KR20090025439A - Oxygen sensor diagnosis method in an engine - Google Patents

Oxygen sensor diagnosis method in an engine Download PDF

Info

Publication number
KR20090025439A
KR20090025439A KR1020070090300A KR20070090300A KR20090025439A KR 20090025439 A KR20090025439 A KR 20090025439A KR 1020070090300 A KR1020070090300 A KR 1020070090300A KR 20070090300 A KR20070090300 A KR 20070090300A KR 20090025439 A KR20090025439 A KR 20090025439A
Authority
KR
South Korea
Prior art keywords
oxygen sensor
sum
max
real
engine
Prior art date
Application number
KR1020070090300A
Other languages
Korean (ko)
Inventor
장정호
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020070090300A priority Critical patent/KR20090025439A/en
Publication of KR20090025439A publication Critical patent/KR20090025439A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

An engine oxygen sensor diagnosis method is provided to determine normality and abnormality of an oxygen sensor based on average diagnosis index dividing sum thickness real section with sum diagnostic standard time. An engine oxygen sensor diagnosis method comprises: a step for calculating: a corresponding revolution per minute; a thickness section(T_NOR_RICH) of a normal oxygen sensor at load; a diagnostic standard time(T_MAX) which is calculated by adding response delay time(T_DLY) of the oxygen sensor; and a sum diagnostic standard time(SUM_T_MAX) and a sum thickness real section(SUM_T_REAL) respectively; a step for calculating the average diagnosis index by dividing the sum thickness real section with the sum diagnostic standard time; and a step for determining normality and abnormality of the oxygen sensor according to whether the average diagnosis index exceeds 1 or not.

Description

엔진의 산소센서 진단방법{Oxygen Sensor Diagnosis Method in an Engine}Oxygen Sensor Diagnosis Method in an Engine

본 발명은 엔진의 산소센서 진단방법에 관한 것으로서, 보다 상세하게는 산소센서의 출력 주기를 이용하여 산소센서의 정상 및 비정상 여부를 판단하는 기술에 관한 것이다.The present invention relates to a method for diagnosing an oxygen sensor of an engine, and more particularly, to a technology for determining whether an oxygen sensor is normal or abnormal using an output cycle of an oxygen sensor.

차량은 환경 규제 등에 대응하기 위해 자기 진단 시스템(OBD)을 갖춰야 하며, 이러한 자기 진단 시스템은 배기가스와 관련된 부품들이 정상적으로 작동하는지에 대하여 진단하여 운전자에게 알려주도록 되어 있는데, 특히 배기가스 관련 부품들 중 산소센서는 엔진의 공기비 제어에 관련된 것으로서 배기가스에 미치는 영향이 크므로 매우 중요하다.The vehicle should be equipped with a self-diagnosis system (OBD) in order to respond to environmental regulations, and this self-diagnosis system is to diagnose and inform the driver whether the parts related to exhaust gas are operating normally. Oxygen sensor is related to the air ratio control of the engine and is very important because it has a large impact on the exhaust gas.

산소센서의 출력은 공기비 1을 중심으로 상하로 주기적으로 움직이며, 그 주기는 엔진회전수와 부하(흡입공기량)에 따라 변화되며, 각 엔진회전수와 부하에 대하여는 일정한 주기를 나타낸다.The output of the oxygen sensor periodically moves up and down around the air ratio 1, and the cycle varies depending on the engine speed and the load (intake air volume), and shows a constant cycle for each engine speed and the load.

따라서, 산소센서가 비정상인 경우에는 정상적인 경우의 주기보다 늘어난 주기로 산소센서의 출력이 발생되므로, 이와 같은 특성을 이용하여 산소센서의 자기진단을 실시한다.Therefore, when the oxygen sensor is abnormal, since the output of the oxygen sensor is generated at a period longer than that in the normal case, the self-diagnosis of the oxygen sensor is performed using such characteristics.

도 1을 참조하면, 하측에는 공기비 1을 기준으로 한 산소센서의 출력신호가 도시되어 있는데, a는 정상 산소센서의 농후구간(T_NOR_RICH), b는 정상 산소센서의 희박구간(T_NOR_LEAN), c는 오류판정의 기준이 되는 산소센서의 응답지연시간(T_DLY), d는 a+c로서 산소센서 진단의 기준시간(T_MAX)을 나타낸다.Referring to FIG. 1, an output signal of an oxygen sensor based on an air ratio 1 is shown below, where a is a rich section (T_NOR_RICH) of a normal oxygen sensor, b is a lean section (T_NOR_LEAN), and c is a normal oxygen sensor. The response delay time (T_DLY) of the oxygen sensor, which is the standard of error determination, d is a + c, and represents the reference time (T_MAX) of the oxygen sensor diagnosis.

