KR20090041696A - Method of fabricating armophous silicon thin film - Google Patents

Method of fabricating armophous silicon thin film Download PDF

Info

Publication number
KR20090041696A
KR20090041696A KR1020070107343A KR20070107343A KR20090041696A KR 20090041696 A KR20090041696 A KR 20090041696A KR 1020070107343 A KR1020070107343 A KR 1020070107343A KR 20070107343 A KR20070107343 A KR 20070107343A KR 20090041696 A KR20090041696 A KR 20090041696A
Authority
KR
South Korea
Prior art keywords
thin film
polysilane
silicon thin
polymer
amorphous silicon
Prior art date
Application number
KR1020070107343A
Other languages
Korean (ko)
Other versions
KR100933503B1 (en
Inventor
김현재
김동림
박상훈
정태훈
김시준
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020070107343A priority Critical patent/KR100933503B1/en
Publication of KR20090041696A publication Critical patent/KR20090041696A/en
Application granted granted Critical
Publication of KR100933503B1 publication Critical patent/KR100933503B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/0231Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to electromagnetic radiation, e.g. UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Silicon Polymers (AREA)

Abstract

A method of fabricating an amorphous silicon thin film is provided to reduce the number of a poly silicon polymerization processes by using a Wurtz-type reductive coupling. A silicon monomer is mixed in the organic solvent and a dissipative system is formed. A metallic catalyst is dispersed in the dissipative system and the polysilanes polymer is formed. The polysilanes polymer is filtered, and a poly silicon is separated. The poly silicon is dissolved in the organic solvent and the polysilanes liquid is formed. The polysilanes liquid is deposited on the substrate, and the deposited polysilanes liquid is irradiated with UV rays and an amorphous silicon thin film is formed.

Description

비정질 실리콘박막의 제조방법{Method of Fabricating Armophous Silicon Thin Film}Method of manufacturing amorphous silicon thin film {Method of Fabricating Armophous Silicon Thin Film}

본 발명은 비정질 실리콘박막의 제조방법에 관한 것으로, 보다 상세하게는 사이클로실란을 이용하지 않고 뷔르츠형 환원성 커플링에서 형성되는 실리콘 고분자를 이용하여 실리콘박막을 위한 액상을 제조함으로써, 실리콘 고분자 중합 공정의 수를 줄일 수 있고, 실리콘 고분자의 수율을 보다 향상시키는 비정질 실리콘박막의 제조방법에 관한 것이다.The present invention relates to a method for producing an amorphous silicon thin film, and more particularly, by preparing a liquid phase for a silicon thin film using a silicon polymer formed in a wurtz-type reductive coupling without using cyclosilane. The present invention relates to a method for producing an amorphous silicon thin film which can reduce the number and further improve the yield of a silicon polymer.

주지하는 바와 같이, 실리콘박막은 반도체 산업에 크게 활용되고 있다. 비정질 실리콘박막은 능동 매트릭스 액정 디스플레이(AMLCD;Active Matrix Liquid Matrix Display)의 구동을 위한 박막 트랜지스터(TFT;Thin Film Transistor)의 액티브 층으로 사용되고 있으며, 실리콘 산화층은 금속산화물반도체(MOS;Metal Oxide Semiconductor) 또는 박막트랜지스터에서 게이트 절연막으로 널리 사용되고 있다. 종래의 실리콘박막 제조 방법은 화학기상증착법(CVD;Chemicla Vapor Deposition)과 같은 진공장비를 이용한 증착 방식으로, 이러한 방식에서는 디스플레이에서 요구되는 대면적 적용과 저비용 생산을 실현하기 어렵다. 이에 따라, 종래의 반도체 공 정과 설비에서 완전히 탈피한 차세대 공정기술인 반도체 박막의 액상 제조 공정은 공정비용이 높지 않고 넓은 면적의 소자제조가 가능하며, 반도체 및 전자 산업 전반에 적용하여 사용될 수 있는 기술로서 주목받고 있다.As is well known, silicon thin films are widely utilized in the semiconductor industry. The amorphous silicon thin film is used as an active layer of a thin film transistor (TFT) for driving an active matrix liquid matrix display (AMLCD), and the silicon oxide layer is a metal oxide semiconductor (MOS). In addition, it is widely used as a gate insulating film in a thin film transistor. The conventional silicon thin film manufacturing method is a deposition method using vacuum equipment such as chemical vapor deposition (CVD), and in such a method, it is difficult to realize large area application and low cost production required for a display. Accordingly, the liquid crystal manufacturing process of the semiconductor thin film, which is a next-generation process technology completely removed from the conventional semiconductor process and equipment, is capable of manufacturing a large area device without high process cost, and can be applied to the semiconductor and electronics industry as a whole. It is attracting attention.

이러한 실리콘박막 액상 제조 공정에서는 SinRm (m = 2n,2n ± 2, R:수소,알킬,페닐)의 사이클릭(cyclic) 구조 실란 액상(silane solution)을 바탕으로 광중합(photopolymerization) 또는 음이온 중합(anionic polymerization)의 중합과정을 거쳐 폴리실란 체인(polysilane chain)을 형성하고, 스핀 코팅(spin coating) 또는 잉크분사법(ink jetting)으로 박막 증착을 수행하는 방식이 제안되고 있다.In the silicon liquid phase liquid crystal manufacturing process, photopolymerization or anion is based on a cyclic structure silane solution of Si n R m (m = 2n, 2n ± 2, R: hydrogen, alkyl, phenyl). A method of forming a polysilane chain through an polymerization process of anionic polymerization, and performing thin film deposition by spin coating or ink jetting has been proposed.

하지만, 사이클로실란(cyclosilane)을 사용하는 종래 공정은 다음과 같은 문제를 가지고 있다. 즉, 폴리실란을 얻기 위해서는 뷔르츠형 환원성 커플링(wurtz-type reductive coupling) 또는 전극환원(electrode reduction)을 사용하는데 이러한 합성 과정에서는 분자량이 1000 이하인 저분자, 1000에서 5×104 정도인 분자, 및 5×104 이상인 고분자들이 같이 생성된다. 이 중에서 사이클로실란은 저분자에 해당하는데, 합성시의 수율이 20% 미만으로 매우 낮은 편이다.However, the conventional process using cyclosilane has the following problems. That is, to obtain polysilane, wurtz-type reductive coupling or electrode reduction is used. In this synthesis process, a low molecular weight of 1000 or less, a molecule of 1000 to 5 × 10 4 , and Polymers of 5 × 10 4 or more are produced together. Among them, cyclosilane is a low molecule, and the yield in synthesis is very low, which is less than 20%.

또한, 박막 증착을 위해서는 사이클로실란을 고분자로 만들어 주는 중합 과정을 다시 거쳐야 하므로, 고분자 중합과정을 두 번 거쳐야 하는 공정상의 번거로움과 공정 조건 최적화의 어려움이 있다. 따라서, 종래의 진공(vacuum) 공정을 대체하는 액상(solution) 공정의 기반 물질로서 사이클로실란을 사용하기에 어려움이 따른다.In addition, in order to deposit a thin film, it is necessary to go through a polymerization process to make a cyclosilane into a polymer, and thus, there is a difficulty in optimizing the process conditions and the cumbersome process that requires a second polymerization process. Therefore, there is a difficulty in using cyclosilane as a base material of a solution process that replaces a conventional vacuum process.

따라서, 본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 사이클로실란을 이용하지 않고 뷔르츠형 환원성 커플링에서 형성되는 실리콘 고분자를 이용하여 실리콘박막을 위한 액상을 제조함으로써, 실리콘 고분자 중합 공정의 수를 줄일 수 있고 실리콘 고분자의 수율을 보다 향상시킬 수 있는 비정질 실리콘박막의 제조방법을 제공하는 데 있다.Accordingly, the present invention has been made to solve the above-mentioned problems, an object of the present invention is to produce a liquid phase for the silicon thin film using a silicone polymer formed from a wurtz type reducing coupling without using cyclosilane, The present invention provides a method for manufacturing an amorphous silicon thin film which can reduce the number of polymer polymerization processes and further improve the yield of a silicon polymer.

전술한 목적을 달성하기 위하여 본 발명의 일측면은 실리콘 단량체를 유기 용매에 혼합하여 분산계를 형성하는 단계와, 상기 분산계에 금속 촉매를 분산시켜 중합하여 폴리실란 중합체를 형성하는 단계와, 상기 폴리실란 중합체를 필터링하여 실리콘 고분자를 분리하는 단계와, 상기 실리콘 고분자를 유기 용매에 용해시켜 폴리실란 액상을 형성하는 단계와, 상기 폴리실란 액상을 기판 상부에 증착하는 단계와, 상기 기판 상부에 증착된 폴리실란 액상을 열처리 및 자외선 조사하여 비정질 실리콘박막을 형성하는 단계를 포함하는 비정질 실리콘박막 제조방법을 제공한다.In order to achieve the above object, one aspect of the present invention is to form a dispersion system by mixing a silicone monomer in an organic solvent, to form a polysilane polymer by dispersing a metal catalyst in the dispersion system, and the polysilane Filtering the polymer to separate the silicone polymer, dissolving the silicone polymer in an organic solvent to form a polysilane liquid phase, depositing the polysilane liquid on the substrate, and depositing the polysilicon deposited on the substrate. It provides an amorphous silicon thin film manufacturing method comprising the step of forming an amorphous silicon thin film by heat treatment and ultraviolet irradiation of the silane liquid.

바람직하게, 상기 실리콘 단량체는 할로겐족 원소를 포함하는 디클로로메틸페닐실란(dichloromethylphenylsilane), 디클로로디메틸실란(dichlorodimethylsilane), 디클로로디페닐실란(dichlorodiphenyllsilane), 디클로로헥실메틸실란(dichlorohexylmethylsilane), 디클로로비닐메틸실란(dichlorovinylmethylsilane) 중 1종 이상을 포함할 수 있다. 상기 실리콘 단량 체와 금속 촉매의 몰 비는 실질적으로 1:2일 수도 있다. 상기 유기 용매는 톨루엔, 크실렌, 에탄올, 메탄올 및 테트라하이드로퓨란(tetrahydrofuran) 중 1종 이상을 포함할 수도 있다. 상기 금속 촉매는 알칼리 금속, 은, 아연, 세슘 및 상기 금속 촉매의 합금 중 1종 이상을 포함할 수도 있다. 상기 폴리실란 중합체로부터 제거된 할로겐족 원소의 침전 화합물을 메탄올 또는 증류수를 이용하여 용해시키는 단계를 더 포함할 수도 있다. 상기 폴리실란 액상을 스핀 코팅, 잉크 분사법 또는 롤 코팅을 이용하여 상기 기판 상부에 증착할 수도 있다. 상기 폴리실란 액상에 수소 가스를 주입하여 열처리를 실시하여 상기 폴리실란 액상으로부터 메틸기 또는 페닐기의 결합을 해리할 수도 있다.Preferably, the silicone monomers are dichloromethylphenylsilane, dichlorodimethylsilane, dichlorodiphenyllsilane, dichlorohexylmethylsilane, and dichlorovinylmethylsilane containing a halogen group. It may include one or more. The molar ratio of the silicon monomer to the metal catalyst may be substantially 1: 2. The organic solvent may include at least one of toluene, xylene, ethanol, methanol, and tetrahydrofuran. The metal catalyst may include at least one of an alkali metal, silver, zinc, cesium and an alloy of the metal catalyst. Dissolving the precipitated compound of the halogen group element removed from the polysilane polymer using methanol or distilled water. The polysilane liquid may be deposited on the substrate by spin coating, ink spraying, or roll coating. Hydrogen gas may be injected into the polysilane liquid phase to perform a heat treatment to dissociate the methyl group or the phenyl group from the polysilane liquid phase.

본 발명에 의하면, 사이클로실란을 이용하지 않고 뷔르츠형 환원성 커플링에서 형성되는 실리콘 고분자를 이용하여 실리콘박막을 위한 액상을 제조함으로써, 실리콘 고분자 중합 공정의 수를 줄일 수 있으며, 실리콘 고분자의 수율을 보다 향상시킬 수 있고, 실리콘박막의 제조공정을 보다 단순화시킬 수 있는 이점이 있다.According to the present invention, by producing a liquid phase for the silicon thin film using a silicone polymer formed in a wurtz-type reductive coupling without using cyclosilane, the number of silicone polymer polymerization processes can be reduced, and the yield of the silicone polymer can be improved. There is an advantage that can be improved, and the manufacturing process of the silicon thin film can be further simplified.

이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다. 본 발명을 설명함에 있어서, 관련된 공지 구성요소 또는 구성요소의 기능에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 이에 대한 상세한 설명을 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention; In the following description of the present invention, when it is determined that a detailed description of a related well-known component or function of the component may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 발명에 의한 비정질 실리콘박막의 제조방법은, 실리콘 단량체를 유기 용 매에 혼합하여 분산계를 형성하는 단계와, 분산계에 금속 촉매를 분산시켜 중합하여 폴리실란 중합체를 형성하는 단계와, 폴리실란 중합체를 필터링하여 실리콘 고분자를 분리하는 단계와, 실리콘 고분자를 유기 용매에 용해시켜 폴리실란 액상을 형성하는 단계와, 폴리실란 액상을 기판 상부에 증착하는 단계와, 기판 상부에 증착된 폴리실란 액상을 열처리 및 자외선 조사하여 비정질 실리콘박막을 형성하는 단계를 포함한다.The method for preparing an amorphous silicon thin film according to the present invention comprises the steps of: forming a dispersion system by mixing a silicone monomer in an organic solvent; forming a polysilane polymer by dispersing a metal catalyst in the dispersion system to form a polysilane polymer; Separating the silicon polymer by filtering, dissolving the silicon polymer in an organic solvent to form a polysilane liquid phase, depositing a polysilane liquid on the substrate, heat treating the polysilane liquid deposited on the substrate, and Irradiating with ultraviolet light to form an amorphous silicon thin film.

전술한 비정질 실리콘박막의 제조공정을 단계별로 구체적으로 상술하면 다음과 같다.The manufacturing process of the above-mentioned amorphous silicon thin film will be described in detail step by step as follows.

우선, 실리콘 단량체를 유기 용매에 혼합하여 분산계를 형성한다. 분산계 형성 단계에 있어서, 사용가능한 실리콘 단량체 물질은 SiR2H2의 형태를 가지는데, 여기서, R은 수소, 알킬(Alkyl) 또는 페닐(Penyl)을 포함하며, H는 할로겐족 원소를 나타내고, 실리콘 단량체로 사용할 수 있는 물질들은 디클로로메틸페닐실란{PMDS(dichloromethylphenylsilane:MePhSiCl2)}, 디클로로디메틸실란{DMDS(dichlorodimethylsilane:Me2SiCl2)}, 디클로로디페닐실란{DPDS(dichlorodiphenyllsilane:Ph2SiCl2)}, 디클로로헥실메틸실란 {HMDS(dichlorohexylmethylsilane:HexylMeSiCl2)} 또는 디클로로비닐메틸실란{VMDS (dichlorovinylmethylsilane:VinylMeSiCl2)이다.First, the silicone monomer is mixed with an organic solvent to form a dispersion system. In the dispersion system formation step, the usable silicone monomer material has the form of SiR 2 H 2 , where R comprises hydrogen, alkyl or phenyl, H represents a halogen element, and silicone monomer Dichloromethylphenylsilane (PMDS (dichloromethylphenylsilane: MePhSiCl 2 )}, dichlorodimethylsilane (DMDS (dichlorodimethylsilane: Me 2 SiCl 2 )}), dichlorodiphenyllsilane (DPDS (dichlorodiphenyllsilane: Ph 2 SiCl 2 )}, Dichlorohexylmethylsilane (HMDS (dichlorohexylmethylsilane: HexylMeSiCl 2 )} or dichlorovinyl methylsilane (VMDS (dichlorovinylmethylsilane: VininMeSiCl 2 )).

한편, 실리콘 단량체의 중합은 유기 용매 내에서 수행한다. 유기 용매는 금 속 촉매의 분산을 돕고, 반응성이 높은 실리콘 단량체 물질의 안정성을 높이며, 중합 이 후에 폴리실란 액상(polysilane solution)을 형성하기 위한 용제(solvent)로서 사용하게 된다. 본 실시예에서 사용 가능한 유기 용매로는 톨루엔, 크실렌, 에탄올, 메탄올 또는 테트라하이드로퓨란(THF;tetrahydrofuran)이 있으며, 반응 물질의 안정성을 위해서 수분이 제거된 유기 용매를 사용하는 것이 바람직하다.On the other hand, polymerization of the silicone monomer is carried out in an organic solvent. Organic solvents are used as solvents to help disperse the metal catalysts, to increase the stability of highly reactive silicone monomer materials, and to form polysilane solutions after polymerization. Organic solvents usable in this embodiment include toluene, xylene, ethanol, methanol or tetrahydrofuran (THF; tetrahydrofuran), and it is preferable to use an organic solvent from which water is removed for the stability of the reaction material.

이후, 분산계에 금속 촉매를 분산시켜 중합하여 폴리실란 중합체를 형성한다. 풀리실란 중합체 형성 단계에 있어서, 뷔르츠형 환원성 커플링 또는 전극 환원을 사용하여 실리콘 단량체에 결합된 할로겐 원소를 제거하여 폴리실란으로 중합한다. 뷔르츠형 환원성 커플링에서는, 할로겐 원소를 제거할 때, 알칼리 금속, 은, 아연, 세슘 또는 전술한 금속들의 합금을 촉매로서 사용한다. 또한, 이러한 금속 촉매를 유기 용매에 분산시킬 때는 금속 촉매와 실리콘 단량체의 몰 비가 실질적으로 2:1이 되도록 하는 것이 바람직하다. 폴리실란 중합체는 실리콘 단량체의 중합 반응을 통해서 형성되며, (SiR2)n의 형태를 갖는다. 여기서, R은 수소, 알킬기 또는 페닐기를 포함하며, n은 실질적으로 1000 < n < 107의 범위의 값이 바람직하다.Thereafter, the metal catalyst is dispersed and polymerized in the dispersion system to form a polysilane polymer. In the step of forming the pulleysilane polymer, a halogen element bonded to the silicon monomer is removed and polymerized into polysilane using wurtz type reductive coupling or electrode reduction. In the wurtz-type reducing coupling, when removing the halogen element, an alkali metal, silver, zinc, cesium or an alloy of the aforementioned metals is used as a catalyst. In addition, when dispersing such a metal catalyst in an organic solvent, the molar ratio of the metal catalyst and the silicon monomer is preferably 2: 1. Polysilane polymers are formed through polymerization of silicone monomers and have the form (SiR 2 ) n . Wherein R comprises hydrogen, an alkyl group or a phenyl group, and n preferably has a value substantially in the range of 1000 <n <10 7 .

이와 같이 전술한 중합 과정을 통해서 실리콘 단량체가 폴리실란 중합체로 합성된다. 중합 과정을 통해서, 폴리실란 중합체인 폴리메틸페닐실란(PMPS:polymethylphenylsilane), 폴리디메틸실란(PDMS:polydimethylsilane) 및 폴리디페닐실란(PDPS:polydiphenylsilane)이 합성된다. 여기서, 합성된 폴리실란 은 다양한 분자량을 나타내고 있기는 하지만, 저분자의 수율에 비해, 폴리실란 중합체로서 사용할 수 있는, 분자량이 5×104 이상인 고분자의 수율이 훨씬 높으며, 반응 시간과 실리콘 단량체의 농도에 따라 고분자의 수율과 분자량을 용이하게 증가시킬 수 있다.Thus, the silicone monomer is synthesized into a polysilane polymer through the above-described polymerization process. Through the polymerization process, polysilane polymers, polymethylphenylsilane (PMPS), polydimethylsilane (PDMS: polydimethylsilane) and polydiphenylsilane (PDPS: polydiphenylsilane) are synthesized. Here, although the synthesized polysilane shows various molecular weights, the yield of polymer having a molecular weight of 5 × 10 4 or more, which can be used as a polysilane polymer, is much higher than that of low molecular weight, and the reaction time and concentration of the silicone monomer are much higher. As a result, the yield and molecular weight of the polymer can be easily increased.

이후, 폴리실란 중합체를 필터링하여 실리콘 고분자를 분리한다. 실리콘 고분자 분리 단계에서는 유기 용매로부터 폴리실란 이외의 물질을 실질적으로 모두 제거한다. 우선, 필터링을 통해 금속 촉매와 할로겐 화합물의 침전물, 반응이 일어나지 않은 금속 촉매 및 실리콘 고분자를 분리할 수 있고, 메탄올 또는 증류수를 이용하여 침전물들을 용해시켜 실리콘 고분자를 분리할 수 있다.The polysilane polymer is then filtered to separate the silicone polymer. In the silicone polymer separation step, substantially all materials other than polysilane are removed from the organic solvent. First, the filtering may separate the metal catalyst and the precipitate of the halogen compound, the metal catalyst and the silicon polymer which do not occur, and the silicon polymer may be separated by dissolving the precipitates using methanol or distilled water.

이후, 분리된 실리콘 고분자를 유기 용매에 용해시켜 폴리실란 액상을 형성한다. 본 실시예에서는 톨루엔, 크실렌, 에탄올, 메탄올 또는 테트라하이드로퓨란을 유기 용매로서 사용할 수 있다.Thereafter, the separated silicone polymer is dissolved in an organic solvent to form a polysilane liquid phase. In this embodiment, toluene, xylene, ethanol, methanol or tetrahydrofuran can be used as the organic solvent.

이후, 폴리실란 액상을 기판 상부에 증착한다. 액상 증착 단계에 있어서, 액상 내에 분산되어 있는 폴리실란은 고분자로 형성되어 있으므로 별도의 중합과정을 수행할 필요가 없다. 따라서, 실리콘 고분자 합성을 위한 중합 공정의 수를 줄일 수 있다. 여기서, 스핀 코팅(spin coating), 잉크 분사법(ink jetting) 또는 롤 코팅(roll coating)을 사용하여 기판 상부에 균일한 박막이 형성되도록 증착한다.Thereafter, a polysilane liquid is deposited on the substrate. In the liquid phase deposition step, since the polysilane dispersed in the liquid phase is formed of a polymer, there is no need to perform a separate polymerization process. Therefore, the number of polymerization processes for synthesizing the silicone polymer can be reduced. Here, spin coating is used to form a uniform thin film on the substrate using spin coating, ink jetting, or roll coating.

이후, 기판 상부에 증착된 폴리실란 액상을 열처리 및 자외선 조사하여 비정 질 실리콘박막을 형성한다. 열처리 및 자외선 조사 단계에서, 폴리실란 박막을 비정질 실리콘박막으로 변환시키기 위해서, 폴리실란의 열분해 및 광분해의 특성을 이용한다. 예컨대, Si-Si 결합에너지는 80 kcal/mol 이고, Si-C 결합에너지는 90 kcal/mol이므로 폴리실란의 백본(backbone)은 280 ℃의 에너지에서 분해되며, 폴리실란에 결합되어 있는 메틸기 또는 페닐기는 330 ℃의 에너지에서 폴리실란에서 방출된다. 따라서, 이와 같은 폴리실란의 특성을 이용하여, 증착된 폴리실란 박막에 실질적으로 330 ℃ 이상의 온도를 가하면 고분자로부터 메틸기 또는 페닐기가 방출되고 고분자 체인이 끊어지게 됨으로써, 유기물 특성을 갖고 있던 폴리실란 박막이 최종적으로 금속성(metallic) 비정질 실리콘박막으로 변환된다.Thereafter, the polysilane liquid deposited on the substrate is subjected to heat treatment and ultraviolet irradiation to form an amorphous silicon thin film. In the heat treatment and ultraviolet irradiation step, in order to convert the polysilane thin film into an amorphous silicon thin film, the characteristics of thermal decomposition and photolysis of the polysilane are used. For example, the Si-Si bond energy is 80 kcal / mol and the Si-C bond energy is 90 kcal / mol, so the backbone of the polysilane is decomposed at an energy of 280 ° C. and the methyl or phenyl group bonded to the polysilane. Is released from the polysilane at an energy of 330 ° C. Therefore, by using the characteristics of such polysilane, when a temperature of substantially 330 ° C. or more is applied to the deposited polysilane thin film, a methyl group or a phenyl group is released from the polymer, and the polymer chain is broken, whereby the polysilane thin film having organic properties is obtained. Finally it is converted into a metallic amorphous silicon thin film.

한편, 주지하는 바와 같이, 폴리실란 박막을 비정질 실리콘박막으로 변환함에 있어서, Si-C결합의 분해가 필수적이다. 따라서, Si-C 결합의 열분해시 C-H 결합이 분해되면서 탄소 원자가 실리콘 원자들 사이로 침투할 수 있도록, 박막의 열처리 과정에서 수소 가스(H2)를 가하여 메틸기 또는 페닐기에 수소를 결합시켜 메탄 또는 벤젠 상태로 방출되도록 한다. 따라서, 본 실시예에서는 종래의 실리콘박막 제조방법에서 사용되던 수소화된 실리콘 고분자와 달리, Si-C의 결합이 존재할 때 박막 형성과정에서 탄소 원자를 제거하는 공정을 추가함으로써 실리콘 고분자를 수소화시키는 공정을 획기적으로 감소시킬 수 있다.On the other hand, as is well known, in converting a polysilane thin film into an amorphous silicon thin film, decomposition of Si-C bonds is essential. Therefore, during thermal decomposition of the Si-C bond, the CH bond is decomposed, so that the carbon atoms can penetrate between the silicon atoms, and hydrogen gas (H 2 ) is added in the heat treatment process of the thin film to bond hydrogen to the methyl group or the phenyl group to form a methane or benzene state. To be released. Therefore, in this embodiment, unlike the hydrogenated silicon polymer used in the conventional silicon thin film manufacturing method, the process of hydrogenating the silicon polymer by adding a step of removing the carbon atoms in the thin film formation process when the Si-C bond is present It can be greatly reduced.

또한, 자외선을 가하여 메틸기 또는 페닐기의 결합을 끊는 해리 에너지를 공급할 수 있다. 여기서, 자외선을 가하는 경우에는 폴리실란 박막에 실질적으로 355nm 이하의 파장을 갖는 파장을 조사하며, 이를 통해서 Si-C 결합에너지 이상의 에너지를 공급함으로써 메틸기 또는 페닐기를 제거한다. 한편, 자외선의 조사는 폴리실란 박막을 증착한 이후에 열처리와 병행하거나, 단독으로 진행할 수도 있다. 주지하는 바와 같이, 화학반응을 통한 메틸기 또는 페닐기의 제거는 폴리실란 액상 상태에서 수행되어야 한다.In addition, it is possible to supply dissociation energy that breaks the bond of the methyl group or the phenyl group by applying ultraviolet rays. Here, when ultraviolet rays are applied, the polysilane thin film is irradiated with a wavelength having a wavelength of substantially 355 nm or less, thereby removing methyl or phenyl groups by supplying energy of Si-C binding energy or more. Meanwhile, the irradiation of ultraviolet rays may be performed in parallel with the heat treatment after the polysilane thin film is deposited, or may be performed alone. As will be appreciated, the removal of methyl or phenyl groups via chemical reactions should be carried out in a polysilane liquid phase.

또는, 전술한 화학반응과는 다른 화학반응을 통해서 메틸기 또는 페닐기를 제거할 수도 있다. 예컨대, 폴리실란을 무수 브롬화수소(HBr)와 반응시키면 브롬이 메틸 또는 페닐 결합 대신 실리콘과 결합하여 브로모실란(bromosilane)을 형성하게 된다. 여기에 수소화알루미늄리튬(LiAlH4) 용액을 가하여 브롬을 수소로 치환함으로써, 수소화된 폴리실란을 얻을 수 있다. 이후에, 수소화된 폴리실란을 용해시켜 박막 제조를 위한 액상 공정에 사용하면 Si-C 결합이 없으므로, 박막의 컨테미네이션(contamination) 문제를 해결할 수 있고, 곧바로 실리콘 박막(Si:H 박막)을 제조할 수 있으므로 실리콘 박막의 특성을 향상시킬 수 있다.Alternatively, the methyl group or the phenyl group may be removed through a chemical reaction different from the above-described chemical reaction. For example, when polysilane is reacted with anhydrous hydrogen bromide (HBr), bromine bonds with silicon instead of methyl or phenyl bonds to form bromosilane. A hydrogenated polysilane can be obtained by adding a lithium aluminum hydride (LiAlH 4 ) solution thereto and substituting bromine for hydrogen. Subsequently, when the hydrogenated polysilane is dissolved and used in a liquid phase process for manufacturing a thin film, there is no Si-C bond, so that the problem of thin film contamination can be solved, and a silicon thin film (Si: H thin film) Since it can manufacture, the characteristic of a silicon thin film can be improved.

이후, 구체적으로, 본 발명에 따른 비정질 실리콘박막 제조방법의 실시예를 후술하고자 한다.Hereinafter, specifically, the embodiment of the amorphous silicon thin film manufacturing method according to the present invention will be described later.

우선, 본 실시예에서는 분산매로서 톨루엔 100㎖를 사용하고, 금속 촉매로는 알칼리금속인 나트륨 2.4 g을 넣고 온도를 가하면서 스터링(stirring)한다.First, in this embodiment, 100 ml of toluene is used as a dispersion medium, and 2.4 g of sodium, which is an alkali metal, is added as a metal catalyst and subjected to stirring while applying temperature.

이후, 가열을 중단하고 실리콘 단량체인 디클로로메틸페닐실란(PMDS:dichloromethylphenylsilane) 10 g을 용매에 주입한다. 여기서, 반응을 시키는 동안 반응 물질들을 계속해서 스터링시킨다. 나트륨과 디클로로메틸페닐실란 간에 반응이 이루어지면 반응물이 청자색으로 변하며 침전물이 발생하는데, 이때의 반응으로 폴리실란 중 폴리메틸페닐실란이 형성된다. 본 실시예에서의 반응시간은 실질적으로 2시간 동안 수행하였으나, 폴리메틸페닐실란의 수율을 향상시키기 위해 임으로 변화가능하다. 한편, 촉매로 사용된 알칼리금속, 즉 나트륨은 수분과의 반응성이 크고 폴리실란은 산소와의 반응성이 크므로, 합성과정에서 수분과 산소 농도를 적절하게 제어하는 것이 바람직하다.Thereafter, the heating is stopped and 10 g of dichloromethylphenylsilane (PMDS), which is a silicone monomer, is injected into the solvent. Here, the reactants are continuously stirred during the reaction. When a reaction between sodium and dichloromethylphenylsilane is carried out, the reactant turns blue violet and precipitates are generated. The reaction forms polymethylphenylsilane in the polysilane. The reaction time in this example was carried out for substantially 2 hours, but can be changed randomly to improve the yield of polymethylphenylsilane. On the other hand, the alkali metal used as a catalyst, that is, sodium has a high reactivity with water and polysilane has a high reactivity with oxygen. Therefore, it is preferable to appropriately control the water and oxygen concentration during the synthesis process.

이후, 반응이 끝나면 필터를 통하여 폴리실란 액상으로부터 침전물을 길러낸다. 이때 걸려진 유기 용매 내의 폴리메틸페닐실란은 분자량이 작으므로, 필터에 남아 있는 잔여물들로부터 폴리메틸페닐실란을 얻어낼 수 있다. 잔여물에는 나트륨과 염소의 반응으로 형성된 염화나트륨, 반응이 일어나지 않은 나트륨 또는 폴리메틸페닐실란이 섞여 있으므로, 염화나트륨 및 나트륨의 제거를 위해 메탄올과 증류수 용액을 가하여 용해시켜 제거한다.Then, after the reaction is completed, a precipitate is grown from the polysilane liquid through a filter. At this time, since the polymethylphenylsilane in the hung organic solvent has a low molecular weight, polymethylphenylsilane can be obtained from the residues remaining in the filter. The residue contains sodium chloride formed by the reaction of sodium and chlorine, unreacted sodium or polymethylphenylsilane, so that methanol and distilled water solution is added to dissolve by removing sodium chloride and sodium.

이후, 남은 폴리메틸페닐실란을 유기 용매인 톨루엔, 크실렌, 에탄올, 메탄올 또는 테트라하이드로퓨란에 용해시킨다.The remaining polymethylphenylsilane is then dissolved in organic solvents toluene, xylene, ethanol, methanol or tetrahydrofuran.

이후, 합성된 폴리메틸페닐실란 액상을 기판 상부에 스핀 코팅하여 실리콘박막을 제조한다. 여기서, Si-O 결합이 생성되는 것을 막기 위해서 모든 공정은 아르콘(Ar) 또는 질소(N2)의 비활성 기체 환경에서 수행한다.Thereafter, the synthesized polymethylphenylsilane liquid is spin coated on the substrate to prepare a silicon thin film. Here, all processes are performed in an inert gas environment of arcon (Ar) or nitrogen (N 2 ) to prevent the formation of Si-O bonds.

이후, 실질적으로 70 내지 150 ℃의 온도에서 사용된 유기 용매를 제거하고, 고분자 체인을 분해하고 메틸기 또는 페닐기를 제거하기 위하여, 실질적으로 330 ℃ 이상의 온도에서 박막을 열처리한다. 또한, 메틸기 또는 페닐기의 분해를 촉진하기 위하여 수소 포밍 가스(H2 forming gas)를 이용하여 열처리 분위기를 조성한다. 여기서, 메틸기와 페닐기가 수소와 반응하여 메탄 또는 벤젠의 형태로 제거됨으로써, 비정질 실리콘박막을 최종적으로 형성할 수 있다.Subsequently, the thin film is heat-treated at a temperature of substantially 330 ° C. or more to remove the organic solvent used at a temperature of substantially 70 to 150 ° C., to decompose the polymer chain and to remove the methyl group or the phenyl group. Further, in order to promote decomposition of the methyl group or a phenyl group and the composition to a heat treatment atmosphere with hydrogen forming gas (H 2 forming gas). Here, the methyl group and the phenyl group react with hydrogen to be removed in the form of methane or benzene, whereby an amorphous silicon thin film can be finally formed.

전술한 본 발명에 따른 비정질 실리콘박막의 제조방법에 대한 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명에 속한다.Although preferred embodiments of the method for manufacturing an amorphous silicon thin film according to the present invention have been described above, the present invention is not limited thereto, and various modifications are made within the scope of the claims and the detailed description of the invention and the accompanying drawings. It is possible to implement and this also belongs to the present invention.

Claims (8)

실리콘 단량체를 유기 용매에 혼합하여 분산계를 형성하는 단계와,Mixing the silicone monomer into an organic solvent to form a dispersion system, 상기 분산계에 금속 촉매를 분산시켜 중합하여 폴리실란 중합체를 형성하는 단계와,Dispersing a metal catalyst in the dispersion system to polymerize to form a polysilane polymer; 상기 폴리실란 중합체를 필터링하여 실리콘 고분자를 분리하는 단계와,Filtering the polysilane polymer to separate a silicone polymer; 상기 실리콘 고분자를 유기 용매에 용해시켜 폴리실란 액상을 형성하는 단계와,Dissolving the silicone polymer in an organic solvent to form a polysilane liquid; 상기 폴리실란 액상을 기판 상부에 증착하는 단계와,Depositing the polysilane liquid on a substrate; 상기 기판 상부에 증착된 폴리실란 액상을 열처리 및 자외선 조사하여 비정질 실리콘박막을 형성하는 단계를 포함하는 비정질 실리콘박막 제조방법.And heat treating and irradiating the polysilane liquid deposited on the substrate to form an amorphous silicon thin film. 제 1 항에 있어서,The method of claim 1, 상기 실리콘 단량체는 할로겐족 원소를 포함하는 디클로로메틸페닐실란(dichloromethylphenylsilane), 디클로로디메틸실란(dichlorodimethylsilane), 디클로로디페닐실란(dichlorodiphenyllsilane), 디클로로헥실메틸실란(dichlorohexylmethylsilane), 디클로로비닐메틸실란(dichlorovinylmethylsilane) 중 1종 이상을 포함하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.The silicone monomer is at least one of dichloromethylphenylsilane (dichloromethylphenylsilane), a dichlorodimethylsilane (dichlorodiphenyllsilane), dichlorohexylmethylsilane (dichlorohexylmethylsilane), dichlorovinylmethylsilane containing a halogen group element Amorphous silicon thin film manufacturing method comprising a. 제 2 항에 있어서,The method of claim 2, 상기 실리콘 단량체와 상기 금속 촉매의 몰 비는 실질적으로 1:2인 것을 특징으로 하는 비정질 실리콘박막 제조방법.And a molar ratio of the silicon monomer and the metal catalyst is substantially 1: 2. 제 1 항에 있어서,The method of claim 1, 상기 유기 용매는 톨루엔, 크실렌, 에탄올, 메탄올 및 테트라하이드로퓨란(tetrahydrofuran) 중 1종 이상을 포함하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.The organic solvent is an amorphous silicon thin film production method comprising at least one of toluene, xylene, ethanol, methanol and tetrahydrofuran (tetrahydrofuran). 제 1 항에 있어서,The method of claim 1, 상기 금속 촉매는 알칼리 금속, 은, 아연, 세슘 및 상기 금속 촉매의 합금 중 1종 이상을 포함하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.The metal catalyst is an amorphous silicon thin film manufacturing method comprising at least one of an alkali metal, silver, zinc, cesium and the alloy of the metal catalyst. 제 2 항에 있어서,The method of claim 2, 상기 폴리실란 중합체로부터 제거된 할로겐족 원소의 침전 화합물을 메탄올 또는 증류수를 이용하여 용해시키는 단계를 더 포함하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.Dissolving the precipitated compound of the halogen group element removed from the polysilane polymer using methanol or distilled water further comprising the step of dissolving the amorphous silicon thin film. 제 1 항에 있어서,The method of claim 1, 상기 폴리실란 액상을 스핀 코팅, 잉크 분사법 또는 롤 코팅을 이용하여 상 기 기판 상부에 증착하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.A method of manufacturing an amorphous silicon thin film, wherein the polysilane liquid is deposited on the substrate by spin coating, ink spraying, or roll coating. 제 1 항에 있어서,The method of claim 1, 상기 폴리실란 액상에 수소 가스를 주입하여 열처리를 실시하여 상기 폴리실란 액상으로부터 메틸기 또는 페닐기의 결합을 해리하는 것을 특징으로 하는 비정질 실리콘박막 제조방법.A method of manufacturing an amorphous silicon thin film, characterized in that to dissociate a methyl group or a phenyl group from the polysilane liquid by injecting hydrogen gas into the polysilane liquid.
KR1020070107343A 2007-10-24 2007-10-24 Manufacturing method of amorphous silicon thin film KR100933503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070107343A KR100933503B1 (en) 2007-10-24 2007-10-24 Manufacturing method of amorphous silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070107343A KR100933503B1 (en) 2007-10-24 2007-10-24 Manufacturing method of amorphous silicon thin film

Publications (2)

Publication Number Publication Date
KR20090041696A true KR20090041696A (en) 2009-04-29
KR100933503B1 KR100933503B1 (en) 2009-12-23

Family

ID=40764685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070107343A KR100933503B1 (en) 2007-10-24 2007-10-24 Manufacturing method of amorphous silicon thin film

Country Status (1)

Country Link
KR (1) KR100933503B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027922A1 (en) * 2009-09-03 2011-03-10 Shin Dong Yun Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1335950C (en) * 1986-10-03 1995-06-20 Kenneth George Sharp Method of forming semiconducting amorphous silicon films from the thermal decomposition of dihalosilanes
JP2007537337A (en) * 2004-05-14 2007-12-20 ダウ・コーニング・コーポレイション Method for preparing branched polysilanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027922A1 (en) * 2009-09-03 2011-03-10 Shin Dong Yun Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound

Also Published As

Publication number Publication date
KR100933503B1 (en) 2009-12-23

Similar Documents

Publication Publication Date Title
US8057865B1 (en) Polysilane compositions, methods for their synthesis and films formed therefrom
TWI272274B (en) High order silane composition, and method of forming silicon film using the composition
KR20140048978A (en) Methods of polymerizing silanes and cyclosilanes using n-heterocyclic carbenes, metal complexes having n-heterocyclic carbene ligands, and lanthanide compounds
WO2000058409A1 (en) Coating composition
Feigl et al. Modern synthetic and application aspects of polysilanes: An underestimated class of materials?
TWI525213B (en) Process for production of silicon layers
US10202283B2 (en) Method for producing cyclic silane using concentration method
KR100933503B1 (en) Manufacturing method of amorphous silicon thin film
CN107629209B (en) Dendronized organosilicon polymer containing silicon-oxygen six-membered ring, crosslinked body and preparation method
JP4158204B2 (en) Polysilane compound, production method thereof and raw material thereof
US20150295196A1 (en) Method of producing a photovoltaic device
CN106660810B (en) High molecular weight polysilane and its manufacturing method
JP4748288B2 (en) Composition containing spiro [4.4] nonasilane
JP2001089572A (en) Phosphorus-modified silicon polymer, its production, composition containing the same and production of phosphorus-modified silicone
KR101430261B1 (en) Organosilicon Nanocluster, Method for preparing the same and Method for preparing Thin Film using the same
JP2001011184A (en) Silicon polymer and its production
JP6673845B2 (en) Silane polymerization inhibitor
Gerwig et al. Challenges in the Synthesis and Processing of Hydrosilanes as Precursors for Silicon Deposition
JP2001055444A (en) Production of silicon polymer
JP4617795B2 (en) Method for forming silicon film
US10414661B2 (en) Method of producing silicon hydride oxide-containing solvent
JPH0543702A (en) Polysilane compounds and their production
Jeck Highly Unsaturated Dendritic and Conjugated Systems of Silicon by Multiple Transfer of Si= Si Units
TW201609876A (en) Method for producing polysilane by heat polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121018

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131031

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150116

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee