KR20090032604A - Fabrication method of esd films using carbon nanotubes, and the esd films - Google Patents

Fabrication method of esd films using carbon nanotubes, and the esd films Download PDF

Info

Publication number
KR20090032604A
KR20090032604A KR1020070097971A KR20070097971A KR20090032604A KR 20090032604 A KR20090032604 A KR 20090032604A KR 1020070097971 A KR1020070097971 A KR 1020070097971A KR 20070097971 A KR20070097971 A KR 20070097971A KR 20090032604 A KR20090032604 A KR 20090032604A
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
solvent
coating film
binder
carbon nanotube
Prior art date
Application number
KR1020070097971A
Other languages
Korean (ko)
Other versions
KR101034863B1 (en
Inventor
한중탁
이건웅
우종석
김선영
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020070097971A priority Critical patent/KR101034863B1/en
Publication of KR20090032604A publication Critical patent/KR20090032604A/en
Application granted granted Critical
Publication of KR101034863B1 publication Critical patent/KR101034863B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A method of manufacturing an antistatic coating film is provided to solve the scattering problem of nanoparticles by using one part carbon nanotube binder coating liquid and to manufacture a transparent and semitransparent antistatic coating film excellent in permeability, abrasion resistance, scratch resistance, chemical stability, and dimensional stability. A method of manufacturing an antistatic coating film by using carbon nanotubes comprises the steps of: introducing -OH and carboxyl group to the end of carbon nanotube by using acid solution; dispersing the acid-treated carbon nanotube in solvent; melting at least one binder selected from the group consisting of a silane compound, thermosetting resin and photocurable resin in solvent to obtain the binder solution; mixing the binder solution and carbon nanotube dispersion formed from the solvent dispersion step; and applying the carbon nanotube/binder mixture coating liquid to a substrate and solidifying it.

Description

탄소나노튜브를 이용한 대전방지 코팅막 제조방법 및 이에 의해 제조된 대전방지 코팅막{Fabrication method of ESD films using carbon nanotubes, and the ESD films}Manufacturing method of antistatic coating film using carbon nanotube and antistatic coating film produced thereby {Fabrication method of ESD films using carbon nanotubes, and the ESD films}

본 발명은 대전방지 필름에 관한 것으로, 더욱 상세하게는, 반도체, 액정디스플레이 패널 등 전자소자 제조공정의 트레이 등에 사용이 가능하고, 일액형 탄소나노튜브 바인더 혼합코팅액을 사용함으로써 나노입자의 비산문제를 해결하며, 고강도, 내마모 특성이 우수한 탄소나노튜브를 이용한 투명 내지 반투명 대전방지 코팅막 제조방법 및 이에 의해 제조된 투명 내지 반투명 대전방지 코팅막에 관한 것이다.The present invention relates to an antistatic film, and more particularly, to be used in a tray of an electronic device manufacturing process such as a semiconductor and a liquid crystal display panel, and to solve the problem of scattering of nanoparticles by using a one-component carbon nanotube binder mixed coating liquid. The present invention relates to a method for preparing a transparent to translucent antistatic coating film using carbon nanotubes having excellent high strength and wear resistance, and a transparent to translucent antistatic coating film prepared thereby.

일반적으로, 반도체 산업의 가장 중요한 핵심부품인 반도체 집적회로칩(Integrated Circuit Chip ; IC Chip)을 운반하기 위해서는 정전기 피해를 방지하기 위해 대전방지 처리된 소위 쉬핑 트레이(shipping tray) 라고 불리는 운반용기를 사용하거나 또는 대전방지 처리된 캐리어 테이프를 이용하여 롤(roll) 형태로 운반하고 있다. 집적회로 칩을 롤 형태로 운반하는 캐리어 테이프는 쉬핑 트레이에 비해 부피가 적고 이동하기에 간편하여 반도체 집적회로 칩 운반용기로서 널리 각광받고 있어 다양한 종류의 캐리어 테이프에 대한 연구가 진행되고 있다. In general, in order to transport an integrated circuit chip (IC chip), which is the most important core component of the semiconductor industry, a transport container called an antistatic treatment called a shipping tray is used to prevent static damage. Or in the form of a roll using an antistatic carrier tape. Carrier tapes carrying integrated circuit chips in the form of rolls have been widely spotlighted as semiconductor integrated circuit chip transport containers because they are smaller in volume and simpler to move than the shipping tray, and various types of carrier tapes are being studied.

캐리어 테이프용 필름에 대한 종래기술로서 미국특허 5,707,699호 및 6,485,832호에 스티렌계 고분자 필름을 중간층으로 하고, 그 양 표면에 스티렌계 수지와 전도성 카본블랙을 혼합하여 만든 전도성 컴파운드를 3중 압출법으로 20-50㎛의 두께로 압출 코팅하여 전체적으로 0.3㎜ 정도의 두께를 가지는 캐리어 테이프용 필름의 제조방법에 대한 내용이 있다. As a conventional technology for a film for a carrier tape, US Pat. Nos. 5,707,699 and 6,485,832 have a styrene-based polymer film as an intermediate layer, and a conductive compound made by mixing styrene-based resin and conductive carbon black on both surfaces thereof is subjected to triple extrusion. Extrusion coating to a thickness of -50㎛ has a description of the manufacturing method of the carrier tape film having a thickness of about 0.3mm as a whole.

3중 압출법에 의한 구조 외에 전도성 카본블랙을 스티렌계 수지와 혼합한 후 이를 단층으로 코팅하거나 또는 압출하여 대전방지성 캐리어 테이프 원단으로 사용하기도 한다. In addition to the triple extrusion method, conductive carbon black may be mixed with a styrene resin and then coated or extruded as a single layer to be used as an antistatic carrier tape fabric.

그러나 3중 압출법 또는 단층 압출법 등 압출법에 의한 캐리어 테이프용 필름의 제조는 압출된 캐리어 테이프용 필름의 평활도가 어렵고, 전도성 카본블랙의 분산이 나쁠 경우 제품의 기계적 강도가 열악해지고 또한 카본블랙이 먼지형태로 비산되는 등 여러 가지 문제점을 야기한다. However, in the production of a film for a carrier tape by an extrusion method such as a triple extrusion method or a single layer extrusion method, the smoothness of the extruded carrier tape film is difficult, and when the dispersion of the conductive carbon black is poor, the mechanical strength of the product becomes poor and the carbon black It causes various problems such as scattering in the form of dust.

일본특허번호 2000-015753호에 스티렌계 고분자 바인더와 전도성 카본블랙을 유기용매에 분산시킨 전도성 코팅액을 스티렌계 고분자 필름의 한 면에 코팅하여 대전방지층을 형성하고, 스티렌계 고분자 필름의 다른 표면에는 계면활성제 등의 이온전도성 물질을 코팅하여 캐리어 테이프용 필름을 제조하는 내용에 관하여 기재되어 있다. 이 또한 카본블랙이 먼지 형태로 비산되어 청결문제 등을 야기한다.In Japanese Patent No. 2000-015753, a conductive coating liquid obtained by dispersing a styrene polymer binder and conductive carbon black in an organic solvent is coated on one side of a styrene polymer film to form an antistatic layer, and on the other surface of the styrene polymer film, It describes about the content which coats ion conductive materials, such as an active agent, and manufactures the film for carrier tapes. In addition, the carbon black is scattered in the form of dust causing cleanliness problems.

대한민국특허청 공개특허공보 공개번호 2004-106947호에는 금속나노입자 및 카본나노튜브를 이용한 도전성 필름 또는 패턴 형성방법이 소개되어 있다. Korean Patent Application Publication No. 2004-106947 discloses a conductive film or pattern forming method using metal nanoparticles and carbon nanotubes.

상기 종래기술은 산 처리된 탄소 나노튜브를 수득하는 단계; 및 ⅱ) 금속나노입자 및 상기 탄소 나노튜브를 유기용매에 분산시키고 이를 기재상에 코팅한 후 건조하는 단계를 포함하는 도전성 필름 형성방법으로 이 방법에 의해 제조된 필름은 금속입자가 포함됨에 의해 전도성 특성은 우수하나 대전방지제로는 적합하지 못하다는 문제점이 있다. 그리고 금속나노입자 및 상기 탄소 나노튜브 상호간에는 쿨롱 힘에 의해 결합되어 있으나 코팅된 경우 내마모성 등이 우수하지 못하다는 문제점이 있다.The prior art comprises the steps of obtaining acid treated carbon nanotubes; And ii) dispersing the metal nanoparticles and the carbon nanotubes in an organic solvent, coating the same on a substrate, and drying the conductive film. The film produced by the method is conductive by containing metal particles. Although excellent in properties, there is a problem that it is not suitable as an antistatic agent. In addition, the metal nanoparticles and the carbon nanotubes are bonded to each other by coulomb force, but when coated, there is a problem in that the wear resistance is not excellent.

따라서, 본 발명은 상기한 종래기술들의 문제점을 해결하기 위해 안출된 것으로, 산 처리한 탄소나노튜브 분산액과 실란 컴파운드 등의 유기바인더가 혼합된 일액형 코팅액을 기질에 코팅함으로써, 탄소나노튜브가 바인더 물질로 감싸여져 나노입자의 비산문제를 해결하고, 고투과도, 내마모성, 내스크래치성, 화학적 안정성, 기질의 성형 시 코팅막의 치수 안정성이 우수하며, 기질 접착성 및 적용성이 우수하여 경질의 기질이나 플렉시블한 기질 등 다양한 기질에 사용할 수 있는 탄소나노튜브를 이용한 투명 내지 반투명 대전방지 코팅막 제조방법 및 이에 의해 제조된 투명 내지 반투명 대전방지 코팅막을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems of the prior art, by coating the substrate with a one-component coating liquid mixed with an acid-treated carbon nanotube dispersion and an organic binder such as silane compound, the carbon nanotube binder It is wrapped with materials to solve the problem of scattering of nanoparticles, and has high transmittance, abrasion resistance, scratch resistance, chemical stability, excellent dimensional stability of coating film when forming substrate, and excellent substrate adhesion and applicability. It is an object of the present invention to provide a transparent to translucent antistatic coating film production method using carbon nanotubes that can be used for various substrates, such as a flexible substrate, and a transparent to translucent antistatic coating film prepared thereby.

상기한 목적을 달성하기 위한 본 발명은, 산용액을 이용하여 탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 산처리단계; 산처리된 탄소나노튜브(CNT)를 용매에 분산시키는 용매분산단계; 실란컴파운드, 열경화형 수지, 광경화형 수지로 구성된 그룹 중 선택된 하나 이상의 바인더를 용해용매에 녹여 바인더 용액을 제조하는 단계; 바인더 용액을, 상기 용매분산단계에서 형성된 탄소나노튜브 분산액에 혼합시킴에 의해 탄소나노튜브(CNT)를 분산시켜 코팅액을 형성시키는 조성물 형성단계; 그리고, 탄소나노튜브/바인더 혼합코팅액을 기질에 도포하고 고화시키는 단계;를 포함하여 구성되는 탄소나노튜브를 이용한 투명 내지 반투명 대전방지 코팅막 제조방법 및 이에 의해 제조된 투명 내지 반투명 대 전방지 코팅막을 기술적 요지로 한다. The present invention for achieving the above object, an acid treatment step of introducing a hydroxyl group and a carboxyl group on the carbon nanotube (CNT) terminal and the surface using an acid solution; Solvent dispersion step of dispersing the acid-treated carbon nanotubes (CNT) in a solvent; Preparing a binder solution by dissolving at least one binder selected from the group consisting of silane compound, thermosetting resin, and photocurable resin in a solvent; A composition forming step of dispersing carbon nanotubes (CNT) by mixing a binder solution with the carbon nanotube dispersion formed in the solvent dispersion step to form a coating solution; And applying a carbon nanotube / binder mixed coating solution to the substrate and solidifying the transparent and semi-transparent antistatic coating film using the carbon nanotubes configured to include the transparent and semi-transparent to anterior coating film prepared thereby. Make a point.

여기서, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어지고, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지고, 상기 고화시키는 단계에서의 고화는 열 또는 자외선 경화 방법을 이용하고, 상기 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 선택된 1종인 것이 바람직하다.Here, the substrate is made of one selected from the group consisting of glass, quartz, glass wafers, silicon wafers, plastics, and the coating film is spray, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, It is produced by any one of the key coating and gravure coating, and the solidification in the solidifying step using a heat or ultraviolet curing method, the acid solution used in the acid treatment step is nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide and It is preferable that it is 1 type selected from these mixed liquids.

그리고, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어지고, 상기 용매분산단계에서 사용된 탄소나노튜브 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것이고, 상기 조성물 형성단계에서 형성된 코팅액은, 코팅액의 농도 조절을 위해 희석용매가 첨가되되, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로 헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택되고, 상기 분산용매 및 희석용매는 바인더 용해용매로 사용되는 것이 바람직하다.The carbon nanotubes are made of one selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and mixtures thereof. The carbon nanotube dispersion solvent used in the solvent dispersion step may be acetone, Methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane At least one selected from the group consisting of cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, and dimethyl sulfoxide. , The coating liquid formed in the composition forming step, the dilution solvent is added to adjust the concentration of the coating liquid, the dilution The solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pi Ralidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide, methylene chloride and these It is preferably selected from a mixture of and the dispersion solvent and dilution solvent is preferably used as a binder dissolving solvent.

또한, 상기 실란은 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 하나가 되고, 상기 탄소나노튜브는 외경이 30㎚ 미만이고, 상기 바인더는, 탄소나노튜브와 바인더 혼합물 100 중량부에 대해 30 내지 99 중량부로 첨가되고, 대전방지 코팅막은 탄소나노튜브가 바인더 물질로 감싸여져 코팅막 상부로 돌출되지 않는 것이 바람직하다.The silane may be one of tetraalkoxysilanes, trialkoxysilanes, and dialkoxysilanes. The carbon nanotubes have an outer diameter of less than 30 nm, and the binder may contain 100 parts by weight of the carbon nanotubes and the binder mixture. 30 to 99 parts by weight, and the antistatic coating film is preferably carbon nanotube is wrapped in a binder material does not protrude over the coating film.

이상에서 설명한 바와 같은 본 발명은, 산 처리한 탄소나노튜브 분산액과 실란 컴파운드 등의 유기바인더가 혼합된 일액형 코팅액을 기질에 코팅함으로써, 투과도, 내마모성, 내스크래치성, 화학적 안정성, 기질의 성형 시 대전방지 코팅막의 치수 안정성이 우수하며, 기질 접착성 및 적용성이 우수하여 경질의 기질이나 플렉시블한 기질 등 다양한 기질에 사용할 수 있으며, 일액형 코팅액을 사용하므로 탄소나나튜브가 바인더 물질로 감싸여져 나노입자의 비산 문제를 해결할 수 있는 효과가 있다.As described above, the present invention is coated with a one-component coating solution in which an acid-treated carbon nanotube dispersion liquid and an organic binder such as a silane compound are mixed on a substrate, thereby transmitting permeability, abrasion resistance, scratch resistance, chemical stability, and at the time of forming the substrate. It has excellent dimensional stability of antistatic coating membrane, and can be used for various substrates such as hard substrates and flexible substrates due to its excellent adhesiveness and applicability of the antistatic coating film. There is an effect that can solve the problem of scattering of particles.

이하 본 발명의 바람직한 실시예를 도면을 참조로 상세히 설명하기로 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

본 발명에 따른 탄소나노튜브를 이용한 대전 방지 코팅막의 제조방법은 크게 탄소나노튜브의 산처리단계와, 산처리된 탄소나노튜브의 용매 분산단계와, 바인더 용액 제조단계와, 탄소나노튜브 분산액과 바인더 용액의 혼합하여 코팅액을 형성시키는 조성물 형성단계와, 혼합액을 기질에코팅하여 고화시키는 고화 단계로 구성된다. Method for producing an antistatic coating film using carbon nanotubes according to the present invention is largely an acid treatment step of carbon nanotubes, a solvent dispersion step of the acid-treated carbon nanotubes, a binder solution manufacturing step, a carbon nanotube dispersion and a binder A composition forming step of mixing the solution to form a coating solution, and a solidifying step of coating the mixture on the substrate to solidify.

산처리단계는 산 용액을 이용하여 탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 단계로, 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 하나를 선택하여 사용하고 산 용액에 탄소나노튜브를 분산시킨 후 여과 건조하는 방법으로 진행되며, 산처리 단계를 거치면 말단 및 표면에 히드록시기 및 카르복실기가 도입된 탄소나노튜브가 수득 된다. The acid treatment step is to introduce a hydroxyl group and a carboxyl group to the carbon nanotube (CNT) terminal and the surface by using an acid solution. The acid solution used in the acid treatment step is one of nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide and a mixture thereof. Selected and used to disperse the carbon nanotubes in an acid solution and then proceed to the method of filtration and drying, and through the acid treatment step, a carbon nanotube having a hydroxyl group and a carboxyl group introduced into the terminal and surface is obtained.

여기서 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 하나가 선택되어 사용된다. Here, the carbon nanotubes are selected from single wall carbon nanotubes, double wall carbon nanotubes, multiwall carbon nanotubes, and mixtures thereof.

다음은 탄소나노튜브의 용매분산단계가 진행되는바, 상기에서 산처리된 탄소나노튜브를 용매에 혼합하여 분산시키는 과정이며, 용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드 중 하나 이상이 사용되어 탄소나노튜브 용액이 완성된다. Next, the solvent dispersion step of carbon nanotubes is carried out, and the acid-treated carbon nanotubes are mixed and dispersed in a solvent, and the solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, Butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, One or more of dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethylsulfoxide is used to complete the carbon nanotube solution.

다음은 바인더 용액 제조단계로 바인더 용액은 실란컴파운드, 열경화형 수지, 광경화형 수지 중 하나 이상을 선택하고 이를 용해용매에 녹여 형성한다.Next, as a binder solution manufacturing step, a binder solution is formed by selecting one or more of silane compound, thermosetting resin, and photocurable resin and dissolving it in a solvent.

그런 다음 상기 탄소나노튜브 용액을 바인더 용액에 혼합하여 분산시키는 조성물 형성단계가 진행되는바, 바인더 용액이 완성되면 상기에서 형성된 탄소나노튜브 용액을 바인더 용액에 혼합하여 분산시킴에 의해 원하는 코팅액 조성물이 형성된다. 그리고 코팅액의 농도 조절을 위해서는 희석용매가 첨가될 수 있다. Then, a composition forming step of mixing and dispersing the carbon nanotube solution in a binder solution is performed. When the binder solution is completed, a desired coating solution composition is formed by mixing and dispersing the carbon nanotube solution formed in the binder solution. do. And dilute solvent may be added to adjust the concentration of the coating solution.

여기에서, 상기 용해용매는 사용되는 바인더의 종류에 따라, 상기 바인더의 용해를 위한 바인더 용해용매, 상기 탄소나노튜브를 함유하는 투명전도성 필름용 혼합코팅액의 농도 조절을 위해 첨가되는 상기 희석용매 및 탄소나노튜브의 분산을 위해 첨가되는 탄소나노튜브 분산용매 중 적어도 어느 하나를 선택하여 사용하는 것이 바람직하다. 즉, 바인더의 종류에 따라, 바인더 용해용매만 사용하거나, 희석용 용매만 사용하거나, 탄소나노튜브 분산용매만 사용하거나, 아니면 이들을 혼용하여 사용한다.Here, the dissolved solvent is a diluent solvent and carbon added for controlling the concentration of the binder dissolving solvent for dissolving the binder, the mixed coating solution for a transparent conductive film containing the carbon nanotubes, depending on the type of binder used It is preferable to select and use at least one of the carbon nanotube dispersion solvent added for the dispersion of the nanotubes. That is, depending on the type of binder, only a binder dissolving solvent, a dilution solvent, a carbon nanotube dispersion solvent, or a mixture thereof is used.

여기서 용해용매 또는 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종이 사용된다. The solvent or diluent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide, N- Methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, dimethyl sulfoxide One selected from methylene chloride and mixtures thereof is used.

상기에서 형성된 탄소나노튜브 바인더 혼합코팅액을 대전방지 코팅막으로 사용하기 위하여 기질에 코팅하게 되는데, 코팅방법에 따라 농도를 조절하여야 하므로, 상기에서 언급한 바와 같이, 최종 탄소나노튜브 바인더 혼합코팅액에 희석용매가 더 첨가될 수 있으며, 상기 희석 용매는 바인더의 종류에 따라 바인더 용해용매 또는 탄소나노튜브 분산용매의 사용 없이 단독으로 사용할 수도 있다. The carbon nanotube binder mixed coating solution formed above is coated on a substrate for use as an antistatic coating film, and thus the concentration must be adjusted according to the coating method, and as mentioned above, the dilute solvent in the final carbon nanotube binder mixed coating solution May be further added, and the dilution solvent may be used alone without using a binder dissolving solvent or a carbon nanotube dispersion solvent depending on the type of binder.

이와 같이 적절한 농도로 희석된 탄소나노튜브 바인더 혼합코팅액은 기질 상면에 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 코팅이 이루어지게 되며, 여기에서 상기 기질은 탄소나노튜브의 우수한 반응성 및 전기전도도 특성에 의해 전도성 또는 비전도성의 다양한 기판을 사용할 수 있으며, 바람직하게는 유리, 수정, 글래스웨이퍼, 실리콘웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종을 사용할 수 있다.The carbon nanotube binder mixed coating solution diluted to an appropriate concentration is coated on the substrate by any one of spraying, dip coating, spin coating, screen coating, ink jet printing, pad printing, knife coating, key coating and gravure coating. In this case, the substrate may use a variety of conductive or non-conductive substrates due to the excellent reactivity and electrical conductivity of the carbon nanotubes, preferably made of glass, quartz, glass wafers, silicon wafers, plastics One kind selected from the group can be used.

이러한 코팅방법에 의해 상기 기질 상면에 투명 내지 반투명 대전방지 코팅막의 용도 등에 따라 수십 나노미터 내지 수십 마이크로미터 두께로 코팅하게 되며, 용매 건조 및 바인더 물질의 고화과정을 거침으로써 탄소나노튜브를 이용한 대전방지 코팅막이 완성되게 되는 것이다. 이때, 상기 코팅막은 탄소나노튜브가 바인더 물질로 감싸여져 탄소나노튜브가 코팅막 상부로 돌출되지 않게 된다. The coating method is coated on the upper surface of the substrate to a thickness of several tens of nanometers to several tens of micrometers according to the use of the transparent to semi-transparent antistatic coating film, and the antistatic using carbon nanotubes by going through the solvent drying and solidification of the binder material The coating film is to be completed. In this case, the coating film is wrapped with a carbon nanotube binder material so that the carbon nanotubes do not protrude above the coating film.

이하 본 발명의 실시예를 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

< 제1실시예 >First Embodiment

본 발명의 실시예 1로써, 탄소나노튜브 분산액에 실란졸 용액을 첨가하여 탄소나노튜브/실란졸 혼합 코팅액 제조방법에 관한 것이다. As Example 1 of the present invention, a method of preparing a carbon nanotube / silazole mixed coating solution by adding a silane sol solution to a carbon nanotube dispersion.

상기 탄소나노튜브/실란졸 혼합코팅액은 이하의 절차에 의하여 제조된다.The carbon nanotube / silane sol mixed coating solution is prepared by the following procedure.

먼저, 응집된 상태로 존재하는 탄소나노튜브(CNT) 0.1g과 산용액 50㎖를 500㎖ 삼각플라스크에 넣고 초음파기(sonicator)로 1시간 동안 탄소나노튜브를 분산시킨다. First, 0.1 g of carbon nanotubes (CNT), which are present in an aggregated state, and 50 ml of acid solution are placed in a 500 ml Erlenmeyer flask, and the carbon nanotubes are dispersed for 1 hour with a sonicator.

상기 제조된 용액을 24시간 동안 환류(refluxing)를 시킨 후 여과종이(Alumina filter, pore size:200㎚)를 이용하여 탄소나노튜브에 남아있는 산용액을 4회 이상의 여과를 통하여 제거한 후 건조하여 불순물(금속촉매 등) 제거 및 카르복실기(-COOH)와 히드록시기(-OH)가 치환된 탄소나노튜브를 제조하였다.After refluxing the prepared solution for 24 hours, the acid solution remaining on the carbon nanotubes was removed through filtration four times or more using an filtration paper (Alumina filter, pore size: 200 nm), followed by drying to remove impurities. Removal of metal catalysts and the like and carbon nanotubes in which carboxyl groups (-COOH) and hydroxy groups (-OH) were substituted were prepared.

그 다음, 상기 탄소나노튜브를 용매에 분산시킨 분산용액은 다음과 같이 제조하였다. 상기 탄소나노튜브 10㎎과 에탄올(Ethanol) 용매 100㎖를 삼각플라스크에서 혼합한 후 초음파기로 2시간 동안 분산하여 탄소나노튜브 용액을 제조하였다. Then, a dispersion solution in which the carbon nanotubes were dispersed in a solvent was prepared as follows. 10 mg of the carbon nanotubes and 100 mL of the ethanol (Ethanol) solvent were mixed in an Erlenmeyer flask and dispersed for 2 hours by an ultrasonic wave to prepare a carbon nanotube solution.

상기 용액에 바인더로서 실란졸 용액을 혼합하게 되는데, 상기 실란졸은 메틸트리메톡시실란(MTMS, methyl trimethoxysilane) 7.5㎎과 테트라에틸오소실리케이트(TEOS, Tetraethyl orthosilicate) 2.5㎎를 플라스크에 넣고 H2O 4.2㎎과 희석 용매인 에탄올(Ethanol) 40㎎을 넣어 준 후 30초간 스터링(stirring) 시켜 제조하였다. 상기 실란졸 용액에 산촉매인 HCl을 넣어 용액의 산도가 pH 3.8~4.0이 되도록 맞춰준 후 48시간 동안 스터링(stirring) 시켜주었다.As a binder in the solution there is mixing of the silane sol solution, a sol wherein the silane is methyl trimethoxysilane (MTMS, methyl trimethoxysilane) 7.5㎎ and tetraethylorthosilicate (TEOS, Tetraethyl orthosilicate) put into the flask 2.5㎎ H 2 O 4.2 mg and 40 mg of ethanol (Ethanol) as a diluting solvent were added thereto, and then prepared by stirring for 30 seconds. HCl as an acid catalyst was added to the silane sol solution, and the acidity of the solution was adjusted to pH 3.8 to 4.0, followed by stirring for 48 hours.

상기에서 제조된 실란졸 용액을 탄소나노튜브 분산액에 첨가 후 초음파기로 2시간 동안 분산하여 탄소나노튜브 실란 바인더 혼합 코팅액을 제조하였다. The silane sol solution prepared above was added to the carbon nanotube dispersion, and then dispersed for 2 hours by an ultrasonic wave to prepare a carbon nanotube silane binder mixed coating solution.

제조된 탄소나노튜브/실란 졸 혼합 조성물은 도 1와 같이, 실란졸은 산처리된 탄소나노튜브(CNT) 표면의 히드록시기와 수소결합을 함으로써 바인더 역할뿐만 아니라 분산안정제 역할을 동시에 수행하게 된다. 그리고 도 2는 분산이 완료된 조성물을 나타낸 것인 바, 분산안정성이 양호한 것으로 나타났다. In the prepared carbon nanotube / silane sol mixed composition, as shown in FIG. 1, the silane sol is not only a binder but also a dispersion stabilizer by hydrogen bonding to a hydroxyl group of an acid-treated carbon nanotube (CNT) surface. And Figure 2 shows that the dispersion is completed, the dispersion stability was found to be good.

상기에서 형성된 탄소나노튜브/실란졸 혼합 코팅액을 스프레이를 이용하여 유리 기판 및 폴리머 기판(PES, 또는 PET필름) 상면에 도포하였다. 코팅 후 90℃ 열풍건조기에서 용매를 제거한 후 90℃에서 120분간 바인더의 경화를 완료하였다. The carbon nanotube / silazole mixed coating solution formed above was applied to the upper surface of the glass substrate and the polymer substrate (PES, or PET film) using a spray. After coating, the solvent was removed in a 90 ° C. hot air dryer, and then curing of the binder was completed at 90 ° C. for 120 minutes.

상기 제조된 전도성 필름의 면저항(sheet resistance)은 104 ohms/square 이하였으며, 투과도를 측정한 결과 필름이 550㎚에서 약 80% 이상의 총 투과율을 갖는 것으로 나타났으며 대전방지 코팅막이 도포된 PES필름은 도 3에 나타내었다. 그리고, PET 시트에 대전방지 코팅막을 형성시킨 후 몰딩한 경우 모습을 도 4에 나타낸바, 코팅막이 그대로 유지됨을 확인하였다.The sheet resistance of the prepared conductive film was 10 4 ohms / square or less. As a result of measuring the transmittance, the film had a total transmittance of about 80% or more at 550 nm, and a PES film coated with an antistatic coating film. Is shown in FIG. 3. In addition, when forming an antistatic coating film on the PET sheet and then molding the bar as shown in Figure 4, it was confirmed that the coating film is maintained as it is.

또한 탄소나노튜브/실란졸 코팅막의 전자현미경 사진을 도 5에 나타낸바, 탄소나노튜브가 고르게 분산되어 있으며 탄소나노튜브가 실란 바인더에 의해 감싸여 있음을 알 수 있다. In addition, the electron micrograph of the carbon nanotube / silane sol coating film is shown in Figure 5, it can be seen that the carbon nanotubes are evenly dispersed and the carbon nanotubes are wrapped by a silane binder.

< 제2실시예>Second Embodiment

본 발명의 실시예 2로써, 탄소나노튜브 분산액에 실란 컴파운드를 첨가하여 탄소나노튜브 분산액 내에서 실란졸을 제조함으로써 탄소나노튜브/실란졸 혼합 코팅액을 제조하는 방법에 관한 것이다.Embodiment 2 of the present invention relates to a method for preparing a carbon nanotube / silazole mixed coating liquid by adding a silane compound to a carbon nanotube dispersion to prepare a silane sol in the carbon nanotube dispersion.

상기 탄소나노튜브/실란졸 혼합코팅액은 이하의 절차에 의하여 제조된다.The carbon nanotube / silane sol mixed coating solution is prepared by the following procedure.

먼저, 응집된 상태로 존재하는 탄소나노튜브 0.1g과 산용액 50㎖를 500㎖ 삼각플라스크에 넣고 초음파기(sonicator)로 1시간 동안 탄소나노튜브를 분산시킨다. First, 0.1 g of carbon nanotubes and 50 ml of acid solution, which are present in an aggregated state, are placed in a 500 ml Erlenmeyer flask, and the carbon nanotubes are dispersed for 1 hour with a sonicator.

상기 제조된 용액을 끓는점에서 24시간 동안 환류(refluxing)를 시킨 후 여과종이(Alumina filter, pore size:200㎚)를 이용하여 탄소나노튜브에 남아있는 산용액을 4회 이상의 여과를 통하여 제거한 후 건조하여 불순물(금속촉매 등) 제거 및 카르복실기(-COOH)와 히드록시기(-OH)가 치환된 탄소나노튜브를 제조하였다. After refluxing the prepared solution at a boiling point for 24 hours, the acid solution remaining in the carbon nanotubes was removed through filtration four times or more using a filter paper (Alumina filter, pore size: 200 nm), followed by drying. To remove impurities (metal catalyst, etc.) and to prepare a carbon nanotube substituted with carboxyl group (-COOH) and hydroxy group (-OH).

그 다음, 상기 탄소나노튜브를 용매에 분산시킨 분산용액은 다음과 같이 제조하였다. 상기 탄소나노튜브 10㎎과 에탄올(Ethanol) 용매 100㎖를 삼각플라스크에서 혼합한 후 초음파기로 2시간 동안 분산하여 탄소나노튜브 용액을 제조하였다. Then, a dispersion solution in which the carbon nanotubes were dispersed in a solvent was prepared as follows. 10 mg of the carbon nanotubes and 100 mL of the ethanol (Ethanol) solvent were mixed in an Erlenmeyer flask and dispersed for 2 hours by an ultrasonic wave to prepare a carbon nanotube solution.

상기 용액에 메틸트리메톡시실란(MTMS, methyl trimethoxysilane) 7.5㎎과 테트라에틸오소실리케이트(TEOS, Tetraethyl orthosilicate) 2.5㎎, H2O 4.2㎎을 넣어 준 후 30초간 스터링(stirring) 시켜주었다. 상기 탄소나노튜브 분산액에 산촉매인 HCl을 넣어 용액의 산도가 pH 3.8~4.0이 되도록 맞춰준 후 2시간 동안 초음파기로 분산하여 탄소나노튜브/실란졸 혼합용액을 제조하였다. 7.5 mg of methyl trimethoxysilane (MTMS), tetraethyl orthosilicate (TEOS) and 2.5 mg of H 2 O were added to the solution, followed by stirring for 30 seconds. HCl as an acid catalyst was added to the carbon nanotube dispersion, and the acidity of the solution was adjusted to pH 3.8 to 4.0, followed by dispersion with an ultrasonic wave for 2 hours to prepare a carbon nanotube / silazole mixed solution.

상기에서 제조된 탄소나노튜브/실란졸 혼합 코팅액을 스프레이 코터를 사용 하여 유리 기판 및 폴리머 기판(PES, 또는 PET필름) 상면에 도포하였다. 코팅 후 90℃ 열풍건조기에서 용매를 제거 한 후 90℃에서 120분간 바인더의 경화를 완료하였다.The carbon nanotube / silazole mixed coating solution prepared above was applied to the upper surface of the glass substrate and the polymer substrate (PES, or PET film) using a spray coater. After coating, the solvent was removed from the hot air dryer at 90 ° C., and then the curing of the binder was completed at 90 ° C. for 120 minutes.

상기 제조된 전도성 필름의 면저항(sheet resistance) 및 투과도(transmittance)를 측정하였고, 바인더의 분산성(dispersion)은 광학현미경과 전자주사현미경을 사용하여 관찰하였는바, 면저항(sheet resistance)은 104 ohms/square 이하였으며, 550nm에서 투과도 약 80% 이상의 총 투과율을 갖는 것으로, 상기 제1 실시예와 거의 동일하였다.Sheet resistance and transmittance of the prepared conductive film were measured, and the dispersion of the binder was observed using an optical microscope and an electron scanning microscope. The sheet resistance was 10 4 ohms. It was less than / square and had a total transmittance of about 80% or more at 550 nm, which was almost the same as in the first embodiment.

< 제 3실시예 >Third Embodiment

본 발명의 실시예 3으로써, 탄소나노튜브 분산액에 광경화용에폭시를 첨가하여 탄소나노튜브/광경화용 에폭시 혼합 코팅액 제조방법에 관한 것이다.Embodiment 3 of the present invention relates to a method for preparing a carbon nanotube / photocuring epoxy mixed coating solution by adding epoxy for photocuring to a carbon nanotube dispersion.

상기 탄소나노튜브/광경화용 에폭시 혼합코팅용액은 이하의 절차에 의하여 제조된다.The carbon nanotube / photocuring epoxy mixed coating solution is prepared by the following procedure.

먼저, 응집된 상태로 존재하는 탄소나노튜브 0.1g과 농도가 30vol%인 질산(HNO3)용액 100㎖를 500㎖ 삼각플라스크에 넣고 초음파 분산기를 이용하여 1시간동안 탄소나노튜브를 분산시켰다.First, 0.1 g of carbon nanotubes present in an aggregated state and 100 ml of nitric acid (HNO 3 ) solution having a concentration of 30 vol% were placed in a 500 ml Erlenmeyer flask, and the carbon nanotubes were dispersed for 1 hour using an ultrasonic disperser.

상기 제조된 용액을 1시간 동안 환류(refluxing)를 시킨 후 여과종이를 이용하여 탄소나노튜브에 남아있는 산용액을 4회 이상의 여과를 통하여 제거한 후 건조 하여 불순물 제거 및 카르복실기(-COOH)가 치환된 탄소나노튜브를 제조하였다.After refluxing the prepared solution for 1 hour, the acid solution remaining in the carbon nanotubes was removed through filtration four times or more using filtration paper and then dried to remove impurities and replace the carboxyl group (-COOH). Carbon nanotubes were prepared.

그 다음, 상기 탄소나노튜브를 용매에 분산시킨 분산용액은 다음과 같이 제조하였다. 상기 탄소나노튜브 15㎎과 에탄올(Ethanol) 용매 100㎖를 삼각플라스크에서 혼합한 후 초음파기로 1시간 동안 분산하여 탄소나노튜브 용액을 제조하였다.Then, a dispersion solution in which the carbon nanotubes were dispersed in a solvent was prepared as follows. 15 mg of the carbon nanotubes and 100 mL of the ethanol (Ethanol) solvent were mixed in an Erlenmeyer flask and dispersed for 1 hour by an ultrasonic wave to prepare a carbon nanotube solution.

상기 용액에 광경화용에폭시(SK사이텍) 10㎎과 디에틸렌 글리콜 메틸 에틸 에테르(MEDG) 용매 및 광개시제를 첨가한 후 6시간 동안 스터링(stirring) 시키고, 초음파 분산기로 2시간 동안 처리하여 탄소나노튜브/광경화용 에폭시 혼합용액을 제조하였다. 10 mg of photocuring epoxy (SK Cytec), a diethylene glycol methyl ethyl ether (MEDG) solvent and a photoinitiator were added thereto, followed by stirring for 6 hours, followed by treatment with an ultrasonic disperser for 2 hours. An epoxy mixed solution for photocuring was prepared.

상기에서 제조된 탄소나노튜브/광경화용 에폭시 혼합코팅용액을 실시예 1과 같은 방법으로 코팅을 하였다. 코팅 후 80℃ 열풍건조기에서 용매를 제거 한 후 1~3분간 자외선를 조사하여 에폭시 바인더를 경화시켰으며, 실시예 1과 같은 방법을 이용하여 분석하였는바, 면저항(sheet resistance)은 104 ohms/square 이하였으며, 550nm에서 투과도 약 80% 이상의 총 투과율을 갖는 것으로, 투명 대전방지 코팅막에 적합한 결과를 도출하였다. The carbon nanotube / photocuring epoxy mixed coating solution prepared above was coated in the same manner as in Example 1. After coating, the solvent was removed from the hot air dryer at 80 ° C, and the epoxy binder was cured by irradiating with ultraviolet rays for 1 to 3 minutes. The sheet resistance was analyzed using the same method as Example 1, and the sheet resistance was 10 4 ohms / square. In this case, having a total transmittance of about 80% or more at 550 nm, a result suitable for the transparent antistatic coating film was obtained.

< 비교예 ><Comparative Example>

본 발명의 비교예로써, 탄소나노튜브와 바인더 물질의 혼합액을 이용하지 않고 두 재료를 순차적으로 기질 상부에 적층구조로 코팅함으로써 대전방지 코팅막을 제조하는 방법에 관한 것이다.As a comparative example of the present invention, the present invention relates to a method of manufacturing an antistatic coating film by coating two materials sequentially on a substrate without using a mixture of carbon nanotubes and a binder material.

상기 실시예 1에서 제조된 실란 졸 용액을 유리 또는 고분자 기질에 코팅한 후에 탄소나노튜브 분산액을 순차적으로 도포하였다.After coating the silane sol solution prepared in Example 1 on a glass or polymer substrate, the carbon nanotube dispersion was sequentially applied.

이러한 코팅막 제조의 경우 도 6에서 보여지는 바와 같이 탄소나노튜브가 바인더 위로 돌출되어 탄소나노튜브의 비산문제를 야기시킬 수 있었다.In the case of manufacturing the coating film, as shown in FIG. 6, the carbon nanotubes protruded over the binder, which may cause scattering problems of the carbon nanotubes.

도 1 - 실란졸에 탄소나노튜브가 분산된 형상을 나타낸 개념도.1 is a conceptual diagram showing a shape in which carbon nanotubes are dispersed in a silane sol.

도 2 - 탄소나노튜브/실란졸 혼합 조성물 용액을 나타낸 도.2 is a diagram showing a solution of carbon nanotube / silazole mixed composition.

도 3 - 탄소나노튜브/실란졸 조성물 코팅막이 형성된 투명전도성 필름을 나타낸 도.3 is a view showing a transparent conductive film on which a carbon nanotube / silazole composition coating film is formed.

도 4- 탄소나노튜브/실란졸 조성물 코팅막이 형성된 투명전도성 필름을 몰딩 후 모습을 나타내는 도.Figure 4 is a view showing a state after molding the transparent conductive film formed with a carbon nanotube / silane composition coating film.

도 5 - 본 발명에 따른 탄소나노튜브/실란졸 조성물 코팅막의 전자현미경 사진을 나타낸 도. 5 is a view showing an electron micrograph of the carbon nanotube / silane composition coating film according to the present invention.

도 6 - 본 발명의 비교예에 따른 다단계 방식에 의해 실란졸을 접착층으로 기질에 코팅 후 순수 탄소나노튜브 분산액을 접착층 상부에 도포한 코팅막의 전자 현미경 사진을 나타낸 도. 6-shows an electron micrograph of a coating film coated with a pure carbon nanotube dispersion on the adhesive layer after coating the silane sol on the substrate by an adhesive layer by a multi-step method according to a comparative example of the present invention.

Claims (15)

산용액을 이용하여 탄소나노튜브(CNT) 말단 및 표면에 히드록시기 및 카르복실기를 도입하는 산처리단계;An acid treatment step of introducing a hydroxyl group and a carboxyl group to the carbon nanotube (CNT) terminal and surface using an acid solution; 산처리된 탄소나노튜브(CNT)를 용매에 분산시키는 용매분산단계; Solvent dispersion step of dispersing the acid-treated carbon nanotubes (CNT) in a solvent; 실란컴파운드, 열경화형 수지, 광경화형 수지로 구성된 그룹 중 선택된 하나 이상의 바인더를 용해용매에 녹여 바인더 용액을 제조하는 단계; Preparing a binder solution by dissolving at least one binder selected from the group consisting of silane compound, thermosetting resin, and photocurable resin in a solvent; 바인더 용액을, 상기 용매분산단계에서 형성된 탄소나노튜브 분산액에 혼합시킴에 의해 탄소나노튜브(CNT)를 분산시켜 코팅액을 형성시키는 조성물 형성단계; 그리고, A composition forming step of dispersing carbon nanotubes (CNT) by mixing a binder solution with the carbon nanotube dispersion formed in the solvent dispersion step to form a coating solution; And, 탄소나노튜브/바인더 혼합코팅액을 기질에 도포하고 고화시키는 단계;를 포함하여 구성됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The carbon nanotube / binder mixed coating solution is applied to the substrate and solidified; Method for producing an antistatic coating film using a carbon nanotube, characterized in that it comprises a. 제1항에 있어서, 상기 기질은 유리, 수정, 글래스 웨이퍼, 실리콘 웨이퍼, 플라스틱으로 이루어진 군으로부터 선택된 1종으로 이루어진 것을 특징으로 하는 탄소나노튜브를 이용한 대전 방지 코팅막 제조방법.According to claim 1, wherein the substrate is glass, quartz, glass wafer, silicon wafer, a method for producing an antistatic coating film using carbon nanotubes, characterized in that consisting of one selected from the group consisting of plastics. 제1항에 있어서, 상기 코팅막은 스프레이, 딥코팅, 스핀코팅, 스크린코팅, 잉크젯프린팅, 패드프린팅, 나이프코팅, 키스코팅 및 그라비아코팅 중에서 어느 하나의 방법에 의해 이루어지는 것을 특징으로 하는 탄소나노튜브를 이용한 대전 방 지 코팅막 제조방법.According to claim 1, wherein the coating film is carbon nanotubes, characterized in that made by any one method of spraying, dip coating, spin coating, screen coating, inkjet printing, pad printing, knife coating, key coating and gravure coating Method of manufacturing antistatic coating film using. 제1항에 있어서, 상기 고화시키는 단계에서의 고화는 열 또는 자외선 경화 방법을 이용하여 고화됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the solidification in the solidifying step is solidified using a heat or ultraviolet curing method. 제1항에 있어서, 상기 산처리 단계에서 사용된 산용액은 질산, 염산, 황산, 과산화수소 및 이들의 혼합액 중에 선택된 1종인 것을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the acid solution used in the acid treatment step is one selected from nitric acid, hydrochloric acid, sulfuric acid, hydrogen peroxide and a mixture thereof. 제1항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 이들의 혼합물 중에서 선택한 1종으로 이루어짐을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the carbon nanotube is a single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, and an antistatic coating film production using carbon nanotubes, characterized in that consisting of one kind thereof Way. 제1항에 있어서, 상기 용매분산단계에서 사용된 탄소나노튜브 분산용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드로 이루어진 군으로부터 선택된 1종 이상의 것임을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the carbon nanotube dispersion solvent used in the solvent dispersion step is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydro Furan, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acryl Method for producing an antistatic coating film using carbon nanotubes, characterized in that at least one selected from the group consisting of ronitrile, octadecylamine, aniline, dimethyl sulfoxide. 제 7항에 있어서, 상기 조성물 형성단계에서 형성된 코팅액은,The method of claim 7, wherein the coating liquid formed in the composition forming step, 코팅액의 농도 조절을 위해 희석용매가 첨가됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.Method for producing an antistatic coating film using carbon nanotubes, characterized in that the diluent solvent is added to control the concentration of the coating solution. 제 8항에 있어서, 상기 희석용매는 아세톤, 메틸에틸케톤, 메틸알콜, 에틸알콜, 이소프로필알콜, 부틸알콜, 에틸렌글라이콜, 폴리에틸렌글라이콜, 테트라하이드로푸란, 디메틸포름아미드, 디메틸아세트아마이드, N-메틸-2-피롤리돈, 헥산, 사이클로헥사논, 톨루엔, 클로로포름, 증류수, 디클로로벤젠, 디메틸벤젠, 트리메틸벤젠, 피리딘, 메틸나프탈렌, 니트로메탄, 아크릴로니트릴, 옥타데실아민, 아닐린, 디메틸설폭사이드, 메틸렌클로라이드 및 이들의 혼합물 중에서 선택된 1종인 것을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 8, wherein the dilution solvent is acetone, methyl ethyl ketone, methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, ethylene glycol, polyethylene glycol, tetrahydrofuran, dimethylformamide, dimethylacetamide , N-methyl-2-pyrrolidone, hexane, cyclohexanone, toluene, chloroform, distilled water, dichlorobenzene, dimethylbenzene, trimethylbenzene, pyridine, methylnaphthalene, nitromethane, acrylonitrile, octadecylamine, aniline, Method for producing an antistatic coating film using carbon nanotubes, characterized in that one selected from dimethyl sulfoxide, methylene chloride and mixtures thereof. 제 9항에 있어서, 상기 분산용매 및 희석용매는 바인더 용해용매로 사용됨을 특징으로 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.10. The method of claim 9, wherein the dispersion solvent and the dilution solvent are used as a binder dissolving solvent. 제1항에 있어서, 상기 실란은 테트라알콕시실란류, 트리알콕시실란류, 디알콕시실란류 중 하나가 됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the silane is one of tetraalkoxysilanes, trialkoxysilanes, and dialkoxysilanes. 제1항에 있어서, 상기 탄소나노튜브는 외경이 30㎚ 미만인 것을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.The method of claim 1, wherein the carbon nanotubes have an outer diameter of less than 30 nm. 제 1항에 있어서, 상기 바인더는,The method of claim 1, wherein the binder, 탄소나노튜브와 바인더 혼합물 100 중량부에 대해 30 내지 99 중량부로 첨가됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법.Method for producing an antistatic coating film using carbon nanotubes, characterized in that added to 30 to 99 parts by weight based on 100 parts by weight of carbon nanotubes and binder mixture. 제 1항에 있어서, 상기 탄소나노튜브를 이용한 대전방지 코팅막은 탄소나노튜브가 바인더 물질로 감싸여져 코팅막 상부로 돌출되지 않는 것을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막 제조방법. The method of claim 1, wherein the antistatic coating film using the carbon nanotubes is carbon nanotubes are wrapped in a binder material, the antistatic coating film manufacturing method using carbon nanotubes, characterized in that do not protrude over the coating film. 제 1항 내지 제 14항 중 어느 하나의 항에 의한 방법으로 형성됨을 특징으로 하는 탄소나노튜브를 이용한 대전방지 코팅막.An antistatic coating film using carbon nanotubes, characterized in that formed by the method according to any one of claims 1 to 14.
KR1020070097971A 2007-09-28 2007-09-28 Fabrication method of ESD films using carbon nanotubes, and the ESD films KR101034863B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070097971A KR101034863B1 (en) 2007-09-28 2007-09-28 Fabrication method of ESD films using carbon nanotubes, and the ESD films

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070097971A KR101034863B1 (en) 2007-09-28 2007-09-28 Fabrication method of ESD films using carbon nanotubes, and the ESD films

Publications (2)

Publication Number Publication Date
KR20090032604A true KR20090032604A (en) 2009-04-01
KR101034863B1 KR101034863B1 (en) 2011-05-17

Family

ID=40759390

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070097971A KR101034863B1 (en) 2007-09-28 2007-09-28 Fabrication method of ESD films using carbon nanotubes, and the ESD films

Country Status (1)

Country Link
KR (1) KR101034863B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100113823A (en) * 2009-04-14 2010-10-22 삼성전자주식회사 Dispersible carbonnanotube, dispersible carbonnanotube-polymer composite and method for preparing the same
WO2011136478A2 (en) * 2010-04-27 2011-11-03 Korea Institute Of Science And Technology Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same
WO2014163236A1 (en) * 2013-04-01 2014-10-09 한국전기연구원 Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
KR20170081004A (en) * 2015-12-31 2017-07-11 엘지디스플레이 주식회사 Conductive Coated Composition Comprising The Same, Antistatic Film And Display Device Using The Same
CN107343505A (en) * 2016-05-06 2017-11-14 识骅科技股份有限公司 Has the CNT composite construction of Nano particles of silicon dioxide and Nano silver grain
CN112538193A (en) * 2020-12-16 2021-03-23 上海中镭新材料科技有限公司 Dual-mode carbon fiber, preparation method thereof and application thereof in PC/ABS alloy material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125401B1 (en) 2019-01-25 2020-06-23 (주)수양켐텍 Method for preparing carbon nano materials/PEDOT:PSS hybrid conductive polymer based on In-situ process, hybrid conductive polymer made therefrom and anti-static coating agent using the same
KR102294709B1 (en) 2019-12-05 2021-08-27 (주)수양켐텍 Method for preparing conductive polymer having dispersion stability and highly conductive, conductive polymer made therefrom and anti-static coating agent using the same
KR20230077223A (en) 2021-11-25 2023-06-01 한국화학연구원 Nanocomposite material for thermoelectric material including carbon nanotubes modified with polymerizable modifier, flexible thermoelectric material including same, and thermoelectric element including same
KR20240010980A (en) 2022-07-18 2024-01-25 한국전기연구원 Method for manufacturing antistatic coating solution using pretreated carbon nanotubes, antistatic coating solution and antistatic coating film produced therefrom
KR20240085767A (en) 2022-12-08 2024-06-17 (주)탑나노시스 Method for preparing High-transparent and High-hardness Antistatic Coating Solution and Antistatic Coating Solution prepared by the Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947702B1 (en) * 2003-02-26 2010-03-16 삼성전자주식회사 Method for forming a patterned film and a polymeric complex of surface-modified carbon nanotubes having polymerizable moiety
KR20040106947A (en) * 2003-06-05 2004-12-20 삼성전자주식회사 Method for preparing a Conductive Film and a Pattern using Metallic Nano particle and Carbon Nanotube
KR100681268B1 (en) * 2004-04-02 2007-02-12 주식회사 디피아이 솔루션스 High Concentrated Aqueous Carbon Nanotube Dispersion and Process for preparing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100113823A (en) * 2009-04-14 2010-10-22 삼성전자주식회사 Dispersible carbonnanotube, dispersible carbonnanotube-polymer composite and method for preparing the same
WO2011136478A2 (en) * 2010-04-27 2011-11-03 Korea Institute Of Science And Technology Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same
WO2011136478A3 (en) * 2010-04-27 2012-03-01 Korea Institute Of Science And Technology Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same
KR101154482B1 (en) * 2010-04-27 2012-06-13 한국과학기술연구원 Fabrication method of transparent antistatic films using graphene and the transparent antistatic films using the same
WO2014163236A1 (en) * 2013-04-01 2014-10-09 한국전기연구원 Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
US20160009934A1 (en) * 2013-04-01 2016-01-14 Korea Electrotechnology Research Institute Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
US9873811B2 (en) * 2013-04-01 2018-01-23 Korea Electrotechnology Research Institute Highly conductive material formed by hybridization of metal nanomaterial and carbon nanomaterial having higher-order structure due to multiple hydrogen bonding, and manufacturing method therefor
KR20170081004A (en) * 2015-12-31 2017-07-11 엘지디스플레이 주식회사 Conductive Coated Composition Comprising The Same, Antistatic Film And Display Device Using The Same
US10418147B2 (en) * 2015-12-31 2019-09-17 Lg Display Co., Ltd. Conductive coating liquid composition, and an antistatic film and a display device using the same
CN107343505A (en) * 2016-05-06 2017-11-14 识骅科技股份有限公司 Has the CNT composite construction of Nano particles of silicon dioxide and Nano silver grain
CN112538193A (en) * 2020-12-16 2021-03-23 上海中镭新材料科技有限公司 Dual-mode carbon fiber, preparation method thereof and application thereof in PC/ABS alloy material

Also Published As

Publication number Publication date
KR101034863B1 (en) 2011-05-17

Similar Documents

Publication Publication Date Title
KR101034863B1 (en) Fabrication method of ESD films using carbon nanotubes, and the ESD films
KR101042001B1 (en) Conductive and superhydrophobic coatings, and its fabrication method
Giardi et al. Inkjet printed acrylic formulations based on UV-reduced graphene oxide nanocomposites
CN100554138C (en) The manufacture method of carbon nano tube device and this device and CNT transfer article
US10590294B2 (en) Methods for preparation of concentrated graphene ink compositions and related composite materials
JP6537553B2 (en) Large scale production of graphene oxide for industrial applications
KR100869163B1 (en) Fabrication method of transparent conductive films containing carbon nanotubes and polymer binders and the transparent conductive films
TWI519616B (en) Carbon nanotube based transparent conductive films and methods for preparing and patterning the same
US7060241B2 (en) Coatings comprising carbon nanotubes and methods for forming same
Lu et al. Nanolithography of single-layer graphene oxide films by atomic force microscopy
EP1825038B1 (en) Aqueous carbon nanotube applicator liquids and methods for producing applicator liquids thereof
TW201209114A (en) Conductive paint composition and method for manufacturing conductive film using the same
WO2011136478A2 (en) Method for preparing transparent antistatic films using graphene and transparent antistatic films prepared by the same
US20070065570A1 (en) Method of producing a substrate having areas of different hydrophilicity and/or oleophilicity on the same surface
EP2636710B1 (en) Carbon nanofiber dispersion liquid, coating composition, and paste composition
CN103650067A (en) Method for forming conductive film, conductive film, insulation method, and insulation film
US8834746B1 (en) Nanostructured compositions containing nanoparticles and carbon nanotubes and methods for production thereof
Mionić et al. Carbon nanotubes–SU8 composite for flexible conductive inkjet printable applications
US20130017374A1 (en) Carbon nanotubes nanocomposites for microfabrication applications
KR101807798B1 (en) Carbon nanotube dispersion solution and method of making same
US20110083886A1 (en) Method of manufacturing electrode substrate
KR100829841B1 (en) Method for Manufacturing the Transparent Conductive Electrode Using Carbon Nanotube Films
Bouhamed et al. Customizing hydrothermal properties of inkjet printed sensitive films by functionalization of carbon nanotubes
CN105960684A (en) Conductive laminate, method for producing conductive laminate, touch panel and touch switch
JP2016126847A (en) Production method of transparent conductive film and transparent conductive laminate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090611

Effective date: 20110128

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170501

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190507

Year of fee payment: 9