WO2011027922A1 - Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound - Google Patents

Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound Download PDF

Info

Publication number
WO2011027922A1
WO2011027922A1 PCT/KR2009/005007 KR2009005007W WO2011027922A1 WO 2011027922 A1 WO2011027922 A1 WO 2011027922A1 KR 2009005007 W KR2009005007 W KR 2009005007W WO 2011027922 A1 WO2011027922 A1 WO 2011027922A1
Authority
WO
WIPO (PCT)
Prior art keywords
polysilane
group
based compound
formula
silane
Prior art date
Application number
PCT/KR2009/005007
Other languages
French (fr)
Korean (ko)
Inventor
신동윤
Original Assignee
Shin Dong Yun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Dong Yun filed Critical Shin Dong Yun
Publication of WO2011027922A1 publication Critical patent/WO2011027922A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Definitions

  • the present specification relates to a method for producing a polysilane-based compound, in particular a liquid polysilane-based compound, and a polysilane-based compound prepared according to the present invention, a dehydrogenation catalyst used in the method, and a method for producing amorphous thin film silicon using a polysilane-based compound. Describe it.
  • Organosilane polymers are known as polysilane (Si-Si), polysiloxane (Si-O), polycarbosilane (Si-C) and the like.
  • Polysilane is composed of Si-Si single bond and has various physical properties such as heat resistance, high refractive index, light reactivity, hole transport property, luminescence, etching resistance, low dielectric constant by sigma conjugation. By using the above properties, polysilane can be widely used in the electronics industry, the semiconductor industry, and the photovoltaic industry.
  • polysilane is a ceramic precursor, an interlayer insulating film, various optoelectronic materials such as photoresist, photosensitive materials such as organic photoconductors, optical transmission materials such as optical waveguides, optical recording materials such as optical memories, and electroluminescent devices. It can be used for a material such as, and can be used as a material such as semiconductor industry and the photovoltaic industry.
  • Wurtz co-polymerization method As a general method for synthesizing polysilane, Wurtz co-polymerization method has been used in which an organic dichlorosilane is dispersed with an alkali metal at a toluene reflux temperature and dechlorinated.
  • the polysilane-based compound may be prepared by dehydrogenation-polymerizing primary, secondary and tertiary silanes in the presence of a catalyst by a dehydrogenation polymerization reaction.
  • a dehydrogenation polymerization reaction when dehydrogenation of primary, secondary, and tertiary silanes using a general transition metal complex as a catalyst, the dehydrogenation polymerization reactivity is suddenly going to primary silane, secondary silane, and tertiary silane due to steric effect. Will decrease.
  • the primary silanes not only the primary silanes, but also the secondary silanes, especially the tertiary silanes, can be prepared when the dehydrogenation polymerization reaction is carried out using the catalysts disclosed herein, thus reducing the primary silane, secondary silane or It was confirmed that the polysilane-based compound that is the dehydrogenated polymer of the tertiary silane was obtained.
  • the polysilane-based compound thus obtained may be particularly useful in the production of amorphous silicon thin films.
  • a method for preparing a polysilane-based compound by dehydrogenation-polymerizing primary silane, secondary silane or tertiary silane in the presence of a dehydrogenation catalyst and a polysilane-based compound prepared accordingly.
  • a dehydrogenation catalyst for dehydrogenation polymerization to produce a polysilane-based compound by dehydrogenation polymerization of primary silane, secondary silane or tertiary silane.
  • a method of preparing an amorphous silicon thin film using a liquid polysilane-based compound which is a dehydrogenated polymer of the primary silane, the secondary silane or the tertiary silane is provided.
  • System compounds can be prepared.
  • the gas phase silane can be transformed into a stable polysilane compound through the dehydrogenation polymerization of the catalyst.
  • the polysilane-based compound to be produced can selectively control the number n value of the repeating units, whereby a liquid polysilane-based compound having a desired molecular weight can be obtained.
  • the obtained polysilane-based compound can be used in various devices such as semiconductors, and in particular, the obtained liquid polysilane-based compound has no solubility in organic solvents and has excellent solubility in performing a liquid phase process. It can be usefully used to manufacture the amorphous silicon thin film used.
  • the liquid phase manufacturing method is simpler than the conventional CVD method, thereby lowering the unit cost.
  • the sophisticated high-resolution printing method can be used, it is easy for mass production. Therefore, this liquid phase method can satisfy the efficiency and economic efficiency of the amorphous silicon thin film solar cell manufacturing at the same time.
  • Example 1 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention, which shows the abundance value on the Y-axis and the minutes on the X-axis.
  • Figure 2 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention is to display the abundance value on the Y axis and m / z value on the X axis.
  • Example 3 is a graph showing the results of GPC analysis for Example 1 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
  • Example 4 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
  • FIG. 5 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • Example 6 is a graph showing the results of GPC analysis for Example 2 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
  • Example 7 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • FIG. 8 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • Example 9 is a graph showing the results of GPC analysis for Example 3 of the present invention, the X axis represents minutes (retention time), the Y axis represents the MV value.
  • Example 10 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
  • FIG. 11 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • Example 12 is a graph showing the results of GPC analysis for Example 4 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
  • FIG. 13 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • Example 14 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and m / z values on the X-axis.
  • Example 15 is a graph showing the results of GPC analysis for Example 5 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
  • FIG. 16 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • Example 17 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
  • Example 18 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • Example 19 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
  • Example 20 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
  • FIG. 21 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • polysilane-based compound is used as a meaning including both disilane and oligosilane, unless otherwise specified.
  • polysilane-based compound is used as a meaning including polysilane and its derivatives unless otherwise specified.
  • polysilane-based compounds which are dehydrogenated polymers obtained by dehydrogenation polymerization of primary, secondary and tertiary silanes in the presence of a catalyst can be prepared.
  • the polysilane-based compound prepared may be linear or cyclic.
  • dehydrogenation polymerization reactions are possible without the presence of compounds for hydrosilylation (compounds such as cycloolefins having carbon-carbon unsaturated bonds, for example), and also due to steric effects, secondary It can overcome that the dehydrogenation polymerization reactivity falls as it goes to a silane and a tertiary silane.
  • dehydrogenation polymerization has been mainly limited to primary silanes due to differences in reactivity. Secondary silanes have some degree of reactivity, but tertiary silanes have very limited reactivity.
  • the present catalyst capable of dehydrogenation of the tertiary silane the following method is possible in the dehydrogenation polymerization reaction.
  • the tertiary silane can be regarded as a kind of terminal group having one hydrogen that can react.
  • the desired compound is a compound having a polymerization degree of 3, for example, 1 equivalent of primary silane or secondary silane and 2 equivalents of tertiary silane
  • a compound having a polymerization degree 3 can be obtained as a main product.
  • a compound having a degree of polymerization of 4 can be obtained as the main product.
  • a liquid silane compound having a degree of polymerization of 5, 6, 7, or the like can be synthesized as a main product.
  • a linear or cyclic liquid polysilane-based compound may be obtained through the preparation of the dehydrogenation polymerization reaction of Scheme 1 below.
  • n value is not limited to an integer of 1 or more, but may be 1 to 119.
  • n may be 1, 2 to 6, or 7 to 119. Since n is preferably a liquid polysilane of 5 to 6 in view of the fact that a high boiling point does not volatilize when manufacturing the amorphous thin film silicon.
  • m is not limited to an integer of 1 or more, but it may be difficult to obtain m more than 7, that is, more than 10 hexagons, so in terms of yield, 1 to 7 (preferably 1 to 6, more preferably 1 to 1). 5).
  • M may be 1, and may be 2 to 7 (or 2 to 6, or 2 to 5).
  • m is preferably 2 to 7 (or 2 to 6, or 2 to 5) from the standpoint of ease of production such as ease of addition polymerization during the amorphous thin film silicon manufacturing process.
  • n may be gaseous or liquid or solid polysilane of 1 (depending on R group). Gaseous, liquid or solid).
  • n may be a liquid or solid phase (which may be a liquid or solid phase depending on the R group) of 2 to 6 polysilane.
  • n may be 7 to 119 solid polysilanes.
  • m may be a liquid polysilane of 1, and 2 to 7 or 2 to 6 or 2 to It may be a liquid or solid polysilane of 5 (it may be a liquid or solid phase depending on the R group).
  • m when m is 7 or more, it may be 10 or more, and when m is 6, it may be a pentagon, and when m is 5, it may be an octagon.
  • the starting material is a primary silane, a secondary silane or a tertiary silane (Formula 3), and the silane may be converted into a stable polysilane compound through the catalysis.
  • the silane of the following [Formula 3] may be a gas phase, a liquid phase, or a solid phase depending on the R group, and in the case of all having a hydrogen substituent, the silane is a gaseous phase.
  • R One , R 2 , R 3 are each independently hydrogen atom, halogen atom, oxygen atom, nitro group, alkyl group, cycloalkyl group, aryl group, aralkyl group, alkaryl group, alkoxy group, alkoxycarbonyl group, carbonyloxy group, amino Carbonyl groups, dialkyl amino groups, derivatives thereof or they may be substituted by optional substituents. They may be linear or nonlinear and may optionally combine to form a ring. Where R One , R 2 , R 3 May be the same or different, respectively.
  • R in [Scheme 1], [Formula 1] to [Formula 3] One , R 2 , R 3 Suitable examples of C 1 -C 14 alkyl group, C 1 -C 14 cycloalkyl group, C 1 -C 14 , aryl group, C 1 -C 14 aralkyl group, C 1 -C 14 alkaryl group, C 1 -C 14 alkoxy group And these substituents may be linear or nonlinear, and may optionally combine to form a ring.
  • Non-limiting examples of such alkyl groups here include methyl, ethyl, propyl, isopropyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, octadecyl, myrisil and the like.
  • non-limiting examples of such cycloalkyl groups include cyclobutyl, cyclohexyl, and the like.
  • Further non-limiting examples of such aryl groups include phenyl, xenyl, naphthyl and the like.
  • non-limiting examples of the aralkyl group include benzyl, 2-phenylethyl and the like.
  • non-limiting examples of the alkaryl groups include tolyl, xylyl, mesityl and the like.
  • non-limiting examples of the alkoxy group include methoxy, ethoxy, propoxy, butoxy and the like.
  • R One , R 2 , R 3 May comprise a group consisting of aryl substituted by halogen, nitro group, alkoxycarbonyl, carbonyloxy, alkoxy, aminocarbonyl, dialkylamino, derivatives thereof or optional substituents.
  • R One , R 2 , R 3 Are methyl, ethyl, propyl, propenyl, propynyl, butyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl, phenyl, benzyl, naphthyl, anthracenyl, mesityl , Xylyl, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, cumyl, methoxy, on Methoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-is
  • Non-limiting examples of monohalosilanes that may be used in the dehydrogenation polymerization in one illustrative embodiment of the present invention include benzylmethylchlorosilane, n-butylmethylchlorosilane, di-n-butylchlorosilane, ethylmethyl Chlorosilane, diethylchlorosilane, dimethylchlorosilane, n-octadecylmethylchlorosilane, phenylmethylchlorosilane, diphenylchlorosilane, cyclohexylmethylchlorosilane, cyclopentylmethylchlorosilane, n-propylmethylchlorosilane, tolyl Methylchlorosilane, allylmethylchlorosilane, 5-hexenylmethylchlorosilane, vinylmethylchlorosilane, and the like.
  • Non-limiting examples of dihalosilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include t-butyldichlorosilane, phenyldichlorosilane, dichlorocyclohexsilane, dichloroethylsilane, dichloromethylsilane, Dichlorophenylsilane, dichlorohexylsilane, dichloro (3-phenylpropyl) silane, dichloroisopropylsilane, dichloro (4-phenylbutyl) silane, n-propyldichlorosilane, dichloroallylsilane, dichlorovinylsilane, trichlorosilane and the like. Include.
  • Non-limiting examples of monoalkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include t-butylphenylmethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethyl-n-pro Foxysilane, n-octadecylmethylmethoxysilane, octylmethylmethoxysilane, cyclopentylethylmethoxysilane, dicyclopentylmethoxysilane, dicyclopentylmethoxysilane, phenylmethylethoxysilane, diphenylethoxysilane And vinyl methyl ethoxysilane.
  • Non-limiting examples of dialkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include butyldimethoxysilane, dodecyldiethoxysilane, ethyldiethoxysilane, methyldimethoxysilane, methyldie Methoxysilane, n-octyl diethoxysilane, octadecyldimethoxysilane, phenyl diethoxysilane, phenyldimethoxysilane, vinyldimethoxysilane and the like.
  • Non-limiting examples of trialkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include trimethoxysilane, triethoxysilane, tri-n-propoxysilane, and the like.
  • the dehydrogenation catalyst that can be used in the embodiments of the present invention is a high performance dehydrogenation catalyst for performing the dehydrogenation polymerization reaction, and may use the following homogeneous or non-uniform catalysts.
  • Homogeneous catalysts are complex compounds in which the core metal and one or more ligands which stabilize these core metals are bonded.
  • the central metal includes all known metals.
  • Non-limiting examples thereof include alkali metals of Li, Na, K, Rb, Cs, and Fr; Alkaline earth metals of Be, Mg, Ca, Sr, Ba, Ra;
  • the homogeneous catalyst may be represented by the following [Formula 4].
  • M is a central metal of the complex compound, and may be any metal known as described above.
  • R 1, R 2, R 3 and R 4 are independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroaryl, hydrocarbyl, or Substituted heterohydrocarbyl, R 5 and R 6 excluding hydrogen and are independently hydrocarbyl or substituted hydrocarbyl
  • X is a halogen atom, an alkyl group of C1-C20, an arylalkyl group of C7-C30, C1-C20 Is selected from the group consisting of an alkoxy group having an alkyl group, a C3-C20 alkyl-substituted siloxy group, and an amido group having a hydrocarbon group of C1-C20, and X on both sides of M may be the same or different).
  • Ligands capable of forming complexes on the central metal may be represented by the following [Formula 5], and their skeleton structures may be represented by the following [Formula 6] to [Formula 8], for example.
  • [Formula 6] represents (S, S) -enantiomer [(S, S) -R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ], wherein , R)-(enantiomer) [(R, R) -R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ], where [Formula 8] is a meso-daastomer [meso R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ].
  • R 1 , R 2 , R 3 and R 4 are independently hydrocarbyl, substituted hydrocarbyl, heterohydro carbyl, or substituted heterohydro carbyl, and R 5 and R 6 are hydrocarbyl or substituted except hydrogen Hydrocarbyl.
  • R 1 , R 2 , R 3 and R 4 are preferably independently phenyl, benzyl, naphthyl, anthracenyl, mesityl, xylyl, methyl, ethyl, ethylenyl, propyl, propenyl, propynyl, butyl, Cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl,, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, cumyl, methoxy, ethoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethyl Cyclo
  • R 1 , R 2 , R 3 and R 4 are independently phenyl, tolyl, biphenyl, naphthyl, cyclohexyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t- Butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-isopropylcyclohexyl, o-methylphenyl, o-ethylphenyl, o-isopropylphenyl, and ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl.
  • R 5 and R 6 are preferably independently hydrocarbyl, substituted hydrocarbyl groups excluding hydrogen. Specifically, it may be selected from the group consisting of alkyl, aryloxy, halogen, nitro, alkoxycarbonyl, carbonyloxy, alkoxy, aminocarbonyl, dialkylamino, derivatives thereof, or aryl substituted by an optional substituent. .
  • PCCP skeletal structural ligands for the stable maintenance of the reaction activity are (S, S)-, or (R, R) -isomers or multiple (S, S)-, or (R, R)-in a mixture of the two isomers.
  • (R 1 ) (R 2 ) P- (R 5 ) CHCH (R 6 ) -P (R 3 ) (R 4 ) may be combined to form a unit.
  • stereoisomeric structural ligands forming the P-C-C-P backbone for stable activity include (S, S)-or (R, R)-(phenyl) 2 P-CH (methyl) CH (methyl) -P (phenyl) 2 , (S, S)-or (R, R)-(4-methoxyphenyl) 2 P-CH (methyl) CH (methyl) -P (4-methoxyphenyl) 2 , (S, S)-or (R, R)-(4-methylphenyl) 2 P-CH (methyl) CH (methyl) -P (4-methylphenyl) 2 , (S, S)-or (R, R)-(4-ethylphenyl) 2 P-CH (methyl) CH (methyl) -P (phenyl) 2 , (S, S)-or (R, R)-(4-ethylphenyl) 2 P-CH (methyl) CH (methyl) -P (phenyl) 2 , (S,
  • the PCCP type stereoisomeric framework of the ligand has a structure independent of known (eg) conventional (R) n PN (R ′) P (R) m heteroligands. Is a ligand, and only the hetero atoms in the backbone structure of the ligand are phosphorus (P) atoms.
  • the ligand used in the first catalyst is composed of two carbon-carbon skeleton structures without nitrogen atoms between two phosphorus atoms, and exhibits excellent catalytic activity by appropriately adjusting the spatial structure in the arrangement direction of the substituents attached to the carbon atoms. In addition, the stability of the reaction activity can be maintained.
  • X is for example Cl and M may more preferably be Co, Ni, Pd, Pt, which are referred to herein as KH14, KH15, KH16, KH17, respectively.
  • M may more preferably be Co, Ni, Pd, Pt, which are referred to herein as KH14, KH15, KH16, KH17, respectively. The following shows each chemical structural formula.
  • the catalyst can be prepared, for example, as follows. (S, S)-(phenyl) 2 PCH (methyl) CH (methyl) P (phenyl) 2 was added to anhydrous ethanol to a solution of M (central metal such as cobalt (II)) chloride in anhydrous ethanol solution. Slowly dropwise under conditions. When the color of the solution changes, the solution is refluxed at a certain time and temperature. After cooling to room temperature and filtering, the ethanol solution may be dried to obtain the catalyst.
  • M central metal such as cobalt (II)
  • Non-uniform catalysts can be prepared using homogeneous catalysts.
  • the metal cluster may be a nanocluster, for example, a nanocluster having a size of 2 nm or less.
  • the dehydrogenation polymerization solvent is not particularly limited as long as the components contained in the respective compositions are precipitated, phase separated, or not reacted with them.
  • the liquid polysilane derivatives obtained above include ceramic precursors, interlayer insulating films, photoelectric materials such as photoresists and organic photoconductors, light transmission materials such as optical waveguides, optical recording materials such as optical memories, and materials for electroluminescent devices. It can be used for the purpose, etc., it can be used in a variety of materials such as semiconductor industry and the photovoltaic industry. In addition, it is particularly useful for forming amorphous silicon thin films, particularly amorphous silicon thin films for silicon solar cells, through a liquid phase process.
  • amorphous silicon thin film solar cells have been known to have lower efficiency than crystalline silicon solar cells.
  • a small amount eg, 1%) of silicon is required to be very economical. to be.
  • thermal CVD chemical vapor deposition, chemical vapor deposition
  • plasma CVD optical CVD
  • etc. of monosilane gas or disilane gas is used.
  • a thermal CVD method is widely used to form a polysilicon film
  • a plasma CVD method is widely used to form an amorphous silicon film.
  • such a CVD method uses a gas phase reaction, thereby lowering the efficiency of the device due to contamination of the device by the by-products of silicon particles in the gas phase.
  • the raw material is gaseous, it is difficult to obtain uniform step coverage on the substrate having irregularities on the surface.
  • the film formation speed is low, the throughput per unit time is low, resulting in low productivity.
  • a complicated high frequency generator and a vacuum device are required, which makes the process expensive.
  • the liquid polysilane-based compound according to the exemplary embodiments of the present invention can produce amorphous thin film silicon extremely economically by a liquid phase process rather than a vapor phase process.
  • the polysilane-based compound according to the embodiments of the present invention when applied to the production of the thin film silicon by the liquid phase process, for example, a coating method may be used.
  • the obtained polysilane-based compound may be further subjected to an additional polymerization process as needed.
  • the prepared liquid silane may be coated with a thin film on a substrate, and then decomposed and reacted in the coating film through a heat treatment process including an elevated temperature process to form a silicon film.
  • a silicon film may be formed by using the obtained liquid silane as a solvent and dissolving and applying the obtained solid phase silane thereto.
  • a solvent for dissolving it is required.
  • a solid silane which is difficult to dissolve may be easily dissolved and used as a solvent. Has a very big advantage.
  • a liquid silane having n of 6 or less in [Formula 1] can be used as a solvent and a solid silane of n of 7 or more can be dissolved therein.
  • the coating method may be a general method such as spin coating, dip coating, spray and the like.
  • coating is generally performed at the temperature above normal temperature. At temperatures below room temperature, the liquid silane may solidify.
  • the heat treatment temperature during the temperature increase of the silicon film depends on the liquid silane used, but the heat treatment temperature is generally 200 to 500 ° C. When the temperature is 200 ° C. or less, the decomposition reaction may not proceed sufficiently and a silicon film having a sufficient thickness may not be formed.
  • the liquid silane is applied to a thickness of 100 nm through spin coating under a nitrogen gas atmosphere.
  • the reaction was decomposed by heat treatment at 200 ° C. for 10 minutes at 300 ° C., 10 minutes at 300 ° C., and again at 400 to 500 ° C. for 2 hours.
  • the formation of the silicon film after cooling to room temperature can be confirmed by confirming the peak of 480 cm -1 , which is a specific wavelength of a-Si, by measuring Raman scattering spectra. .
  • the manufacturing efficiency of the amorphous thin film silicon solar cell can be simultaneously maximized and economical.
  • IR (KBr) data are as follows: 3049 (m), 2926 (w), 1484 (m), 1435 (s), 1312 (w), 1190 (w), 1098 (s), 1027 (w), 999 (m), 878 (w ), 816 (w), 742 (s), 696 (s), 529 (s), and 514 cm -1 (m)
  • FIG. 1 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention, which shows the abundance value on the Y-axis and the minutes on the X-axis.
  • Figure 2 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention is to display the abundance value on the Y axis and m / z value on the X axis.
  • 3 is a graph showing the results of GPC analysis for Example 1 of the present invention.
  • the X axis represents minutes (retention time) and the Y axis represents MV values.
  • the solvent was dried and then dissolved in hexane (20-25 ml).
  • the part dissolved in hexane was analyzed by GC / MSD.
  • diphenylsilane by redistribution was the main compound, and the formation of polysilane having n value of 2 to 4 was confirmed as the main compound (see FIGS. 1 and 2).
  • the parts dissolved in tetrahydrofuran, that is, high molecular weight were analyzed by GPC.
  • GPC analysis confirmed the formation of polysilane (weight average molecular weight 12721) having an average value of 119 (see FIG. 3).
  • Example 2 The same procedure as in Example 1 was carried out except that diphenylsilane was used instead of the starting reaction material, phenylsilane. The reaction proceeded for about 40 minutes after catalyst injection.
  • FIG. 4 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
  • FIG. 5 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • 6 is a graph showing the results of GPC analysis for Example 2 of the present invention.
  • the X axis represents minutes (retention time) and the Y axis represents MV values.
  • Example 2 The same procedure as in Example 1 was carried out except that diethylsilane was used instead of phenylsilane as the starting reaction material. The reaction proceeded for about 2 minutes after catalyst injection.
  • FIG. 7 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • FIG. 8 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • 9 is a graph showing the results of GPC analysis for Example 3 of the present invention.
  • the X axis represents minutes (retention time) and the Y axis represents MV values.
  • Example 2 The same procedure as in Example 1 was carried out except that methylphenylsilane was used instead of the starting reaction material, phenylsilane. The reaction proceeded for about 11 minutes after catalyst injection.
  • FIG. 10 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and minutes on the X axis.
  • FIG. 11 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • 12 is a graph showing the results of GPC analysis for Example 4 of the present invention.
  • the X axis represents minutes (retention time) and the Y axis represents MV values.
  • GC / MSD analysis of the part dissolved in hexane confirmed the formation of polysilane having n value of 2 to 4 (see FIGS. 10 and 11).
  • the part dissolved in tetrahydrofuran was analyzed by GPC.
  • GPC analysis confirmed polysilane formation with an n value of 7 to 8 on average (see FIG. 12).
  • dichlorosilane is a gas phase at room temperature
  • the weight of the empty reactor was measured in advance, and then the temperature of the reactor was lowered to -78 ° C to trap the dichlorosilane in the reactor and weighed to determine the amount of the dichlorosilane as a reactant.
  • the reaction method was carried out in the same manner as in Example 1, except that tetraethylene glycol dimethyl ether was used instead of THF as the solvent for dissolving dichlorosilane. The reaction proceeded for about 3 minutes after catalyst injection. Trimethylolsoformate (CH (OMe) 3 ) was used for the methoxy reaction.
  • FIG. 13 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • 14 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and m / z values on the X-axis.
  • 15 is a graph showing the results of GPC analysis for Example 5 of the present invention.
  • the X axis represents minutes (retention time) and the Y axis represents MV values.
  • GC / MSD analysis confirmed the formation of a polysilane having n value of 2 to 5 (see FIGS. 13 and 14).
  • the part dissolved in tetrahydrofuran was analyzed by GPC.
  • GPC analysis confirmed the formation of polysilane with n value of 9 (see FIG. 15).
  • Example 2 The same procedure as in Example 1 was carried out except that dimethylchlorosilane was used instead of phenylsilane as the starting reaction material. The reaction proceeded for about 2 minutes after catalyst injection.
  • FIG. 16 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • 17 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
  • the reaction was carried out in the same manner as in Example 1 except that triethylsilane was used instead of the starting reaction material phenylsilane and the reaction solvent was reacted without using a solvent instead of tetrahydrofuran. The reaction proceeded for about 50 minutes after catalyst injection.
  • 18 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
  • 19 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
  • FIG. 20 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
  • FIG. 21 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
  • hexamethoxydisilane having an n value of 2 was formed as a main product.
  • small amounts of octamethoxytrisilane and decamethoxytetrasilane were formed by reaction with dimethoxysilane formed by redistribution of trimethoxysilane as a starting material (see FIGS. 20 and 21). .
  • the present specification relates to a method for producing a polysilane-based compound, in particular a liquid polysilane-based compound, and a polysilane-based compound prepared according to the present invention, a dehydrogenation catalyst used in the method, and a method for producing amorphous thin film silicon using a polysilane-based compound. Describe it.
  • the polysilane-based compound can be usefully used in the production of a variety of electronic devices, including solar cells, in particular by the liquid phase process of the amorphous silicon thin film used in the production of silicon solar cells.

Abstract

Provided are a method for producing a linear or cyclic polysilane-based compound by subjecting monosilane, disilane or trisilane to dehydrogenation polymerisation and polysilane-based compounds produced thereby, a dehydrogenation catalyst used in the production method, and a method for producing an amorphous silicon thin film by using the polysilane-based compound. The polysilane-based compound can be used in a variety of electronic devices, notably solar cells, and, more particularly, can be employed to advantage when the amorphous silicon thin films used in the production of silicon solar cells are produced by means of the liquid-phase process.

Description

폴리실란계 화합물의 제조 방법 및 이에 따라 제조되는 폴리실란계 화합물, 이에 이용되는 탈수소화 촉매, 폴리실란계 화합물로 무정형 실리콘 박막을 제조하는 방법Method for producing polysilane-based compound and polysilane-based compound prepared according to this, dehydrogenation catalyst used therein, method for producing amorphous silicon thin film with polysilane-based compound
본 명세서는 폴리실란계 화합물 특히 액상의 폴리실란계 화합물의 제조 방법 및 이에 따라 제조되는 폴리실란계 화합물, 해당 제조 방법에 이용되는 탈수소화 촉매, 폴리실란계 화합물로 무정형 박막 실리콘을 제조하는 방법에 관하여 기술한다. The present specification relates to a method for producing a polysilane-based compound, in particular a liquid polysilane-based compound, and a polysilane-based compound prepared according to the present invention, a dehydrogenation catalyst used in the method, and a method for producing amorphous thin film silicon using a polysilane-based compound. Describe it.
유기실란고분자는 폴리실란(Si-Si), 폴리실록산(Si-O) 및 폴리카르보실란(Si-C) 등이 알려져 있다. Organosilane polymers are known as polysilane (Si-Si), polysiloxane (Si-O), polycarbosilane (Si-C) and the like.
폴리실란은 Si-Si 단일결합으로 이루어지며 시그마 컨쥬게이션에 의해 내열성, 고굴절률, 광 반응성, 정공 수송성, 발광성, 내에칭성, 저유전율 등의 다양한 물성을 갖는다. 위 특성을 이용하여 폴리실란은 전자산업, 반도체산업, 태양광산업에서 널리 사용될 수 있다. Polysilane is composed of Si-Si single bond and has various physical properties such as heat resistance, high refractive index, light reactivity, hole transport property, luminescence, etching resistance, low dielectric constant by sigma conjugation. By using the above properties, polysilane can be widely used in the electronics industry, the semiconductor industry, and the photovoltaic industry.
예컨대, 폴리실란은 위 물성에 기인하여 세라믹 전구체, 층간 절연막, 각종 광전자 재료 예컨대 포토레지스트, 유기 감광체 등의 광전자 사진 재료, 광 도파로 등의 광 전송 재료, 광 메모리 등의 광 기록 재료, 전계 발광 소자용 재료 등에 이용될 수 있으며, 반도체 산업 및 태양광 산업 등의 재료로 이용될 수 있다.For example, due to the above physical properties, polysilane is a ceramic precursor, an interlayer insulating film, various optoelectronic materials such as photoresist, photosensitive materials such as organic photoconductors, optical transmission materials such as optical waveguides, optical recording materials such as optical memories, and electroluminescent devices. It can be used for a material such as, and can be used as a material such as semiconductor industry and the photovoltaic industry.
폴리실란을 합성하는 일반적인 방법으로서 유기디클로로실란을 알칼리금속과 함께 톨루엔 환류온도에서 분산시켜 탈염소 중합하는 Wurtz 짝지움 중합법이 이용되어 왔다. As a general method for synthesizing polysilane, Wurtz co-polymerization method has been used in which an organic dichlorosilane is dispersed with an alkali metal at a toluene reflux temperature and dechlorinated.
또한, 위 방법 외에도 고리형 실란 소중합체의 개환 중합, 유기디클로로실란의 전기환원중합, 유기디클로로실란의 초음파를 이용한 중합 방법 등이 알려져 있다.In addition to the above methods, ring-opening polymerization of cyclic silane oligomers, electroreduction polymerization of organic dichlorosilanes, polymerization methods using ultrasonic waves of organic dichlorosilanes, and the like are known.
탈수소화 중합 반응에 의하여 일차, 이차, 삼차 실란을 촉매 존재하에 탈수소화중합하여 폴리실란계 화합물을 제조할 수 있다. 그런데 이러한 탈수소화 중합 반응 시, 일반적인 전이금속착물을 촉매로 하여 일차, 이차, 삼차 실란을 탈수소화 중합하는 경우 탈수소화 중합 반응성은 입체 효과에 기인하여 일차실란, 이차실란, 삼차실란으로 가면서 급격하게 감소하게 된다. The polysilane-based compound may be prepared by dehydrogenation-polymerizing primary, secondary and tertiary silanes in the presence of a catalyst by a dehydrogenation polymerization reaction. However, during the dehydrogenation polymerization reaction, when dehydrogenation of primary, secondary, and tertiary silanes using a general transition metal complex as a catalyst, the dehydrogenation polymerization reactivity is suddenly going to primary silane, secondary silane, and tertiary silane due to steric effect. Will decrease.
놀랍게도, 본 명세서에 개시된 촉매를 이용하여 탈수소화 중합 반응을 수행하는 경우 일차 실란 뿐만 아니라, 이차 실란, 특히 삼차 실란을 탈수소화 중합 반응성의 감소 없이도 제조할 수 있음과 이에 따라 일차 실란, 이차 실란 또는 삼차 실란의 탈수소화 중합체인 폴리실란계 화합물이 얻어지는 것을 확인할 수 있었다. 또한, 이에 따라 얻어지는 폴리실란계 화합물은 특히 무정형 실리콘 박막 제조에 유용하게 사용될 수 있다. Surprisingly, not only the primary silanes, but also the secondary silanes, especially the tertiary silanes, can be prepared when the dehydrogenation polymerization reaction is carried out using the catalysts disclosed herein, thus reducing the primary silane, secondary silane or It was confirmed that the polysilane-based compound that is the dehydrogenated polymer of the tertiary silane was obtained. In addition, the polysilane-based compound thus obtained may be particularly useful in the production of amorphous silicon thin films.
본 발명의 구현예들에서는, 일차 실란, 이차 실란 또는 삼차 실란을 탈수소화 촉매의 존재 하에 탈수소화중합하여 폴리실란계 화합물을 제조하는 방법 및 이에 따라 제조되는 폴리실란계 화합물을 제공한다.In embodiments of the present invention, there is provided a method for preparing a polysilane-based compound by dehydrogenation-polymerizing primary silane, secondary silane or tertiary silane in the presence of a dehydrogenation catalyst and a polysilane-based compound prepared accordingly.
본 발명의 다른 구현예들에서는, 일차 실란, 이차 실란 또는 삼차 실란을 탈수소화 중합하여 폴리실란계 화합물을 제조하기 위한 탈수소화 중합 반응의 탈수소화 촉매를 제공한다. In other embodiments of the present invention, there is provided a dehydrogenation catalyst for dehydrogenation polymerization to produce a polysilane-based compound by dehydrogenation polymerization of primary silane, secondary silane or tertiary silane.
본 발명의 또 다른 구현예들에서는, 상기 일차 실란, 이차 실란 또는 삼차 실란의 탈수소화 중합체인 액상의 폴리실란계 화합물을 이용하여 무정형 실리콘 박막을 제조하는 방법을 제공한다.In still another embodiment of the present invention, a method of preparing an amorphous silicon thin film using a liquid polysilane-based compound which is a dehydrogenated polymer of the primary silane, the secondary silane or the tertiary silane is provided.
일차 실란 뿐만 아니라 탈수소화중합 반응성이 제한되기 쉬운 이차, 특히 반응성이 극히 제한되는 삼차 실란의 환원 탈수소화중합반응을 가능하게 하는 신규한 촉매를 사용하여 선형 또는 고리형 폴리실란계 화합물 특히 액상 폴리실란계 화합물을 제조할 수 있다. 또한, 기상 실란을 촉매의 탈수소화중합반응을 거쳐서 안정한 폴리실란게 화합물로 변형할 수 있다. 또한, 제조되는 폴리실란계 화합물은 반복 단위 수 n값을 선택적으로 조절하는 것이 가능하고 이에 따라 원하는 분자량을 가지는 액상 폴리실란계 화합물을 얻을 수 있다. Linear or cyclic polysilane-based compounds, especially liquid polysilanes, using novel catalysts that enable the reduction of dehydrogenation polymerization of secondary silanes, particularly those of which primary dehydrogenation reactivity is limited, as well as primary silanes. System compounds can be prepared. In addition, the gas phase silane can be transformed into a stable polysilane compound through the dehydrogenation polymerization of the catalyst. In addition, the polysilane-based compound to be produced can selectively control the number n value of the repeating units, whereby a liquid polysilane-based compound having a desired molecular weight can be obtained.
얻어진 폴리실란계 화합물은 반도체 등 각종 디바이스에 이용될 수 있으며, 특히 얻어진 액상 폴리실란계 화합물은 액상 공정을 수행함에 있어서 유기 용매의 제한이 없고 용해성이 뛰어나므로, 액상 공정으로 예컨대 실리콘 태양전지 제조에 이용되는 무정형 실리콘 박막 제조에 유용하게 이용될 수 있다. 이러한 액상 제조 방법은 기존의 CVD 공법에 비하여 공정이 단순하여 단가를 낮출 수 있으며, 또한, 정교한 레졸루션 프린팅(high-resolution printing) 방법을 이용할 수 있으므로 대량 생산에도 용이하다. 따라서, 이러한 액상 방법은 무정형 실리콘 박막 태양전지 제조의 효율 극대화와 경제성을 동시에 만족할 수 있다. The obtained polysilane-based compound can be used in various devices such as semiconductors, and in particular, the obtained liquid polysilane-based compound has no solubility in organic solvents and has excellent solubility in performing a liquid phase process. It can be usefully used to manufacture the amorphous silicon thin film used. The liquid phase manufacturing method is simpler than the conventional CVD method, thereby lowering the unit cost. In addition, since the sophisticated high-resolution printing method can be used, it is easy for mass production. Therefore, this liquid phase method can satisfy the efficiency and economic efficiency of the amorphous silicon thin film solar cell manufacturing at the same time.
도 1은 본 발명 실시예 1에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 1 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention, which shows the abundance value on the Y-axis and the minutes on the X-axis.
도 2는 본 발명 실시예 1에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. Figure 2 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention is to display the abundance value on the Y axis and m / z value on the X axis.
도 3은 본 발명 실시예 1에 대한 GPC 분석 결과를 나타내는 그래프로서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 3 is a graph showing the results of GPC analysis for Example 1 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
도 4는 본 발명 실시예 2에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 4 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
도 5는 본 발명 실시예 2에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. FIG. 5 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
도 6은 본 발명 실시예 2에 대한 GPC 분석 결과를 나타내는 그래프로서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 6 is a graph showing the results of GPC analysis for Example 2 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
도 7은 본 발명 실시예 3에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 7 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
도 8은 본 발명 실시예 3에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. FIG. 8 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
도 9는 본 발명 실시예 3에 대한 GPC 분석 결과를 나타내는 그래프로서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 9 is a graph showing the results of GPC analysis for Example 3 of the present invention, the X axis represents minutes (retention time), the Y axis represents the MV value.
도 10은 본 발명 실시예 4에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 10 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
도 11은 본 발명 실시예 4에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. FIG. 11 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
도 12는 본 발명 실시예 4에 대한 GPC 분석 결과를 나타내는 그래프로서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 12 is a graph showing the results of GPC analysis for Example 4 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
도 13은 본 발명 실시예 5에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. FIG. 13 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
도 14는 본 발명 실시예 5에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 14 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and m / z values on the X-axis.
도 15는 본 발명 실시예 5에 대한 GPC 분석 결과를 나타내는 그래프로서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 15 is a graph showing the results of GPC analysis for Example 5 of the present invention, the X axis represents minutes (retention time), and the Y axis represents MV values.
도 16은 본 발명 실시예 6에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. FIG. 16 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
도 17은 본 발명 실시예 6에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 17 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
도 18은 본 발명 실시예 7에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 18 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention showing abundance values on the Y-axis and minutes on the X-axis.
도 19는 본 발명 실시예 7에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 19 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
도 20은 본 발명 실시예 8에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 20 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis.
도 21은 본 발명 실시예 8에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. FIG. 21 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
이하, 본 발명의 예시적인 구현예들을 설명한다. Hereinafter, exemplary embodiments of the present invention will be described.
본 명세서에서 폴리실란계 화합물은 특별히 명시하지 아니하는 한 다이 실란이나 올리고실란을 모두 포함하는 의미로서 사용된다.In the present specification, the polysilane-based compound is used as a meaning including both disilane and oligosilane, unless otherwise specified.
본 명세서에서 폴리실란계 화합물은 특별히 명시하지 아니하는 한 폴리실란과 그 유도체를 포함하는 의미로서 사용된다.In the present specification, the polysilane-based compound is used as a meaning including polysilane and its derivatives unless otherwise specified.
본 발명의 예시적인 구현예들에서는, 일차, 이차, 삼차 실란을 촉매의 존재 하에 탈수소화중합하여 얻어지는 탈수소화 중합체인 폴리실란계 화합물을 제조할 수 있다. 제조된 폴리 실란계 화합물은 선형 또는 고리형일 수 있다. In exemplary embodiments of the present invention, polysilane-based compounds which are dehydrogenated polymers obtained by dehydrogenation polymerization of primary, secondary and tertiary silanes in the presence of a catalyst can be prepared. The polysilane-based compound prepared may be linear or cyclic.
본 발명의 예시적인 구현예들에 의하면, 히드로실릴화를 위한 화합물(탄소-탄소 불포화 결합을 갖는 예컨대 사이클로올레핀 등의 화합물)의 존재 없이도 탈수소화 중합 반응이 가능하며, 또한 입체 효과에 기인하여 이차 실란, 삼차 실란으로 갈수록 탈수소화 중합 반응성이 저하되는 것을 극복할 수 있다. According to exemplary embodiments of the present invention, dehydrogenation polymerization reactions are possible without the presence of compounds for hydrosilylation (compounds such as cycloolefins having carbon-carbon unsaturated bonds, for example), and also due to steric effects, secondary It can overcome that the dehydrogenation polymerization reactivity falls as it goes to a silane and a tertiary silane.
뿐만 아니라, 반복 단위 수 n값을 선택적으로 조절하는 것이 가능하여 얻어진 폴리실란계 화합물의 분자량을 조절하는 것이 가능하다. 이러한 분자량 조절에 의하여 원하는 분자량을 가지는 폴리실란계 화합물의 제조, 특히 다양한 중합도를 가지는 폴리실란계 화합물을 제조할 수 있다.In addition, it is possible to selectively adjust the number n value of the repeating units, and thus it is possible to adjust the molecular weight of the obtained polysilane-based compound. By controlling the molecular weight, it is possible to prepare a polysilane-based compound having a desired molecular weight, in particular a polysilane-based compound having various polymerization degrees.
참고로, 현재까지 탈수소화 중합 반응은 반응성의 차이에 의해 주로 일차실란에 한계지어 사용되고 있다. 이차실란의 경우 어느 정도 반응성을 지니지만 삼차 실란의 경우 그 반응성이 매우 제한적이다. 하지만 삼차 실란의 탈수소화반응이 가능한 본 촉매를 사용하여 탈수소화중합반응 시 다음과 같은 방법이 가능하다. 즉, 삼차실란은 반응할 수 있는 수소를 하나 지니고 있는 일종의 터미널 그룹 (terminal group)으로 볼 수 있는데, 원하는 화합물이 중합도가 3을 가지는 화합물일 경우 예컨대 일차실란 또는 이차실란 1 당량과 삼차 실란 2당량을 반응하면 중합도 3을 가지는 화합물을 주생성물로 얻을 수 있다. 같은 방법으로 일차 또는 이차 실란 1당량에 삼차 실란 1 당량을 반응하거나 이차실란 1 당량과 삼차실란 1당량을 반응하면 중합도가 4를 가지는 화합물을 주생성물로 가질 수 있게 된다. 이와 같은 방법으로 중합도가 5, 6, 7 등을 가지는 액상 실란 화합물을 주요 생성물로 합성할 수 있다.For reference, until now, dehydrogenation polymerization has been mainly limited to primary silanes due to differences in reactivity. Secondary silanes have some degree of reactivity, but tertiary silanes have very limited reactivity. However, using the present catalyst capable of dehydrogenation of the tertiary silane, the following method is possible in the dehydrogenation polymerization reaction. In other words, the tertiary silane can be regarded as a kind of terminal group having one hydrogen that can react. If the desired compound is a compound having a polymerization degree of 3, for example, 1 equivalent of primary silane or secondary silane and 2 equivalents of tertiary silane When the reaction is carried out, a compound having a polymerization degree 3 can be obtained as a main product. In the same manner, by reacting 1 equivalent of primary or secondary silane with 1 equivalent of tertiary silane or by reacting 1 equivalent of secondary silane with 1 equivalent of tertiary silane, a compound having a degree of polymerization of 4 can be obtained as the main product. In this way, a liquid silane compound having a degree of polymerization of 5, 6, 7, or the like can be synthesized as a main product.
이하 본 발명의 예시적인 하나의 구현예에 있어서의 탈수소화 중합 반응을 상술한다.Hereinafter, the dehydrogenation polymerization reaction in one exemplary embodiment of the present invention will be described in detail.
본 발명의 예시적인 하나의 구현예에서는 하기 [반응식 1]의 탈수소화 중합 반응의 제조 과정을 거쳐서 선형 또는 고리형 액상 폴리실란계 화합물을 얻을 수 있다.In one exemplary embodiment of the present invention, a linear or cyclic liquid polysilane-based compound may be obtained through the preparation of the dehydrogenation polymerization reaction of Scheme 1 below.
[반응식 1]Scheme 1
Figure PCTKR2009005007-appb-I000001
Figure PCTKR2009005007-appb-I000001
[반응식 1]의 탈수소화중합반응을 통하여 제조되는 폴리실란계 화합물에서 n값은 1 이상의 정수로서 제한되지 않지만 1~119일 수 있다. 여기서, n은 1이거나 또는 2~6이거나, 7~119일 수 있다. 이후 무정형 박막 실리콘의 제조 시 비등점이 높은 것이 휘발되지 않아 적합하다는 점에서 n은 5~6의 액상 폴리실란인 것이 바람직하다. In the polysilane-based compound prepared through the dehydrogenation polymerization of [Scheme 1], the n value is not limited to an integer of 1 or more, but may be 1 to 119. Here, n may be 1, 2 to 6, or 7 to 119. Since n is preferably a liquid polysilane of 5 to 6 in view of the fact that a high boiling point does not volatilize when manufacturing the amorphous thin film silicon.
또한, m은 1 이상의 정수로서 제한되지 않지만, m이 7을 넘는 것 즉 10각형을 넘는 것은 수득하기 어려울 수 있으므로 수율의 측면에서 1~7(바람직하게는 1~6, 더 바람직하게는 1~5)일 수 있다. 여기서 m은 1일 수 있고, 2~7(또는 2~6, 또는 2~5)일 수 있다. 고리형 폴리실란의 경우 무정형 박막 실리콘 제조 과정 중 추가 중합시의 용이성 등 제조 용이성의 관점에서 m은 2~7(또는 2~6, 또는 2~5)인 것이 바람직하다.In addition, m is not limited to an integer of 1 or more, but it may be difficult to obtain m more than 7, that is, more than 10 hexagons, so in terms of yield, 1 to 7 (preferably 1 to 6, more preferably 1 to 1). 5). M may be 1, and may be 2 to 7 (or 2 to 6, or 2 to 5). In the case of the cyclic polysilane, m is preferably 2 to 7 (or 2 to 6, or 2 to 5) from the standpoint of ease of production such as ease of addition polymerization during the amorphous thin film silicon manufacturing process.
구체적으로, [반응식 1]의 탈수소화중합반응을 통하여 제조되는 선형 폴리 실란계 화합물(하기 [화학식 1])에 있어서, n은 1인 기상 또는 액상 또는 고체상 폴리실란 일 수 있다(R group에 따라 기상, 액상 또는 고체상일 수 있다). 또한, n은 2~6인 액상 또는 고체상(R group에 따라 액상 또는 고체상일 수 있다) 폴리실란일 수 있다. 또한, n은 7~119의 고체상 폴리실란일 수 있다. Specifically, in the linear polysilane-based compound (formula 1) prepared through the dehydrogenation polymerization reaction of [Scheme 1], n may be gaseous or liquid or solid polysilane of 1 (depending on R group). Gaseous, liquid or solid). In addition, n may be a liquid or solid phase (which may be a liquid or solid phase depending on the R group) of 2 to 6 polysilane. In addition, n may be 7 to 119 solid polysilanes.
[화학식 1][Formula 1]
Figure PCTKR2009005007-appb-I000002
Figure PCTKR2009005007-appb-I000002
[반응식 1]의 탈수소화중합반응을 통하여 제조되는 고리형 폴리 실란계 화합물(하기 [화학식 2])에 있어서, m은 1인 액상 폴리실란일 수 있으며, 2~7 또는 2~6 또는 2~5인 액상 또는 고체상 폴리실란 일 수 있다(R group에 따라 액상 또는 고체상일 수 있다). 참고로, m이 7 이상인 경우 10각형 이상이 되고 m이 6인 경우에는 9각형, m이 5인 경우에는 8각형 등과 같이 될 수 있다. In the cyclic polysilane-based compound (formula 2) prepared through the dehydrogenation polymerization reaction of [Scheme 1], m may be a liquid polysilane of 1, and 2 to 7 or 2 to 6 or 2 to It may be a liquid or solid polysilane of 5 (it may be a liquid or solid phase depending on the R group). For reference, when m is 7 or more, it may be 10 or more, and when m is 6, it may be a pentagon, and when m is 5, it may be an octagon.
[화학식 2][Formula 2]
Figure PCTKR2009005007-appb-I000003
Figure PCTKR2009005007-appb-I000003
[반응식 1]의 탈수소화중합 반응에서 출발 물질은 일차 실란, 이차 실란 또는 삼차 실란으로서 (하기 [화학식 3])이고, 이러한 실란을 해당 촉매반응을 거쳐 안정한 폴리실란계 화합물로 변환될 수 있다. 참고로, 하기 [화학식 3]의 실란은 R group에 따라 기체상, 액체상, 고체상 일수 있으며 모두 수소 치환기를 가지는 경우는 기상이다.In the dehydrogenation polymerization reaction of [Scheme 1], the starting material is a primary silane, a secondary silane or a tertiary silane (Formula 3), and the silane may be converted into a stable polysilane compound through the catalysis. For reference, the silane of the following [Formula 3] may be a gas phase, a liquid phase, or a solid phase depending on the R group, and in the case of all having a hydrogen substituent, the silane is a gaseous phase.
[화학식 3][Formula 3]
Figure PCTKR2009005007-appb-I000004
Figure PCTKR2009005007-appb-I000004
이상의 상기 [반응식 1], [화학식 1] 내지 [화학식 3]에서, R1, R2, R3 는 예컨대 각각 독립적으로 수소원자, 할로겐원자,산소원자, 니트로그룹, 알킬 그룹, 사이클로알킬 그룹, 아릴 그룹, 아르알킬 그룹, 알크아릴 그룹, 알콕시 그룹, 알콕시카보닐그룹, 카보닐옥시 그룹, 아미노카보닐 그룹, 디알킬 아미노 그룹, 이들의 유도체 또는 이들이 임의 치환체 의하여 치환된 것일 수 있다. 이들은 선형 또는 비선형일 수 있고, 임의로 결합하여 고리를 형성할 수 있다. 여기서, R1, R2, R3 는 각각 동일하거나 또는 상이할 수 있다.In the above [Scheme 1], [Formula 1] to [Formula 3], ROne, R2, R3 Are each independently hydrogen atom, halogen atom, oxygen atom, nitro group, alkyl group, cycloalkyl group, aryl group, aralkyl group, alkaryl group, alkoxy group, alkoxycarbonyl group, carbonyloxy group, amino Carbonyl groups, dialkyl amino groups, derivatives thereof or they may be substituted by optional substituents. They may be linear or nonlinear and may optionally combine to form a ring. Where ROne, R2, R3May be the same or different, respectively.
하나의 예시적인 구현예에서, 상기 [반응식 1], [화학식 1] 내지 [화학식 3]에서 R1, R2, R3의 적합한 예에는 C1-C14의 알킬그룹, C1-C14의 사이클로알킬그룹, C1-C14의 아릴그룹, C1-C14의 아르알킬그룹, C1-C14의 알크아릴그룹, C1-C14의 알콕시그룹일 수 있으며, 이들 치환기는 선형 또는 비선형일 수 있고, 임의로 결합하여 고리를 형성할 수 있다. 여기서 상기 알킬 그룹의 비제한적 예시는, 메틸, 에틸, 프로필, 이소프로필, 부틸, 아밀, 헥실, 옥틸, 데실, 도데실, 옥타데실, 미리실 등을 포함한다. 또한, 상기 사이클로알킬 그룹의 비제한적 예시는 사이클로부틸, 사이클로헥실 등을 포함한다. 또한, 상기 아릴 그룹의 비제한적인 예시는, 페닐, 크세닐, 나프틸 등을 포함한다. 또한, 상기 아르알킬 그룹의 비제한적 예시는, 벤질, 2-페닐에틸 등을 포함한다. 또한, 상기 알크아릴 그룹의 비제한적 예시는, 톨릴, 크실릴, 메시틸 등을 포함한다. 또한, 상기 알콕시 그룹의 비제한적 예시는, 메톡시, 에톡시, 프로폭시, 부톡시 등을 포함한다.In one exemplary embodiment, R in [Scheme 1], [Formula 1] to [Formula 3]One, R2, R3Suitable examples of C 1 -C 14 alkyl group, C 1 -C 14 cycloalkyl group, C 1 -C 14 , aryl group, C 1 -C 14 aralkyl group, C 1 -C 14 alkaryl group, C 1 -C 14 alkoxy group And these substituents may be linear or nonlinear, and may optionally combine to form a ring. Non-limiting examples of such alkyl groups here include methyl, ethyl, propyl, isopropyl, butyl, amyl, hexyl, octyl, decyl, dodecyl, octadecyl, myrisil and the like. In addition, non-limiting examples of such cycloalkyl groups include cyclobutyl, cyclohexyl, and the like. Further non-limiting examples of such aryl groups include phenyl, xenyl, naphthyl and the like. In addition, non-limiting examples of the aralkyl group include benzyl, 2-phenylethyl and the like. In addition, non-limiting examples of the alkaryl groups include tolyl, xylyl, mesityl and the like. In addition, non-limiting examples of the alkoxy group include methoxy, ethoxy, propoxy, butoxy and the like.
또는, 예시적인 구현예에서, 상기 [반응식 1], [화학식 1] 내지 [화학식 3]에서 바람직하게는, R1, R2, R3 는 할로겐, 니트로기, 알콕시카보닐, 카보닐옥시, 알콕시, 아미노카보닐, 디알킬아미노, 이들의 유도체 또는 임의 치환체에 의해 치환된 아릴로 구성된 그룹을 포함할 수 있다. 비제한적인 예시로서, R1, R2, R3 는 각각 메틸, 에틸, 프로필, 프로페닐, 프로피닐, 부틸, 사이클로헥실, 4-메틸사이클로헥실, 4-에틸사이클로헥실, 4-이소프로필사이클로헥실, 페닐, 벤질, 나프틸, 안트라센닐, 메시틸, 크실닐, 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴녹시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸사이클로헥실, 2-에틸사이클로헥실, 2-이소프로필사이클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸, 안트라세닐을 포함한 그룹 중에서 선택되는 것일 수 있다.Or, in an exemplary embodiment, in the [Reaction Scheme 1], [Formula 1] to [Formula 3], preferably, ROne, R2, R3 May comprise a group consisting of aryl substituted by halogen, nitro group, alkoxycarbonyl, carbonyloxy, alkoxy, aminocarbonyl, dialkylamino, derivatives thereof or optional substituents. As a non-limiting example, ROne, R2, R3 Are methyl, ethyl, propyl, propenyl, propynyl, butyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl, phenyl, benzyl, naphthyl, anthracenyl, mesityl , Xylyl, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, cumyl, methoxy, on Methoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-isopropylcyclohexyl, o-methylphenyl, o-ethylphenyl, It may be selected from the group containing o-isopropylphenyl, ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl, biphenyl, naphthyl, anthracenyl.
본 발명의 하나의 예시적인 구현예에서 탈수소화중합 반응에서 사용될 수 있는 모노할로실란의 비제한적 예시는, 벤질메틸클로로실란, n-부틸메틸클로로실란, 디-n-부틸클로로실란, 에틸메틸클로로실란, 디에틸클로로실란, 디메틸클로로실란, n-옥타데실메틸클로로실란, 페닐메틸클로로실란, 디페닐클로로실란, 사이클로헥실메틸클로로실란, 사이클로펜틸메틸클로로실란, n-프로필메틸클로로실란, 톨릴메틸클로로실란, 알릴메틸클로로실란, 5-헥세닐메틸클로로실란, 비닐메틸클로로실란 등을 포함한다. Non-limiting examples of monohalosilanes that may be used in the dehydrogenation polymerization in one illustrative embodiment of the present invention include benzylmethylchlorosilane, n-butylmethylchlorosilane, di-n-butylchlorosilane, ethylmethyl Chlorosilane, diethylchlorosilane, dimethylchlorosilane, n-octadecylmethylchlorosilane, phenylmethylchlorosilane, diphenylchlorosilane, cyclohexylmethylchlorosilane, cyclopentylmethylchlorosilane, n-propylmethylchlorosilane, tolyl Methylchlorosilane, allylmethylchlorosilane, 5-hexenylmethylchlorosilane, vinylmethylchlorosilane, and the like.
본 발명의 하나의 예시적인 구현예에서 탈수소화중합 반응에서 사용될 수 있는 디할로실란의 비제한적 예시는, t-부틸디클로로실란, 페닐디클로로실란, 디클로로사이클로헥실실란, 디클로로에틸실란, 디클로로메틸실란, 디클로로페닐실란, 디클로로헥실실란, 디클로로(3-페닐프로필)실란, 디클로로이소프로필실란, 디클로로 (4-페닐부틸)실란, n-프로필디클로로실란, 디클로로알릴실란, 디클로로비닐실란, 트리클로로실란 등을 포함한다. Non-limiting examples of dihalosilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include t-butyldichlorosilane, phenyldichlorosilane, dichlorocyclohexsilane, dichloroethylsilane, dichloromethylsilane, Dichlorophenylsilane, dichlorohexylsilane, dichloro (3-phenylpropyl) silane, dichloroisopropylsilane, dichloro (4-phenylbutyl) silane, n-propyldichlorosilane, dichloroallylsilane, dichlorovinylsilane, trichlorosilane and the like. Include.
본 발명의 하나의 예시적인 구현예에서 탈수소화중합 반응에서 사용될 수 있는 모노알콕시실란의 비제한적 예시는, t-부틸페닐메톡시실란, 디메틸에톡시실란, 디메틸메톡시실란, 디메틸-n-프로폭시실란, n-옥타데실메틸메톡시실란, 옥틸메틸메톡시실란, 사이클로펜틸에틸메톡시실란, 디사이클로펜틸메톡시실란, 디사이클로펜틸메톡시실란, 페닐메틸에톡시실란, 디페닐에톡시실란, 비닐메틸에톡시실란 등을 포함한다. Non-limiting examples of monoalkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include t-butylphenylmethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethyl-n-pro Foxysilane, n-octadecylmethylmethoxysilane, octylmethylmethoxysilane, cyclopentylethylmethoxysilane, dicyclopentylmethoxysilane, dicyclopentylmethoxysilane, phenylmethylethoxysilane, diphenylethoxysilane And vinyl methyl ethoxysilane.
본 발명의 하나의 예시적인 구현예에서 탈수소화중합 반응에서 사용될 수 있는 디알콕시실란의 비제한적 예시는, 부틸디메톡시실란, 도데실디에톡시실란, 에틸디에톡시실란, 메틸디메톡시실란, 메틸디에톡시실란, n-옥틸디에톡시실란, 옥타데실디메톡시실란, 페닐디에톡시실란, 페닐디메톡시실란, 비닐디메톡시실란 등을 포함한다. Non-limiting examples of dialkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include butyldimethoxysilane, dodecyldiethoxysilane, ethyldiethoxysilane, methyldimethoxysilane, methyldie Methoxysilane, n-octyl diethoxysilane, octadecyldimethoxysilane, phenyl diethoxysilane, phenyldimethoxysilane, vinyldimethoxysilane and the like.
본 발명의 하나의 예시적인 구현예에서 탈수소화중합 반응에서 사용될 수 있는 트리알콕시실란의 비제한적 예시는, 트리메톡시실란, 트리에톡시실란, 트리-n-프로폭시실란 등을 포함한다.Non-limiting examples of trialkoxysilanes that may be used in the dehydrogenation polymerization reaction in one illustrative embodiment of the present invention include trimethoxysilane, triethoxysilane, tri-n-propoxysilane, and the like.
이하 본 발명의 구현예들에서 사용될 수 있는 탈수소화 촉매([반응식 1]에서의 촉매)를 설명한다.The following describes a dehydrogenation catalyst (catalyst in [Scheme 1]) that can be used in the embodiments of the present invention.
본 발명의 구현예들에서 사용될 수 있는 탈수소화 촉매는 상기 탈수소화 중합 반응을 수행하기 위한 고성능 탈수소화 촉매로서, 다음과 같은 균일계 또는 비균일계 촉매를 사용할 수 있다.The dehydrogenation catalyst that can be used in the embodiments of the present invention is a high performance dehydrogenation catalyst for performing the dehydrogenation polymerization reaction, and may use the following homogeneous or non-uniform catalysts.
균일계 촉매는 중심 금속과 이들 중심금속을 안정화시키는 리간드가 하나 또는 그 이상 결합된 착화합물이다. Homogeneous catalysts are complex compounds in which the core metal and one or more ligands which stabilize these core metals are bonded.
상기 중심 금속은 알려진 모든 금속을 포함한다. 그 비제한적인 예시로서, Li, Na, K, Rb, Cs, Fr의 알카리 금속(alkali metal); Be, Mg, Ca, Sr, Ba, Ra의 알카리 토류 금속(alkaline earth metal); Al, Ga, In, Sn, Tl, Pb, Bi의 주기율표의 P-블록 금속(the P-block metals); Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg의 주기율표의 B 블록 금속(the B block metal transition metal); La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb의 란탄 계열 금속(the lanthanides), Ac, Th, Pa, U, Np, Pu, Am의 악티니드 계열 금속(the actinides) 등을 사용할 수 있으며, 전이 금속을 사용하는 것이 바람직하며, Co, Ni, Pd 또는 Pt인 것이 더욱 바람직하다. The central metal includes all known metals. Non-limiting examples thereof include alkali metals of Li, Na, K, Rb, Cs, and Fr; Alkaline earth metals of Be, Mg, Ca, Sr, Ba, Ra; The P-block metals of the periodic table of Al, Ga, In, Sn, Tl, Pb, Bi; Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Pd, Ag, Cd, Hf, Ta, W, Re, Os, Ir, The B block metal transition metal of the periodic table of Pt, Au, Hg; Of lanthanides, Ac, Th, Pa, U, Np, Pu, Am of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb Actinide-based metals (the actinides) and the like can be used, it is preferable to use a transition metal, more preferably Co, Ni, Pd or Pt.
구체적으로 상기 균일계 촉매는 다음의 [화학식 4]로 표시될 수 있다.Specifically, the homogeneous catalyst may be represented by the following [Formula 4].
[화학식 4][Formula 4]
Figure PCTKR2009005007-appb-I000005
Figure PCTKR2009005007-appb-I000005
(여기서, M은 착화합물의 중심 금속이며, 앞서 설명한 바와 같이 알려진 모든 금속일 수 있다. R1, R2, R3 및 R4는 독립적으로 수소, 하이드로 카빌, 치환된 하이드로카빌, 헤테로하이드로 카빌 또는 치환된 헤테로하이드로 카빌이고, R5와 R6는 수소를 제외하는 것이며 독립적으로 하이드로카빌 또는 치환된 하이드로 카빌이다. X는 할로겐 원자, C1-C20의 알킬기, C7-C30의 아릴알킬기,C1-C20의 알킬기를 가진 알콕시기, C3-C20 알킬치환 실록시기 및 C1-C20의 탄화수소기를 가진 아미도기로 이루어진 군으로부터 선택되는 것으로서, M의 양쪽에 붙은 X는 서로 같거나 다를 수 있다) (Wherein, M is a central metal of the complex compound, and may be any metal known as described above. R 1, R 2, R 3 and R 4 are independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heteroaryl, hydrocarbyl, or Substituted heterohydrocarbyl, R 5 and R 6 excluding hydrogen and are independently hydrocarbyl or substituted hydrocarbyl X is a halogen atom, an alkyl group of C1-C20, an arylalkyl group of C7-C30, C1-C20 Is selected from the group consisting of an alkoxy group having an alkyl group, a C3-C20 alkyl-substituted siloxy group, and an amido group having a hydrocarbon group of C1-C20, and X on both sides of M may be the same or different).
상기 중심 금속에 착화합물을 형성할 수 있는 리간드는 다음 [화학식 5]에 의하여 나타낼 수 있고, 이들의 골격 구조는 예컨대 다음 [화학식 6] 내지 [화학식 8]로 표시될 수 있다. Ligands capable of forming complexes on the central metal may be represented by the following [Formula 5], and their skeleton structures may be represented by the following [Formula 6] to [Formula 8], for example.
[화학식 5][Formula 5]
Figure PCTKR2009005007-appb-I000006
Figure PCTKR2009005007-appb-I000006
[화학식 6]은 (S, S)-엔안티오머[(S,S)-R1R2PCH(R5)CH(R6)PR3R4]를 나타내고, [화학식 7]은 (R, R)-(엔안티오머)[(R,R)- R1R2PCH(R5)CH(R6)PR3R4]를 나타내고, [화학식 8]은 메조-다아스트레오머[meso- R1R2PCH(R5)CH(R6)PR3R4]를 나타낸다.[Formula 6] represents (S, S) -enantiomer [(S, S) -R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ], wherein , R)-(enantiomer) [(R, R) -R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ], where [Formula 8] is a meso-daastomer [meso R 1 R 2 PCH (R 5 ) CH (R 6 ) PR 3 R 4 ].
[화학식 6][Formula 6]
Figure PCTKR2009005007-appb-I000007
Figure PCTKR2009005007-appb-I000007
[화학식 7][Formula 7]
Figure PCTKR2009005007-appb-I000008
Figure PCTKR2009005007-appb-I000008
[화학식 8][Formula 8]
Figure PCTKR2009005007-appb-I000009
Figure PCTKR2009005007-appb-I000009
여기에서 R1, R2, R3 및 R4는 독립적으로 하이드로 카빌, 치환된 하이드로카빌, 헤테로하이드로 카빌, 또는 치환된 헤테로하이드로 카빌이고, R5와 R6는 수소를 제외한 하이드로카빌 또는 치환된 하이드로 카빌이다. Wherein R 1 , R 2 , R 3 and R 4 are independently hydrocarbyl, substituted hydrocarbyl, heterohydro carbyl, or substituted heterohydro carbyl, and R 5 and R 6 are hydrocarbyl or substituted except hydrogen Hydrocarbyl.
R1, R2, R3 및 R4는 바람직하게는 독립적으로 페닐, 벤질, 나프틸, 안트라센닐, 메시틸, 크실닐, 메틸, 에틸, 에틸레닐, 프로필, 프로페닐, 프로피닐, 부틸, 사이클로헥실, 4-메틸사이클로헥실, 4-에틸사이클로헥실, 4-이소프로필사이클로헥실, , 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴녹시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸사이클로헥실, 2-에틸사이클로헥실, 2-이소프로필사이클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸, 안트라세닐 등을 포함한 그룹 중에서 선택할 수 있다. R 1 , R 2 , R 3 and R 4 are preferably independently phenyl, benzyl, naphthyl, anthracenyl, mesityl, xylyl, methyl, ethyl, ethylenyl, propyl, propenyl, propynyl, butyl, Cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl,, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, cumyl, methoxy, ethoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethyl Cyclohexyl, 2-isopropylcyclohexyl, o-methylphenyl, o-ethylphenyl, o-isopropylphenyl, ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl, biphenyl, naphthyl, anthra It can be selected from the group including senyl.
더욱 바람직하게는 R1, R2, R3 및 R4는 독립적으로 페닐, 톨릴, 비페닐, 나프틸, 사이클로헥실, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 2-메틸사이클로헥실, 2-에틸사이클로헥실, 2-이소프로필사이클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐을 포함한 그룹 중에서 선택될 수 있다. More preferably R 1 , R 2 , R 3 and R 4 are independently phenyl, tolyl, biphenyl, naphthyl, cyclohexyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t- Butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-isopropylcyclohexyl, o-methylphenyl, o-ethylphenyl, o-isopropylphenyl, and ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl.
R5와 R6는 바람직하게는 독립적으로 수소를 제외한 하이드로카빌, 치환된 하이드로 카빌 그룹이다. 구체적으로 알킬, 아릴녹시, 할로겐, 니트로, 알콕시카보닐, 카보닐옥시, 알콕시, 아미노카보닐, 디알킬아미노, 이들의 유도체, 또는 임의 치환체에 의해 치환된 아릴로 구성된 그룹 중에 선택될 수 있다.R 5 and R 6 are preferably independently hydrocarbyl, substituted hydrocarbyl groups excluding hydrogen. Specifically, it may be selected from the group consisting of alkyl, aryloxy, halogen, nitro, alkoxycarbonyl, carbonyloxy, alkoxy, aminocarbonyl, dialkylamino, derivatives thereof, or aryl substituted by an optional substituent. .
반응 활성의 안정적 유지를 위한 P-C-C-P 골격 구조 리간드는 (S, S)-, 또는 (R, R)-이성질체 혹은 이 두 이성질체의 혼합으로 다중의 (S, S)-, 또는 (R, R)- (R1)(R2)P-(R5)CHCH(R6)-P(R3)(R4) 단위로 결합되어 구성될 수 있다. PCCP skeletal structural ligands for the stable maintenance of the reaction activity are (S, S)-, or (R, R) -isomers or multiple (S, S)-, or (R, R)-in a mixture of the two isomers. (R 1 ) (R 2 ) P- (R 5 ) CHCH (R 6 ) -P (R 3 ) (R 4 ) may be combined to form a unit.
안정적 활성유지를 위한 P-C-C-P 골격을 이루는 입체 이성질체 구조 리간드의 예에는 (S, S)- 혹은 (R, R)-(페닐)2P-CH(메틸)CH(메틸)-P(페닐)2, (S, S)- 혹은 (R, R)- (4-메톡시페닐)2P-CH(메틸)CH(메틸)-P(4-메톡시페닐)2, (S, S)- 혹은 (R, R)-(4-메틸페닐)2P-CH(메틸)CH(메틸)-P(4-메틸페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(메틸)CH(메틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(에틸)CH(메틸)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-(4-메톡시페닐)2P-CH(에틸)CH(메틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(에틸)CH(에틸)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-(페닐)2P-CH(에틸)CH(에틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(페닐)2P-CH(이소프로필)CH(메틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(4-메톡시페닐)2P-CH(이소프로필)CH(메틸)-P(4-메톡시페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(이소프로필)CH(메틸)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-(페닐)2P-CH(n-프로필)CH(메틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(4-메톡시페닐)2P-CH(n-프로필)CH(메틸)-P(4-메톡시페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(n-프로필)CH(메틸)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-(페닐)2P-CH(이소프로필)CH(에틸)-P(페닐)2, (S, S)- 혹은 (R, R)-(4-메톡시페닐)2P-CH(이소프로필)CH(에틸)-P(4-메톡시페닐)2, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(이소프로필)CH(에틸)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-1,2-디-(P(페닐)2)사이클로헥산, (S, S)- 혹은 (R, R)-1,2-디-(P(4-메톡시페닐)2)사이클로헥산, (S, S)- 혹은 (R, R)-1,2-디-(P(4-에틸페닐)2)사이클로헥산, (S, S)- 혹은 (R, R)-1,2-디-(P(페닐)2)사이클로펜탄, (S, S)- 혹은 (R, R)-1,2-디-(P(4-메톡시페닐)2)사이클로펜탄, (S, S)- 혹은 (R, R)-1,2-디-(P(4-에틸페닐)2)사이클로펜탄, (S, S)- 혹은 (R, R)-3,4-디-(P(페닐)2)피롤, (S, S)- 혹은 (R, R)-3,4-디-(P(4-메톡시페닐)2)피롤, (S, S)- 혹은 (R, R)-3,4-디-(P(4-에틸페닐)2)피롤, (S, S)- 혹은 (R, R)-3,4-디-(P(4-에틸페닐)2)이미다졸, (S, S)- 혹은 (R, R)-(4-에틸페닐)2P-CH(디메틸아민)CH(디메틸아민)-P(4-에틸페닐)2, (S, S)- 혹은 (R, R)-(3-메톡시페닐)2P-CH(메틸)CH(메틸)-P(3-메톡시페닐)2, (S, S)- 혹은 (R, R)-(4-에톡시페닐)2P-CH(메틸)CH(메틸)-P(o-에톡시페닐)2, ((S, S)- 혹은 (R, R)-4-디메틸아민페닐)2P-CH(메틸)CH(메틸)P(4-디메틸아민페닐)2, (S, S)- 혹은 (R, R)-(4-에틸사이클로헥실)2PCH(메틸)CH(메틸)P(4-에틸사이클로헥실)2 (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(메틸)CH(메틸)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-이소프로필페닐)2PCH(메틸)CH(메틸)P(2-이소프로필페닐)2, (S, S)- 혹은 (R, R)-(2-메틸페닐)2PCH(메틸)CH(메틸)P(2-메틸페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(메틸)CH(메틸)P(페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(에틸)CH(메틸)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(에틸)CH(에틸)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(이소프로필)CH(메틸)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(n-프로필)CH(메틸)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(이소프로필)CH(에틸)P(2-에틸페닐)2, 1,2-디-(P(2-에틸페닐)2)사이클로헥산, (S, S)- 혹은 (R, R)-1,2-디-(P(2-에틸페닐)2)사이클로펜탄, (S, S)- 혹은 (R, R)-3,4-디-(P(2-에틸페닐)2)피롤, (S, S)- 혹은 (R, R)-3,4-디-(P(2-에틸페닐)2)이미다졸, (S, S)- 혹은 (R, R)-(2-에틸페닐)2PCH(디메틸아민)CH(디메틸아민)P(2-에틸페닐)2, (S, S)- 혹은 (R, R)-(2-메톡시페닐)2PCH(메틸)CH(메틸)P(2-메톡시페닐)2, (S, S)- 혹은 (R, R)-(2-에톡시페닐)2PCH(메틸)CH(메틸)P(2-에톡시페닐)2, (S, S)- 혹은 (R, R)-(2-디메틸아민페닐)2PCH(메틸)CH(메틸)P(2-디메틸아민페닐)2, (S, S)- 혹은 (R, R)-(2-에틸사이클로헥실)2PCH(메틸)CH(메틸)P(2-에틸사이클로헥실)2이 있으나, 이에 한정되는 것은 아니다. Examples of stereoisomeric structural ligands forming the P-C-C-P backbone for stable activity include (S, S)-or (R, R)-(phenyl)2P-CH (methyl) CH (methyl) -P (phenyl)2, (S, S)-or (R, R)-(4-methoxyphenyl)2P-CH (methyl) CH (methyl) -P (4-methoxyphenyl)2, (S, S)-or (R, R)-(4-methylphenyl)2P-CH (methyl) CH (methyl) -P (4-methylphenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (methyl) CH (methyl) -P (phenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (ethyl) CH (methyl) -P (4-ethylphenyl)2, (S, S)-or (R, R)-(4-methoxyphenyl)2P-CH (ethyl) CH (methyl) -P (phenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (ethyl) CH (ethyl) -P (4-ethylphenyl)2, (S, S)-or (R, R)-(phenyl)2P-CH (ethyl) CH (ethyl) -P (phenyl)2, (S, S)-or (R, R)-(phenyl)2P-CH (isopropyl) CH (methyl) -P (phenyl)2, (S, S)-or (R, R)-(4-methoxyphenyl)2P-CH (isopropyl) CH (methyl) -P (4-methoxyphenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (isopropyl) CH (methyl) -P (4-ethylphenyl)2, (S, S)-or (R, R)-(phenyl)2P-CH (n-propyl) CH (methyl) -P (phenyl)2, (S, S)-or (R, R)-(4-methoxyphenyl)2P-CH (n-propyl) CH (methyl) -P (4-methoxyphenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (n-propyl) CH (methyl) -P (4-ethylphenyl)2, (S, S)-or (R, R)-(phenyl)2P-CH (isopropyl) CH (ethyl) -P (phenyl)2, (S, S)-or (R, R)-(4-methoxyphenyl)2P-CH (isopropyl) CH (ethyl) -P (4-methoxyphenyl)2, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (isopropyl) CH (ethyl) -P (4-ethylphenyl)2, (S, S)-or (R, R) -1,2-di- (P (phenyl)2Cyclohexane, (S, S)-or (R, R) -1,2-di- (P (4-methoxyphenyl)2Cyclohexane, (S, S)-or (R, R) -1,2-di- (P (4-ethylphenyl)2Cyclohexane, (S, S)-or (R, R) -1,2-di- (P (phenyl)2Cyclopentane, (S, S)-or (R, R) -1,2-di- (P (4-methoxyphenyl)2Cyclopentane, (S, S)-or (R, R) -1,2-di- (P (4-ethylphenyl)2Cyclopentane, (S, S)-or (R, R) -3,4-di- (P (phenyl)2Pyrrole, (S, S)-or (R, R) -3,4-di- (P (4-methoxyphenyl)2Pyrrole, (S, S)-or (R, R) -3,4-di- (P (4-ethylphenyl)2Pyrrole, (S, S)-or (R, R) -3,4-di- (P (4-ethylphenyl)2Imidazole, (S, S)-or (R, R)-(4-ethylphenyl)2P-CH (dimethylamine) CH (dimethylamine) -P (4-ethylphenyl)2, (S, S)-or (R, R)-(3-methoxyphenyl)2P-CH (methyl) CH (methyl) -P (3-methoxyphenyl)2, (S, S)-or (R, R)-(4-ethoxyphenyl)2P-CH (methyl) CH (methyl) -P (o-ethoxyphenyl)2, ((S, S)-or (R, R) -4-dimethylaminephenyl)2P-CH (methyl) CH (methyl) P (4-dimethylaminephenyl)2, (S, S)-or (R, R)-(4-ethylcyclohexyl)2PCH (methyl) CH (methyl) P (4-ethylcyclohexyl)2(S, S)-or (R, R)-(2-ethylphenyl)2PCH (methyl) CH (methyl) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-isopropylphenyl)2PCH (methyl) CH (methyl) P (2-isopropylphenyl)2, (S, S)-or (R, R)-(2-methylphenyl)2PCH (methyl) CH (methyl) P (2-methylphenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (methyl) CH (methyl) P (phenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (ethyl) CH (methyl) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (ethyl) CH (ethyl) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (Isopropyl) CH (methyl) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (n-propyl) CH (methyl) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (isopropyl) CH (ethyl) P (2-ethylphenyl)2, 1,2-di- (P (2-ethylphenyl)2Cyclohexane, (S, S)-or (R, R) -1,2-di- (P (2-ethylphenyl)2Cyclopentane, (S, S)-or (R, R) -3,4-di- (P (2-ethylphenyl)2Pyrrole, (S, S)-or (R, R) -3,4-di- (P (2-ethylphenyl)2Imidazole, (S, S)-or (R, R)-(2-ethylphenyl)2PCH (dimethylamine) CH (dimethylamine) P (2-ethylphenyl)2, (S, S)-or (R, R)-(2-methoxyphenyl)2PCH (methyl) CH (methyl) P (2-methoxyphenyl)2, (S, S)-or (R, R)-(2-ethoxyphenyl)2PCH (methyl) CH (methyl) P (2-ethoxyphenyl)2, (S, S)-or (R, R)-(2-dimethylaminephenyl)2PCH (methyl) CH (methyl) P (2-dimethylaminephenyl)2, (S, S)-or (R, R)-(2-ethylcyclohexyl)2PCH (methyl) CH (methyl) P (2-ethylcyclohexyl)2There is, but is not limited to this.
본 발명의 예시적인 구현예들에서, 상기 리간드의 P-C-C-P형 입체 이성질체 골격구조는 공지된 예컨대 종래의 (R)nPN(R')P(R)m 헤테로 리간드와는 별개의 독립적인 구조를 띠는 리간드로서 리간드의 골격 구조 내의 헤테로 원자는 단지 인(P) 원자뿐이다. In exemplary embodiments of the present invention, the PCCP type stereoisomeric framework of the ligand has a structure independent of known (eg) conventional (R) n PN (R ′) P (R) m heteroligands. Is a ligand, and only the hetero atoms in the backbone structure of the ligand are phosphorus (P) atoms.
즉, 제 1 촉매에 사용되는 리간드는 두 개의 인 원자 사이에 질소 원자가 없이 2개의 탄소-탄소 골격 구조로 이루어진 것으로서, 탄소 원자에 붙는 치환체의 배열 방향으로 적당히 공간 구조를 조절함으로써 우수한 촉매활성을 나타낼 뿐만 아니라 반응 활성의 안정성을 유지할 수 있다. That is, the ligand used in the first catalyst is composed of two carbon-carbon skeleton structures without nitrogen atoms between two phosphorus atoms, and exhibits excellent catalytic activity by appropriately adjusting the spatial structure in the arrangement direction of the substituents attached to the carbon atoms. In addition, the stability of the reaction activity can be maintained.
본 발명의 예시적인 구현예에서, X는 예컨대 Cl이고 M은 더욱 바람직하게는 Co, Ni, Pd, Pt일 수 있으며, 본 명세서에서는 이들을 각각 KH14, KH15, KH16, KH17로서 명명한다. 다음은 각각의 화학 구조식을 도시한 것이다.In an exemplary embodiment of the invention, X is for example Cl and M may more preferably be Co, Ni, Pd, Pt, which are referred to herein as KH14, KH15, KH16, KH17, respectively. The following shows each chemical structural formula.
[화학식 9][Formula 9]
비스 (2,3- 디페닐포스피노부탄)]디클로로코발트(II)Bis (2,3-diphenylphosphinobutane)] dichlorocobalt (II)
Figure PCTKR2009005007-appb-I000010
Figure PCTKR2009005007-appb-I000010
[화학식 10][Formula 10]
비스 (2,3- 디페닐포스피노부탄)]디클로로니켈Bis (2,3-diphenylphosphinobutane)] dichloronickel
Figure PCTKR2009005007-appb-I000011
Figure PCTKR2009005007-appb-I000011
[화학식 11][Formula 11]
비스 (2,3- 디페닐포스피노부탄)]디클로로팔라듐Bis (2,3-diphenylphosphinobutane)] dichloropalladium
Figure PCTKR2009005007-appb-I000012
Figure PCTKR2009005007-appb-I000012
[화학식 12][Formula 12]
비스 (2,3- 디페닐포스피노부탄)]디클로로백금Bis (2,3-diphenylphosphinobutane)] dichloroplatinum
Figure PCTKR2009005007-appb-I000013
Figure PCTKR2009005007-appb-I000013
상기 촉매는 예컨대 다음과 같이 제조할 수 있다. (S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2을 무수 에탄올에 넣은 용액을 M(중심 금속, 예컨대, 코발트(II))클로라이드를 녹인 무수에탄올 용액 쪽으로 질소조건하에서 천천히 적가한다. 용액의 색깔이 변화하면, 이 용액을 일정 시간 및 온도에서 환류시킨다. 상온으로 식힌 후 거른 후에 에탄올용액을 건조시켜서 해당 촉매를 얻을 수 있다.The catalyst can be prepared, for example, as follows. (S, S)-(phenyl) 2 PCH (methyl) CH (methyl) P (phenyl) 2 was added to anhydrous ethanol to a solution of M (central metal such as cobalt (II)) chloride in anhydrous ethanol solution. Slowly dropwise under conditions. When the color of the solution changes, the solution is refluxed at a certain time and temperature. After cooling to room temperature and filtering, the ethanol solution may be dried to obtain the catalyst.
이상의 균일계 촉매 외에 비균일계 촉매를 이용할 수 있다. 비균일계 촉매는 균일계 촉매를 이용하여 제조할 수 있다.In addition to the homogeneous catalyst described above, a non-uniform catalyst can be used. Non-uniform catalysts can be prepared using homogeneous catalysts.
비제한적인 예시로서, 상기 균일계촉매를 예컨대 환원시켜 형성한 금속 클러스터를 형성할 수 있다. 상기 금속 클러스터는 나노클러스터일 수 있고, 예컨대 2nm 이하의 크기를 가지는 나노클러스터일 수 있다. As a non-limiting example, it is possible to form a metal cluster formed by reducing the homogeneous catalyst, for example. The metal cluster may be a nanocluster, for example, a nanocluster having a size of 2 nm or less.
상기 탈수소화 중합 반응 용매는 각각의 조성물에 함유되는 성분을 석출시키거나 상 분리시키거나 또한 이들과 반응하지 않는 한 특별히 한정되지 않는다. The dehydrogenation polymerization solvent is not particularly limited as long as the components contained in the respective compositions are precipitated, phase separated, or not reacted with them.
비제한적인 예시로서, n-펜탄, n-헥산, n-헵탄, n-옥탄, 데칸, 도데칸, 시클로헥산, 시클로옥탄, 스티렌, 디시클로펜탄, 벤젠, 톨루엔, 크실렌, 쿠멘, 듀렌, 인덴, 테트라히드로나프탈렌, 데카히드로나프탈렌, 스쿠와란 등의 탄화수소계 용매; 디에틸에테르, 디프로필에테르, 에틸렌글리콜디메틸에테르, 에틸렌글리콜디에틸에테르, 에틸렌글리콜메틸에틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜메틸에틸에테르, 테트라히드로푸란, 테트라히드로피란, 1,2-디메톡시에탄, 비스(2-메톡시에틸)에테르, p-디옥산, 테트라히드로푸란 등의 에테르계 용매; 및 프로필렌카르보네이트, N-메틸-2-피롤리돈, 디메틸포름아미드, 아세토니트릴, 디메틸술폭시드, 염화메틸렌, 클로로포름 등의 극성 용매를 들 수 있다. 이들 중 상기 용액의 안정성의 점에서 탄화수소계 용매가 바람직하다. 이들 중 용매는 단독으로도 또는 2종 이상의 혼합물로서도 사용할 수 있다.By way of non-limiting example, n-pentane, n-hexane, n-heptane, n-octane, decane, dodecane, cyclohexane, cyclooctane, styrene, dicyclopentane, benzene, toluene, xylene, cumene, durene, indene Hydrocarbon solvents such as tetrahydronaphthalene, decahydronaphthalene and squalane; Diethyl ether, dipropyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetra Ether solvents such as hydropyran, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, p-dioxane and tetrahydrofuran; And polar solvents such as propylene carbonate, N-methyl-2-pyrrolidone, dimethylformamide, acetonitrile, dimethyl sulfoxide, methylene chloride and chloroform. Of these, hydrocarbon solvents are preferred in view of the stability of the solution. Of these, the solvent may be used alone or as a mixture of two or more thereof.
이와 같은 본 발명의 구현예들에 의한 폴리 실란 제조에 의하면 기존과 대비할 때 폴리 실란 제조에 소요되는 시간을 크게 단축할 수 있을 뿐만 아니라 대량 생산에도 적합하다. According to the polysilane production according to the embodiments of the present invention as described above, it is possible to significantly shorten the time required for the production of polysilane as well as to be suitable for mass production.
이상으로 얻어지는 액상 폴리 실란 유도체는 세라믹 전구체, 층간 절연막, 각종 광전자 재료 예컨대 포토레지스트, 유기 감광체 등의 광전자 사진 재료, 광 도파로 등의 광 전송 재료, 광 메모리 등의 광 기록 재료, 전계 발광 소자용 재료 등에 이용될 수 있으며, 반도체 산업 및 태양광 산업 등의 재료로 다양하게 이용될 수 있다. 뿐만 아니라, 특히, 액상 공정을 통하여 무정형 실리콘 박막 특히 실리콘 태양전지용 무정형 실리콘 박막을 형성하는 것에 유용하다.The liquid polysilane derivatives obtained above include ceramic precursors, interlayer insulating films, photoelectric materials such as photoresists and organic photoconductors, light transmission materials such as optical waveguides, optical recording materials such as optical memories, and materials for electroluminescent devices. It can be used for the purpose, etc., it can be used in a variety of materials such as semiconductor industry and the photovoltaic industry. In addition, it is particularly useful for forming amorphous silicon thin films, particularly amorphous silicon thin films for silicon solar cells, through a liquid phase process.
참고로, 현재까지 무정형 실리콘 박막 태양전지는 결정형 실리콘 태양전지에 비해 낮은 효율을 가지는 것으로 알려져 있으나 재료 면에서 결정형 실리콘 태양전지에 들어가는 실리콘의 양보다 매우 적은 양(예컨대 1 %)만이 필요하여 매우 경제적이다. For reference, amorphous silicon thin film solar cells have been known to have lower efficiency than crystalline silicon solar cells. However, in terms of materials, only a small amount (eg, 1%) of silicon is required to be very economical. to be.
일반적으로 태양 전지의 제조에 사용되는 무정형 실리콘막이나 폴리실리콘막의 형성 방법으로서는 모노실란 가스나 디실란 가스의 열 CVD (화학증착법, Chemical Vapor Deposition)법이나 플라즈마 CVD, 광 CVD 등이 이용되고 있다. 예컨대 폴리 실리콘막의 형성에는 열 CVD 법이, 또한 무정형 실리콘막의 형성에는 플라즈마 CVD 법이 널리 사용되고 있다. 그러나 이러한 CVD 방법은 기상반응을 이용하기 때문에 기상에서 실리콘 입자의 부생에 의한 장치의 오염으로 인한 디바이스의 효율을 저하시킨다. 또한, 원료가 가스상이므로 표면에 요철이 있는 기판 상에는 균일한 스텝커버리지 (step coverage)를 얻기 힘들다. 또한, 막 형성 속도가 느리므로 단위시간당 처리량이 낮아 생산성이 낮다. 뿐만 아니라 플라즈마 CVD법의 경우 복잡한 고주파 발생장치와 진공장치 등이 필요하여 공정이 비싸다.Generally, as a method of forming an amorphous silicon film or a polysilicon film used for manufacturing a solar cell, thermal CVD (chemical vapor deposition, chemical vapor deposition), plasma CVD, optical CVD, etc. of monosilane gas or disilane gas is used. For example, a thermal CVD method is widely used to form a polysilicon film, and a plasma CVD method is widely used to form an amorphous silicon film. However, such a CVD method uses a gas phase reaction, thereby lowering the efficiency of the device due to contamination of the device by the by-products of silicon particles in the gas phase. In addition, since the raw material is gaseous, it is difficult to obtain uniform step coverage on the substrate having irregularities on the surface. In addition, since the film formation speed is low, the throughput per unit time is low, resulting in low productivity. In addition, in the case of plasma CVD, a complicated high frequency generator and a vacuum device are required, which makes the process expensive.
본 발명의 예시적인 구현예들에 따른 액상 폴리실란계 화합물은 기상 공정이 아닌 액상 공정에 의하여 극히 경제적으로 무정형 박막 실리콘을 제조할 수 있다.The liquid polysilane-based compound according to the exemplary embodiments of the present invention can produce amorphous thin film silicon extremely economically by a liquid phase process rather than a vapor phase process.
구체적으로, 본 발명의 구현예들에 따른 폴리실란계 화합물을 박막 실리콘의 액상 공정에 의한 제조에 적용 시, 예컨대, 도포 법을 이용할 수 있다. 참고로, 상기 얻어진 폴리실란계 화합물은 필요에 따라 추가적인 중합 과정을 더 거칠 수도 있다.Specifically, when the polysilane-based compound according to the embodiments of the present invention is applied to the production of the thin film silicon by the liquid phase process, for example, a coating method may be used. For reference, the obtained polysilane-based compound may be further subjected to an additional polymerization process as needed.
비제한적인 예시로서, 제조한 액상 실란을 기판상에 박막으로 도포한 뒤, 승온과정을 포함하는 열 처리과정을 거쳐 도포막 내에서 분해 반응시켜 실리콘 막을 형성할 수 있다. As a non-limiting example, the prepared liquid silane may be coated with a thin film on a substrate, and then decomposed and reacted in the coating film through a heat treatment process including an elevated temperature process to form a silicon film.
비제한적인 예시에서, 얻어진 액상 실란을 용제로 하고 얻어진 고체 상 실란을 이에 용해시켜서 도포함으로써 실리콘 막을 형성할 수도 있다. 참고로, 무정형 박막 실리콘 제조 시 고체 실란을 사용하기 위하여는 이를 용해하는 용제가 필요한데, 본 발명의 구현예들에서는 용해하기 어려운 고체 실란을 얻어진 액상 실란을 용제로 하여 용이하게 용해하여 사용할 수 있으므로, 매우 큰 이점을 가진다. In a non-limiting example, a silicon film may be formed by using the obtained liquid silane as a solvent and dissolving and applying the obtained solid phase silane thereto. For reference, in order to use a solid silane in the preparation of amorphous thin film silicon, a solvent for dissolving it is required. In embodiments of the present invention, a solid silane which is difficult to dissolve may be easily dissolved and used as a solvent. Has a very big advantage.
예컨대, [화학식 1]의 n이 6 이하인 액상 실란을 용제로 하고 n이 7 이상인 고체 실란을 이에 용해시켜 사용할 수 있다. For example, a liquid silane having n of 6 or less in [Formula 1] can be used as a solvent and a solid silane of n of 7 or more can be dissolved therein.
비제한적인 예시에서, [화학식 1]에서 n≤4 일 경우 비등점이 비교적 낮고 분해온도도 높기 때문에, 바람직하게는 n>4 인 액상 실란(즉, n이 5, 6) 이 상기 실리콘 막의 형성에 바람직하다. 그러나 n≤4 인 실란인 모노실란, 디실란, 트리실란, 테트라실란, 이소테트라실란을 함유해도 무방한 것은 물론이다. 또한, 앞서 언급한 바와 같이, 액상 실란 예컨대 n≤4 인 올리고실란을 사용하는 경우에도 해당 올리고실란을 용제로 하여 고체상의 폴리실란 (n≥7)을 용해하고 도포법에 의하여 실리콘 막을 형성할 수 있다. In a non-limiting example, when n ≦ 4 in [Formula 1], since the boiling point is relatively low and the decomposition temperature is high, a liquid silane (ie, n is 5 or 6), preferably n> 4, is used to form the silicon film. desirable. However, of course, you may contain monosilane, disilane, trisilane, tetrasilane, and isotetrasilane which are silanes of n <= 4. In addition, as mentioned above, even when a liquid silane such as oligosilane having n ≦ 4 is used, a solid polysilane (n ≧ 7) can be dissolved using the oligosilane as a solvent and a silicon film can be formed by an application method. have.
도포방법은 스핀코팅 (spin coating), 딥 코팅 (dip coating), 스프레이 (spray)등의 일반적인 방법을 이용할 수 있다. 도포는 일반적으로 상온 이상의 온도에서 행한다. 상온 이하의 온도에서는 액상 실란이 응고될 수 있다.The coating method may be a general method such as spin coating, dip coating, spray and the like. Application | coating is generally performed at the temperature above normal temperature. At temperatures below room temperature, the liquid silane may solidify.
실리콘막의 승온과정의 열처리 온도는 사용하는 액상 실란에 따라 다르지만 일반적으로 열처리 온도는 200~500℃이다. 200℃ 이하일 경우 분해 반응이 충분히 진행되지 않을 수 있으며 충분한 두께의 실리콘 막을 형성하지 못할 수 있다.The heat treatment temperature during the temperature increase of the silicon film depends on the liquid silane used, but the heat treatment temperature is generally 200 to 500 ° C. When the temperature is 200 ° C. or less, the decomposition reaction may not proceed sufficiently and a silicon film having a sufficient thickness may not be formed.
구체적으로, 질소가스 분위기 하에서 액상 실란을 스핀코팅을 통해 100 nm 두께로 도포한다. 도포된 후 질소가스 분위기 하에서 바로 200℃에서 10분, 300℃에서 10분, 다시 400~500℃에서 2시간 동안 열처리하여 분해 반응시킨다. 열처리 과정이 끝난 후 상온으로 식힌 후 실리콘 막의 형성을 라만 스케터링 스펙트라 (Raman scattering spectra) 측정을 통해 a-Si의 특정 파장인 480 cm-1 의 피크 확인을 통해 a-Si막의 형성을 확인할 수 있다.Specifically, the liquid silane is applied to a thickness of 100 nm through spin coating under a nitrogen gas atmosphere. After the coating, the reaction was decomposed by heat treatment at 200 ° C. for 10 minutes at 300 ° C., 10 minutes at 300 ° C., and again at 400 to 500 ° C. for 2 hours. After the heat treatment is completed, the formation of the silicon film after cooling to room temperature can be confirmed by confirming the peak of 480 cm -1 , which is a specific wavelength of a-Si, by measuring Raman scattering spectra. .
이와 같이 액상 방법에 의하여 무정형 박막 실리콘을 제조하고 이를 태양전지 제조에 이용하는 경우 무정형 박막 실리콘 태양전지의 제조 효율 극대화와 경제성을 동시에 만족할 수 있다. As described above, when the amorphous thin film silicon is manufactured by the liquid phase method and used for manufacturing the solar cell, the manufacturing efficiency of the amorphous thin film silicon solar cell can be simultaneously maximized and economical.
이하, 비제한적이고 예시적인 실시예를 통하여 본 발명의 예시적인 구현예 중 하나를 더욱 상세히 설명한다.Hereinafter, one or more exemplary embodiments of the present invention will be described in more detail through non-limiting and exemplary embodiments.
[촉매 제조 실시예: KH14 촉매 제조][Catalyst Preparation Example: KH14 Catalyst Preparation]
위에서 언급한 [화학식 9]의 KH14 촉매를 다음과 같이 제조하였다.The above-mentioned KH14 catalyst of [Formula 9] was prepared as follows.
(S,S)-(페닐)2PCH(메틸)CH(메틸)P(페닐)2 (5.00g, 12.5 mmol) 을 무수 에탄올 50 ml에 넣은 용액을 코발트(II)클로라이드(1.62g, 12.5 mmol)를 녹인 무수에탄올 25 ml용액쪽으로 질소 조건하에서 천천히 적가하였다. 용액의 색깔이 진한 파란색에서 녹색으로 변화하였다. 이 용액을 3시간 동안 80°C에서 환류시켰다. 상온으로 식힌 후 거른 후에 에탄올용액을 건조시켰으며, 수율은 91%이었다. IR(KBr)데이터는 다음과 같다: 3049 (m), 2926 (w), 1484 (m), 1435 (s), 1312(w), 1190 (w), 1098 (s), 1027 (w), 999 (m), 878 (w), 816(w), 742 (s), 696 (s), 529 (s), 및 514 cm-1 (m)(S, S)-(phenyl) 2 PCH (methyl) CH (methyl) P (phenyl) 2 (5.00 g, 12.5 mmol) was added to 50 ml of anhydrous ethanol. Cobalt (II) chloride (1.62 g, 12.5 mmol) ) Was slowly added dropwise under nitrogen conditions to 25 ml of anhydrous ethanol solution. The color of the solution changed from dark blue to green. This solution was refluxed at 80 ° C. for 3 hours. After cooling to room temperature, the ethanol solution was dried after filtration, and the yield was 91%. IR (KBr) data are as follows: 3049 (m), 2926 (w), 1484 (m), 1435 (s), 1312 (w), 1190 (w), 1098 (s), 1027 (w), 999 (m), 878 (w ), 816 (w), 742 (s), 696 (s), 529 (s), and 514 cm -1 (m)
[탈수소화 중합 반응 실시예: KH14 촉매 이용][Example of Dehydrogenation Polymerization Reaction: Using KH14 Catalyst]
실시예 1: 페닐실란 (PhSiHExample 1 Phenylsilane (PhSiH) 33 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
3구 둥근 바닥형 플라스크 (round bottomed flask, 50 mL)에 교반막대를 넣은 후 가열 감압하여 반응기(플라스크) 내부를 건조한 후, 건조 질소 가스를 반응기 내에 도입하고 페닐실란 (1.5 mmol, 0.16 g)을 넣은 후, 미리 건조한 테트라히드로푸란(THF) 용매 (2 mL)를 주입하고 교반하여 디페닐실란을 용해시킨다. 탈수소화반응촉매인 KH14 (3 mol%, 0.045 mmol, 0.019 g)를 미리 건조한 니트로메탄 용매 (0.5 mL)에 용해시킨 후 반응기에 적가하면 탈수소화반응에 의해 수소가 방출되며 중합반응이 일어난다. 수소발생측정장치를 통하여 발생되는 수소의 양을 정량하였다. 반응은 촉매 주입 후 약 3분 동안 진행되었다. 반응이 끝난 후 교반을 멈추어 용매 층과 고체상인 촉매 층을 분리하고 필터를 통하여 촉매를 제거하였다. Into a three-neck round bottomed flask (50 mL), the stirring rod was put in a reactor (flask) by drying under reduced pressure, and then dried nitrogen gas was introduced into the reactor, and phenylsilane (1.5 mmol, 0.16 g) was added. After the addition, pre-dried tetrahydrofuran (THF) solvent (2 mL) was injected and stirred to dissolve diphenylsilane. KH14 (3 mol%, 0.045 mmol, 0.019 g), a dehydrogenation catalyst, is dissolved in a pre-dried nitromethane solvent (0.5 mL) and then added dropwise to the reactor to release hydrogen and depolymerization. The amount of hydrogen generated through the hydrogen generation measuring device was quantified. The reaction proceeded for about 3 minutes after catalyst injection. After the reaction was completed, the stirring was stopped to separate the solvent layer and the solid catalyst layer and the catalyst was removed through a filter.
도 1은 본 발명 실시예 1에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 2는 본 발명 실시예 1에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 도 3은 본 발명 실시예 1에 대한 GPC 분석 결과를 나타내는 그래프이다. 참고로, GPC 데이터에서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 1 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention, which shows the abundance value on the Y-axis and the minutes on the X-axis. Figure 2 is a graph showing the results of GC / MSD analysis for Example 1 of the present invention is to display the abundance value on the Y axis and m / z value on the X axis. 3 is a graph showing the results of GPC analysis for Example 1 of the present invention. For reference, in the GPC data, the X axis represents minutes (retention time) and the Y axis represents MV values.
용매를 건조시킨 후 헥산(20~25 ml)에 녹였다. 헥산에 녹는 부분은 GC/MSD를 통하여 분석하였다. GC/MSD 분석 결과 헥산에 용해되는 부분은 재분배에 의한 디페닐실란이 주요화합물이었으며 이외에도 n값이 2~4를 가지는 폴리실란의 형성을 확인하였다(도 1 및 2 참조). 또한 테트라하이드로퓨란에 녹는 부분 즉 고분자량의 것들은 GPC를 통하여 분석하였다. GPC 분석 결과 n값이 평균 119를 가지는 폴리실란 (중량평균분자량 12721)의 형성을 확인하였다(도 3 참조). The solvent was dried and then dissolved in hexane (20-25 ml). The part dissolved in hexane was analyzed by GC / MSD. As a result of GC / MSD analysis, diphenylsilane by redistribution was the main compound, and the formation of polysilane having n value of 2 to 4 was confirmed as the main compound (see FIGS. 1 and 2). In addition, the parts dissolved in tetrahydrofuran, that is, high molecular weight, were analyzed by GPC. GPC analysis confirmed the formation of polysilane (weight average molecular weight 12721) having an average value of 119 (see FIG. 3).
실시예 2: 디페닐실란(PhExample 2: Diphenylsilane (Ph 22 SiHSiH 22 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
출발 반응 물질인 페닐실란을 사용하는 대신에 다이페닐실란을 사용하는 것을 제외하고 위 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 40분 동안 진행되었다. The same procedure as in Example 1 was carried out except that diphenylsilane was used instead of the starting reaction material, phenylsilane. The reaction proceeded for about 40 minutes after catalyst injection.
도 4는 본 발명 실시예 2에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 5는 본 발명 실시예 2에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 도 6은 본 발명 실시예 2에 대한 GPC 분석 결과를 나타내는 그래프이다. 참고로, GPC 데이터에서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 4 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis. FIG. 5 is a graph showing the results of GC / MSD analysis for Example 2 of the present invention showing abundance values on the Y axis and m / z values on the X axis. 6 is a graph showing the results of GPC analysis for Example 2 of the present invention. For reference, in the GPC data, the X axis represents minutes (retention time) and the Y axis represents MV values.
헥산에 용해되는 부분을 GC/MSD 분석 결과 출발물질인 디페닐실란의 재분배에의한 바이페닐과 트리페닐실란이 주 생성물임을 확인하였다(도 4 및 5 참조). 따라서 n = 2~4의 작은 분자량을 가지는 실란은 형성이 되지 않음을 확인할 수 있었다. GC / MSD analysis of the part dissolved in hexane confirmed that biphenyl and triphenylsilane were the main products by redistribution of the starting material diphenylsilane (see FIGS. 4 and 5). Therefore, it was confirmed that the silane having a small molecular weight of n = 2 to 4 was not formed.
또한 테트라하이드로퓨란에 용해되는 부분은 GPC를 통하여 분석하였다. GPC 분석 결과 n값이 평균 7을 가지는 폴리실란 (중량평균분자량 1360)의 형성을 확인하였다(도 6 참조).In addition, the part dissolved in tetrahydrofuran was analyzed by GPC. GPC analysis confirmed the formation of polysilane (weight average molecular weight 1360) having an n value of 7 (see FIG. 6).
실시예 3: 디에틸실란(EtExample 3: Diethylsilane (Et 22 SiHSiH 22 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
출발 반응 물질인 페닐실란을 사용하는 대신에 다이에틸실란을 사용하는 것을 제외하고 위 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 2분 동안 진행되었다. The same procedure as in Example 1 was carried out except that diethylsilane was used instead of phenylsilane as the starting reaction material. The reaction proceeded for about 2 minutes after catalyst injection.
도 7은 본 발명 실시예 3에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 8은 본 발명 실시예 3에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 도 9는 본 발명 실시예 3에 대한 GPC 분석 결과를 나타내는 그래프이다. 참고로, GPC 데이터에서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. 7 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y-axis and minutes on the X-axis. FIG. 8 is a graph showing the results of GC / MSD analysis for Example 3 of the present invention showing abundance values on the Y axis and m / z values on the X axis. 9 is a graph showing the results of GPC analysis for Example 3 of the present invention. For reference, in the GPC data, the X axis represents minutes (retention time) and the Y axis represents MV values.
GC/MSD 분석 결과 n값이 2~5를 가지는 폴리실란의 형성을 확인하였다(도 7 및 8 참조). 또한 테트라하이드로퓨란에 녹는 부분은 GPC를 통하여 분석하였다. GPC 분석 결과 n값이 평균 16을 가지는 폴리실란 (중량평균분자량 1424)의 형성을 확인하였다(도 9 참조). As a result of GC / MSD analysis, it was confirmed that polysilane having n value of 2 to 5 was formed (see FIGS. 7 and 8). In addition, the part dissolved in tetrahydrofuran was analyzed by GPC. GPC analysis confirmed the formation of polysilane (weight average molecular weight 1424) having an average value of 16 (see FIG. 9).
실시예 4: 메틸페닐실란(MePhSiHExample 4: Methylphenylsilane (MePhSiH) 22 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
출발 반응 물질인 페닐실란을 사용하는 대신에 메틸페닐실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 11분 동안 진행되었다. The same procedure as in Example 1 was carried out except that methylphenylsilane was used instead of the starting reaction material, phenylsilane. The reaction proceeded for about 11 minutes after catalyst injection.
도 10은 본 발명 실시예 4에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 11은 본 발명 실시예 4에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 도 12는 본 발명 실시예 4에 대한 GPC 분석 결과를 나타내는 그래프이다. 참고로, GPC 데이터에서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. FIG. 10 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and minutes on the X axis. FIG. 11 is a graph showing the results of GC / MSD analysis for Example 4 of the present invention showing abundance values on the Y axis and m / z values on the X axis. 12 is a graph showing the results of GPC analysis for Example 4 of the present invention. For reference, in the GPC data, the X axis represents minutes (retention time) and the Y axis represents MV values.
헥산에 용해되는 부분의 GC/MSD 분석 결과 n값이 2~4를 가지는 폴리실란의 형성을 확인하였다(도 10 및 11 참조). 테트라하이드로퓨란에 녹는 부분은 GPC를 통하여 분석하였다. GPC 분석 결과 n값이 평균 7 내지 8을 가지는 폴리실란 형성을 확인하였다(도 12 참조).GC / MSD analysis of the part dissolved in hexane confirmed the formation of polysilane having n value of 2 to 4 (see FIGS. 10 and 11). The part dissolved in tetrahydrofuran was analyzed by GPC. GPC analysis confirmed polysilane formation with an n value of 7 to 8 on average (see FIG. 12).
실시예 5: 디클로로실란(ClExample 5: Dichlorosilane (Cl 22 SiHSiH 22 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
디클로로실란은 상온에서 기상이므로 반응기를 건조한 후 빈 반응기의 무게를 미리 측정한 후 반응기의 온도를 -78℃로 낮추어 디클로로실란을 반응기에 트랩한 후 무게를 재어 반응물인 디클로로실란의 양을 확인하였다. 반응방법은 디클로로실란을 용해시키는 용매를 THF대신 테트라에틸렌글리콜디메틸이써를 사용한 것을 제외하고 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 3분 동안 진행되었다. 분석을 위하여 트리메틸올쏘포르메이트 (CH(OMe)3)를 사용하여 메톡시화 반응을 진행하였다. Since dichlorosilane is a gas phase at room temperature, after drying the reactor, the weight of the empty reactor was measured in advance, and then the temperature of the reactor was lowered to -78 ° C to trap the dichlorosilane in the reactor and weighed to determine the amount of the dichlorosilane as a reactant. The reaction method was carried out in the same manner as in Example 1, except that tetraethylene glycol dimethyl ether was used instead of THF as the solvent for dissolving dichlorosilane. The reaction proceeded for about 3 minutes after catalyst injection. Trimethylolsoformate (CH (OMe) 3 ) was used for the methoxy reaction.
도 13은 본 발명 실시예 5에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 14는 본 발명 실시예 5에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 도 15는 본 발명 실시예 5에 대한 GPC 분석 결과를 나타내는 그래프이다. 참고로, GPC 데이터에서 X축은 minutes (retention time)을 나타내고, Y축은 MV 값을 나타낸다. FIG. 13 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and minutes on the X-axis. 14 is a graph showing the results of GC / MSD analysis for Example 5 of the present invention showing abundance values on the Y-axis and m / z values on the X-axis. 15 is a graph showing the results of GPC analysis for Example 5 of the present invention. For reference, in the GPC data, the X axis represents minutes (retention time) and the Y axis represents MV values.
GC/MSD 분석 결과 n값이 2~5를 가지는 폴리실란의 형성을 확인하였다(도 13 및 14 참조). 또한 테트라하이드로퓨란에 용해되는 부분은 GPC를 통하여 분석하였다. GPC 분석 결과 n값이 9인 폴리실란의 형성을 확인하였다(도 15 참조). GC / MSD analysis confirmed the formation of a polysilane having n value of 2 to 5 (see FIGS. 13 and 14). In addition, the part dissolved in tetrahydrofuran was analyzed by GPC. GPC analysis confirmed the formation of polysilane with n value of 9 (see FIG. 15).
실시예 6: 디메틸클로로실란(MeExample 6: Dimethylchlorosilane (Me 22 ClSiH)과 KH14를 이용한 탈수소화중합반응Dehydrogenation Polymerization Using ClSiH) and KH14
출발 반응 물질인 페닐실란을 사용하는 대신에 디메틸클로로실란을 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 2분 동안 진행되었다. The same procedure as in Example 1 was carried out except that dimethylchlorosilane was used instead of phenylsilane as the starting reaction material. The reaction proceeded for about 2 minutes after catalyst injection.
도 16은 본 발명 실시예 6에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 17은 본 발명 실시예 6에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. FIG. 16 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention showing abundance values on the Y-axis and minutes on the X-axis. 17 is a graph showing the results of GC / MSD analysis for Example 6 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
GC/MSD 분석 결과 n값이 2를 가지는 테트라메틸디페닐디실란의 형성을 확인하였다(도 16 및 17 참조). GC / MSD analysis confirmed the formation of tetramethyldiphenyldisilane having n value of 2 (see FIGS. 16 and 17).
실시예 7: 트리에틸실란(HSiEtExample 7: Triethylsilane (HSiEt 33 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
출발 반응 물질인 페닐실란을 사용하는 대신에 트리에틸실란을 사용하는 것과 반응 용매를 테트라하이드로푸란을 사용하는 대신에 용매를 사용하지 않고 반응하는 것을 제외하고 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 50분 동안 진행되었다. The reaction was carried out in the same manner as in Example 1 except that triethylsilane was used instead of the starting reaction material phenylsilane and the reaction solvent was reacted without using a solvent instead of tetrahydrofuran. The reaction proceeded for about 50 minutes after catalyst injection.
도 18은 본 발명 실시예 7에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 19는 본 발명 실시예 7에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 18 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention showing abundance values on the Y-axis and minutes on the X-axis. 19 is a graph showing the results of GC / MSD analysis for Example 7 of the present invention, the abundance value is displayed on the Y-axis, and the m / z value is displayed on the X-axis.
GC/MSD 분석 결과 n값이 2를 가지는 헥사에틸디실란이 주 생성물로 형성되는 것을 확인하였다(도 18 및 19 참조).GC / MSD analysis confirmed that hexaethyldisilane having a n value of 2 was formed as a main product (see FIGS. 18 and 19).
실시예 8: 트리메톡시실란(HSi(OMe)Example 8: Trimethoxysilane (HSi (OMe) 33 )과 KH14를 이용한 탈수소화중합반응) And KH14 Dehydrogenation Polymerization
출발 반응 물질인 페닐실란을 사용하는 대신에 트리메톡시실란을 사용하는 것과 반응 용매를 테트라하이드로푸란을 사용하는 대신에 테트라에틸렌글리콜디메틸이써를 사용하는 것을 제외하고 위 실시예 1과 동일한 방법으로 수행하였다. 반응은 촉매 주입 후 약 45분 동안 진행되었다. In the same manner as in Example 1 except for using trimethoxysilane instead of starting reaction material phenylsilane and tetraethylene glycol dimethyl ether instead of tetrahydrofuran. Was performed. The reaction proceeded for about 45 minutes after catalyst injection.
도 20은 본 발명 실시예 8에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 시간(minutes)을 표시한 것이다. 도 21은 본 발명 실시예 8에 대한 GC/MSD 분석 결과를 나타내는 그래프로서 Y축에 abundance 수치를 표시하고 X축에 m/z 값을 표시한 것이다. 20 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing the abundance value on the Y-axis and the minutes (minutes) on the X-axis. FIG. 21 is a graph showing the results of GC / MSD analysis for Example 8 of the present invention showing abundance values on the Y axis and m / z values on the X axis.
GC/MSD 분석 결과 n값이 2를 가지는 헥사메톡시디실란이 주생성물로 형성되는 것을 확인하였다. 헥사메톡시디실란 이외에 출발물질인 트리메톡시실란의 재분배에 의해 형성된 디메톡시실란과의 반응에 의한 옥타메톡시트리실란과 데카메톡시테트라실란이 소량 형성되는 것을 확인하였다(도 20 및 21 참조). As a result of GC / MSD analysis, it was confirmed that hexamethoxydisilane having an n value of 2 was formed as a main product. In addition to hexamethoxydisilane, small amounts of octamethoxytrisilane and decamethoxytetrasilane were formed by reaction with dimethoxysilane formed by redistribution of trimethoxysilane as a starting material (see FIGS. 20 and 21). .
본 명세서는 폴리실란계 화합물 특히 액상의 폴리실란계 화합물의 제조 방법 및 이에 따라 제조되는 폴리실란계 화합물, 해당 제조 방법에 이용되는 탈수소화 촉매, 폴리실란계 화합물로 무정형 박막 실리콘을 제조하는 방법에 관하여 기술한다. 해당 폴리실란계 화합물은 태양전지를 비롯한 각종 전자 디바이스 특히 실리콘 태양전지 제조에 이용되는 무정형 실리콘 박막의 액상 공정에 의한 제조 시 유용하게 사용될 수 있다.The present specification relates to a method for producing a polysilane-based compound, in particular a liquid polysilane-based compound, and a polysilane-based compound prepared according to the present invention, a dehydrogenation catalyst used in the method, and a method for producing amorphous thin film silicon using a polysilane-based compound. Describe it. The polysilane-based compound can be usefully used in the production of a variety of electronic devices, including solar cells, in particular by the liquid phase process of the amorphous silicon thin film used in the production of silicon solar cells.

Claims (31)

  1. 일차 실란, 이차 실란 또는 삼차 실란을 탈수소화 촉매의 존재 하에 탈수소화중합하여 폴리실란계 화합물을 제조하는 방법으로서, A method for producing a polysilane-based compound by dehydrogenation-polymerizing primary silane, secondary silane or tertiary silane in the presence of a dehydrogenation catalyst,
    상기 탈수소화 촉매는 하기 [화학식 4]를 가지는 폴리실란계 화합물의 제조 방법.The dehydrogenation catalyst is a method for producing a polysilane-based compound having the following [Formula 4].
    [화학식 4][Formula 4]
    Figure PCTKR2009005007-appb-I000014
    Figure PCTKR2009005007-appb-I000014
    (여기서, M은 금속이다. R1, R2, R3 및 R4는 독립적으로 수소, 하이드로 카빌, 치환된 하이드로카빌, 헤테로하이드로 카빌, 또는 치환된 헤테로하이드로 카빌이고, R5와 R6는 수소를 제외하는 것이며 독립적으로 하이드로카빌 또는 치환된 하이드로 카빌이다. X는 할로겐 원자, C1-C20의 알킬기, C7-C30의 아릴알킬기,C1-C20의 알킬기를 가진 알콕시기, C3-C20 알킬치환 실록시기, C1-C20의 탄화수소기를 가진 아미도기로 이루어진 군으로부터 선택되는 것이며, M의 양쪽에 붙은 X는 서로 같거나 다를 수 있다.) Wherein M is a metal. R 1 , R 2 , R 3 and R 4 are independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heterohydro carbyl, or substituted heterohydro carbyl, and R 5 and R 6 are Excluding hydrogen and independently hydrocarbyl or substituted hydrocarbyl X is a halogen atom, an alkyl group of C1-C20, an arylalkyl group of C7-C30, an alkoxy group having an alkyl group of C1-C20, a C3-C20 alkylsubstituted siloxane Is selected from the group consisting of amido groups having hydrocarbon groups of C1-C20, and X on both sides of M may be the same or different.)
  2. 제 1 항에 있어서, The method of claim 1,
    [화학식 4]의 M은 알카리 금속; 알카리 토류 금속; 주기율표의 P-블록 금속; 주기율표의 B 블록 금속; 란탄 계열 금속; 또는 악티니드 게열 금속인 폴리실란계 화합물의 제조 방법.M in Formula 4 is an alkali metal; Alkaline earth metals; P-block metals of the periodic table; B block metals of the periodic table; Lanthanum series metals; Or a method of producing a polysilane-based compound which is an actinide gelatinization metal.
  3. 제 1 항에 있어서,The method of claim 1,
    [화학식 4]의 M은 Co, Ni, Pd 또는 Pt인 폴리실란계 화합물의 제조 방법.M in Formula 4 is Co, Ni, Pd or Pt manufacturing method of a polysilane-based compound.
  4. 제 3 항에 있어서,The method of claim 3, wherein
    [화학식 4]의 X는 Cl인 폴리실란계 화합물의 제조 방법.X is a method for producing a polysilane-based compound is Cl.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 탈수소화 촉매는 상기 [화학식 4]의 촉매 클러스터이거나 상기 클러스터에 상기 [화학식 4]의 촉매가 혼합된 혼합 촉매인 폴리실란계 화합물의 제조 방법.The dehydrogenation catalyst is a method for producing a polysilane-based compound is a catalyst cluster of the formula [4] or a mixed catalyst in which the catalyst of the formula [4] is mixed in the cluster.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 클러스터는 2nm 이하의 크기를 가지는 나노 클러스터인 폴리실란계 화합물의 제조 방법.The cluster is a method for producing a polysilane-based compound is a nano cluster having a size of 2nm or less.
  7. 제 1 항에 있어서, The method of claim 1,
    상기 탈수소화 중합 반응은 하기 [반응식 1]에 의하여 수행되는 폴리실란계 화합물의 제조 방법.The dehydrogenation polymerization reaction is a method for producing a polysilane-based compound is carried out by the following [scheme 1].
    [반응식 1]Scheme 1
    Figure PCTKR2009005007-appb-I000015
    Figure PCTKR2009005007-appb-I000015
    (여기서, n, m은 각각 1 이상의 정수이고, R1, R2, R3 는 동일하거나 서로 다른 것으로서, 각각 수소원자, 할로겐원자,산소원자, 니트로그룹, 알킬 그룹, 사이클로알킬 그룹, 아릴 그룹, 아르알킬 그룹, 알크아릴 그룹, 알콕시 그룹, 알콕시카보닐그룹, 카보닐옥시 그룹, 아미노카보닐 그룹, 디알킬 아미노 그룹, 이들의 유도체 또는 이들이 임의 치환체 의하여 치환된 것일 수 있다. R1, R2, R3 는 각각 선형 또는 비선형일 수 있고 임의로 결합하여 고리를 형성할 수 있다.)Wherein n and m are each an integer of 1 or more, and ROne, R2, R3 Are the same or different, and each hydrogen atom, halogen atom, oxygen atom, nitro group, alkyl group, cycloalkyl group, aryl group, aralkyl group, alkaryl group, alkoxy group, alkoxycarbonyl group, carbonyloxy Groups, aminocarbonyl groups, dialkyl amino groups, derivatives thereof or they may be substituted by optional substituents. ROne, R2, R3May each be linear or non-linear and may optionally combine to form a ring.)
  8. 제 1 항에 있어서, The method of claim 1,
    상기 일차 실란은 벤질메틸클로로실란, n-부틸메틸클로로실란, 디-n-부틸클로로실란, 에틸메틸클로로실란, 디에틸클로로실란, 디메틸클로로실란, n-옥타데실메틸클로로실란, 페닐메틸클로로실란, 디페닐클로로실란, 사이클로헥실메틸클로로실란, 사이클로펜틸메틸클로로실란, n-프로필메틸클로로실란, 톨릴메틸클로로실란, 알릴메틸클로로실란, 5-헥세닐메틸클로로실란, 비닐메틸클로로실란으로 이루어지는 그룹에서 선택되는 모노할로실란; 또는 t-부틸페닐메톡시실란, 디메틸에톡시실란, 디메틸메톡시실란, 디메틸-n-프로폭시실란, n-옥타데실메틸메톡시실란, 옥틸메틸메톡시실란, 사이클로펜틸에틸메톡시실란, 디사이클로펜틸메톡시실란, 디사이클로펜틸메톡시실란, 페닐메틸에톡시실란, 디페닐에톡시실란, 비닐메틸에톡시실란으로 이루어지는 그룹에서 선택되는 모노알콕시실란인 폴리실란계 화합물의 제조 방법.The primary silane is benzylmethylchlorosilane, n-butylmethylchlorosilane, di-n-butylchlorosilane, ethylmethylchlorosilane, diethylchlorosilane, dimethylchlorosilane, n-octadecylmethylchlorosilane, phenylmethylchlorosilane , Diphenylchlorosilane, cyclohexylmethylchlorosilane, cyclopentylmethylchlorosilane, n-propylmethylchlorosilane, tolylmethylchlorosilane, allylmethylchlorosilane, 5-hexenylmethylchlorosilane, vinyl methylchlorosilane Monohalosilane selected from; Or t-butylphenylmethoxysilane, dimethylethoxysilane, dimethylmethoxysilane, dimethyl-n-propoxysilane, n-octadecylmethylmethoxysilane, octylmethylmethoxysilane, cyclopentylethylmethoxysilane, di A method for producing a polysilane-based compound, which is a monoalkoxysilane selected from the group consisting of cyclopentylmethoxysilane, dicyclopentylmethoxysilane, phenylmethylethoxysilane, diphenylethoxysilane, and vinylmethylethoxysilane.
  9. 제 1 항에 있어서, The method of claim 1,
    상기 이차 실란은 t-부틸디클로로실란, 페닐디클로로실란, 디클로로사이클로헥실실란, 디클로로에틸실란, 디클로로메틸실란, 디클로로페닐실란, 디클로로헥실실란, 디클로로(3-페닐프로필)실란, 디클로로이소프로필실란, 디클로로 (4-페닐부틸)실란, n-프로필디클로로실란, 디클로로알릴실란, 디클로로비닐실란, 트리클로로실란으로 이루어지는 그룹에서 선택되는 디할로실란; 또는 부틸디메톡시실란, 도데실디에톡시실란, 에틸디에톡시실란, 메틸디메톡시실란, 메틸디에톡시실란, n-옥틸디에톡시실란, 옥타데실디메톡시실란, 페닐디에톡시실란, 페닐디메톡시실란, 비닐디메톡시실란으로 이루어지는 그룹에서 선택되는 디알콕시실란인 폴리실란계 화합물의 제조 방법.The secondary silane is t-butyldichlorosilane, phenyldichlorosilane, dichlorocyclohexsilane, dichloroethylsilane, dichloromethylsilane, dichlorophenylsilane, dichlorohexylsilane, dichloro (3-phenylpropyl) silane, dichloroisopropylsilane, dichloro Dihalosilane selected from the group consisting of (4-phenylbutyl) silane, n-propyldichlorosilane, dichloroallylsilane, dichlorovinylsilane, and trichlorosilane; Or butyldimethoxysilane, dodecyl diethoxysilane, ethyl diethoxysilane, methyldimethoxysilane, methyl diethoxysilane, n-octyl diethoxysilane, octadecyldimethoxysilane, phenyl diethoxysilane, phenyldimethoxysilane, The manufacturing method of the polysilane type compound which is the dialkoxysilane chosen from the group which consists of vinyldimethoxysilane.
  10. 제 1 항에 있어서, The method of claim 1,
    상기 삼차 실란은 트리메톡시실란, 트리에톡시실란, 트리-n-프로폭시실란으로 이루어지는 그룹에서 선택되는 트리알콕시실란인 폴리실란계 화합물의 제조 방법.And said tertiary silane is a trialkoxysilane selected from the group consisting of trimethoxysilane, triethoxysilane and tri-n-propoxysilane.
  11. 일차 실란, 이차 실란 또는 삼차 실란을 탈수소화 중합하여 폴리실란계 화합물을 제조하기 위한 탈수수화 중합 반응의 탈수소화 촉매로서, As dehydrogenation catalyst of dehydration polymerization reaction for dehydrogenation polymerization of primary silane, secondary silane or tertiary silane to produce polysilane-based compound,
    하기 [화학식 4]를 가지는 탈수소화 촉매.A dehydrogenation catalyst having the following [Formula 4].
    [화학식 4][Formula 4]
    Figure PCTKR2009005007-appb-I000016
    Figure PCTKR2009005007-appb-I000016
    (여기서, M은 금속이다. R1, R2, R3 및 R4는 독립적으로 수소, 하이드로 카빌, 치환된 하이드로카빌, 헤테로하이드로 카빌, 또는 치환된 헤테로하이드로 카빌이고, R5와 R6는 수소를 제외하는 것이며 독립적으로 하이드로카빌 또는 치환된 하이드로 카빌이다. X는 할로겐 원자, C1-C20의 알킬기, C7-C30의 아릴알킬기,C1-C20의 알킬기를 가진 알콕시기, C3-C20 알킬치환 실록시기, C1-C20의 탄화수소기를 가진 아미도기로 이루어진 군으로부터 선택되는 것이며, M의 양쪽에 붙은 X는 서로 같거나 다를 수 있다.) Wherein M is a metal. R 1 , R 2 , R 3 and R 4 are independently hydrogen, hydrocarbyl, substituted hydrocarbyl, heterohydro carbyl, or substituted heterohydro carbyl, and R 5 and R 6 are Excluding hydrogen and independently hydrocarbyl or substituted hydrocarbyl X is a halogen atom, an alkyl group of C1-C20, an arylalkyl group of C7-C30, an alkoxy group having an alkyl group of C1-C20, a C3-C20 alkylsubstituted siloxane Is selected from the group consisting of amido groups having hydrocarbon groups of C1-C20, and X on both sides of M may be the same or different.)
  12. 제 11 항에 있어서, The method of claim 11,
    [화학식 4]의 M은 알카리 금속; 알카리 토류 금속; 주기율표의 P-블록 금속; M in Formula 4 is an alkali metal; Alkaline earth metals; P-block metals of the periodic table;
    주기율표의 B 블록 금속; 란탄 계열 금속; 또는 악티니드 게열 금속인 탈수소화 촉매.B block metals of the periodic table; Lanthanum series metals; Or a dehydrogenation catalyst, which is an actinide gelatinization metal.
  13. 제 11 항에 있어서,The method of claim 11,
    [화학식 4]의 M은 Co, Ni, Pd 또는 Pt인 탈수소화 촉매.M in Formula 4 is Co, Ni, Pd or Pt dehydrogenation catalyst.
  14. 제 13 항에 있어서,The method of claim 13,
    [화학식 4]의 X는 Cl인 탈수소화 촉매.[Chemical Formula 4] X is Cl, a dehydrogenation catalyst.
  15. 제 11 항에 있어서,The method of claim 11,
    상기 탈수소화 촉매는 상기 [화학식 4]의 촉매 클러스터인 탈수소화 촉매.The dehydrogenation catalyst is a dehydrogenation catalyst of the catalyst cluster of the formula [4].
  16. 제 15 항에 있어서,The method of claim 15,
    상기 클러스터는 2nm 이하의 크기를 가지는 나노 클러스터인 탈수소화 촉매.The cluster is a dehydrogenation catalyst is a nano cluster having a size of less than 2nm.
  17. 제 1 항에 따라 제조되는, 일차 실란, 이차 실란 또는 삼차 실란의 탈수소화 중합체로서, 하기 [화학식 1]을 가지는 폴리실란계 화합물.A polysilane-based compound prepared according to claim 1 as a dehydrogenated polymer of primary silane, secondary silane or tertiary silane.
    [화학식 1][Formula 1]
    Figure PCTKR2009005007-appb-I000017
    Figure PCTKR2009005007-appb-I000017
    (여기서, n은 1 이상의 정수이고, R1, R2, R3 는 동일하거나 서로 다른 것으로서, 각각 수소원자, 할로겐원자,산소원자, 니트로그룹, 알킬 그룹, 사이클로알킬 그룹, 아릴 그룹, 아르알킬 그룹, 알크아릴 그룹, 알콕시 그룹, 알콕시카보닐그룹, 카보닐옥시 그룹, 아미노카보닐 그룹, 디알킬 아미노 그룹, 이들의 유도체 또는 이들이 임의 치환체 의하여 치환된 것일 수 있다. R1, R2, R3 는 각각 선형 또는 비선형일 수 있고 임의로 결합하여 고리를 형성할 수 있다.) Where n is an integer of at least 1, and R isOne, R2, R3 Are the same or different, and each hydrogen atom, halogen atom, oxygen atom, nitro group, alkyl group, cycloalkyl group, aryl group, aralkyl group, alkaryl group, alkoxy group, alkoxycarbonyl group, carbonyloxy Groups, aminocarbonyl groups, dialkyl amino groups, derivatives thereof or they may be substituted by optional substituents. ROne, R2, R3May each be linear or non-linear and may optionally combine to form a ring.)
  18. 제 17 항에 있어서,The method of claim 17,
    [화학식 1]의 n은 1~119인 폴리실란계 화합물.N in [Formula 1] is a polysilane-based compound of 1 ~ 119.
  19. 제 17 항에 있어서,The method of claim 17,
    [화학식 1]의 화합물은 액체 상인 폴리실란계 화합물.The compound of [Formula 1] is a polysilane-based compound in the liquid phase.
  20. 제 17 항에 있어서,The method of claim 17,
    [화학식 1]의 n이 5~6인 액체 상의 폴리실란계 화합물.Polysilane type compound of the liquid phase of which n is 5-6 of [Formula 1].
  21. 제 17 항에 있어서,The method of claim 17,
    R1, R2, R3 는 각각 독립적으로 메틸, 에틸, 프로필, 프로페닐, 프로피닐, 부틸, 사이클로헥실, 4-메틸사이클로헥실, 4-에틸사이클로헥실, 4-이소프로필사이클로헥실, 페닐, 벤질, 나프틸, 안트라센닐, 메시틸, 크실닐, 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴녹시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸사이클로헥실, 2-에틸사이클로헥실, 2-이소프로필사이클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸, 안트라세닐으로 이루어진 그룹으로부터 선택되는 폴리실란계 화합물.ROne, R2, R3 Are each independently methyl, ethyl, propyl, propenyl, propynyl, butyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl, phenyl, benzyl, naphthyl, anthracenyl, Mesityl, xylyl, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl, cumyl, methoxy , Ethoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-isopropylcyclohexyl, o-methylphenyl, o-ethyl A polysilane-based compound selected from the group consisting of phenyl, o-isopropylphenyl, ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl, biphenyl, naphthyl, anthracenyl.
  22. 제 1 항에 따라 제조되는, 일차 실란, 이차 실란 또는 삼차 실란의 탈수소화 중합체로서, 하기 [화학식 2]를 가지는 폴리실란계 화합물.A polysilane-based compound prepared according to claim 1, which is a dehydrogenated polymer of primary silane, secondary silane or tertiary silane.
    [화학식 2][Formula 2]
    Figure PCTKR2009005007-appb-I000018
    Figure PCTKR2009005007-appb-I000018
    (여기서, m은 1 이상의 정수이고, R1, R2는 동일하거나 서로 다른 것으로서, 각각 수소원자, 할로겐원자,산소원자, 니트로그룹, 알킬 그룹, 사이클로알킬 그룹, 아릴 그룹, 아르알킬 그룹, 알크아릴 그룹, 알콕시 그룹, 알콕시카보닐그룹, 카보닐옥시 그룹, 아미노카보닐 그룹, 디알킬 아미노 그룹, 이들의 유도체 또는 이들이 임의 치환체 의하여 치환된 것일 수 있다. R1, R2는 각각 선형 또는 비선형일 수 있고, 임의로 결합하여 고리를 형성할 수 있다.)(Wherein m is an integer of 1 or more, and R 1 and R 2 are the same or different, and each hydrogen atom, halogen atom, oxygen atom, nitro group, alkyl group, cycloalkyl group, aryl group, aralkyl group, al alkaryl group, an alkoxy group, an alkoxycarbonyl group, a carbonyl-oxy group, aminocarbonyl group, a dialkylamino group, a derivative thereof, or they may be substituted by an arbitrary substituent. R 1, R 2 are each a linear or May be non-linear, and may optionally combine to form a ring.)
  23. 제 22 항에 있어서,The method of claim 22,
    [화학식 2]의 m이 1~7인 폴리실란계 화합물.Polysilane-type compound whose m of [Formula 2] is 1-7.
  24. 제 22 항에 있어서,The method of claim 22,
    [화학식 2]의 화합물은 액체상인 폴리실란계 화합물.The compound of [Formula 2] is a polysilane compound in the liquid phase.
  25. 제 22 항에 있어서,The method of claim 22,
    [화학식 2]의 m이 2~5인 액체 상의 폴리실란계 화합물.Polysilane type compound of the liquid phase whose m of [Formula 2] is 2-5.
  26. 제 22 항에 있어서,The method of claim 22,
    R1, R2는 각각 독립적으로 메틸, 에틸, 프로필, 프로페닐, 프로피닐, 부틸, 사이클로헥실, 4-메틸사이클로헥실, 4-에틸사이클로헥실, 4-이소프로필사이클로헥실, 페닐, 벤질, 나프틸, 안트라센닐, 메시틸, 크실닐, 톨릴, 크실릴, 4-메틸페닐, 4-에틸페닐, 4-이소프로필페닐, 4-t-부틸페닐, 4-메톡시페닐, 4-이소프로폭시페닐, 큐밀, 메톡시, 에톡시, 페녹시, 톨릴녹시, 디메틸아미노, 티오메틸, 트리메틸실닐, 디메틸히드라질, 2-메틸사이클로헥실, 2-에틸사이클로헥실, 2-이소프로필사이클로헥실, o-메틸페닐, o-에틸페닐, o-이소프로필페닐, o-t-부틸페닐, o-메톡시페닐, o-이소프로폭시페닐, 비페닐, 나프틸, 안트라세닐으로 이루어진 그룹으로부터 선택되는 폴리실란계 화합물.R 1 , R 2 are each independently methyl, ethyl, propyl, propenyl, propynyl, butyl, cyclohexyl, 4-methylcyclohexyl, 4-ethylcyclohexyl, 4-isopropylcyclohexyl, phenyl, benzyl, naph Tyl, anthracenyl, mesityl, xylyl, tolyl, xylyl, 4-methylphenyl, 4-ethylphenyl, 4-isopropylphenyl, 4-t-butylphenyl, 4-methoxyphenyl, 4-isopropoxyphenyl , Cumyl, methoxy, ethoxy, phenoxy, tolyloxy, dimethylamino, thiomethyl, trimethylsilyl, dimethylhydrazyl, 2-methylcyclohexyl, 2-ethylcyclohexyl, 2-isopropylcyclohexyl, o- Polysilane-based compound selected from the group consisting of methylphenyl, o-ethylphenyl, o-isopropylphenyl, ot-butylphenyl, o-methoxyphenyl, o-isopropoxyphenyl, biphenyl, naphthyl, anthracenyl.
  27. 제 17 항 내지 제 26 항 중 어느 한 항에 의한 폴리실란계 화합물을 이용하여 무정형 실리콘 박막을 제조하는 방법.A method for producing an amorphous silicon thin film using the polysilane-based compound according to any one of claims 17 to 26.
  28. 제 27 항에 있어서, The method of claim 27,
    상기 폴리실란계 화합물을 액상 화합물인 무정형 실리콘 박막을 제조하는 방법.Method for producing an amorphous silicon thin film of the polysilane-based compound is a liquid compound.
  29. 제 28 항에 있어서, The method of claim 28,
    상기 액상 폴리실란계 화합물을 기판상에 도포한 후 열처리하여 무정형 실리콘 박막을 제조하는 방법.A method of manufacturing an amorphous silicon thin film by applying the liquid polysilane-based compound on a substrate and heat treatment.
  30. 제 29 항에 있어서,The method of claim 29,
    200~500℃에서 승온하면서 열처리를 수행하여 무정형 실리콘 박막을 제조하는 방법.Method of producing an amorphous silicon thin film by performing a heat treatment while heating at 200 ~ 500 ℃.
  31. 제 27 항에 있어서,The method of claim 27,
    상기 폴리실란계 화합물로 액상 및 고체상의 화합물을 함께 이용하되, 액상 폴리 실란계 화합물을 용제로 하고 이에 고체상의 폴리실란계 화합물을 용해한 폴리실란계 화합물을 사용하여 무정형 실리콘 박막을 제조하는 방법.A method of preparing an amorphous silicon thin film using a polysilane compound using a liquid and a solid compound as the polysilane compound but using a liquid polysilane compound as a solvent and dissolving a solid polysilane compound.
PCT/KR2009/005007 2009-09-03 2009-09-04 Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound WO2011027922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090083178A KR101175405B1 (en) 2009-09-03 2009-09-03 Method for preparing polysilanes, polysilanes prepared thereby, dehydrogenation catalyst used for the method, method for manufacturing amorphous silicon thin film using the polysilanes
KR10-2009-0083178 2009-09-03

Publications (1)

Publication Number Publication Date
WO2011027922A1 true WO2011027922A1 (en) 2011-03-10

Family

ID=43649451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005007 WO2011027922A1 (en) 2009-09-03 2009-09-04 Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound

Country Status (2)

Country Link
KR (1) KR101175405B1 (en)
WO (1) WO2011027922A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562815B1 (en) * 2000-03-13 2006-03-23 제이에스알 가부시끼가이샤 Solution Composition for Forming a Silicon Film and Method for Preparing the Silicon Film
KR100702555B1 (en) * 1999-03-30 2007-04-04 제이에스알 가부시끼가이샤 Process for the Formation of Silicon Oxide Films
KR100744823B1 (en) * 2006-02-15 2007-08-01 한국과학기술연구원 (2-cyclopentenyl)chlorosilanes and their preparation methods
KR20080074212A (en) * 2005-12-07 2008-08-12 오사까 가스 가부시키가이샤 Polysilane and resin composition containing polysilane
KR20090041696A (en) * 2007-10-24 2009-04-29 연세대학교 산학협력단 Method of fabricating armophous silicon thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702555B1 (en) * 1999-03-30 2007-04-04 제이에스알 가부시끼가이샤 Process for the Formation of Silicon Oxide Films
KR100562815B1 (en) * 2000-03-13 2006-03-23 제이에스알 가부시끼가이샤 Solution Composition for Forming a Silicon Film and Method for Preparing the Silicon Film
KR20080074212A (en) * 2005-12-07 2008-08-12 오사까 가스 가부시키가이샤 Polysilane and resin composition containing polysilane
KR100744823B1 (en) * 2006-02-15 2007-08-01 한국과학기술연구원 (2-cyclopentenyl)chlorosilanes and their preparation methods
KR20090041696A (en) * 2007-10-24 2009-04-29 연세대학교 산학협력단 Method of fabricating armophous silicon thin film

Also Published As

Publication number Publication date
KR101175405B1 (en) 2012-08-20
KR20110024975A (en) 2011-03-09

Similar Documents

Publication Publication Date Title
KR100702555B1 (en) Process for the Formation of Silicon Oxide Films
US8057865B1 (en) Polysilane compositions, methods for their synthesis and films formed therefrom
EP3135711B1 (en) Copolymerized polysilazane, manufacturing method therefor, composition comprising same, and method for forming siliceous film using same
US5128494A (en) Hydridosiloxanes as precursors to ceramic products
EP2813467B1 (en) Method for preparing inorganic polysilazane resin
WO2015105350A1 (en) Novel cyclodisilazane derivative, method for preparing the same and silicon-containing thin film using the same
JP2013509414A (en) Polysilane-polysilazane copolymers and methods for their preparation and use
WO2014092254A1 (en) Method for preparing polysilsesquioxane using carbon dioxide solvent and polysilsesquioxane prepared using same
KR20140087908A (en) Methods of producing polymers and compositions for forming silica insulation films
KR101599952B1 (en) Methods of producing polymers and compositions for forming silica insulation films
WO2011027922A1 (en) Production method for a polysilane-based compound and polysilane-based compounds produced thereby, a dehydrogenation catalyst used therein, and a method for producing an amorphous silicon thin film by using a polysilane-based compound
Satoh et al. A catalyst-and additive-free synthesis of alkoxyhydrosiloxanes from silanols and alkoxyhydrosilanes
CN106348759B (en) A kind of normal temperature and pressure synthetic method of Zr-Si-C ceramic precursor
EP0781079B1 (en) Method of fabricating electronic circuit
TWI774720B (en) Resin composition, method for producing resin composition, film formation method, and cured product
CN111662456A (en) Preparation method of siloxane polymer
JP4053105B2 (en) Method for forming siliceous ceramic coating and ceramic coating formed by the same method
TWI766919B (en) Manufacturing method of polysilane compound, polysilane compound, cyclic polysilane compound, polysilane composition, polysilane film, and substrate of agglomerated silane film
JPWO2010005106A1 (en) Method for producing polymer
WO2018182305A9 (en) Silylamine compound, composition for depositing silicon-containing thin film containing the same, and method for manufacturing silicon-containing thin film using the composition
JP3114989B2 (en) Polyphosphosilazane, method for producing the same, and phosphorus atom-containing ceramics
JPH05310942A (en) Silsequioxane ladder polymer and its production
CA1318443C (en) Methylpolysilanes and method for their preparation
WO2015141956A1 (en) Precursor compound, and method for depositing thin film and method for depositing amorphous silicon film by using same
WO2019074167A1 (en) Composition for forming silica membrane, manufacturing method for silica membrane, and silica membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849013

Country of ref document: EP

Kind code of ref document: A1