여기서, 산소센서진단지수(VLS_CYC_AFR)는 산소센서의 농후구간만을 고려하여 다음의 수학식 1에 의해 계산될 수 있다.Here, the oxygen sensor diagnostic index (VLS_CYC_AFR) may be calculated by the following equation 1 considering only the rich section of the oxygen sensor.

Figure 112007064757471-PAT00001
Figure 112007064757471-PAT00001

여기서, T_REAL은 실제로 측정되는 산소센서의 농후구간을 나타낸다.Here, T_REAL represents the rich section of the oxygen sensor actually measured.

종래에는 상기한 바와 같은 방법으로 산소센서진단지수를 일정회수 이상 계산하여 평균을 취한 평균진단지수(VLS_CYC_AFR_MV)를 구하고, 그 평균진단지수(VLS_CYC_AFR_MV)가 1 이상이면 산소센서가 비정상인 것으로 진단하도록 하고 있다.In the related art, the oxygen sensor diagnosis index is calculated by a predetermined number of times or more, and the average diagnosis index (VLS_CYC_AFR_MV) is calculated and averaged. If the average diagnosis index (VLS_CYC_AFR_MV) is 1 or more, the oxygen sensor is diagnosed as abnormal. have.

즉, 도 2를 참조하면, 카운터를 1씩 증가시키면서 산소센서가 진단조건을 만족할 때마다, 산소센서진단지수를 계산하여 이를 누적한 누적진단지수를 구하고, 카운터가 목표치에 도달하면 카운터로 누적진단지수를 나누어서 상기 평균진단지수(VLS_CYC_AFR_MV)를 구하여 1이 넘는지에 따라 정상 비정상을 판단하는 것이다.That is, referring to FIG. 2, each time the oxygen sensor satisfies the diagnostic condition while increasing the counter by 1, the oxygen sensor diagnosis index is calculated and the cumulative diagnosis index is calculated. When the counter reaches the target value, the cumulative diagnosis is performed by the counter. The average diagnostic index (VLS_CYC_AFR_MV) is obtained by dividing the exponent to determine the normal abnormality according to whether or not it is more than one.

여기서, 상기 정상 산소센서의 농후구간(T_NOR_RICH)은 일정 엔진회전수와 부하에 대해서는 일정한 값이지만 엔진회전수와 부하의 변화에 따라 변화하는 값이고, 상기 응답지연시간(T_DLY)은 배기가스 규제치를 고려하여 엔진회전수와 부하의 변화에 무관하게 일정하게 정해지는 값이다.Here, the rich section T_NOR_RICH of the normal oxygen sensor is a constant value for a constant engine speed and load, but changes according to the change in engine speed and load, and the response delay time T_DLY is an exhaust gas regulation value. In consideration of the change in the engine speed and the load, it is fixed.

따라서, 엔진회전수와 부하가 변화하는 상황에서 측정된 실제 산소센서의 농후구간(T_REAL)으로 상기 산소센서진단지수(VLS_AFR_CYC)를 각각 구하면, 상기 진단기준시간(T_MAX)에 대한 정상 산소센서의 농후구간(T_NOR_RICH)의 비율이 각 산소센서진단지수(VLS_AFR_CYC) 산출시마다 변화하여, 동일한 산소센서의 지연에 대하여 기준이 되는 진단기준시간(T_MAX)의 크고 작음에 따라 각각의 산소센서진단지수(VLS_AFR_CYC)가 다르게 나타나고 평균진단지수(VLS_CYC_AFR_MV)가 영향을 받게 된다. Therefore, when the oxygen sensor diagnosis index (VLS_AFR_CYC) is obtained from the rich section T_REAL of the actual oxygen sensor measured under the condition that the engine speed and the load are changed, the rich oxygen sensor's richness with respect to the diagnosis reference time T_MAX is obtained. The ratio of the section T_NOR_RICH changes for each calculation of the oxygen sensor diagnosis index VLS_AFR_CYC, and each oxygen sensor diagnosis index VLS_AFR_CYC is large and small as the diagnosis reference time T_MAX becomes the reference for the delay of the same oxygen sensor. Appears differently and the average diagnostic index (VLS_CYC_AFR_MV) is affected.

즉, 차량에서의 진단예가 다음 표 1과 같다면,That is, if the diagnosis example in the vehicle is as shown in Table 1 below,

부하(공기량)Load (air volume) 100100 150150 200200 250250 300300 350350 T_MAX(s)T_MAX (s) 0.980.98 0.670.67 0.560.56 0.460.46 0.390.39 0.390.39 T_REAL(s)T_REAL (s) 0.780.78 0.470.47 0.460.46 0.560.56 0.490.49 0.490.49 T_REAL-T_MAX(s)T_REAL-T_MAX (s) -0.15-0.15 -0.15-0.15 -0.15-0.15 0.10.1 0.10.1 0.10.1 VLS_CYC_AFRVLS_CYC_AFR 0.8469390.846939 0.7761190.776119 0.7321430.732143 1.2173911.217391 1.256411.25641 1.256411.25641

평균진단지수(VLS_CYC_AFR_MV) = ΣVLS_CYC_AFR/6 = 1.014 >1로서, 산소센서가 비정상인 것으로 판정되게 된다.As the average diagnostic index (VLS_CYC_AFR_MV) = ΣVLS_CYC_AFR / 6 = 1.014> 1, it is determined that the oxygen sensor is abnormal.

그러나, 실제로 개별 산소센서진단지수(VLS_CYC_AFR)가 1을 넘는 경우는 3번이고 각각의 경우 T_REAL과 T_MAX의 차는 0.1s 이다. 나머지 3번은 산소센서진단지수(VLS_CYC_AFR)가 1을 넘지 않았으며 진단기준시간(T_MAX)보다 0.15s 작다.However, in practice, when the individual oxygen sensor diagnosis index (VLS_CYC_AFR) exceeds 1, it is 3 times and the difference between T_REAL and T_MAX is 0.1s in each case. The remaining three times, the oxygen sensor diagnostic index (VLS_CYC_AFR) did not exceed 1 and is 0.15s smaller than the diagnostic reference time (T_MAX).

이는 산소센서의 동일한 응답 지연에 대해 엔진 운전 영역별 산소센서진단지수(VLS_CYC_AFR)가 다르게 나타나는 것을 말하며, 실제적인 산소센서 응답 지연시간이 전체적으로 보면, Σ(T_REAL-T_MAX) = -0.15s 임에도 불구하고 산소센서를 비정상으로 판정하는 것이다.This means that the oxygen sensor diagnosis index (VLS_CYC_AFR) for each engine operation region is different for the same response delay of the oxygen sensor, and although the actual oxygen sensor response delay time is Σ (T_REAL-T_MAX) = -0.15s The oxygen sensor is determined to be abnormal.

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 산소센서의 정상 비정상 여부를 판정하기 위한 산소센서진단지수의 평균진단지수를 보다 적절히 산출할 수 있도록 함으로써, 엔진의 운전 영역 변화에 따른 개별 산소센서진단지수의 불균일성 문제를 해결하여, 산소센서의 응답지연에 대해 보다 적절한 진단으로 산소센서의 오진단율을 저감시킬 수 있도록 한 엔진의 산소센서 진단방법을 제공함에 그 목적이 있다.The present invention has been made in order to solve the above problems, it is possible to more properly calculate the average diagnostic index of the oxygen sensor diagnostic index for determining whether the oxygen sensor is abnormal abnormality, according to the change in the operating area of the engine The purpose of the present invention is to provide a method for diagnosing the oxygen sensor of an engine to solve the problem of non-uniformity of the individual oxygen sensor diagnosis index and to reduce the error rate of the oxygen sensor by more appropriate diagnosis of the response delay of the oxygen sensor.

상기한 바와 같은 목적을 달성하기 위한 본 발명 엔진의 산소센서 진단방법은 Oxygen sensor diagnostic method of the engine of the present invention for achieving the above object is

적어도 2회 이상 특정된 회수만큼 측정된 산소센서의 출력신호들을 바탕으로 산소센서의 정상 비정상 여부를 판정하는 엔진의 산소센서 진단방법에 있어서,In the method of diagnosing the oxygen sensor of the engine for determining whether the oxygen sensor is abnormal abnormally based on the output signals of the oxygen sensor measured at least two specified times,

해당 엔진회전수와 부하에서의 정상적인 산소센서의 농후구간(T_NOR_RICH)과 오류판정의 기준이 되는 산소센서의 응답지연시간(T_DLY)을 더하여 구해지는 진단기준시간(T_MAX)과, 실제로 측정되는 산소센서의 농후구간(T_REAL)을 상기 특정 회수만큼 각각 누적하여 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계와;Oxygen sensor measured and T_MAX obtained by adding T_NOR_RICH of the normal oxygen sensor at the engine speed and load, and response delay time (T_DLY) of the oxygen sensor as the basis of error determination Accumulating the rich section T_REAL by the specific number of times and obtaining the cumulative diagnostic reference time SUM_T_MAX and the cumulative actual rich section SUM_T_REAL, respectively;

상기 누적실제농후구간(SUM_T_REAL)을 누적진단기준시간(SUB_T_MAX)로 나누어 평균진단지수를 구하는 단계와;Obtaining an average diagnosis index by dividing the cumulative actual rich section SUM_T_REAL by a cumulative diagnosis reference time SUB_T_MAX;

상기 평균진단지수가 1을 초과하는지의 여부에 따라 산소센서의 정상 비정상 여부를 판정하는 단계를 포함하여 구성된다.And determining whether the oxygen sensor is abnormal abnormally according to whether the average diagnostic index is greater than one.

상기 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계는 엔진회전수와 부하가 급격히 변화하지 않는 산소센서진단조건을 만족하는 경우에만 수행되는 것이 바람직하다.Obtaining the cumulative diagnostic reference time (SUM_T_MAX) and the cumulative actual rich section (SUM_T_REAL), respectively, is preferably performed only when the engine speed and the load satisfy an oxygen sensor diagnosis condition that does not change rapidly.

산소센서의 정상 비정상 여부를 판정하기 위한 산소센서진단지수의 평균진단지수를 보다 적절히 산출할 수 있도록 함으로써, 엔진의 운전 영역 변화에 따른 개별 산소센서진단지수의 불균일성 문제를 해결하여, 산소센서의 응답지연에 대해 보다 적절한 진단으로 산소센서의 오진단율을 저감시킬 수 있도록 한다.The oxygen sensor response index can be solved by solving the problem of non-uniformity of the individual oxygen sensor diagnosis index according to the change of the engine operating area by calculating the average diagnosis index of the oxygen sensor diagnosis index to determine the abnormal abnormality of the oxygen sensor. A more appropriate diagnosis of the delay can reduce the false positive rate of the oxygen sensor.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 2를 참조하면, 본 발명 실시예는 해당 엔진회전수와 부하에서의 정상적인 산소센서의 농후구간(T_NOR_RICH)과 오류판정의 기준이 되는 산소센서의 응답지연시간(T_DLY)을 더하여 구해지는 진단기준시간(T_MAX)과, 실제로 측정되는 산소센서의 농후구간(T_REAL)을 상기 특정 회수만큼 각각 누적하여 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계와;2, an exemplary embodiment of the present invention is a diagnostic criterion obtained by adding a rich section T_NOR_RICH of a normal oxygen sensor at a corresponding engine speed and a load and a response delay time T_DLY of an oxygen sensor serving as an error determination standard. Accumulating the time T_MAX and the rich section T_REAL of the oxygen sensor actually measured by the specific number, respectively, to obtain the cumulative diagnostic reference time SUM_T_MAX and the cumulative actual rich section SUM_T_REAL, respectively;

상기 누적실제농후구간(SUM_T_REAL)을 누적진단기준시간(SUB_T_MAX)로 나누어 평균진단지수를 구하는 단계와;Obtaining an average diagnosis index by dividing the cumulative actual rich section SUM_T_REAL by a cumulative diagnosis reference time SUB_T_MAX;

상기 평균진단지수가 1을 초과하는지의 여부에 따라 산소센서의 정상 비정상 여부를 판정하는 단계를 포함하여 구성된다.And determining whether the oxygen sensor is abnormal abnormally according to whether the average diagnostic index is greater than one.

여기서, 상기 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계는 엔진회전수와 부하가 급격히 변화하지 않는 산소센서진단조건을 만족하는 경우에만 수행되도록 하였다.Here, the step of obtaining the cumulative diagnosis reference time (SUM_T_MAX) and the cumulative actual rich section (SUM_T_REAL), respectively, is performed only when the engine speed and the load satisfy the oxygen sensor diagnosis condition that does not change rapidly.

즉, 카운터를 사용하여 루프를 돌면서 카운터가 특정회수, 대략 100회 이상 수백회의 범위로 정해지는 회수에 도달할 때까지, 엔진회전수와 부하의 조건이 산소센서진단조건을 만족하는 경우에만, 상기 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하여 나눔으로써, 산소센서의 정상 여부를 판정할 수 있는 평균진단지수를 구하도록 한 것이다.That is, the engine rotation speed and the load condition satisfy the oxygen sensor diagnosis condition until the counter reaches a certain number of times, the number of which is set in the range of approximately 100 or more hundreds while using the counter. The cumulative diagnostic reference time (SUM_T_MAX) and the cumulative actual rich section (SUM_T_REAL) are obtained and divided, respectively, to obtain an average diagnostic index for determining the normality of the oxygen sensor.

상기 배경기술에서 설명한 표 1의 예를 본 발명에 따라 판정해보면, ΣT_REAL= 3.3s, ΣT_MAX=3.45s 이므로, VLS_CYC_AFR_MV= ΣT_REAL /ΣT_MAX= 3.3/3.45 = 0.956 <1 로서, 산소센서는 정상인 것으로 진단된다.When the example of Table 1 described in the background art is judged according to the present invention, since ΣT_REAL = 3.3s and ΣT_MAX = 3.45s, VLS_CYC_AFR_MV = ΣT_REAL /ΣT_MAX=3.3/3.45 = 0.956 <1, and the oxygen sensor is diagnosed as normal. .

즉, 종래에 종래 기술에서 ΣT_REAL < ΣT_MAX이고, 6번 진단 중에 단지 3번만 T_REAL이 T_MAX보다 컸음에도 불구하고 산소센서를 비정상으로 판단하였던 것과 달리, 본 기술에서는 산소센서를 정상으로 판단하였으며, T_REAL-T_MAX 값을 고려할 때, 진단 지수 값도 적절하다고 볼 수 있다.In other words, in the prior art, ΣT_REAL <ΣT_MAX, and only 6 times during the diagnosis, T_REAL was greater than T_MAX, but the oxygen sensor was determined to be abnormal. Considering the T_MAX value, the diagnostic index value is also appropriate.

물론, 비정상 산소센서의 경우에는, T_REAL은 T_MAX에 비해 매번 큰 값을 가 지므로, 누적된 T_REAL은 누적된 T_MAX에 비해 크게 되고, VLS_CYC_AFR_MV는 1보다 크므로 정상적으로 산소센서가 비정상이라고 판정하게 되므로, 비정상 산소 센서 진단에는 기존과 동등한 수준의 결과를 가져온다. 즉, 본 발명은 정상 산소센서의 오진단율을 저감시킨다.Of course, in the case of the abnormal oxygen sensor, since T_REAL has a larger value each time than T_MAX, the accumulated T_REAL is larger than the accumulated T_MAX, and VLS_CYC_AFR_MV is larger than 1, so it is determined that the oxygen sensor is abnormal normally. Oxygen sensor diagnostics have equivalent results. That is, the present invention reduces the error rate of diagnosis of the normal oxygen sensor.

도 1은 종래 기술에 의한 엔진의 산소센서 진단방법을 설명한 순서도,1 is a flowchart illustrating a method for diagnosing an oxygen sensor of an engine according to the prior art;

도 2는 본 발명에 따른 엔진의 산소센서 진단방법을 설명한 순서도이다. 2 is a flowchart illustrating a method of diagnosing an oxygen sensor of an engine according to the present invention.

Claims (2)

적어도 2회 이상 특정된 회수만큼 측정된 산소센서의 출력신호들을 바탕으로 산소센서의 정상 비정상 여부를 판정하는 엔진의 산소센서 진단방법에 있어서,In the method of diagnosing the oxygen sensor of the engine for determining whether the oxygen sensor is abnormal abnormally based on the output signals of the oxygen sensor measured at least two specified times, 해당 엔진회전수와 부하에서의 정상적인 산소센서의 농후구간(T_NOR_RICH)과 오류판정의 기준이 되는 산소센서의 응답지연시간(T_DLY)을 더하여 구해지는 진단기준시간(T_MAX)과, 실제로 측정되는 산소센서의 농후구간(T_REAL)을 상기 특정 회수만큼 각각 누적하여 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계와;Oxygen sensor measured and T_MAX obtained by adding T_NOR_RICH of the normal oxygen sensor at the engine speed and load, and response delay time (T_DLY) of the oxygen sensor as the basis of error determination Accumulating the rich section T_REAL by the specific number of times and obtaining the cumulative diagnostic reference time SUM_T_MAX and the cumulative actual rich section SUM_T_REAL, respectively; 상기 누적실제농후구간(SUM_T_REAL)을 누적진단기준시간(SUB_T_MAX)로 나누어 평균진단지수를 구하는 단계와;Obtaining an average diagnosis index by dividing the cumulative actual rich section SUM_T_REAL by a cumulative diagnosis reference time SUB_T_MAX; 상기 평균진단지수가 1을 초과하는지의 여부에 따라 산소센서의 정상 비정상 여부를 판정하는 단계Determining whether the oxygen sensor is abnormal or not according to whether the average diagnostic index is greater than one; 를 포함하여 구성된 것을 특징으로 하는 엔진의 산소센서 진단방법.Oxygen sensor diagnostic method of the engine, characterized in that configured to include. 청구항 1에 있어서,The method according to claim 1, 상기 누적진단기준시간(SUM_T_MAX)과 누적실제농후구간(SUM_T_REAL)을 각각 구하는 단계는 엔진회전수와 부하가 급격히 변화하지 않는 산소센서진단조건을 만족하는 경우에만 수행되는 것The step of calculating the cumulative diagnostic reference time (SUM_T_MAX) and the cumulative actual rich section (SUM_T_REAL), respectively, is performed only when the engine speed and the load satisfy an oxygen sensor diagnosis condition that does not change rapidly. 을 특징으로 하는 엔진의 산소센서 진단방법.Oxygen sensor diagnostic method of the engine, characterized in that.
KR1020070090300A 2007-09-06 2007-09-06 Oxygen sensor diagnosis method in an engine KR20090025439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070090300A KR20090025439A (en) 2007-09-06 2007-09-06 Oxygen sensor diagnosis method in an engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070090300A KR20090025439A (en) 2007-09-06 2007-09-06 Oxygen sensor diagnosis method in an engine

Publications (1)

Publication Number Publication Date
KR20090025439A true KR20090025439A (en) 2009-03-11

Family

ID=40693767

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070090300A KR20090025439A (en) 2007-09-06 2007-09-06 Oxygen sensor diagnosis method in an engine

Country Status (1)

Country Link
KR (1) KR20090025439A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448735B1 (en) * 2009-06-12 2014-10-08 현대자동차 주식회사 A catalyst diagnosis system of vehicle and

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448735B1 (en) * 2009-06-12 2014-10-08 현대자동차 주식회사 A catalyst diagnosis system of vehicle and

Similar Documents

Publication Publication Date Title
US7826962B2 (en) Electronic control apparatus
US11428143B2 (en) Method for operating an internal combustion engine
JP4490913B2 (en) Method for inspecting at least three sensors for detecting measurement variables within the range of an internal combustion engine
US7455048B2 (en) Method for operating an internal combustion engine, and a control device therefor
US7418853B2 (en) Process for diagnosis of a lambda probe associated with the exhaust gas catalytic converter of an internal combustion engine
JP3386824B2 (en) Accelerator or throttle valve operating position detector
JPH06323960A (en) Misfire detection system
JP4369872B2 (en) Method and apparatus for diagnosing dynamic characteristics of lambda sensor used for lambda control for each cylinder
JP2017218975A (en) Degradation diagnosis device
US9091615B2 (en) Method for monitoring the functional software of control devices in a control device system
EP2910759A1 (en) Torque control device for vehicle
DE102004029301A1 (en) Reference voltage diagnosis for use in a control unit for motor vehicles
JP2003020989A (en) Abnormality diagnosing device of air/fuel ratio sensor
US7139658B2 (en) Apparatus detecting abnormality of exhaust system of internal combustion engine
KR20090025439A (en) Oxygen sensor diagnosis method in an engine
CN103471855B (en) Method and system for diagnosing a functional unit connected to a control unit in a motor vehicle
JP6699301B2 (en) Abnormality detection device, abnormality detection method, and abnormality detection system
US6401452B1 (en) Catalytic monitoring method
WO2020008842A1 (en) Control device
US7275361B2 (en) Control system for gas turbine engines
JP2003193827A (en) Monitoring method for pressure signal, monitoring device for pressure signal, computer program, and computer program product
JP5603825B2 (en) Air-fuel ratio sensor diagnostic device
JP2016223415A (en) Control device for internal combustion engine
KR20170127108A (en) Diagnosis method of efficiency for rail pressure control valve
JPH09159578A (en) Performance diagnostic device for intake air volume detection device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination