타내는 평면도 및 측면도이다.
도 4A 및 4B는 각각 도 2의 OADM의 드롭 동작을 나타내는 평면도 및 측면도이다.
도 5A 및 5B는 각각 도 2의 OADM의 익스프레스 동작을 나타내는 평면도 및 측면도이다.
도 6A 및 6B는 각각 도 2의 OADM의 애드, 드롭 및 익스프레스의 결합된 동작을 나타내는 평면도 및 측면도이다.
도 7은 도 2의 OADM의 멀터캐스트(multicast) 동작을 나타내는 평면도이다.
도 8은 도 2의 OADM의 양방향에서 동일한 파장을 사용하는, 하나의 광섬유를 사용하는 양방향 동작을 나타내는 측면도이다.
도 9는 도 2의 OADM의 각 방향에서 상이한 파장을 사용하는, 하나의 광섬유를 사용하는 양방향 동작을 나타내는 측면도이다.
도 10은 도 2의 OADM의 실패가 발생한 경우에 지속적인 동작을 보장하는 보호 스위칭 시스템의 블록도이다.
도 11은 일반적인 동작에 있는 도 2의 OADM들을 사용하는, 두 개의 광섬유를 사용하는 한방향 DWDM 고리의 도식화이다.
도 12A는 일반적인 동작에 있는 도 11의 OADM1의 동작을 나타내는 기능도이다.
도 12B는 일반적인 동작에 있는 도 11의 OADM2의 동작을 나타내는 기능도이다.
도 13은 광섬유 절단이 발생한 경우의 도 2의 OADM들을 사용하는, 두 개의 광섬유를 사용하는 한방향 DWDM 고리의 도식화이다.
도 14A는 광섬유 절단을 포함하는 도 13의 DWDM 고리에 대해 OADM1의 구성을 나타내는 기능도이다.
도 14B는 광섬유 절단을 포함하는 도 13의 DWDM 고리에 대해 OADM2의 구성을 나타내는 기능도이다.
도 15는 도 2의 OADM이 도 1의 시스템의 광성능 모니터링을 수행하기 위한 수정을 나타내는 기능도이다.
도 16은 전력 등화 동작(power equalization operation)을 포함하는 도 2의 OADM의 반사 모드 실시예를 나타낸다.
도 17은 C 및 B 밴드들에 대한 ITU-T 200GHz 간격을 갖는 DWDM 데이터 파장들과 1510 nm 및 1625 nm 광학 서비스 채널(optical service channel, OSC)들의 위치 및 불확실성을 비교를 나타낸다.
도 18은 OSC를 관리하기 위해 수정된 도 2의 OADM에서 사용되는 런처 배열을 나타낸다.
도 19는 OSC를 관리하기 위해 수정된 도 2의 OADM에서 사용되는 OPA 시스템 의 평면을 나타낸다.
도 20A 및 20B는 각각 OSC를 관리하기 위해 수정된 도 2의 OADM의 동작을 나타내는 평면도 및 측면도로서, OSC 애드(실선) 및 OSC 드롭(점선)을 나타낸다.
다양한 도면들에서의 동일한 참조기호는 동일한 구성요소를 나타낸다.
도 1을 참조하면, 광섬유 케이블들(11)에 의해 서로 연결된 복수의 유사한 노드(node)들(12)을 포함하는 광통신 시스템(10)이 도시되어 있다. 여기서, 설명을 위해, 12a, 12b 및 12c의 참조번호를 갖는 세 개의 노드들을 고려한다. 노드 12c에 대해, 노드 12a는 소스(source) 노드라고 칭하고, 노드 12b는 목적지(destination) 노드라고 칭한다. 그러나 노드들(12) 사이의 통신은 양방향 통신임은 물론이다. 또한, 노드들(12)은 도 2에서 보다 자세히 도시되는 광 애드/드롭 멀티플렉서(optical add/drop multiplexer, OADM)(14)를 포함한다. 그러나 여기서는, OADM(14)은 노드 12c에 대해 도시된 바와 같이 네 종류의 포트(port)들을 포함한다고 설명하는 것으로 충분하다. 상기 네 종류의 포트들은 인풋(input) 포트(인 포트, 때로는 시스템-인(in) 포트 또는 네트워크(network) 인풋 포트라 불리기도 함), 아웃풋(output) 포트(아웃 포트, 때로는 시스템-아웃(out) 포트 또는 네트워크 아웃 포트라 불리기도 함), 애드(add) 포트 및 드롭(drop) 포트이다. 컨트롤러(controller)(50)로부터 OADM(14)에 인가되는 전기적 신호들에 응답하여, OADM(14)은 다음의 기능들을 수행할 수 있다. 상기 기능들은 m(m은 정수)개의 복수의 상이한 광파장들(즉, 채널들) 중의 일부에 포함된 광학 에너지를 상기 노드를 통해 관통시키는(예를 들면, 소스 노드(12a)로부터 노드 12c를 통과하여 목적지 노드(12b)로) "익스프레스(express)" 기능, 상기 m개의 복수의 상이한 광파장들(즉, 채널들) 중의 일부에 포함된 광학 에너지를 상기 인 포트로부터 상기 드롭 포트들로 통과시키는 "드롭(drop)" 기능 및 상기 m개의 복수의 상이한 광파장들(즉, 채널들) 중의 일부에 포함된 광학 에너지를 상기 애드 포트들로부터 상기 아웃 포트로 통과시키는 "애드(add)" 기능이다. 아래에서 설명되는 바와 같이, OADM(14)은 상기 기능들의 다양한 조합들을 수행할 수 있다.
도 2를 참조하면, OADM(14)은 복수의 포트들(22)을 구비하는 런처(launcher)(20)를 포함한다. 보다 상세하게는, 본 예시에서는, 런처(20)는 실질적으로 Y-Z 평면에 배치된 포트들(22)의 6개의 행(row)들을 포함한다. 여기서, 포트들(22)의 상부의 두 개의 행들은 각각, 예를 들면, 도 2A에서 최상부 행의 22a1-22a5 포트들 및 그 다음 아래 행의 22'a1-22'a5 포트들로 도시된 다섯 개의 포트들(22)을 포함한다. 상부 두 개의 행들에 있는 포트들(22)이 상기 애드 포트들에 해당한다. 여기서, 포트들(22)의 하부의 두 개의 행들은 각각, 예를 들면, 도 2A에서 최하부 행의 22'd1-22'd5 포트들 및 그 다음 위의 행의 22d1-22d5 포트들로 도시된 다섯 개의 포트들(22)을 포함한다. 하부 두 개의 행들에 있는 포트들(22)이 상기 드롭 포트들에 해당한다. 본 예시에서는, 런처(20)의 최상부로부터 세 번째 행에 하나의 포트(22)가 있고, 이 포트가 상기 아웃 포트(22o)이다. 마지막으로, 본 예시에서, 런처(20)의 최상부로부터 네 번째 행에 하나의 포트(22)가 있고, 이 포트가 상기 인 포트(22i)이다.
상기 인 포트들 및 상기 애드 포트들(22)에 인가된 광학 에너지들은 여기서는 m개의 복수의 채널들을 전송한다. 각각의 채널은 복수의 광파장들(즉, λ1m의 파장들) 중의 상이한 하나의 파장으로 변조된 정보를 전송한다. 여기서는 인 포트 및 아웃 포트라고 칭해지지만, 상기 포트들(20)은 양방향이다.
(도 2의)OADM(14)은 전기적으로 조정 가능한 광학 빔(beam) 조정 시스템(24)을 포함한다. 여기서, 빔 조정 시스템(24)은 컨트롤러(50)에 의해 인가되는 전기적 조절 신호들에 응답하여, 입사하는 광주파수 에너지(즉, 빛) 빔을 방위각 방향(즉, X-Y 평면) 및 상하 방향(즉, X-Z 평면)에서 조정할 수 있는 이차원 빔 조정 시스템이다. 이와 같은 빔 조정 시스템은 1992년 3월 3일에 등록된 "Dorschner et al."이 발명한 "Optical Beam Steerer Having Subaperture Addressing"라는 제목의 미국특허 NO. 5,093,740, 1999년 10월 5일에 등록된 "Dorschner et al."이 발명한 미국특허 No. 5,963,682 및 2004년 3월 9일에 등록된 "Dorschner et al."이 발명한 미국특허 No. 6,704,474에 설명되어 있으며, 상기 특허들은 모두 본 특허 출원의 양수인에게 양도되었고, 상기 특허들의 모든 내용은 참조로써 여기에 포함되어 있다. 상기 특허들에서 설명되어 있듯이, 상기 빔 조정 시스템은 광학 위상 쉬프터(optical phase shifter)들의 배열(array)을 포함한다. 각각의 위상 쉬프터를 통과하는 광학 에너지의 빔의 부분에 제공되는 위상 쉬프트(shift)는, 본 예시에서는, 컨트롤러(50)에 의해 상기 위상 쉬프터에 인가되는 전기적인 조절 신호에 의해 선택된다. 레이저(laser)로부터와 같이, 입사되는 광학 에너지의 빔은 상기 위상 쉬프터들의 배열에 의해 제공되는 공간적으로 상이한 위상 쉬프트에 응답하여 각도가 기울어지게 된다(즉, 편향된다). 다른 종류의 전기적으로 조절 가능한 빔 조정기(steerer)들이 사용될 수도 있다.
여기서, 도시된 바와 같이, 빔 조정 시스템(24)은 행들로 배치된 4개의 영역들(26d, 26i, 26o 및 26a)을 포함한다. 상기 영역들(26a, 26o, 26i 및 26d) 각각은 런처(20)의 런처 포트들(22)의 상기 네 가지 종류들 중의 하나(즉, 각각 애드 포트들, 아웃 포트들, 인 포트들 및 드롭 포트들)에 대응한다. 따라서 런처(20)의 상기 애드 포트들, 아웃 포트들, 인 포트들 및 드롭 포트들은 각각 영역 26a, 26o, 26i 및 26d에 대응한다. 또한, 1993년 5월에 "Applied Optics, Vol.32, No.13"에서 공개된 "Gordon Love"가 쓴 "Liquid crystal phase modulator for unpolarized light" 라는 제목의 기사에서 설명되는 것과 같은 Love 거울(36)이 포함된다. 빔 조정 시스템(24)에 입사하는 광파들은 Love 거울(36)로 나아가, 상기 빔 조정 시스템의 동일한 부분을 통해 반사된다. 빔 조정 시스템(24)이 편극에 민감한 특성들을 가질 수 있음에도 불구하고, 주어진 임의의 편극을 갖는 광파 빔이 상기 편극에 무관하게 조정될 수 있도록, 상기 Love 거울은 상기 편극을 뒤집는다. 바람직한 실시예에 있어서, 수평 혹은 수직 방향에 있어서의 빔 조정은 두 개의 일차원 빔 조정기들 및 상기 두 개의 빔 조정기들 뒤에 위치한 상기 Love 거울에 의해 수행된다. 따라서 입사하는 빔은 두 개의 빔 조정기들을 통과하여 상기 Love 거울에서 반사되고 다시 동일한 상기 두 개의 빔 조정기들을 통해서 나온다.
도 2B에 도시된 바와 같이, 빔 조정 시스템(24)의 행들 각각, 즉, 영역 들(26d, 26i, 26o 및 26a) 각각은 복수의(여기서는 m개의) 빔 조정기들(26)을 포함한다. m개의 빔 조정기들(26) 각각은 상기 m개의 광학 채널들 또는 파장들(λ1m) 중에서 대응되는 하나와 관련된다. 따라서 영역 26d는 상기 m개의 파장들(λ1m) 중에서 대응되는 하나의 빔을 조정하기 위한 빔 조정기들(26dλ1-26dλm)을 포함한다. 마찬가지로, 영역들(26i, 26o 및 26a)은 각각의 파장을 위한 빔 조정기들을 포함한다.
상기 인 포트들 및 상기 애드 포트들에서의 광학 에너지의 상기 복수의 광파장들(λ1m) 각각은, 상기 복수의 광파장들(λ1m) 중의 하나와 관련되는 상기 빔 조정기들(26dλ1-26aλm) 중에서 대응되는 하나의 빔 조정기로 각각 전달됨으로써, 런처 포트(22) 종류들 각각(즉, 드롭 포트들, 인 포트들, 아웃 포트들 및 애드 포트들)과 상기 복수의 빔 조정 영역들(26d, 26i, 26o 및 26a) 중에서 관련되는 하나의 영역 각각 사이에 광학 에너지를 전달하기 위한, 분산 요소(30)(바람직하게는 에쉘 회절 격자(Echelle diffraction grating)) 및 거울들(32, 34 및 36)을 포함하는 광학 배치가 도 2에 도시되어 있다. 상기 설명한 바와 같이, 상기 영역들(26d, 26i, 26o 및 26a) 각각은 런처(20)의 네 종류의 런처 포트들(22) 중의 하나(즉, 각각 드롭 포트들, 인 포트들, 아웃 포트들 및 애드 포트들)에 대응된다. 따라서 런처(20)의 상기 드롭 포트들, 인 포트들, 아웃 포트들 및 애드 포트들은 각각 드롭 영역(26d), 인 영역(26i), 아웃 영역(26o) 및 애드 영역(26a)에 대응한다. 분산 요 소(30)는 에쉘 회절 격자(Echelle grating), 허상 위상 배열(Virtually Imaged Phased Array, VIPA) 종류의 분산 요소, 일반적인 회절 격자 또는 다른 종류의 회절 격자가 될 수 있다.
보다 상세하게는, 도 1의 광통신 시스템의 노드 12a로부터의 드롭되거나 익스프레스될 광학 에너지는 인 포트로 인가된다. 도 1에서 노드 12b의 방향으로 상기 광통신 시스템에 입력될 광학 에너지는 애드 포트로 인가된다. 상기 설명한 바와 같이, 인 포트에서의 상기 에너지는 영역 26i로 전달되고, 애드 포트에서의 상기 에너지는 빔 조정기 영역 26a로 전달된다. 상기 복수의 빔 조정 시스템 영역들(26i 및 26a) 중에서 상기 관련된 영역 각각(즉, 영역 26i는 인 포트들과 관련되고 영역 26a는 애드 포트와 관련됨)은 전달되는(즉, 입사하는) 에너지를 회절 격자(또는 다른 분산 요소)(30) 및 거울(32)을 통해 수신하고, 상기 시스템 기능들(즉, 아웃 또는 드롭) 중에서 선택된 하나의 기능을 제공하기 위하여 컨트롤러(50)에 의해 빔 조정 시스템(24)에 인가되는 상기 전기적인 신호들에 응답하여, 상기 입사하는 광학 에너지를 거울(34)을 통해 상기 기능들 중에서 선택된 하나의 기능과 관련된 한 종류의 런처 포트들(22)(즉, 드롭 포트들 또는 아웃 포트들)에 대응하는 영역들(26d 및 26o) 중의 하나의 영역에, 보다 상세하게는 상기 영역들(26d 및 26o) 중의 하나의 영역에 있는 상기 에너지의 파장들과 관련된 빔 조정기들(26)에게, 선택적으로 재전송한다. 컨트롤러(50)에 의해 제공되는 상기 전기적인 신호들에 응답하여 상기 에너지는 빔 조정 시스템(24)에 의해 선택적으로 조정되어, 상기 조정된 에너지는 거울(32) 및 에쉘 회절 격자(30)를 통해 상기 시스템 함수들 중에서 선택된 상기 하나의 함수와 관련된 런처 포트(22) 종류들 중에서 한 종류의 런처 포트(22)로 전달된다. 따라서 "익스프레스" 동작을 위해서는, 영역 26i에 입사되는 에너지는 빔 조정 시스템(24)에 의해 조정되어 거울(32) 및 회절 격자(30)에 의해 상기 아웃 포트로 전달되고, "애드" 동작을 위해서는, 영역 26a에 입사되는 에너지는 빔 조정 시스템(24)에 의해 조정되어 거울(32) 및 회절 격자(30)에 의해 상기 아웃 포트로 전달되고, "드롭" 동작을 위해서는, 영역 26i 또는 영역 26a에 입사되는 에너지는 빔 조정 시스템(24)에 의해 조정되어 거울(32) 및 회절 격자(30)에 의해 상기 드롭 포트로 전달된다.
이하 애드 기능에 대해 설명한다. 여기서, 애드 포트(22)에서의 에너지는 런처(20)의 아웃 포트(22)에 연결된다. 따라서, 여기서는 예를 들어, 파장 λ1을 갖는 광학 에너지가 여기서 포트 22a로 칭해지는 애드 포트들(22) 중의 하나에 인가된다. 예를 들면, 상기 에너지는 도 1의 노드 12a로부터 전달될 수 있다. 파장 λ1을 갖는 포트 22a에서의 상기 광학 에너지의 경로는 도 2에서 화살표 1에 의해 도시된다. 따라서 상기 에너지는 회절 격자(30)로 전달되고, 상기 에너지는 회절 격자(30)에서 거울(32)로 전달된다. 거울(32)은 상기 에너지를 빔 조정 시스템(24)으로, 보다 상세하게는 영역 26a로, 더욱 상세하게는 파장 λ1과 관련되는 영역 26a에 있는 상기 빔 조정기들 중의 하나인 26aλ1로 재전달한다. 프로세서(50)로부터의 조절 신호들에 응답하여, 빔 조정 시스템(24)은 거울들(36 및 34)을 통해 입사하는 에너지를 영역 26o(즉, 상기 런처의 아웃 포트들(22)과 관련된 영역 26o)로, 보다 상세하게는 파장 λ1과 관련되는 영역 26o에 있는 상기 빔 조정기들 중의 하나인 26oλ1로 조정한다. 그 후, 빔 조정 시스템(24)은 거울(32) 및 회절 격자(30)를 통해 상기 빔을 영역 26o로부터 상기 아웃 포트로 조정한다.
여기서 설명한 상기 실시예에서는 하나의 인 포트 및 하나의 아웃 포트를 포함하고 있으나, 복수의 애드 포트들 및 복수의 드롭 포트들이 지원되는 것과 마찬가지로 복수의 인 포트들 및 복수의 아웃 포트들이 지원될 수도 있다. 이렇게 함으로써, 애드 또는 인 포트에 입력된 주어진 파장은 전기적인 컨트롤 하에 임의의 드롭 또는 아웃 포트로 또는 복수의 포트들로 동시에 조정될 수 있는, 멀티-포트 파장-선택적 스위치의 기능을 갖는 시스템이 될 수 있다.
유사하게, 다른 예시들이 도 2에 도시되어 있다. 영역 26i에 입사되고 그 후 영역 26o에 전달되어 아웃 포트(22)로 전달되는 에너지를 갖는 경로 2에 의해 나타나는 바와 같이, "익스프레스" 동작을 수행하기 위해 인 포트(22)에서의 파장 λ2를 갖는 에너지는 아웃 포트(22)에 연결된다. 영역 26i에 입사되고 그 후 영역 26d에 전달되어 드롭 포트(22)로 전달되는 에너지를 갖는 경로 3에 의해 나타나는 바와 같이, "드롭" 동작을 수행하기 위해 인 포트(22)에서의 파장 λ3를 갖는 에너지는 드롭 포트(22)에 연결된다.
보다 상세하게는, 도 2에는 하나의 런처(20)가 도시되어 있으나, 하나 또는 둘 이상의 광학 런처들(20)이 사용될 수도 있다. 바람직하게는, 런처(20)는 시스템-인 및 애드 광섬유들로부터 방출되는 인풋 광학 에너지를 장치 내에서 거의 평행 하게 만드는 마이크로(micro) 렌즈(lens)들, 렌즈렛(lenslet)들 또는 GRIN 렌즈들의 배열이다. 따라서 각각의 렌즈렛은 포트들(22) 중의 하나에 대응한다. 또한, 상기 렌즈렛들은 런처(20)에 들어오는 거의 평행한 광학 에너지를 상기 시스템-아웃 및 드롭 종류의 포트들(22)(즉, 상기 아웃 포트들 및 드롭 포트들)로 집중시킨다. OADM(14)로 들어오거나 OADM(14)로부터 나가는 모든 광학 빔들은 런처들(20)에 의해 상기 설명한 바와 같이 움직인다. 앞에서 설명한 바와 같이, 광섬유와 OADM(14)로 들어오거나 OADM(14)로부터 나가는 빔 사이에 상기와 같은 런처(20)에서의 연결들 각각은 포트(22)로 칭해진다.
각각의 런처는 양방향 장치이다. 즉, 광파들은 주어진 런처에 부착된 광섬유로부터 자유공간 빔으로 연결될 수도 있고, 외부로부터 상기 런처로 입사하는 광파들은 상기 런처에 부착된 상기 광섬유로 연결될 수도 있다. 이러한 런처들은 "싱글 모드(single-mode)" 장치이다. 즉, 광파 빔이 주어진 런처의 광섬유에 연결되기 위해서는, 상기 빔은 정확한 각도 및 정확한 위치로 입사해야만 한다.
앞에서 설명한 바와 같이, 런처(20)는 애드 광섬유들(애드 포트들)에 대응하는 포트들(22)의 배열들 및 드롭 광섬유들(드롭 포트들)에 대응하는 포트들(22)의 배열들을 포함하도록 디자인되어 있다. 바람직한 실시예에서는, 시스템에 있는 임의의 파장들 중에서 특정 파장이 선택될 수 있음에도 불구하고, 주어진 시간에 주어진 애드 또는 드롭 포트에는 단지 하나의 파장(광학 채널)이 존재한다. 상기 시스템은 주어진 포트에 복수의 파장들이 존재할 수 있는 경우들을 포함한다. 대부분의 응용에 있어서 애드 포트들(22)의 수는 드롭 포트들(22)의 수와 동일할 것이다. 그러나 본 발명은 애드 포트들(22)의 수와 드롭 포트들(22)의 수가 다른 경우도 포함한다. 또한, 앞에서 설명한 바와 같이, 장치를 주위의 네트워크 노드들(12)에 연결하는 (도 1의)전송 광섬유 케이블들(11)에 상기 장치를 부착시키는 하나 또는 둘 이상의 인 포트들(22) 및 하나 또는 둘 이상의 아웃 포트들(22)을 포함한다. 이러한 포트들은 파장이 결합된 빔들을 전송한다. 비록 도 2에서 상기 애드, 드롭, 인 및 아웃 포트들(22)은 효율 증대 및 장치 제작의 단순화를 위해 규칙적인 배열로 함께 묶여 있는 것으로 도시되어 있으나, 본 발명은 상기 포트 종류들이 함께 섞여 있거나 상기 배열들이 각각 서로 다른 배열을 갖는 구현들도 포함할 수 있다.
도 2의 시스템은 하나의 에쉘 회절 격자(30)를 도시하고 있지만, 하나 이상의 회절 격자(30)가 사용될 수도 있다. 바람직하게는, 상기 회절 격자들은 리트로우(Littrow)에 가까운 조건(즉, 상기 회절 격자에 의해 회절된 빛은 입사 방향과 거의 반대 방향으로 나아감)에서 동작하는 에쉘 회절 격자(30)들의 묶음(bulk)이고, 상이한 파장들의 광학 에너지를 분산시키거나 결합하기 위해 포함된다. 애드 포트들(22) 및 인 포트들(22)로부터의 상기 광학 에너지는 상기 회절 격자로 입사하여, 상이한 파장들은 상이한 각도로 회절된다. OPA 시스템(24)으로부터 드롭 포트들(22)로 향하는 광학 에너지 및 상기 아웃 포트로 향하는 광학 에너지는 상기 회절 격자에 상이한 각도로 입사하여, 알맞은 드롭 포트로 회절되거나 상기 아웃 포트로 결합된다. 에쉘 회절 격자가 사용되는 이유는 에쉘 회절 격자는 다른 종류들의 회절 격자들보다 편극에 대해 낮은 민감도를 갖는 회절 효율 때문이다. 마찬가지로, VIPA 장치가 사용될 수도 있으며, 유사한 동작상의 이점들을 나타낸다. 도 2에서 상기 회절 격자 홈들은 수직 방향(즉, Z 축 방향)이므로, 상이한 파장들의 분산은 수평 방향(즉, X-Y 평면)이다. 본 발명은 상기 홈들이 다른 방향으로 배치된 실시예들도 포함한다. 도 2는 상기 회절 격자가 반사 모드에서 동작하는 것을 도시하고 있지만, 상기 격자는 통과 모드에서 동작할 수도 있다.
하나 또는 둘 이상의 거울일 수 있는 거울(32)은 여기서는 오목 거울들이고, 회절 격자(30)로부터 회절된 상기 광학 에너지를 OPA 시스템(24) 및 거울(36)로 전달하며, OPA 시스템(24)으로부터의 광학 에너지를 회절 격자(30)로 전달한다. 본 발명의 바람직한 실시예에서는, 거울들(32)이 상기 회절 격자 및 OPA 시스템(24) 배열의 평면으로부터 초점거리만큼 떨어지도록 거울들(32)의 곡률 및 위치가 선택된다. 이는 한 평면에서의 빔 각도들이 다른 평면에서 빔의 공간적 위치로 변환되도록 하기 위함이다. 위치 및 초점거리의 상이한 구성들도 본 발명에 포함된다. 또한, 상기 거울들의 기능은 렌즈들에 의해서 수행될 수도 있다.
OPA 시스템(24) 구멍들(즉, 빔 조정기들(26))의 하나 또는 둘 이상의 배열들은 상기 빔들을 조정하고 OPM 및 광학 멀티캐스팅(multicasting)을 위해 상기 빔들을 분리하는데 사용된다. OPA 시스템(24) 구멍들(즉, 빔 조정기들(26))은 행들(rows) 및 열들(columns)로 배치되어 있다. 구멍은 문자(즉, d, i, o 또는 a) 및 파장 명칭(즉, λ1, λ2 및 λm)에 의해 명명된다. 따라서 상기 d 행 및 λ1열에 있는 구멍은 26dλ1으로 명명된다. 만약 상기 회절 격자들이 수평 방향(즉, X-Y 평면)으로 회절하도록 배치되어 있다면, 상기 배열의 각각의 열(예를 들면, 도 2B에서 영역 26λ1에 배치된 열들)은 상기 광학 시스템의 특정 파장에 대응한다. 각각의 행(예를 들면, 도 2B에서 영역 26a에 배치된 행들)은 빔 상태(시스템-인, 시스템-아웃, 애드 및 드롭)에 대응한다.
보다 상세하게는, 상기 런처 배열로부터 들어오는 각각의 빔에 대해, 각각의 런처의 수직 각도(즉, X-Y 평면으로부터 떨어진 각도)는 상기 빔이 상기 빔 조정 시스템에 도달하는 수직 위치를 결정한다. 즉, 수직 런처 각도는 빔 조정 시스템의 행과 일대일 관계에 있다. 수평 각도(즉, X-Z 평면과 떨어진 각도)는 상기 회절 격자에 의해 가해지는 파장 의존적 각도 편향에 의해 조절되고, 그로 인해 파장과 일대일 관계에 있는 상기 빔이 상기 빔 조정 시스템의 어떤 열에 도달할지 여부를 결정한다. 이러한 일대일 관계들은 상기 런처 배열로부터 상기 빔 조정 시스템으로 향하는 빔들 및 반대 방향으로 향하는 빔들 모두에 적용된다. 한 종류의 런처(예를 들면, 인 포트)로부터 들어오는 주어진 파장의 주어진 빔이 상기 아웃 포트로 향하는 것인지 또는 드롭 포트로 향하는 것인지 여부는, 상기 인풋 행에 있는 상기 OPA에 의해 상기 빔이 조정되는 각도에 의존한다. 상기 빔이 거울(34)에의 반사 이후에 동일한 열 및 선택된(각각 아웃풋 또는 드롭) 열에 있는 상기 OPA에 도달하도록, 상기 OPA는 상기 파장 의존적인 수평 각도를 제거하도록 수평적으로 조정되고, 수직 편향 각도를 제공하도록 조절된다. 결국, 상기 OPA는 상기 선택된 런처의 수직 위치와 일치하기 위해 정확한 수직 각도를 가해야 하는 동시에, 각각 원하는 아웃 또는 드롭 포트의 올바른 수평 위치를 선택하기 위해 선택된 부가적인 수평 각 도 뿐만 아니라 상기 빔이 상기 회절 격자에서 만날 수 있도록 편향을 제거하는 수평 각도를 가해야 한다. 특정 빔에 의해 사용되는 열은 상기 특정 빔의 파장에 의해 지정되고 장치 내에서 변하지 않는다. 상기 광학 서비스 채널 빔들을 조정하기 위해 추가적인 OPA들이 포함될 수도 있다. 여기서는 도 2에 도시된 바와 같이 두 개의 OPA 및 하나의 Love 거울로 구성되는 상기 빔 조정 시스템은 반사 모드에서 동작한다. 통과 모드에서 동작하는 빔 조정 시스템 또한 사용될 수 있다.
상기 설명한 동작들에 의하면 두 개의 상이한 소스들(예를 들면, 애드 및 인풋)로부터의 동일한 주어진 파장의 신호들은 하나의 아웃풋에 결합될 수 없다. 애드 행에 있는 주어진 파장의 OPA가 (거울(34)을 통해) 빔을 아웃풋 행에 전달하고, 동시에 인풋 행에 있는 주어진 파장의 OPA가 빔을 아웃풋 행에 전달한다고 할지라도, 아웃풋 행에 있는 OPA는 입사하는 두 개의 빔들에게 어떤 선택된 수직 각도 편향을 가할 것이다. 상이한 각도로 입사하는 상기 두 개의 빔들은 결국 두 개의 상이한 각도로 방출될 것이고 따라서 상기 런처 배열에서 상이한 위치로 향하게 될 것이고 동일한 런처로 향할 수 없다. 마찬가지로, (앞에서 설명한 바와 같이)상기 런처들은 싱글 모드 장치들이기 때문에, 주어진 파장을 갖는 빔이 다른 파장에 대응하는 열로부터 방출된다면, 상기 빔은 어떠한 런처와도 연결될 수 없다는 것을 알 수 있을 것이다. 이는, 상기 시스템 내에서 광파들의 전파는 임의의 주어진 경로를 따라 좌측에서 우측으로 향하는 것과 우측에서 좌측으로 향하는 것과는 무관하다는 사실을 생각하면 쉽게 알 수 있다. 거울(32) 및 회절 격자(30)의 동작으로부터, 주어진 런처로부터 들어오는 주어진 파장의 광파빔은 하나의 OPA와 직접 연 결된다는 것이 명백하다. 따라서 반대 방향(즉, 상기 런처를 향하는 방향)으로 전파되는 광파들에 있어서, 상기 주어진 파장을 갖고 상기 하나의 OPA로부터 오는 광파들만이 상기 주어진 런처에 연결될 수 있다.
하나의 미러(34)만이 도시되어 있지만, 상기 시스템은 하나 이상의 상기와 같은 미러를 포함할 수 있다. 여기서는 평면 거울인, 하나 또는 둘 이상의 접어주는(folding) 거울들(34)이 OADM(14)에 포함된다. 상기 거울들(34)의 목적은 상기 광학 채널들을 라우팅(routing) 시키기 위해 필요한 빔 동작들을 완성하기 위해, 상기 거울들로 입사되는 광학 에너지의 경로를 반전시켜 상기 광학 에너지를 OADM(14)을 통해 되돌려 보내는 것이다. 접어주는 거울(34)을 사용하면 대부분의 구성요소들을 두 번씩 통과함으로써 장치의 크기 및 구성요소의 수를 줄일 수 있다. 본 발명은 접어주는 거울들을 사용하지 않거나 접어주는 거울들을 렌즈들로 대체한 다른 구성들도 포함한다.
편극 의존 손실(polarization-dependent loss, PDL) 보상기(compensator)가 OADM(145)에 포함될 수 있다. 상기 회절 격자 및 다른 광학 구성요소들은 후차적인 PDL을 야기할 수 있다. 이는 OADM(14)내에 있는 대칭 평면에서 상기 광학 에너지의 편극 평면을 회전시키는 메카니즘(mechanism)을 도입함으로써 1차적으로 보상될 수 있다. 접혀진 디자인에서 최적의 위치는 접어주는 거울에서이다. 통과 디자인에서 최적의 위치는 상기 장치의 중심 평면인 중앙 위치이다.
빔 조정 시스템(24)을 위한 (도 2의)전기적 컨트롤러(50)는 시스템에 의해 지시된 빔 처리 함수를 OPA 시스템(24)의 빔 조정기들(26)의 전극들에 인가되는 전 압들로 전환한다.
다시 도 2를 참조하면, 위쪽으로부터의, 즉 (도 1의)소스 네트워크 노드(12a)로부터의 광학 에너지(즉, 빛)는 런처 배열(20)에 있는 인 포트(22)를 통해 OADM(14)에 들어오고 회절 격자(30)로 전달된다. 이러한 빔은 많은 파장들이 결합된 광학 채널들로 구성된다. 이러한 채널들은 상기 회절 격자에서 각각의 파장들은 상이한 각도로 회절됨으로써 분산된다. 오목 거울(32)은 각각의 광학 채널을 그것의 파장에 대한 구멍(즉, 빔 조정기(26))으로 전달함으로써 상기 빔들을 OPA 시스템(24)의 시스템-인 열로 전달한다. 각각의 OPA 구멍(26)은 상기 빔의 의도된 위치에 대응하는 수직 편향(즉, X-Z 평면에서의 편향, 상하 방향)을 상기 입사 빔에 가한다. 만약 상기 빔이 드롭되어야 한다면, 런처(20)의 인 포트(22)에서의 에너지는 영역 26i로 전달되고, OPA 시스템(24)은 위쪽 방향의 편향을 생성하여, 상기 빔은 접어주는 거울(34)에서 반사되어 OPA 시스템(24)의 드롭 행(즉, 영역 26d)에 있는 대응되는 열에 도달한다. 따라서 상기 드롭 행(즉, 영역 26d)에 입사하는 빔들에는, 곡면 거울(32)에서 반사되고 회절 격자(30)에 의해 회절된 이후에 런처 배열(20)에서 선택된 드롭 포트에 도달하도록, 알맞은 수직 및 수평 편향이 가해진다. 만약 빔이 상기 노드를 통과하여 익스프레스되어야 한다면, OPA 시스템(24)은 시스템-인 행(즉, 영역 26i)에서 아래 방향의 편향을 제공하여, 상기 빔이 접어주는 거울(34)을 통해 상기 아웃 행(즉, OPA(24)의 영역 26o)에 전달되고, 다시 상기 빔은 아웃 포트(22)에 도달되도록 한다. 상기 구멍들(즉, 영역 26o에 있는 빔 조정기들(26))은 상기 분리된 빔들에 대해 알맞은 편향을 제공하여 상기 회절 격자에서 하나의 빔으로 결합되어 상기 아웃 포트로 향하게 한다. 유사한 방식으로, 상기 애드 포트들로부터 방출되는 빔들은 상기 회절 격자에서 회절되고, 곡면 거울(32)에 의해 상기 애드 행(즉, 영역 26a)에 있는 그것들의 파장에 대응되는 구멍들로 전달된다. 상기 구멍들(26)은 수직 편향을 제공하여 상기 빔들이 접어주는 거울(34)에서 반사되어 아웃 행(26o)에 전달되도록 한다. 여기서부터는, 상기 애드 빔들은 상기 익스프레스 채널들에 대해 앞에서 설명한 경로과 동일한 경로를 따른다. 즉, 상기 애드 빔들은 상기 회절 격자에서 하나로 결합되고 상기 아웃 포트로 전달된다. 알맞은 OPA 구멍들(26)에 명령을 내려 입사하는 광학 에너지의 작은 일부분을 도 15 내지 19와 관련하여 상세하게 설명될 모니터 포트(Monitor Port)들로 회절시키고 나머지 대부분의 광학 에너지는 아웃 포트로 조정함으로써, 광학 에너지는 상기 모니터 포트들에 전달된다. 도 2의 접어지는 디자인 이외에, 본 발명의 다른 실시예들은 거울들 대신에 렌즈들을, 반사 회절 격자들 대신에 통과 회절 격자들을, 그리고 반사 OPA들 대신에 통과 OPA들을 다양하게 결합하여 사용할 수 있다.
도 2의 실시예에 있어서, 동일한 노드에서 채널을 애드하고 드롭할 수 있다. 본 특정 실시예에서는, 파장을 익스프레스하는 동시에 상기 파장을 애드하는 에러 상태를 허용하지 않는다. 즉, 상기 애드 채널 및 상기 익스프레스 채널 모두는 상기 시스템-아웃 행에 있는 동일한 OPA 구멍에 도달할 것이지만, 수직 각도는 상기 두 채널 중에서 하나의 채널만이 상기 아웃 포트들에 연결되도록 세팅될 수 있다. 따라서 상기 두 개의 빔들이 모두 상기 전송 광섬유에 연결되거나 상기 파장을 종료시키는 아래쪽 노드를 방해하지 못하도록, 상기 빔들 중의 하나는 버려진다.
도 2에 도시된 실시예는 구성 요소의 개수 및 장치의 크기를 줄이기 위해 거울들을 사용하고 OPA들을 반사 모드에서 동작시킨다. 그러나 본 발명은 통과형 구성 요소를 사용하는 실시예들에서도 동일하게 적용될 수 있다. 이를 설명하기 위하여, 그리고 통과형으로 동작을 설명하는 것이 보다 쉽기 때문에, 상기 설명한 본 발명의 구체적인 동작 및 아래의 설명은 통과 모드 디자인을 사용할 것이다.
채널 애드 동작
이제 도 3A 및 3B를 참조하면, 상기 도면들은 각각 통과 모드 OADM(14)가 광학 채널을 애드하는 과정을 나타내는 평면도 및 측면도이다. 하나의 평면(51)은 렌즈(32)(즉, 도 2에 있는 거울)로부터 입사되는 에너지를 나타내고, 다른 한 평면(53)은 거울(34)로부터 입사되는 에너지를 나타내는, 상기 두 개의 OPA 시스템(24) 평면들 사이에 상기 두 평면으로부터 동일한 거리에 접어주는 거울(34)을 배치함으로써 도 2에 대한 등가를 얻을 수 있다. 도 3A 이후의 도면에서는, 거울(34)의 위치가 도시되어 있지 않으나, 도면의 중앙에 상기 접어주는 평면이 존재한다는 것을 이해할 수 있을 것이다. 따라서 도 3A에서 상기 거울 평면의 오른쪽으로의 진행은 도 2에서 이전의 구성요소들을 통해 되돌아가는 것에 대응된다. 접히는 디자인과 통과 디자인이 구체적으로 동일하기 위해서는, 도 3A에서 중앙 평면의 오른쪽에 있는 구성요소들 및 그것들의 위치가 중앙 평면의 왼쪽에 있는 구성요소들 및 그것들의 위치와 동일해야 한다. 그러나 통과 디자인의 일반적인 실시예에 있어서는 상기와 같은 일치가 필요하지 않다. 회절 격자(30)는 통과 모드로 도시되 어 있고, 오목 거울(32)은 통과 모드에서의 동등물인 볼록렌즈로 대체되었다. 도 2에서 OPA들은 반사 모드였지만, 여기서는 OPA들 역시 통과 모드로 도시되어 있다. 통과 모드와 반사 모드 사이를 변환할 경우에는, 구성요소들의 종류를 다른 모드에 있어서의 동등물로 대체(예를 들면, 렌즈에서 거울로)하고 구성요소들의 위치를 서로에 대해 재배치 해주면 된다. 통과 모드의 구성도가 해석하기 더 쉬우므로, 통과 모드를 사용하여 채널 동작들을 상세히 설명한다.
앞에서 설명한 바와 같이, 복수의 영역들(26d, 26i, 26o 및 26a) 각각은 네 종류의 런처 포트들(22) 중의 하나(즉, 각각 드롭 포트들, 인 포트들, 아웃 포트들 및 애드 포트들)와 대응된다. 따라서 런처(20)의 상기 드롭 포트들, 인 포트들, 아웃 포트들 및 애드 포트들은 각각 드롭 영역(26a), 인 영역(26i), 아웃 영역(26o) 및 애드 영역(26a)에 대응된다. 도 3A에 있는 상기 OPA들의 상이한 숫자 명칭들은 각각의 파장들(도 2의 열)을 나타내고, 상기 네 개의 OPA 시스템 행들 또는 영역들(즉, 드롭 영역(26d), 인 영역(26i), 아웃 영역(26o) 및 애드 영역(26a))은 포개어져 있는 것으로 보인다. 본 예시에서는, 네 개의 애드 타입의 런처(20)의 포트들(22)이 도시되어 있다. 도시된 각각은 네 개의 가능한 채널들(즉, 파장들 λ1, λ2, λ3 및 λ4)을 수신한다. 이는 상기 애드 포트들은 임의의 파장을 사용할 수 있음을 설명하기 위한 것이다. 실제 동작에서는, 도시된 상기 모든 파장들이 존재할 필요는 없다. 앞에서 설명한 바와 같이, 빔 조정기들(26) 각각은 상기 파장들(λ1, λ2, λ3 및 λ4) 중에서 대응되는 하나의 파장과 관련된다. 따라서, 본 예시에서는, 상기 파장들(λ1, λ2, λ3 및 λ4)은 각각 빔 조정기들 26(d, i, o 또는 a)λ1, 26(d, i, o 또는 a)λ2, 26(d, i, o 또는 a)λ3 및 26(d, i, o 또는 a)λ4와 관련된다. 파장 λ1의 에너지는 OPA 시스템(24)의 애드 영역(26d)의 빔 조정기들(26aλ1)에 전달된다. 상기 포트들을 식별하기 위해 도 2A에도 참조번호가 표기되어 있다. 마찬가지로, 파장 λ2의 에너지는 OPA(24)의 애드 영역(26a)의 빔 조정기들(26aλ2)에 전달되고, 파장 λ3의 에너지는 OPA(24)의 애드 영역(26a)의 빔 조정기들(26aλ3)에 전달되고, 파장 λ4의 에너지는 OPA(24)의 애드 영역(26a)의 빔 조정기들(26aλ4)에 전달된다.
빔 조정 시스템(24)에 의해 거울(32)로 전달된 이후에, 거울(34)에 의해 반사되어 상기 파장 λ1의 에너지는 OPA 시스템(24)의 애드 영역(26a)의 빔 조정기들(26aλ1)로부터 OPA 시스템(24)의 아웃 영역(26o)의 빔 조정기(26oλ1)로 전달된다. 마찬가지로, 파장 λ2의 에너지는 OPA 시스템(24)의 애드 영역(26a)의 빔 조정기들(26aλ2)로부터 OPA(24)의 아웃 영역(26o)의 빔 조정기들(26oλ2)로 전달되고, 파장 λ3의 에너지는 OPA(24)의 애드 영역(26a)의 빔 조정기들(26aλ3)로부터 OPA 시스템(24)의 아웃 영역(26o)의 빔 조정기(26oλ2)로 전달되고, 파장 λ4의 에너지는 애드 영역(26a)의 빔 조정기(26aλ4)로부터 OPA 시스템(24)의 아웃 영역(26o)의 빔 조정기(26oλ4)로 전달된다.
도 3B의 OPA 시스템(24)은 상이한 파장들에 대한 상기 OPA들은 포개어져 있는 것으로 보이는 반면에, 상기 네 개의 빔 상태 행들(26d, 26i, 26o 및 26a)을 나타내고 있다. 우측 상단에 있는 축 방향은 도 2에 도시된 바에 따른다. 광학 에너지는 X 방향으로 전파되고, 상기 회절 격자는 Y 방향으로 분산시키고, 상기 OPA 행들(예를 들면, 26a)은 Y축에 평행하고, 주어진 파장에 대한 상기 OPA 열들은 Z축에 평행하다.
입력 빔들은 런처(20)에 있는 상기 애드 포트들로부터 방출되어 회절 격자(30)에 도달한다. 도 3B에서, 상기 런처들은 X-Z 평면상에서 기울어진 각도로 존재한다. 앞에서 설명한 바와 같이, 상기 각도로 인해 상기 애드 빔들은 모두 상기 OPA의 애드 행(즉, 26a)에 도달한다. 상기 회절 격자는 상기 애드 빔들을 분산시켜 각각의 파장에게 X-Y 평면에서 상이한 각도를 부가한다(본 측면도에서는 파장의 경로들이 앞뒤로 서로 겹쳐져 있기 때문에 모든 파장들은 동일한 경로를 공유하는 것으로 도시되어 있음). 각각의 애드 포트에 대해 복수의 파장들이 도시도어 있으나, 실질적으로는 포트당 하나의 파장을 사용하는 것이 바람직하다. 본 발명은 두 가지 방법 모두를 지원한다. 도 3B에서는 파장들의 분리가 표현될 수는 없으나, 상이한 파장들의 빔들이 분리되는 영역들은 가까이 그려져 있는 선들에 의해 도시되어 있다. 도 3A는 렌즈(32)에 의해 제공되는 회절 격자(30)와 OPA 평면들 사이의 각도-위치 변환을 나타낸다. 따라서 특정 파장은 어떤 포트로부터 방출되는지에 무관하 게 동일한 OPA 구멍으로 향할 것이다. 그러나 입사각은 상기 파장이 방출된 포트에 의존할 것이다. 빔이 (즉, 거울(34)에서 반사된 이후에)상기 파장에 대한 제 2 OPA에 도달하도록, 각각의 OPA는 빔을 조정하여 더 이상의 Y 방향으로의 이동을 제거(즉, 상기 상이한 입사각을 제거)한다. 또한, 각각의 OPA는 Z 방향으로 조정하여(도 3B) 상기 빔이 상기 애드 행으로부터 상기 아웃 행으로 이동하도록 한다. 상기 빔이 OPA(24)에 두 번째로 도달하면, 상기 OPA는 더 이상의 Z 방향으로의 이동을 제거하도록 상기 빔을 조정한다(도 3B). 도 3A에서 두 번째로 도달되는 거울(32)은 상기 상이한 파장의 수평 빔들을 상기 회절 격자상의 동일한 지점으로 향하게 하고(각도에서 위치로), 상기 회절 격자는 상기 아웃 포트로 향하는 하나의 빔으로 포개어지기에 필요한 양만큼 각각의 파장을 회절시킨다. 앞에서 설명한 바와 반대 방향으로의 전파를 생각해보면 보다 쉽게 이해될 수 있다. 상기 회절 격자는 각각의 나가는 파장들을 알맞은 양만큼 회절시키는데, 이는 들어오는 파장들에 대해 상기 회절 격자가 수행한 동작과 시간적으로 정 반대의 동작이기 때문이다.
채널 드롭 동작
고밀도 파장 분할 다중화(Dense Wavelength Division Multiplexed, DWDM) 시스템으로부터 광학 채널들이 드롭되는 과정은, 우측 상단에 표시된 좌표축에 의해 나타내어지는 바와 같이, 각각 평면도 및 측면도를 나타내는 도 4A 및 4B에 도시되어 있다. 위쪽 노드로부터의 DWDM 채널들은 시스템-인 포트(22i)에서 OADM(14)로 들어와서 하나의 빔으로써 상기 회절 격자로 전파된다. 도 4A에 도시된 바와 같이, 상기 회절 격자는 상기 빔을 분산시켜 상기 빔에 있는 각각의 채널이 상이한 각도로 회절되게 한다. 렌즈(32)는 상기 빔들을 OPA 시스템(24)의 인 행(26i)으로 전달하고(도 4B), 각각의 파장에 대해 알맞은 구멍으로 전달한다(도 4A). 모든 빔들은 상기 회절 격자상의 동일한 지점으로부터 방출되므로, 렌즈(32)에 의해 굴절된 이후에는 상기 빔들은 평행하게 된다. OPA 시스템(24)은 드롭되어야 할 채널들에 X-Z평면에서 위쪽 방향으로의 각도를 인가하여 상기 채널들이 제 2 OPA 평면의 드롭 행(즉, 영역 26d)의 대응되는 구멍들로 전달되게 한다. 채널에 의해 사용될 특정 드롭 포트(22d1-22'd5)는 제 2 OPA 평면에 있는 구멍에 의해 상기 빔들에 가해지는 수직 및 수평 각도들의 조합에 의해 결정된다. 도 4A는 임의의 파장을 임의의 드롭 포트로 보낼 수 있음을 나타내지만, 주어진 시각에 각각의 구멍은 보통 하나의 드롭 포트를 사용한다. 도 4A 및 4B로부터, 각각 상이한 OPA 구멍으로부터 들어오는 하나 이상의 광학 채널이 주어진 드롭 포트로 전송될 수 있음이 명백하다. 만약 운영자가 드롭 포트들의 수를 줄이고 상기 채널들을 분리하기 위해 장치 외부에서 디멀티플렉서를 사용하고자 한다면, 이는 바람직한 특징이 될 수 있다. 만약 의도와는 달리 상기와 같이 되는 경우에는, 복수의 광학 채널들이 하나의 수신기에 입사하는 에러 상황이 될 것이다. (도 2의)장치 프로세서(50)를 관리하는 소프트웨어 시스템은 상기의 상황들을 분별하고 에러가 될 수 있는 환경을 막아준다.
채널 익스프레스 동작
도 5A 및 5B는 DWDM 채널들이 도 1의 노드 12c를 통해 익스프레스되는 과정 을 나타낸다. 광학 채널을 전기적으로 종료시키고 재전송하는 과정 없이 노드를 통해 통과시킬 수 있다는 것이 OADM을 개발하는 근본적인 이유다. 파장 결합된 빔은 시스템-인 포트를 통해 장치에 입사하고, 제 1 OPA 평면의 시스템-인 행으로 전달되는 복수의 빔들로 회절된다. 여기서 상기 빔들은 제 2 OPA 평면의 시스템-아웃 행으로 향하도록 아래쪽으로 전달된다. 제 2 렌즈는 모든 빔들을 제 2 회절 격자상의 동일한 지점으로 향하게 하고, 상기 제 2 격자는 시스템-아웃 포트를 통해 나가는 하나의 빔이 되도록 상기 빔들을 회절시킨다.
드롭/애드/익스프레스 동작이 결합된 예시
동작하는 DWDM 시스템에 배치되었을 때, OADM은 상이한 광학 채널들에 대해 상기의 다양한 동작들을 동시에 수행할 것이다. 즉, 애드와 함께 드롭(리플레이스(replace)), 애드 없이 드롭만(드롭), 드롭 없이 애드만(애드) 및 익스프레스를 수행할 것이다. 도 6A 및 6B는 상기의 결합된 동작의 예시를 나타낸다. 여기서, 파장 λ2의 광학 에너지는 애드 포트(22a2)에 인가되고 파장 λ4의 광학 에너지는 애드 포트(22'a5)에 인가된다. 파장들(λ1, λ'2 및 λ3)의 광학 에너지는 인 포트(22i)에 인가된다. 상기 두 개의 신호들(λ2 및 λ'2)의 물리적인 파장은 동일하고, 여기서는 시스템을 통해 상이한 신호들임을 나타내기 위해 이와 같이 명명한다. 여기서, OPA 시스템(24)에 인가되는 신호들에서 애드 포트(22a2)에서의 파장 λ2의 에너지는 아웃 포트(22o)로 향할 수 있고, 인 포트(22i)에서의 파장 λ'2의 에너지는 드롭 포트(22'd4)로 향할 수 있고, 인 포트(22i)에서의 파장 λ1의 에너지는 드롭 포트(22d1)로 향할 수 있고, 인 포트(22i)에서의 파장 λ3의 에너지는 아웃 포트(22o)로 향할 수 있고, 애드 포트(22'a5)에서의 파장 λ4의 에너지는 아웃 포트(22o)로 향할 수 있다.
위쪽 노드로부터의 DWDM 신호들은 인 포트(22i)에서의 광학 신호들에 대응하는 채널들로 구성된다. 파장 λ1, λ'2 및 λ3의 채널들은 인 포트(22i)에 인가된다. 파장 λ'2의 채널은 애드 포트(22a2)에서의 파장 λ2를 갖는 광학 신호와의 교체와 함께 드롭되고, 채널 λ1은 교체없이 드롭되는 반면에, 인 포트(22i)에서의 파장 λ3을 갖는 광학 신호들은 익스프레스 된다. 상기 위쪽 노드로부터 수신된 신호가 아닌, 애드 포트(22'a5)에서의 파장 λ4를 갖는 신호는 출력(즉, 아웃 포트)에 애드된다. 제 1 회절 격자는 인 포트(22i)에서 장치에 들어오는 빛을 상기 빛에 포함되어 있는 광학 채널들로 분산하여 각각의 채널을 제 1 OPA 평면의 시스템-인 행의 알맞은 구멍으로 보낸다. 파장 λ1 및 λ'2의 채널들은 상기 제 1 OPA 평면에 도달함으로써 제 2 OPA 평면의 드롭 행으로 조정되고, 파장 λ3의 채널은 시스템-아웃 행으로 조정된다. 거기서부터 파장 λ1 및 λ'2의 채널들은 각각 지정된 드롭 포트들로 보내어 지는데, 상기 지정된 드롭 포트들은 (도시된 바와 같이)상이할 수도 있고 동일할 수도 있다. 애드될 채널들(λ2 및 λ4)은 분리된 애드 포트들을 통해 OADM(14)으로 들어오고, 제 1 OPA 평면의 애드 행에 있는 각각의 구멍으로 전달되고, 거기서부터 제 2 OPA 평면의 시스템-아웃 행으로 전달된다. 물론 상기 채널들은 동일한 애드 포트를 통해 들어올 수도 있다. 상기 시스템-아웃 행으로부터의 채널들(λ2, λ3 및 λ4)은 제 2 렌즈(32)에 의해 회절 격자(30)로 향해지고(도 2), 회절 격자(30)는 시스템-아웃 포트를 통해 아래쪽의 노드로 보내어지는 하나의 빔으로 결합시킨다.
광학 멀티캐스트(multicast)를 위한 동작
도 7은 본 발명이 다른 기능들에 영향을 미침이 없이 광학 멀티캐스트 모드에서 동작할 수 있는 방법을 보여준다. 파장들(λ1, λ3 및 λ4)의 채널들은 위쪽 노드로부터 수신되어 시스템-인 포트를 통해 장치로 들어온다. 본 예시에서는, λ3는 익스프레스되고, λ4는 하나의 드롭 포트에서 드롭되고, λ1은 세 개의 드롭 포트들로 멀티캐스트된다. 이와 동시에, 애드 포트에서 채널 λ2가 애드된다. 제 2 OPA 평면의 드롭 행에서의 λ1을 제외한 모든 빔들은 앞에서 설명한 바와 같이 일반적으로 처리된다. 여기서, 빔을 한 방향으로 조정하는 OPA 전극을 사용하는 대신에, 상이한 위상 격자(profile)가 사용된다. Dammann 회절 격자와 같은 격자들은 하나의 빔을 여러 개의 빔들로 분산할 수 있는 것으로 관련 분야에서 잘 알려져 있 는데, 다른 격자들은 위상 복원을 포함하여 잘 알려진 방법들에 의해 계산될 수 있다. 상기와 같은 산개형(fanout) 격자는 입사하는 파워를 복수의 방향으로 분배하기 위해 OPA에 적용될 수 있다. 빔의 방향들 및 각각의 빔에 포함된 파워는 전극들에 가해진 전압 패턴에 의해 정확하게 정의된다. 도 7에서는, λ2는 세 개의 드롭 포트들로 전송된다. 이러한 방식으로 생성될 수 있는 빔들의 수에는 근본적인 제한이 없다. OADM에 적용되었을 때, 일반적인 동작은 상기 노드에서 드롭될 채널을 산개시키는 것이다. 본 발명의 양방향 실시예는 두 개의 시스템-아웃 포트들을 포함하기 때문에, 애드될 채널은 두 개의 방향으로 분리되어 각각 시스템-아웃 포트로 향할 수 있다. 이는 두 개의 상이한 목적지들로 채널을 보내기 위해 사용되거나 1+1 광학 보호 구조에서 경로 다양화를 위해 사용될 수 있다. 포트들의 수에는 제한이 없으므로, 동일한 기능은 하나 또는 둘 이상의 시스템-아웃 포트를 추가함으로써 한방향 응용에도 제공될 수 있다.
양방향 전송을 위한 동작
DWDM 시스템의 일반적인 구조는 두 개의 노드를 연결하는 링크(link)에서 두 개의 전파 방향을 위해 분리된 광섬유를 사용한다. 이는 최적의 성능을 제공하고 전송 범위 관리를 단순화 한다. 각각의 전파 방향에 대해 하나의 광섬유를 사용하는 시스템에서 본 발명을 이용하여 OADM 기능을 얻기 위한 바람직한 방법은 각각의 광섬유(즉, 전파 방향)에 대해 하나의 장치를 사용하는 것이다. 그러나, 예를 들 면, 광섬유들의 수가 제한되거나 광섬유의 임대료가 매우 높은 경우와 같이, 하나의 광섬유에서 양방향 전파를 하는 것이 비용을 줄일 수 있는 경우가 있다. 기술적으로는 반대 방향으로 전파되는 신호가 동일한 파장을 갖는 것이 가능하나, 이는 심각한 디자인 복잡성 및 성능 저하를 야기하므로 거의 사용되지 않는다. 광섬유의 양방향 동작에 대한 보다 일반적인 방법은 반대 방향으로 전송되는 채널들을 상이한 파장대역으로 분리하거나, 반대 방향으로 전파되는 광학 채널들의 파장들을 상호 배치하는 것이다. 파장대역이란 특정 파장 범위에서 모든 허용된 파장들을 포함하는 광학 채널들의 집합을 말한다. 파장 대역 방식의 한 예는 서쪽에서 동쪽으로(eastbound) 전송되는 채널들을 위해 여덟 개의 인접한 파장 슬롯(slot)들의 집합을 사용하고, 동쪽에서 서쪽으로(westbound) 전송되는 채널들을 위해 별도의 여덟 개의 인접한 파장 슬롯들의 집합을 사용하는 것이다. 상호 배치 방식에서는, 모든 두 개 간격의 파장 슬롯은 한 방향으로 전송되는 광학 채널들을 위한 것이고, 나머지 다른 두 개 간격의 파장 슬롯은 반대 방향으로 전송되는 채널들을 위한 것이다.
본 발명은 인풋 포트들 및 아웃풋 포트들 사이에 존재하는 거울 대칭으로 인해, 동시에 두 가지의 기능을 각각 수행할 수 있으므로 하나의 광섬유로 양방향 동작을 수행 할 수 있다. 본 발명의 특정 구성에 있어서, 동일한 파장의 반대 방향으로 전송되는 광학 채널들은 장치에서 반대방향이지만 동일한 경로를 따를 것이다. 이러한 동작은 도 8에 도시되어 있으며, 동쪽 방향으로의 채널들은 가는 실선 또는 굵은 실선으로 표시되어 있고 서쪽 방향으로의 채널들은 대쉬 라인(dashed line) 또는 점선으로 표시되어 있다. 두 개의 파장들이 도시되어 있는데, 하나는 가는 선(실선 또는 점선)이고 다른 하나는 굵은 선(실선 또는 대쉬 라인)이다. 또한, 도 8은 동일한 파장을 반대 방향으로 전송하는 하나의 광섬유를 이용한 양방향 시스템에서의 제약을 나타내는데, 상기 제약은 OADM은 반드시 양방향의 전송에 있어서 동일한 파장에 대해 동일한 기능을 수행해야만 한다는 것이다. 따라서 한 방향에 있어서 주어진 파장이 익스프레스 된다면, 반대 방향에서도 익스프레스 되어야만 한다. 한 방향에서 드롭되는 파장은 반대 방향으로 전송되는 동일한 파장에 대해서도 드롭되어야만 한다. 어느 한 방향에서 드롭 및 리플레이스 동작의 모든 과정이 일어나야 하는 것은 아니다. 파장은 리플레이스 없이 드롭될 수도 있고, 시스템에서 아무 것도 없는 곳에서 애드될 수도 있다. 도 8로부터 명백한 또 하나의 제약은 한 방향으로 전송되는 채널에 대한 애드 포트는 반대 방향으로 전송되는 동일한 채널에 대해 드롭 포트가 되어야만 한다는 것이다. 따라서 주어진 파장이 임의의 포트에 할당될 수 있다는 점에서 완전히 유연한(flexible) 것이지만, 전송의 한 방향에 대한 할당은 반대 방향에 대해 동일한 포트들을 할당한다. 동일한 클라이언트(client) 인터페이스(interface)에서 인풋 및 아웃풋을 분리하는 것은, 양방향에 대해 동일한 파장을 사용하는 양방향 시스템에서 항상 요구되는 광학 서큘레이터(circulator)의 사용을 필요로 한다.
도 9는 각각의 방향에 대해 사이한 파장들이 할당되어 있는 하나의 광섬유를 사용하는 양방향 시스템에서 사용되는 본 발명의 일 실시예를 보여준다. 본 예시에 서는, 동쪽 방향으로의 파장들 (λ1 및 λ3)은 노드를 서쪽 방향의 인접한 노드에 연결하는 전송 광섬유로부터 장치에 들어오고, 서쪽 방향으로의 파장들(λ2)는 상기 노드를 동쪽 방향의 인접한 노드에 연결하는 전송 광섬유로부터 상기 장치에 들어온다. 상기 동쪽 방향으로의 파장 λ1은 드롭 및 리플레이스되고, 상기 동쪽 방향으로의 파장 λ3은 상기 노드를 통해 익스프레스된다. 서쪽 방향으로의 흐름에 대해, 상기 파장 λ2는 리플레이스 없이 드롭되고 상기 파장 λ4는 애드된다. 본 발명은 본질적으로 양방향이기 때문에, 임의의 주어진 시간에 각각의 파장이 한 방향에서만 사용된다면, 동일한 실시예는 동일한 기능 및 유연성을 갖는 한방향 또는 양방향 흐름을 제공할 수 있다. 본 발명의 동작은 양방향 흐름이 파장 대역으로 나누어져 있는지 혹은 상호 교차되어 있는지 여부에 영향을 받지 않는다.
보호 스위칭(protection switching)을 위한 동작
서비스 공급자는 전기 통신 시스템이 매우 높은 유효성, 일반적으로는 99.999% 또는 그 이상의 유효성을 가질 것을 요구한다. 이는 높은 신뢰도를 갖는 장치들을 중복적으로 배치함으로써 얻을 수 있다. OPA 기반 OADM은 움직이는 부품들이 없고, 완전히 전기적이며, 성숙된 반도체 및 LCD(liquid crystal display) 기술을 사용하여 제조되기 때문에 본질적으로 높은 신뢰도를 가질 것이다. 또한, 상기 OADM 자체, 상기 OADM에 연결된 송수신기들 또는 상기 OADM을 네트워크에 연결 시키는 전송 링크(link)의 실패(failure)에 대한 보호(protection)를 제공하도록 상기 장치들을 설치하고 구성할 수 있다.
OADM 실패(failure)
본 발명은 OADM 실패의 경우에 백업(backup)을 제공하기 위해 중복적인 유닛(unit)을 사용하는 표준 방법에 적용될 수 있다. 도 10은 동작 유닛 및 보호 유닛을 사용하는 상기의 적용 예를 나타낸다. 전송 광섬유로부터 노드에의 인풋은 최초에 1*2 스위치를 통과한다. 보통 결합된(multiplexed) 광학 채널들은 동작(working) 즉, 프라이머리(primary) OADM으로 향하도록 세팅된다. 애드들 및 드롭들은 N*2N 스위치들을 통과하고, 상기 노드에서의 애드들 또는 드롭들의 수는 N보다 작다. 상기 스위치들은 모든 N개의 애드들을 한 블록으로써 상기 프라이머리 또는 백업 유닛 중의 하나에 연결한다. 유사하게, 상기 N개의 드롭들의 시점은 상기 프라이머리 또는 백업 유닛 중에서 하나로 선택된다. 상기 두 개의 OADM의 출력들은 액티브(active) 유닛을 전송 광섬유에 연결하도록 세팅된 2*1 스위치에 연결된다. 중복에 대한 상기 방법은 단지 보호되는 OADM만 중복되게 한다. 애드들 및 드롭들을 위한 송수신기들은 중복되지 않고 올바른 OADM에 스위치로 연결된다. 이러한 목적을 위해 저렴하고 높은 신뢰도를 갖는 스위치들이 사용된다.
송수신기 실패
송수신기 실패에 대한 보호는 각각의 노드에서 애드 및 드롭 광섬유들에 연 결된 여분의 유닛들을 제공함으로써 쉽게 얻을 수 있다. 동작 유닛이 실패하면 여분의 유닛이 실패한 유닛을 대체하기 위해 스위치되어 연결된다. 동적 OADM은 시스템에 있는 임의의 광학 채널을 노드에 있는 임의의 애드 또는 드롭 광섬유에 연결시킬 수 있기 때문에, 파장이 이미 다른 연결을 위해 사용되고 있지 않는 한 상기 여분의 유닛은 상이한 파장에 있을 수 있다. 송수신기 및 OADM 보호는 도 10에서 여분의 애드 및 드롭 광섬유들에 연결된 여분의 유닛들을 포함함으로써 동시에 얻을 수 있다.
범위(span) 실패
진보된 노드들은 네트워크의 전송 범위에 있어서의 실패에 대해서도 시스템을 보호해야 한다. 이는 보통 광섬유의 절단에 의해 발생하나, 노드들 또는 네트워크 관리를 위한 다른 접근 지점에서 광섬유 점퍼(jumper)들을 사람이 잘못 연결함에 의해 발생하기도 한다. 본 발명의 다양한 실시예들은 동작에 있어 범위 보호를 내포하고 있다. 도 11은 일반적인 동작에 있는 DWDM 고리의 예시이다. 명확성을 위해 두 개의 광섬유 및 두 개의 노드를 갖는 고리에 대해 설명하지만, 두 개 이상의 광섬유들 및 두 개 이상의 노드들을 갖는 선형, 고리 및 그물망 시스템으로 확장할 수 있음은 명백하다. 도 11의 시스템은 두 개의 광섬유들을 갖는데, 하나는 반시계 방향으로 동작하는 동작(working) 광섬유이고 다른 하나는 시계 방향으로 동작하는 보호(protection) 광섬유이다. 보통의 동작에 있어서는 상기 동작 광섬유만이 노드들 사이의 흐름을 전송한다. 각각의 노드는 파장들을 애드 및 드롭하기 위해 사용 되는 클라이언트 인터페이스들을 갖는다.
도 12A 및 12B는 각각 OPA 기반 OADM1 및 OADM2의 예시적인 구성을 나타낸다. 본 예시에 있어서 상기 두 개의 OADM들은 λ4채널의 드롭 및 리플레이스를 수행하고, OADM1은 λ1채널을 애드하고 OADM2는 λ1채널을 리플레이스 없이 드롭한다. 상기 두 개의 OADM들은 단지 OADM들의 관리를 설명하기 위해 λ2 및 λ3 익스프레스 채널들을 갖는다. 실질적으로, 세 개 이하의 노드들을 갖는 시스템에서는 익스프레스 채널들이 없을 수도 있으며, 상기 익스프레스 채널들은 단지 두 개 이상의 노드들을 갖는 시스템에서 본 발명의 동작의 이해를 돕기 위해 도시되어 있다. 도 6A와 도 12A 및 12B를 비교하면, 전송 범위를 보호하기 위한 기능을 추가하기 위해서는 단지 본 발명의 다른 실시예에 하나의 인풋 및 하나의 아웃풋 포트를 추가하는 것만을 필요로 한다는 것을 알 수 있다. 시스템-인 프라이머리(primary) 및 시스템-아웃 프라이머리 포트들은 상기 동작 광섬유에 연결되고, 시스템-인 백업(backup) 및 시스템-아웃 백업 포트들은 상기 보호 광섬유에 연결된다.
도 13은 광섬유의 절단이 발생했을 경우의 상기 동일한 고리의 동작을 나타낸다. 노드 1로부터 노드 2로 향하는 흐름은 더 이상 동작 광섬유를 사용할 수 없고, 상기 고리의 반대 방향에 있는 상기 보호 광섬유로 스위치되었다. 도 13은 OADM1의 상기 시스템-아웃 프라이머리 포트에 있던 흐름은 상기 시스템-아웃 백업 포트로 스위치 되어야 하고, OADM2는 상기 시스템-인 프라이머리 포트에서 수신되던 흐름은 이제 상기 시스템-인 백업 포트에서 수신되도록 재구성되어야 한다는 것 을 나타낸다. 추가적으로 필요한 것은 각각의 노드에서 애드되고 드롭되는 파장들은 변하지 않아야 한다는 것이다.
도 14A 및 14B는 각각 OADM1 및 OADM2의 새로운 구성을 나타낸다. OADM1에 있어서 장치로 들어오는 인풋은 보통의 동작에서와 같이 동일한 포트로 들어오지만, 모든 아웃풋 채널들은 상기 아웃풋 채널들을 손상되지 않은 광섬유에 연결시키는 상기 시스템-아웃 백업 포트로 전달된다. 애드되고 드롭되는 채널들은 이전과 동일하게 동일한 포트들을 통해 장치에 들어오고 나가므로, 클라이언트 인터페이스의 재구성은 필요하지 않다. 도 14B는 OADM2에 있어서 상기 보호 광섬유로부터의 인풋은 상기 시스템-인 백업 포트를 통해 장치로 들어오고 손상되지 않은 동작 광섬유 영역에 연결된 상기 시스템-아웃 프라이머리 포트를 통해 나간다는 것을 보여준다. OADM1에서와 같이, 애드들 및 드롭들의 구성은 재구성될 필요가 없다.
본 발명의 본 실시예는 외부의 스위치들 없이 전송 영역 보호를 제공한다. 클라이언트 인터페이스는 보호 스위치 동작에 의해 영향을 받지 않고, 동일한 파장들은 이전과 동일한 포트들을 통해 애드되고 드롭될 수 있다. 이러한 방식을 사용하면 영역 보호를 위해 백업 송수신기가 필요하지 않다. 상기 기능을 제공하기 위한 본 발명의 수정은 사소한 것이며, 본 실시예는 복수의 기능들을 수행하는 하나의 장치에서 다른 실시예들과 결합될 수 있다.
광성능 모니터링(optical performance monitoring)을 위한 동작
서비스 제공자들은 그들이 소비자들에게 제공하는 서비스 품질(quality-of- service) 보증이 요구 조건을 충족한다는 것을 확실히 하는 것이 필요하다. 서비스들은 점점 더 광학 네트워크들을 통해 수행되고 이러한 네트워크들은 점점 더 광학적으로 투명해지고 있다. 이는 광학 채널들이 전기적인 신호들로 전환되기 이전에 보다 멀리 전송되고 보다 많은 네트워크 노드들을 지나간다는 것을 의미한다. 성능 모니터링을 위한 대부분의 방법은 전기적인 도메인(domain)에서 신호들을 분석하는 것을 필요로 하므로, 서비스 제공자들이 광학 경로의 두 지점 사이에 있는 신호들의 상태를 평가하고 에러가 발생했을 경우에 에러가 발생한 위치를 찾아내는 것이 점점 더 어려워지고 있다. 이로 인해, 일반적으로 신호의 작은 일부분을 분기시켜 광학 도메인 또는 전기적인 도메인에서 그것을 분석함으로써 광학 신호들의 양호 정도를 분석하는 것이 필요해진다. 상기 분석은 신호의 유실 탐지와 같이 간단할 수도 있고, 광학 신호대 잡음비(signal-to-noise ratio) 측정, 비트(bit) 에러율(error-rate) 검사 또는 Q 팩터(Q-factor) 결정과 같이 복잡할 수도 있다. 지금까지 대부분의 광성능 모니터링 시스템들은 광학 분기점들에 의해 상기 시스템에 연결되어야만 하는 추가적인 박스들로서, 스위칭 및 전송 장치들에 대해 외부적이다. 이는 소중한 공간을 차지하고 기술자들의 추가적인 교육을 요할 뿐만 아니라, 서비스 제공자들에게 자본 및 동작 비용을 증가시킨다.
OPA가 광학 빔을 복수의 빔들로 분리시키고 각각의 빔의 전력 및 방향을 독립적으로 조절할 수 있는 능력에 대해서는 상기 설명한 멀티캐스팅관련 부분에서 설명되었다. 이러한 능력은 아웃풋 포트들에 하나 또는 둘 이상의 모니터 포트들을 추가함으로써 내재된 광성능 모니터링을 제공하는 본 발명의 실시예에 이용될 수 있다. 상기와 같은 장치의 동작은 도 15에 나타나 있으며, 도 15는 특정 광학 채널들에 있는 에너지의 작은 일부분이 분리(즉, 분기)되어 모니터 포트들로 전달되고, 나머지 파워의 대부분은 요구되는 방향으로 전달되는 방법을 보여준다. 상기 모니터 포트들은 상기 분기된 신호를 떨어져 있는 분석기로 전달하는 광섬유들을 사용하는 일반적인 드롭 포트들일 수도 있고, 또는 관련된 전기장치들에 의한 처리를 위해 광학 신호를 전기적인 신호로 전환하는 광감지기들(photodetectors)일 수도 있다. 임의의 채널이 모니터링될 수 있고 특정 시각에 모니터될 특정 채널은 OPA 컨트롤러로의 전기적인 신호들에 의해 지정될 수 있다. 도 15는 상기 분기가 제 2 OPA 평면에 의해 생성되는 것을 나타내고 있으나, 상기 분기는 제 1 OPA 평면에서 생성될 수도 있다.
상기 OPA들이 분기되는 전력의 양을 조절할 수 있는 능력은 상기 OPA들이 넓은 범위의 조건에 대해 상기 성능 모니터링 동작에 적용될 수 있도록 한다. 예를 들면, 상이한 종류들의 모니터링 분석은 상이한 양의 광학 전력을 필요로 하고, 상이한 채널들은 노드에서 상이한 전력 레벨을 가질 것이다. 어떠한 분기라도 신호에게 해로운 것이므로, 상기 OPA는 수행되는 측정들을 위해 필요한 최소한의 전력을 상기 모니터 포트들에게 전달 할 수 있다. 모든 채널들이 모니터링될 필요가 있는 것은 아니다. 일반적으로, 노드에서 드롭되는 광학 채널들이 전기적인 신호로 전환된다면, 수신기들이 신호 품질 분석을 제공하므로 상기 채널들에 대해서는 모니터링이 필요하지 않다. 익스프레스 채널들 및 애드되는 채널들을 포함하여, 드롭된 채널들로서 광학 도메인에 머문 채 전기적인 처리 없이 다른 시스템으로 입력되는 채널들은 모니터링이 필요할 수 있다. 애드된 채널들을 모니터링 하는 것은 상기 채널들이 알맞은 파워 및 신호 품질을 갖고 시스템에 입력되었다는 것을 확실하게 하는데에 유용하다.
장치에 얼마나 많은 모니터 포트들을 포함시킬지에 대한 결정은 비용대 품질간의 트레이드오프(trade-off) 분석을 필요로 한다. 시스템에 있는 모든 광학 채널에 대해 하나의 포트를 제공하는 것은 보통 불필요하고 비용이 많이 든다. 단 하나의 포트를 포함하는 것은 모니터링될 채널들이 상기 하나의 포트를 통해 순환되는 것을 필요로 하고, 임의의 주어진 채널의 분석 간에 수용할 수 없을 정도로 긴 시간 간격을 야기할 수도 있다. 상기 모니터링 장치가 광섬유에 의해 상기 장치에 연결된다면, 모니터 포트들과 드롭 포트들 사이를 구분할 필요가 없게 된다. 이는 지역적인 조건에 따라 임의의 포트가 모니터링 기능 또는 드롭 기능에 할당되는 것을 허용한다.
채널 등화(equalization)를 위한 동작
광학 증폭기들을 포함하는 광학 네트워크들의 동작에 있어서 매우 중요한 고려사항은 시스템에서 광학 채널들의 증폭도 사이에 전력 균형을 유지하는 것이다. 상기 광학 증폭기들이 시스템 채널들에게 전달할 수 있는 전력의 양에 한계가 있기 때문에 상기 증폭기들의 이득(gain)은 포화된다. DWDM 시스템에서 일부 채널들이 다른 채널들에 비해 훨씬 많은 전력을 갖는다면, 상기 일부 채널들은 약한 채널들의 희생 하에 증폭기들로부터 더 많은 전력을 끌어내어 상기 증폭기에서의 신호대 잡음비를 떨어뜨릴 것이다. 채널 전력에 있어서 초기의 불균형이 발생하는 이유는, 시스템에 있는 임의의 지점에는 상이한 채널들로부터 전송되고 상기 지점에 도달할 때까지 상이한 거리에 걸쳐 전송된 채널들이 존재하기 때문이다. 이상적으로는, 각각의 채널 파워는 각각의 수신기에서 동일한 신호대 잡음비를 갖도록 조정될 수 있다(pre-emphasis). 이는 현재의 네트워크들에서는 비현실적이기 때문에, 광학 증폭기에 들어가기 이전에 각각의 채널이 동일한 전력을 갖도록 조정(등화)하는 보다 간단한 방법이 사용된다. 일반적으로, 채널 등화는 가장 약한 채널의 전력 수준으로 다른 모든 채널들의 전력을 감소시킴으로써 행해진다. 등화는 각각의 채널의 전력을 측정하는 도구 및 각각의 채널의 전력을 독립적으로 원하는 수준으로 감소시키는 수단을 필요로 한다. 일반적으로 이는 모든 또는 일부의 광학 증폭기들 이전에 광학 시스템에 삽입되어야 하는 상기의 목적을 위해 고안된 외부 장치를 사용하여 행해진다.
OPA들의 광학 빔을 복수의 빔들로 분리시키고 각각의 빔의 전력 및 방향을 독립적으로 조절할 수 있는 능력은 인해 상기 등화 동작이 OPA 기반 OADM에 내재될 수 있도록 한다. 이러한 중요한 기능을 OADM에 내재함으로써 서비스 공급자의 자본 및 동작 비용을 줄일 수 있고, 공간 활용도를 증가시킬 수 있으며, 기술자 교육도 줄일 수 있다. 도 16은 상기 등화 기능을 제공하는 반사 모드를 사용하는 본 발명의 실시예를 나타낸다. 이는 등화 기능을 수행하는 본 발명의 한 구성에 대한 예시이고, 통과 모드 디자인을 포함하여 다른 실시예들 역시 상기의 등화 기능을 수행할 수 있다. 도 16에는 익스프레스 채널만이 도시되어 있으나, 애드 및 드롭 채널 들로 확장하는 것도 간단하다. 도 16에는 여기서 설명되는 동작을 보다 명확하게 설명하기 위해 도 2에 도시된 장치는 간단히 도시되어 있다. 빔(80)은 OADM으로 입사하여 (도시되어 있지는 않으나, 회절격자를 통해)제 1 OPA(또는 다른 빔 조정 시스템 실시예)로 전달된다. 상기 제 1 OPA는 상기 빔의 전력을 특정 수준으로 감소시키기 위해 필요한 상기 빔의 일부분을 분리시켜 상기 빔의 일부분을 흡수를 위한 빔 덤프(dump)로 조정한다. 전력 등화의 목적이라면, 상기 버려지는 일부분은 시스템의 한 지점에서 가장 약한 채널의 전력 수준으로 상기 채널의 전력을 줄이기 위해 필요한 것이다. 계속 진행하는 빔은 거울에 반사하여 제 2 OPA에 도달하고, 상기 제 2 OPA는 필요한 감소의 양을 결정하기 위해 상기 빔의 작은 일부분을 전력 모니터링 탐지기 또는 성능 모니터링 포트로 전송한다. 이러한 구성으로 인해 상기 채널의 전력은 전송 광섬유로 되돌아가기 이전에 피드백 루프(feedback loop)에 의해 조절된다. 비록 도 16에는 상기 제 1 OPA는 상기 빔을 감소시키고 상기 제 2 OPA는 모니터링을 위해 상기 빔을 분기시키는 것으로 도시되어 있으나, 이러한 역할들은 서로 반대가 될 수도 있고 또는 어느 한 OPA가 두 가지 기능을 모두 수행하도록 사용될 수도 있다.
광학 채널들의 관리
광학 서비스 채널(optical service channel, OSC)은 특히 원격측정, 오류 및 성능 모니터링 및 관리 및 컨트롤을 위해 네트워크 요소들 사이에 광학 링크(link)를 제공하기 위한 것이다. 상기 OSC는 데이터 채널들과 동일한 광섬유를 통해 전송 될 수 있으나, 상이한 파장을 이용한다. 모든 네트워크 요소들 사이에 통신을 제공하기 위해, 상기 OSC는 모든 네트워크 요소에서 종료되고 재전송되며, 상기 OSC에 포함된 정보가 광학 도메인에 남아있는 네트워크 요소들에서 조차 종료되고 재전송된다. 상기 OSC의 대역은 비록 일부 제조자들은 155Mb/s 까지 제공하나 일반적으로 1.5-2Mb/s 정도로 데이터 링크에 비해 낮다. 광학 증폭기들을 포함하는 멀티 채널 시스템을 위한 광학 인터페이스인, ITU-T가 제안한 G.692는 상기 OSC의 파장은 1510±10 nm 또는 1480±10 nm일 수 있다고 설명하고 있다. 상기 파장들 이외에, 많은 제조자들은 상기 OSC를 1625 nm에 두었다. 상기 OSC의 파장의 큰 불확실성 및 C 밴드(bans) 및 L 밴드 바깥에 상기 OSC의 파장이 있음으로 해서, 상기 OSC는 데이터 채널들처럼 동일한 고해상도 방법으로 관리하는 것이 불가능하다. 이러한 어려움은 도 17에 도시되어 있는데, 도 17은 ITU-T 격자 상에, 예를 들면, 200GHz 간격을 갖는 데이터 채널들을 포함하는 상기 C 및 B 밴드들과 상기 1510 nm 및 1625 nm OSC들을 위해 허용된 파장 범위들을 나타낸다. 데이터 채널들을 분산시키기 위해 충분한 분산을 제공하는 회절격자는 완곡한 파장 오차 허용 범위로 상기 OSC를 처리하기에 필요한 것 보다 더 많은 분산을 갖는다. 이러한 문제점을 극복하기 위해, 본 발명은 데이터 채널들로부터 상기 OSC를 분리시키지만 상기 OSC가 파장에 의존적이지 않은 방식으로 처리될 수 있도록 격자의 분산 효과를 제거하는 격자를 사용한다.
OSC의 실질적인 관리를 위한 본 발명의 바람직한 실시예는 본 발명의 임의의 다른 응용을 제한하지 않거나 또는 심각하게 비용을 증가시키지 않는 기본 디자인 에 대한 확장을 사용한다. 각각의 전송 광섬유는 하나의 OSC를 포함한다고 가정한다. 각각의 광섬유로 복수의 OSC들이 전송된다면, 본 발명의 하나의 OSC에 대한 디자인에 대한 명백한 수정을 사용하여 관리될 수 있다. 도 18은 상기의 확장을 위한 런처 배열 평면을 나타낸다. 데이터 애드, 데이터 드롭, 시스템-인 및 시스템-아웃 포트들 이외에, OSC-애드 포트 및 OSC-드롭 포트가 더해져 있다. OSC-애드 및 OSC-드롭 거울들 역시 상기 런처 평면에 더해져 있다.
도 19는 OSC 관리를 위해 필요한 수정 사항들을 포함하는 OPA 평면을 나타낸다. 본 발명의 다른 실시예들에서와 같이, 상기 OPA 평면은 행들 및 열들로 배열된 OPA 구멍들을 포함하는데, 상기 네 개의 행들 각각은 기능에 대응되고 각각의 열은 시스템에 있는 데이터 파장에 대응된다. 또한, 상기 OPA 배열의 좌측 및 우측에 위치한 거울들을 포함한다. 상기 배열의 좌측에 있는 두 개의 거울들은 1625 nm OSC를 위한 것이고, 상기 배열의 우측에 있는 두 개의 거울들은 1510 nm OSC를 위한 것이다. 상기 회절 격자가 1625 nm 및 1510 nm의 OSC를 회절시키는 각각의 위치에 상기 거울들의 중심들이 각각 오도록 상기 거울들은 수평으로 배치된다. 상기 거울들의 수평 폭은 상기 OSC들의 스펙트럼 오차 허용 범위(±10 nm)보다 약간 크다. 각각의 OSC 파장을 위해 두 개의 거울들이 있는데, 하나는 위쪽 노드로부터 들어오는 OSC가 도달하는 상부 거울이고, 다른 하나는 아래쪽 노드로 전송되는 나가는 OSC가 도달하는 하부 거울이다. 본 발명의 인풋/아웃풋 대칭성에 의해, 충분한 높이의 하나의 거울은 인풋 및 아웃풋 기능들 모두를 위해 사용될 수 있다. 또한, OSC를 애드하기 위해 사용되는 상기 데이터 드롭 행의 위쪽에 위치한 두 개의 추가 적인 OPA 구멍들 및 OSC 드롭을 위해 상기 데이터 애드 행의 아래쪽에 위치한 두 개의 OPA 구멍들이 상기 OPA 평면에 포함되어 있다. 도 19에서 상기 OPA 구멍들의 위치는 설명을 위한 목적일 뿐이며, 본 발명의 실시예과 관련하여 상기 OPA 구멍들은 어떤 장점들을 제공하지만, 본 발명은 OPA 구멍 배치의 다른 구성에도 적용될 수 있다.
도 20A 및 20B는 OSC의 애드 및 드롭을 위한 본 발명의 동작을 나타내는 개념적인 평면도 및 측면도이다. 비록 명확화를 위해 도 20A 및 20B에는 도시되어 있지 않으나, 본 발명의 본 실시예는 데이터 채널들을 애드 및 드롭하는 능력을 동시에 보유하고 있다. 도 20A에서 위쪽 노드로부터의 모든 광학 채널들은 상기 채널들이 조준하는 시스템-인 포트를 통해 본 발명에 입사한다. 그 후, 상기 채널들은 각각의 채널들을 파장에 따라 분산시키는 회절 격자에 도달한다. 상기 OSC 파장들은 데이터 파장들의 범위 밖에 있으므로, 상기 OSC 채널은 데이터 채널들의 범위 밖으로 회절되어 지시된 상부의 1625 nm 거울 또는 하부의 1510 nm 거울에 도달한다. 상기 거울들은 상기 OSC의 표준 오차 허용 범위 내에 있는 임의의 파장을 수신할 수 있을 정도로 넓다. 상기 거울들은 상기 OSC의 경로를 반전시켜 분산을 제거하는 회절 격자를 통해 되돌려 보낸다. 상기 거울들은 수평 방향으로 약간 기울어져 있어서 돌아오는 OSC 광학 에너지는 상기 시스템-인 포트에 도달하지 않고 상기 시스템-인 포트 옆에 있는 OSC-드롭 거울에 도달한다. 도 20A는 1625 nm 및 1510 nm OSC 모두에 대한 경로를 보여준다. 두 번째로 회절격자를 통과함에 의해 상기 분산은 제거되기 때문에, 상기 OSC는 파장에 무관하게 항상 OSC-드롭 거울에 동일한 위 치 및 동일한 각도로 도달할 것이다. 상기 OSC 드롭 거울은 반사된 빔이 렌즈1에 도달하기 이전에 상기 회절 격자 아래로 통과하기에 충분한 아래 방향의 편향을 가한다(도 20B). 만약 전체적인 OADM 배치로 인해 불편하게도 상기 OSC 빔이 상기 격자를 거치지 않게 하기 위해 큰 각도가 필요하다면, 원하는 값만큼 상기 OSC 신호들의 전송 방향을 조정하기 위해 상기 격자의 바로 아래에 제 2 거울이 배치될 수 있다. 렌즈는 상기 OSC 빔을 제 1 OSC-드롭 OPA 구멍으로 향하게 하고, 상기 제 1 OSC-드롭 OPA 구멍은 상기 빔을 제 2 OSC-드롭 OPA 구멍으로 전달한다. OSC는 항상 드롭될 것이기 때문에 상기 OPA들은 데이터 채널들에서처럼 상기 빔을 위해 큰 각도의 조정을 제공할 필요가 없다. 데이터 채널들에서와 같이, 인풋 및 아웃풋 포트들 사이의 결합을 최적화하기 위해 상기 OPA들은 정밀한 정렬 및 집중(focusing)을 제공한다. 상기 제 2 OSC-드롭 OPA를 통과한 이후에 상기 OSC 빔은 상기 회절 격자를 거치지 않고 렌즈2에 의해 OSC-드롭 포트로 전달된다.
OSC-애드 동작은 드롭 동작의 반대이다. 빔은 OSC-애드 포트를 통해 본 발명에 입사하고, 상기 회절 격자를 거치지 않고 렌즈1에 의해 제 1 OSC-애드 OPA로 전달된다. 상기 제 1 OSC-애드 OPA로부터 상기 빔은 제 2 OSC-애드 OPA 및 렌즈2를 통과하고, 회절 격자 위쪽을 통과하여 OSC-애드 거울에 도달한다. 상기 OSC-애드 거울은 상기 빔을 회절 격자로 반사하고, 상기 회절 격자는 상기 빔을 분산시켜 렌즈2로 전송하여 상기 빔은 아래쪽에 있는 1625 nm 또는 1510 nm 거울에 도달한다. 상기 거울은, 상기 OSC-애드 거울로부터 데이터 채널들과 함께 본 발명을 나가는 시스템-아웃 포트로 빔의 도달 위치를 이동하기 위해 편향을 가한 이후에, 렌즈 및 회절 격자를 통해 상기 빔을 돌려보낸다.
데이터 채널들에서와 같이, 싱글 모드 광섬유에의 연결을 최적화하기 위해 필요한 각도 및 위치의 조정을 독립적으로 제공하기 위해 각각의 빔에 대해 두 개의 구멍들이 필요하다. 도 20A에 도시된 바와 같이, 상기 OSC-애드 및 OSC-드롭 거울들은 제 1 OSC-OPA 구멍으로부터 제 2 OSC-OPA 구멍으로의 빔의 전달을 쉽게 하기 위해 작은 수평 방향의 편향을 사용할 수 있다. 또한, 상기 OSC-애드 및 OSC-드롭 포트들에게 수직 각도를 주는 것은 상기 빔이 상기 회절 격자의 위쪽 또는 아래쪽의 필요한 방향으로 통과하기 위해 필요한 수직 편향을 제공하는데 도움이 된다.
편극(polarization) 의존적 손실을 위한 보상(compensation)
편극 의존적 손실(polarization-dependent loss, PDL)은 광학 경로들을 따라 축적되고 광섬유에서의 편극 상태가 시간에 따라 표류함에 따라 신호 감소를 초래하므로, 광학 네트워크에서 장치에 대해 최소한으로 유지되어야만 한다. OPA들에서 사용되는 네마틱(nematic) 액정(liquid crystal)들의 편극 의존성은, 광학 에너지가 상기 액정들의 특별한 축에 대해 서로 90도의 각도를 갖도록 배치된 두 개의 OPA들을 통과하도록 함으로써, 통과 모드에서 제거될 수 있다. 앞에서 참조한 Love의 기사는, 거울 및 액정 셀(cell)과 상기 거울 사이의 1/4파 플레이트(quater wave plate)를 사용하여, 광학 에너지가 상기 액정 셀을 두 번 통과하도록 함으로써, 상기 액정들의 편극 의존성이 반사 모드에서 보상될 수 있는 방법을 설명하고 있다. 이는 광학 에너지가 한 편극 상태로 상기 셀을 첫 번째로 통과하고 90도 회 전된 상태로 상기 셀을 두 번째로 통과하도록 한다.
PDL의 두 번째 주요 요인은 회절 격자이다. 심지어 에쉘 회절 격자도 어느 정도의 후차적인 편극 의존성을 갖는다. 상기 PDL 및 장치의 다른 구성 요소로부터의 PDL은 장치의 중심 평면에 편극 회전 장치를 배치함으로써 일차적으로 보상될 수 있으며, 상기 중심 평면은 접어지는 디자인에서 접어주는 거울에 대응한다. 접어지는 디자인이 사용된다면, 상기 참조한 기사에서 설명된 Love의 방법은 도 2에 있는 접어주는 거울의 앞에 또는 접어주는 거울에 부착하여 1/4파 플레이트를 배치함으로써 적용될 수 있다. 이는 광학 에너지가 편극 상태가 90도 만큼 회전된 상태로 상기 장치를 통해 되돌아 나가도록 한다. 상기 두 개의 편극 상태들은 동일한 구성 요소들을 통과함에 의해 거의 동일한 손실을 얻기 때문에, 이는 구체적으로 편극 민감도를 제거한다. 통과 디자인에서는 상기 중앙 평면에 반파 플레이트(half wave plate)가 배치된다. 이는 편극 상태가 90도 만큼 회전된 상태로 광학 에너지가 상기 장치의 뒤쪽 절반을 통과하도록 한다. 그러나 상기 두 개의 편극 상태들은 동일한 구성 요소들의 상이한 실체를 통과하기 때문에, 이는 일반적인 편극 민감도만을 보상할 수 있다.
OPA들은 전기적인 렌즈들로서 동작할 수 있기 때문에, 상기 OPA들에 기초한 장치들의 총체적인 오차 허용 범위는 매우 넓을 수 있다. 런처, 회절 격자 및 렌즈의 결합에 대한 목표 정확도는, 빔들이 OPA 평면상에서 상기 OPA들의 구멍 내에 도달하기에 충분한 것만을 필요로 한다. 그 후, 상기 OPA들이 불일치를 보상하고 상기 빔들을 목적지 포트들로 정확하게 조정한다. OPA들은 빔들을 조정할 뿐만 아니 라 상기 빔들을 포커싱(focusing)하기 때문에, 상기 OPA들은 상기 런처들 및 렌즈들에서의 포커싱 오류들을 보상할 수 있다. 또 다른 능력은 최적 정렬을 위해 필요한 보정들을 학습함으로써 스스로를 자동으로 정렬하는 OPA 장치의 능력이다. 이는 조립의 마지막 단계로써, 스케줄된 관리와 같이 주기적으로, 또는 디더링(dithering) 및 피드백 루프들을 통해 동작 중에 행해질 수 있다. 따라서 본 발명의 다양한 실시예들은 기계적 오차 허용 범위로 조립되어 광학적 오차 허용 범위를 기초로한 정렬로 동작할 수 있다.
본 발명의 많은 실시예들이 설명되었다. 그럼에도 불구하고, 본 발명의 사상 및 범위를 벗어남이 없이 다양한 수정예들이 만들어 질 수 있음은 물론이다. 따라서 다른 실시예들은 아래의 특허 청구 범위의 범위에 포함된다.

Claims (23)

  1. 인풋(input) 포트(port);
    아웃풋(output) 포트;
    애드(add) 포트;
    드롭(drop) 포트; 및
    상기 인풋 포트에서 광학 에너지를 수신하고 상기 애드 포트에서 광학 에너지를 수신하여, 상기 인풋 포트에서의 상기 광학 에너지를 선택적으로 상기 아웃풋 노드 또는 상기 드롭 포트로 전달하고, 상기 애드 포트로부터의 상기 광학 에너지를 상기 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 포함하는 애드/드롭 장치.
  2. 제 1 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 애드/드롭 장치.
  3. 제 1 항에 있어서, 상기 파장 멀티플렉서(multiplexer)/디멀티플렉서(demultiplexer)는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 애드/드롭 장치.
  4. 소스(source) 노드(node)로부터 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 인풋(input) 포트(port);
    목적지(destination) 노드에 연결시키는 아웃풋(output) 포트;
    목적지 노드들에 전송하기 위해 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 애드(add) 포트;
    드롭(drop) 포트; 및
    상기 인풋 포트에서 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하고 상기 애드 포트로부터 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하여, 상기 인풋 포트에서의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 선택적으로 상기 아웃풋 포트 또는 상기 드롭 포트로 전달하고, 상기 애드 포트로부터의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 상기 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 구비하는 애드/드롭 장치를 포함하는 광통신 시스템.
  5. 제 4 항에 있어서, 상기 파장 디멀티플렉서(demultiplexer) 및 멀티플렉서(multiplexer)는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 광통신 시스템.
  6. 제 4 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 광통신 시스템.
  7. 소스(source) 노드(node)에 연결시키는 네트워크(network) 인풋(input) 포트(port);
    목적지(destination) 노드에 연결시키는 네트워크 아웃풋(output) 포트;
    광학 채널(channel)들을 추가적인 네트워크 노드들에게 전송하는 애드(add) 포트;
    추가적인 네트워크 노드들로부터 광학 채널들을 수신하는 드롭(drop) 포트;
    상기 광학 채널들을 결합/분리하는 파장 멀티플렉서(multiplexer)/디멀티플렉서(demultiplexer); 및
    상기 네트워크 인풋 포트에서 광학 에너지를 수신하고 상기 애드 포트로부터 광학 에너지를 수신하여, 상기 네트워크 인풋 포트에서의 상기 광학 에너지를 선택적으로 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트로 전달하고, 상기 애드 포트로부터의 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 구비하는 애드/드롭 장치를 포함하는 광통신 시스템.
  8. 제 7 항에 있어서, 상기 파장 디멀티플렉서 및 멀티플렉서는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 광통신 시스템.
  9. 제 7 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 광통신 시스템.
  10. 복수의 포트(port)들을 구비하는 런처(launcher)(상기 복수의 포트들 각각은 복수의 광파장들에 정보를 실어보내고, 상기 포트들의 제 1 집합은 네트워크(network) 인풋(input) 종류의 포트들이고, 상기 포트들의 제 2 집합은 네트워크 아웃풋(output) 종류의 포트들이고, 상기 포트들의 제 3 집합은 채널(channel) 애드(add) 종류의 포트들이고, 상기 포트들의 제 4 집합은 채널 드롭(drop) 종류의 포트들임); 및
    전기적으로 조절 가능한 빔(beam) 조정 시스템(상기 시스템은 복수의 영역들을 구비하고, 상기 복수의 영역들 각각은 상기 런처 포트 종류들 중에서 대응하는 하나의 포트 종류와 관련되며, 상기 복수의 영역들 각각은 복수의 빔 조정기(steerer)들을 구비하고, 상기 빔 조정기들 각각은 광통신 시스템에서 사용되는 상기 광파장들 중의 하나에 대응함); 및
    상기 런처 포트들 각각에서의 광학 에너지를 상기 빔 조정 시스템의 상기 복수의 영역들 중에서 관련된 하나의 영역으로 전달하는(상기 전달되는 광학 에너지 의 상기 복수의 광파장들 각각은 상기 복수의 광파장들과 관련된 상기 빔 조정기들 중에서 대응하는 하나의 빔 조정기에게 전달됨)광학 시스템을 구비하는 광학 시스템을 포함하고,
    상기 전달되는 에너지를 수신하는 상기 빔 조정 시스템의 상기 복수의 영역들 중에서 상기 관련된 하나의 영역은, 복수의 시스템 기능들 중의 하나에 대응하여 상기 수신한 광학 에너지를 상기 빔 조정 시스템의 상기 영역들 중에서 다른 하나의 영역으로 선택적으로 재전달하고,
    상기 재전달되는 광학 에너지의 상기 복수의 광파장들 각각은, 상기 복수의 광파장들 중에서 상기 하나의 광파장과 관련된, 상기 빔 조정 시스템의 상기 영역들 중에서 상기 다른 하나의 영역의 상기 빔 조정기들 중에서 상기 대응하는 하나의 빔 조정기에게 재전달되고,
    상기 빔 조정 시스템의 상기 영역들 중에서 상기 다른 하나의 영역은, 상기 런처 포트 종류들 중에서 대응하는 하나의 종류의 포트에게 재전달하는 것을 특징으로 하는 광통신 시스템.
  11. 제 10 항에 있어서, 상기 파장 디멀티플렉서(demultiplexer) 및 멀티플렉서(multiplexer)는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 광통신 시스템.
  12. 네트워크(network) 인풋(input) 포트(port);
    네트워크 아웃풋(output) 포트;
    복수의 애드(add) 포트들;
    복수의 드롭(drop) 포트들;
    상기 네트워크 인풋 포트, 상기 네트워크 아웃풋 포트, 상기 복수의 애드 포트들 및 상기 복수의 드롭 포트들에 연결되어, 상기 네트워크 인풋 포트, 상기 네트워크 아웃풋 포트, 상기 복수의 애드 포트들 및 상기 복수의 드롭 포트들에서의 파장들을 결합/분리하는 파장 멀티플렉서(multiplexer)/디멀티플렉서(demultiplexer); 및
    상기 파장 멀티플렉서/디멀티플렉서에 연결되어, 상기 네트워크 인풋 포트에서 광학 에너지를 수신하고 상기 애드 포트들에서 광학 에너지를 수신하여, 상기 네트워크 인풋 포트에서의 상기 광학 에너지를 광학 채널(channel)별로 선택적으로 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트들로부터의 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 포함하는 애드/드롭 장치.
  13. 제 12 항에 있어서, 상기 전기적으로 조절 가능한 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 애드/드롭 장치.
  14. 제 12 항에 있어서, 상기 파장 멀티플렉서/디멀티플렉서는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 애드/드롭 장치.
  15. 복수의 네트워크(network) 노드(node)들을 구비하고, 상기 복수의 노드들 중의 하나는 애드(add)/드롭(drop) 노드인 광통신 시스템에 있어서,
    소스(source) 노드로부터 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 네트워크 인풋(input) 포트(port);
    목적지(destination) 노드에 연결시키는 네트워크 아웃풋(output) 포트;
    상기 네트워크 노드들 중에서 다른 노드들에 전송하기 위해 상이한 파장들의 광학 에너지를 수신하는 복수의 애드(add) 포트들;
    상기 네트워크 노드들 중에서 여전히 다른 노드들로부터 수신한 상이한 파장들의 광학 에너지를 전달하는 복수의 드롭(drop) 포트들;
    전기적으로 조절되는 빔(beam) 조정기(steerer)에 전달하기 위해 상기 네트워크 인풋 포트로부터 수신한 상기 복수의 상이한 파장들을 분리하는 파장 디멀티플렉서(demultiplexer); 및
    상기 네트워크 아웃풋 포트에 전달하기 위해 상기 전기적으로 조절되는 빔 조정기로부터 수신된 상기 복수의 상이한 파장들을 결합하는 파장 멀티플렉서(multiplexer)를 포함하고,
    상기 전기적으로 조절 가능한 빔 조정기는,
    상기 네트워크 인풋 포트에서 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하고 상기 애드 포트들로부터 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하여, 상기 네트워크 인풋 포트에서의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 선택적으로 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트들로부터의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는 것을 특징으로 하는 광통신 시스템.
  16. 제 15 항에 있어서, 상기 파장 디멀티플렉서 및 멀티플렉서는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 광통신 시스템.
  17. 제 15 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 광통신 시스템.
  18. 소스(source) 노드(node)에 연결시키는 네트워크(network) 인풋(input) 포트(port);
    목적지(destination) 노드에 연결시키는 네트워크 아웃풋(output) 포트;
    광학 채널(channel)들을 추가적인 네트워크 노드들에게 전송하는 복수의 애 드(add) 포트들;
    추가적인 네트워크 노드들로부터 광학 채널들을 수신하는 복수의 드롭(drop) 포트들;
    상기 광학 채널들을 결합/분리하는 파장 멀티플렉서(multiplexer)/디멀티플렉서(demultiplexer); 및
    상기 네트워크 인풋 포트에서 광학 에너지를 수신하고 상기 애드 포트들로부터 광학 에너지를 수신하여, 상기 네트워크 인풋 포트에서의 상기 광학 에너지를 선택적으로 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트들로부터의 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer)를 구비하는 애드/드롭 노드를 포함하는 광통신 시스템.
  19. 제 18 항에 있어서, 상기 파장 디멀티플렉서 및 멀티플렉서는,
    에쉘 회절 격자(Echelle grating)를 사용하는 것을 특징으로 하는 광통신 시스템.
  20. 제 18 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array)을 포함하는 것을 특징으로 하는 광통신 시스템.
  21. 네트워크(network)에 있는 다른 노드(node)로부터 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 네트워크 인풋(input) 포트(port);
    상기 네트워크에 있는 목적지(destination) 노드에 연결시키는 네트워크 아웃풋(output) 포트;
    상기 네트워크에 있는 다른 노드들에게 전송하기 위해 로컬(local) 소스(source)로부터 상기 복수의 상이한 파장들을 갖는 광학 에너지를 수신하는 복수의 애드(add) 포트들;
    로컬 프로세싱(processing)을 위해 상기 네트워크에 있는 다른 노드들로부터 광학 에너지를 수신하는 복수의 드롭(drop) 노드들;
    상기 네트워크 인풋 포트로부터 수신된 상기 복수의 파장들을 분리하는 파장 디멀티플렉서(demultiplexer);
    상기 네트워크 인풋 포트로부터 수신된 상기 복수의 파장들을 개별적으로 처리하는, 전기적으로 조절 가능한 빔(beam) 조정기(steerer); 및
    상기 네트워크에 있는 다른 노드들로의 전송을 위한 상기 네트워크 아웃풋 포트로 전달하기 위해 상기 전기적으로 조절되는 빔 조정기로부터 수신한 상기 복수의 파장들을 결합하는 파장 멀티플렉서(multiplexer)를 포함하는 광통신 시스템.
  22. 제 21 항에 있어서, 상기 전기적으로 조절 가능한 빔 조정기는,
    상기 네트워크 인풋 포트에서 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하고 상기 복수의 애드 포트들로부터 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 수신하여, 상기 네트워크 인풋 포트에서의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 선택적으로 상기 네트워크 아웃풋 포트 또는 상기 드롭 포트들로 전달하고, 상기 애드 포트들로부터의 상기 복수의 상이한 파장들을 갖는 상기 광학 에너지를 상기 네트워크 아웃풋 포트로 전달하는 것을 특징으로 하는 광통신 시스템.
  23. 제 22 항에 있어서, 상기 빔 조정기는,
    광학 위상 배열(optical phased array) 요소(element)들을 포함하는 것을 특징으로 하는 광통신 시스템.
KR1020097004543A 2006-08-04 2007-07-19 광통신 시스템 KR20090048618A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/462,569 2006-08-04
US11/462,569 US20080031627A1 (en) 2006-08-04 2006-08-04 Optical communication system

Publications (1)

Publication Number Publication Date
KR20090048618A true KR20090048618A (ko) 2009-05-14

Family

ID=38819801

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097004543A KR20090048618A (ko) 2006-08-04 2007-07-19 광통신 시스템

Country Status (6)

Country Link
US (1) US20080031627A1 (ko)
EP (1) EP2055033A2 (ko)
JP (1) JP2009545771A (ko)
KR (1) KR20090048618A (ko)
CA (1) CA2655746A1 (ko)
WO (1) WO2008018978A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188831B2 (en) 2012-02-17 2015-11-17 Alcatel Lucent Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
US9369783B2 (en) 2012-02-17 2016-06-14 Alcatel Lucent Wavelength-selective cross-connect device having astigmatic optics

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757936B2 (en) * 2007-07-31 2010-07-20 Hewlett-Packard Development Company, L.P. System and method for cable monitoring
US8116632B2 (en) * 2007-11-30 2012-02-14 Raytheon Company Space-time division multiple-access laser communications system
US8351442B1 (en) * 2008-07-18 2013-01-08 Qlogic, Corporation Method and system for network communication
US8731403B2 (en) * 2012-02-07 2014-05-20 Ii-Vi Incorporated Multicast optical switch
JP5678263B2 (ja) * 2012-07-13 2015-02-25 サンテック株式会社 波長選択光スイッチ装置及びその特性制御方法
WO2014015129A1 (en) 2012-07-19 2014-01-23 Finisar Corporation Polarization diverse wavelength selective switch
US9692512B2 (en) * 2013-03-15 2017-06-27 Bae Systems Plc Directional multiband antenna
JP6549097B2 (ja) * 2013-03-20 2019-07-24 ニスティカ,インコーポレーテッド 統合されたチャネルモニタを有する波長選択スイッチ
US9432750B1 (en) * 2013-04-19 2016-08-30 Wavexing, Inc. Contentionless N×M wavelength cross connect
US9819436B2 (en) 2013-08-26 2017-11-14 Coriant Operations, Inc. Intranodal ROADM fiber management apparatuses, systems, and methods
US9488787B2 (en) 2014-03-31 2016-11-08 Lumentum Operations Llc Cross-connect switch using 1D arrays of beam steering elements
US9883263B2 (en) * 2014-03-31 2018-01-30 Lumentum Operations Llc Free-space multicast switch with elliptical beams
US9304257B2 (en) * 2014-03-31 2016-04-05 Lumentum Operations Llc Wavelength selective switch using orthogonally polarized optical beams
EP3128682B1 (en) * 2014-04-22 2018-08-08 Huawei Technologies Co., Ltd. Optical communication apparatus and method
US9654209B2 (en) * 2015-04-08 2017-05-16 Nec Corporation Low cost secure ROADM branching unit with redundancy protection
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
US10367596B1 (en) * 2017-05-23 2019-07-30 Ii-Vi Delaware, Inc. Multiple wavelength selective switch with shared switch
US11201673B1 (en) 2018-03-07 2021-12-14 BridgeSat, Inc. Optical laser communication apparatus with optical phased arrays and coupling arrangement and associated methods
CN112305674B (zh) 2019-07-31 2022-04-29 华为技术有限公司 一种光交叉装置
US11953802B2 (en) * 2020-11-25 2024-04-09 Nokia Solutions And Networks Oy Optical switch employing a virtually imaged phase-array disperser
JPWO2023017563A1 (ko) * 2021-08-10 2023-02-16
CN115037366B (zh) * 2022-06-20 2023-09-19 电子科技大学 一种激光任意多用户全双工无线光通信系统及方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278327A (en) * 1979-11-26 1981-07-14 Sperry Corporation Liquid crystal matrices
US4385799A (en) * 1980-06-26 1983-05-31 Sperry Corporation Dual array fiber liquid crystal optical switches
DE3303623A1 (de) * 1983-02-03 1984-08-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Optische phasengitteranordnung und schaltvorrichtungen mit einer solchen anordnung
US4720171A (en) * 1985-11-05 1988-01-19 Itt Defense Communications, A Division Of Itt Corporation Liquid crystal optical switching device having reduced crosstalk
US4737019A (en) * 1985-11-05 1988-04-12 Itt Defense Communications, A Division Of Itt Corporation Liquid crystal optical switching device having minimized internal light path
US4964701A (en) * 1988-10-04 1990-10-23 Raytheon Company Deflector for an optical beam
US5018835A (en) * 1989-01-03 1991-05-28 Raytheon Company Deflector for an optical beam including refractive means
DE4002862A1 (de) * 1990-02-01 1991-08-08 Standard Elektrik Lorenz Ag Breitbandnebenstellenanlage
US5093747A (en) * 1991-02-28 1992-03-03 Raytheon Company Method for providing beam steering in a subaperture-addressed optical beam steerer
US5373393A (en) * 1993-06-01 1994-12-13 General Electric Company Opical interferometric device with spatial light modulators for switching substantially coherent light
US6347001B1 (en) * 1998-11-03 2002-02-12 Trex Communications Corporation Free-space laser communication system having six axes of movement
US7272321B1 (en) * 1999-05-10 2007-09-18 Alloptic, Inc. Passive optical network
US6707959B2 (en) * 2001-07-12 2004-03-16 Jds Uniphase Inc. Wavelength switch
US7016098B2 (en) * 2001-08-31 2006-03-21 Lucent Technologies Inc. Optical device with configurable channel allocation
CA2486725C (en) * 2002-05-20 2012-10-23 Metconnex Canada Inc. Reconfigurable optical add-drop module, system and method
WO2004010175A2 (en) * 2002-07-23 2004-01-29 Optical Research Associates East-west separable, reconfigurable optical add/drop multiplexer
AU2003245360A1 (en) * 2002-08-08 2004-02-25 The Regents Of The University Of California Wavelength-selective 1xn2 switches with two-dimensional input/output fiber arrays
JP4111776B2 (ja) * 2002-08-22 2008-07-02 富士通株式会社 光信号交換器の制御装置および制御方法
US7813601B2 (en) * 2002-09-06 2010-10-12 Texas Instruments Incorporated Reconfigurable optical add/drop multiplexer
US7218857B1 (en) * 2003-03-28 2007-05-15 Avanex Corporation Method, apparatus and system for a re-configurable optical add-drop multiplexer
JP2006126341A (ja) * 2004-10-27 2006-05-18 Fujitsu Ltd 光スイッチのミラー制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188831B2 (en) 2012-02-17 2015-11-17 Alcatel Lucent Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
US9369783B2 (en) 2012-02-17 2016-06-14 Alcatel Lucent Wavelength-selective cross-connect device having astigmatic optics

Also Published As

Publication number Publication date
WO2008018978A3 (en) 2008-04-24
US20080031627A1 (en) 2008-02-07
CA2655746A1 (en) 2008-02-14
WO2008018978A2 (en) 2008-02-14
EP2055033A2 (en) 2009-05-06
JP2009545771A (ja) 2009-12-24

Similar Documents

Publication Publication Date Title
KR20090048618A (ko) 광통신 시스템
USRE47905E1 (en) Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities
CA2392704C (en) System and method of optical switching
US6549699B2 (en) Reconfigurable all-optical multiplexers with simultaneous add-drop capability
USRE42521E1 (en) Reconfigurable optical add-drop multiplexers employing polarization diversity
US7305188B2 (en) Wavelength demultiplexing unit
EP1969406B1 (en) Reduction of mems mirror edge diffraction in a wavelength selective switch using servo-based rotation about multiple non-orthogonal axes
US20120020664A1 (en) Wavelength selective light cross connect device
US11728919B2 (en) Optical communications apparatus and wavelength selection method
WO1999038348A1 (en) Wavelength-selective optical add/drop using tilting micro-mirrors
US8605357B2 (en) Wavelength selective switch and optical transfer device
US11372163B2 (en) Wavelength switching apparatus and system
US20130148923A1 (en) Bidirectional wavelength cross connect architectures using wavelength routing elements
US8526814B2 (en) Multiple input/output wavelength selective switch device
US20140355984A1 (en) Colorless, reconfigurable, optical add-drop multiplexer (roadm) apparatus and method
CN110494781A (zh) 波长选择方法和波长选择开关
US10862611B2 (en) Wavelength selective switch and reconfigurable optical add/drop multiplexer
EP1283000A2 (en) A reconfigurable optical switch
CN118567039A (zh) 波长选择开关、可重构光分插复用器、光通信系统

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid