JP2003020989A - Abnormality diagnosing device of air/fuel ratio sensor - Google Patents

Abnormality diagnosing device of air/fuel ratio sensor

Info

Publication number
JP2003020989A
JP2003020989A JP2001207947A JP2001207947A JP2003020989A JP 2003020989 A JP2003020989 A JP 2003020989A JP 2001207947 A JP2001207947 A JP 2001207947A JP 2001207947 A JP2001207947 A JP 2001207947A JP 2003020989 A JP2003020989 A JP 2003020989A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
ratio sensor
fuel
change amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001207947A
Other languages
Japanese (ja)
Inventor
Sueaki Inoue
季明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001207947A priority Critical patent/JP2003020989A/en
Publication of JP2003020989A publication Critical patent/JP2003020989A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Testing Of Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an abnormality diagnosing device of an air/fuel ratio sensor capable of diagnosing the abnormality precisely in a short period of time. SOLUTION: The abnormality diagnosis routine is executed during the fuel recovery operation after the fuel cut operation. The quantity ΔA/F of change of the air/fuel ratio during a prescribed change quantity calculation period ΔT is calculated one by one (S15) based on the output of the air/fuel ratio sensor (S11), and the maximum value ΔA/Fmax of a plurality of these quantities of change and a previously set criterion value ΔA/Fsaf are compared (S19). When the maximum value is smaller than the criterion value, it is determined that the air/fuel ratio sensor is abnormal (S24).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガスの空燃比
を検出する空燃比センサを備えた内燃機関に関し、特
に、空燃比センサの過度の劣化や断線等の異常の有無を
診断する異常診断装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine equipped with an air-fuel ratio sensor for detecting the air-fuel ratio of exhaust gas, and more particularly to an abnormality diagnosis for diagnosing whether the air-fuel ratio sensor has abnormalities such as excessive deterioration or disconnection. Regarding the device.

【0002】[0002]

【従来の技術】例えば三元触媒を用いた内燃機関にあっ
ては、空燃比を高精度に制御する必要があるので、機関
の排気通路に空燃比センサを配設し、排気ガス中の空燃
比に応じた空燃比センサの出力に基づいて、吸入空気量
や燃料供給量をフィードバック制御している。ここで、
空燃比センサが断線していたり過度に劣化していると、
当然のことながら正常な燃料供給量の制御が不可能とな
り、排気成分の悪化や燃費の低下等を来す虞がある。そ
して、この種の異常は、運転性の悪化を生じない範囲で
は一般的に運転者が気付き難い。そこで、このような空
燃比センサの異常を検出する装置が従来から種々提案さ
れている。
2. Description of the Related Art For example, in an internal combustion engine using a three-way catalyst, it is necessary to control the air-fuel ratio with high accuracy. Therefore, an air-fuel ratio sensor is provided in the exhaust passage of the engine so that the air-fuel ratio in the exhaust gas is reduced. The intake air amount and the fuel supply amount are feedback-controlled based on the output of the air-fuel ratio sensor according to the fuel ratio. here,
If the air-fuel ratio sensor is broken or excessively deteriorated,
As a matter of course, normal control of the fuel supply amount becomes impossible, which may lead to deterioration of exhaust components and deterioration of fuel consumption. And, this kind of abnormality is generally difficult for the driver to notice within a range in which drivability is not deteriorated. Therefore, various types of devices for detecting such abnormality of the air-fuel ratio sensor have been conventionally proposed.

【0003】例えば特開昭60−233343号公報に
は、燃料カット開始から一定時間経過した後に、酸素セ
ンサ(空燃比センサ)の出力電流値を故障判定レベルと
比較することで、酸素センサの異常の有無を診断する技
術が記載されている。
For example, in Japanese Patent Laid-Open No. 60-233343, an abnormality of the oxygen sensor is obtained by comparing the output current value of the oxygen sensor (air-fuel ratio sensor) with a failure determination level after a certain time has elapsed from the start of fuel cut. A technique for diagnosing the presence or absence of is described.

【0004】また、特開平11−326137号公報に
は、目標空燃比や吸入空気量を調整して排気の空燃比を
意図的にリッチ側又はリーン側へ変更し、異常を判定す
る技術が記載されている。
Further, Japanese Unexamined Patent Publication No. 11-326137 discloses a technique for adjusting the target air-fuel ratio and the intake air amount to intentionally change the exhaust air-fuel ratio to the rich side or the lean side to determine an abnormality. Has been done.

【0005】更に、特開平8−177575号公報に
は、燃料カット後における空燃比センサ出力の変化率を
一つ求め、この変化率と異常判定値とを比較し、変化率
が異常判定値を越えている場合に異常と判定する技術が
記載されている。
Further, in Japanese Unexamined Patent Publication No. 8-177575, one change rate of the output of the air-fuel ratio sensor after fuel cut is obtained, and this change rate is compared with an abnormality determination value. A technique for determining an abnormality when the value exceeds the limit is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
60−233343号公報の診断方法では、燃料カット
開始時のセンサ電流値によって、センサ電流が故障判定
レベルに到達するまでの時間が変化するために、正確に
診断できないことがあり、診断精度が低いという問題が
ある。また、このように燃料カットから所定時間経過後
のセンサ出力電流又はセンサ出力変化率を判定してセン
サの応答性を自己診断する形式のものでは、運転条件に
よる排気ガスの応答遅れに起因して、診断精度が低くな
ることがある。
However, in the diagnostic method disclosed in Japanese Patent Laid-Open No. 60-233343, the time until the sensor current reaches the failure determination level changes depending on the sensor current value at the start of fuel cut. In addition, there is a problem that the diagnosis cannot be performed accurately and the diagnostic accuracy is low. In addition, in the case of the type that self-diagnoses the response of the sensor by determining the sensor output current or the sensor output change rate after a lapse of a predetermined time from the fuel cut in this way, it is caused by the exhaust gas response delay due to operating conditions. , The diagnostic accuracy may decrease.

【0007】また、特開平11−326137号公報の
技術では、異常診断を行うために意図的に燃料噴射量や
空燃比を変化させているために、異常診断時における排
気エミッション等の悪化を免れない。
Further, in the technique disclosed in Japanese Unexamined Patent Publication No. 11-326137, since the fuel injection amount and the air-fuel ratio are intentionally changed in order to carry out the abnormality diagnosis, deterioration of exhaust emission and the like during the abnormality diagnosis is avoided. Absent.

【0008】更に、特開平8−177575号公報の技
術では、燃料カット前の空燃比の状態つまり燃料カット
開始時のセンサ出力の影響をあまり受けることがないの
で、上記特開昭60−233343号公報のものに比し
て、正確な診断を行うことができるものの、唯一の空燃
比の変化率から異常を診断しているために、この変化率
を算出する期間,タイミング等によっては、正確な診断
をできなかったり、診断時間が長くなる場合があり、更
なる改良が望まれている。
Further, in the technique disclosed in Japanese Unexamined Patent Publication No. 8-177575, the state of the air-fuel ratio before the fuel cut, that is, the sensor output at the time of starting the fuel cut, is not so much influenced, and therefore the above-mentioned Japanese Unexamined Patent Publication No. 60-233343. Although it is possible to make a more accurate diagnosis than the one disclosed in the official gazette, since an abnormality is diagnosed from the only change rate of the air-fuel ratio, it may be more accurate depending on the period, timing, etc. at which this change rate is calculated. The diagnosis may not be possible or the diagnosis time may be long, and further improvement is desired.

【0009】本発明は、このような課題に鑑みてなされ
たものであり、正確かつ迅速に空燃比センサの異常の有
無を判定し得る新規な異常診断装置を提供することを目
的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a novel abnormality diagnosis device capable of accurately and quickly determining whether or not there is an abnormality in the air-fuel ratio sensor.

【0010】[0010]

【課題を解決するための手段】図5に示すように、空燃
比センサの異常品では、正常品に比して、燃料カット運
転後の燃料リカバー運転時における空燃比センサの出力
電圧の変化(減少)が緩やかになる傾向にある。本発明
は、この点に着目してなされたものであり、燃料リカバ
ー運転時における空燃比の変化量に基づいてセンサの異
常診断を行う構成とした。
As shown in FIG. 5, in the abnormal air-fuel ratio sensor, the change in the output voltage of the air-fuel ratio sensor during the fuel recovery operation after the fuel cut operation ( (Decrease) tends to be moderate. The present invention has been made in view of this point, and has a configuration in which the abnormality diagnosis of the sensor is performed based on the amount of change in the air-fuel ratio during the fuel recovery operation.

【0011】すなわち、本発明に係る空燃比センサの異
常診断装置は、排気ガスの空燃比を検出する空燃比セン
サを備えた内燃機関に適用されるものであって、機関が
燃料カット運転後の燃料リカバー運転状態にあることを
検出する燃料リカバー運転検出手段と、この燃料リカバ
ー運転中に、空燃比センサの出力に基づいて、所定の変
化量算出期間における空燃比の変化量を逐次算出する変
化量算出手段と、このように算出された複数の変化量の
最大値と、予め設定されている判定基準値とを比較し、
上記最大値が判定基準値よりも小さい場合に、異常と判
定する判定手段と、を有することを特徴としている。
That is, the abnormality diagnosis device for an air-fuel ratio sensor according to the present invention is applied to an internal combustion engine equipped with an air-fuel ratio sensor for detecting the air-fuel ratio of exhaust gas, and the engine after the fuel cut operation is performed. Fuel recovery operation detection means for detecting that the fuel recovery operation is in progress, and a change for sequentially calculating the amount of change in the air-fuel ratio during a predetermined amount of change calculation period based on the output of the air-fuel ratio sensor during this fuel recovery operation. The amount calculation means, the maximum value of the plurality of change amounts calculated in this way, and a preset reference value is compared,
If the maximum value is smaller than the determination reference value, a determination unit that determines an abnormality is provided.

【0012】より具体的には、機関減速時等に燃料カッ
ト運転が行われた後、燃料リカバー運転が行われると、
上記の変化量算出期間における空燃比の変化量を繰り返
し算出する。このように算出された複数の変化量の最大
値と、予め設定されている判定基準値とを比較し、上記
最大値が判定基準値よりも小さい場合には、空燃比セン
サが異常であると判定する。なお、燃料リカバー運転時
には、図5にも示すように空燃比は低下していくため、
上記空燃比の変化量(絶対値)は空燃比の減少量に対応
することとなる。
More specifically, when the fuel recovery operation is performed after the fuel cut operation is performed during engine deceleration,
The change amount of the air-fuel ratio during the change amount calculation period is repeatedly calculated. The maximum value of the plurality of change amounts thus calculated is compared with a preset reference value, and if the maximum value is smaller than the reference value, the air-fuel ratio sensor is abnormal. judge. During the fuel recovery operation, the air-fuel ratio decreases as shown in FIG. 5,
The change amount (absolute value) of the air-fuel ratio corresponds to the decrease amount of the air-fuel ratio.

【0013】ここで、上記空燃比の変化量の最大値にお
ける、正常品の平均値と異常品の平均値との差をD、正
常品の標準偏差をσOK、異常品の標準偏差をσNG、
所定の定数をKとした場合、好ましくは、(D−KσN
G)/σOKの値が大きくなるように、上記変化量算出
期間を設定する。つまり、正常な空燃比センサ(正常
品)と異常な(劣化した)空燃比センサ(異常品)とで
診断パラメータとなる空燃比の変化量の最大値の分布が
大きく離れて、診断精度が高くなるように、上記の変化
量算出期間を設定する。
Here, the difference between the average value of the normal product and the average value of the abnormal product in the maximum value of the change amount of the air-fuel ratio is D, the standard deviation of the normal product is σOK, and the standard deviation of the abnormal product is σNG,
When the predetermined constant is K, it is preferable that (D−KσN
The change amount calculation period is set so that the value of G) / σOK becomes large. In other words, the normal air-fuel ratio sensor (normal product) and the abnormal (deteriorated) air-fuel ratio sensor (abnormal product) are widely separated from each other in the distribution of the maximum value of the air-fuel ratio change amount, which is a diagnostic parameter, and the diagnostic accuracy is high. The change amount calculation period is set so that

【0014】典型的には、上記変化量算出期間を200
〜300ms,より好ましくは約250msに設定す
る。このように変化量算出期間を200〜300msと
すると、幾つかの気筒が燃料リカバー運転となる状態か
ら全ての気筒が燃料リカバー運転となるまでの間に生じ
る排気ガスの移動遅れのばらつき等を適宜に吸収するこ
とができる。
[0014] Typically, the change amount calculation period is set to 200
˜300 ms, more preferably about 250 ms. When the change amount calculation period is set to 200 to 300 ms in this manner, variations in the movement delay of the exhaust gas, etc., which occur between the state in which some cylinders are in the fuel recovery operation and the time in which all the cylinders are in the fuel recovery operation, are appropriately adjusted. Can be absorbed into.

【0015】また、機関運転状態に応じて適切な診断が
行われるように、好ましくは、吸入空気量,大気圧,機
関回転数,空燃比センサの素子温等に基づいて、診断パ
ラメータとなる空燃比変化量又はその最大値を適宜補正
する。例えば、吸入空気量を検出又は推定する手段と、
この吸入空気量に応じて上記空燃比の変化量又はその最
大値を補正する手段と、を有する構成とする。この場
合、吸入空気量に起因する排気ガスの移動遅れにより診
断精度が低下することを効果的に抑制することができ
る。
Further, in order to make an appropriate diagnosis according to the engine operating state, it is preferable to use an air conditioner as a diagnostic parameter based on the intake air amount, atmospheric pressure, engine speed, element temperature of the air-fuel ratio sensor, etc. Correct the fuel ratio change amount or its maximum value appropriately. For example, means for detecting or estimating the intake air amount,
And a means for correcting the variation of the air-fuel ratio or its maximum value in accordance with the intake air amount. In this case, it is possible to effectively suppress the deterioration of the diagnostic accuracy due to the delay in the movement of the exhaust gas due to the intake air amount.

【0016】更に好ましくは、空燃比が所定値(例えば
100〜150)以上の場合、空燃比の変化量の算出精
度の低下が懸念されるため、上記変化量算出手段による
空燃比の変化量の算出を禁止する。
More preferably, when the air-fuel ratio is equal to or more than a predetermined value (for example, 100 to 150), the accuracy of calculation of the amount of change in the air-fuel ratio may be deteriorated. Prohibit calculation.

【0017】[0017]

【発明の効果】請求項1に係る発明によれば、燃料リカ
バー運転中に、所定の変化量算出期間における空燃比の
変化量を、例えば10ms毎あるいは所定のクランク角
毎に逐次算出し、その最大値を判定基準値と比較する構
成としたため、短時間で正確な異常診断が可能となる。
According to the first aspect of the present invention, during the fuel recovery operation, the change amount of the air-fuel ratio in the predetermined change amount calculation period is sequentially calculated, for example, every 10 ms or every predetermined crank angle. Since the maximum value is compared with the determination reference value, accurate abnormality diagnosis can be performed in a short time.

【0018】特に、請求項2に係る発明のように変化量
算出期間を設定した場合、変位量最大値における正常品
と異常品との差が十分に大きくなり、ほぼ誤判定を生じ
ることがないため、更に診断精度が向上する。
In particular, when the change amount calculation period is set as in the second aspect of the invention, the difference between the normal product and the abnormal product at the maximum displacement amount is sufficiently large, and almost no erroneous determination occurs. Therefore, the diagnostic accuracy is further improved.

【0019】[0019]

【発明の実施の形態】図3は本発明の一実施例に係る空
燃比センサの異常診断装置の概略構成を示している。内
燃機関1には、各気筒毎に燃焼室2が形成され、各燃焼
室2には燃料噴射弁3から直接的に燃料が供給される。
各燃焼室2には、吸気通路4及び排気通路5が接続され
ている。吸気通路4には、大気圧に相当する吸気通路4
内の圧力を検出する大気圧センサ6が配設されている。
排気通路5には、周知の三元触媒7が配設されていると
ともに、この触媒7よりも燃焼室2寄りの位置に、空燃
比センサ8が配設されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows a schematic configuration of an abnormality diagnosis device for an air-fuel ratio sensor according to an embodiment of the present invention. A combustion chamber 2 is formed in each cylinder of the internal combustion engine 1, and fuel is directly supplied to each combustion chamber 2 from a fuel injection valve 3.
An intake passage 4 and an exhaust passage 5 are connected to each combustion chamber 2. The intake passage 4 has an intake passage 4 corresponding to atmospheric pressure.
An atmospheric pressure sensor 6 for detecting the internal pressure is provided.
A well-known three-way catalyst 7 is arranged in the exhaust passage 5, and an air-fuel ratio sensor 8 is arranged at a position closer to the combustion chamber 2 than the catalyst 7.

【0020】この空燃比センサ8は、排気通路5内の排
気ガスの空燃比をリッチからリーンまでの広域な範囲で
連続的に検出できる広域型の空燃比センサであって、図
4にも示すように、空燃比が大きくなるにしたがって出
力が大きくなる特性を有している。この空燃比センサ8
のセンサ素子部(図示省略)は、作動中には内蔵ヒータ
により常に所定の活性温度以上となるように安定的に加
熱されている。また、内燃機関1の機関回転数(クラン
ク角)を検出する手段として、クランクシャフトと同期
して回転するカムシャフトの角度を検出する角度センサ
9が設けられている。
The air-fuel ratio sensor 8 is a wide area type air-fuel ratio sensor capable of continuously detecting the air-fuel ratio of the exhaust gas in the exhaust passage 5 in a wide range from rich to lean, and is also shown in FIG. As described above, the output power increases as the air-fuel ratio increases. This air-fuel ratio sensor 8
During operation, the sensor element section (not shown) is stably heated by the built-in heater so as to be always above a predetermined activation temperature. Further, as a means for detecting the engine speed (crank angle) of the internal combustion engine 1, an angle sensor 9 for detecting the angle of the camshaft that rotates in synchronization with the crankshaft is provided.

【0021】上述した大気圧センサ6,空燃比センサ
8,角度センサ9等の各種センサの検出信号は、コント
ロールユニットとしてのECUへ入力される。このEC
Uは、メモリ及びCPUを備えた周知のマイクロコンピ
ュータであって、空燃比センサ8の検出信号に基づく燃
料噴射弁3の燃料噴射制御すなわちフィードバック制御
方式による空燃比制御等を行う他、後述する空燃比セン
サ8の異常診断を行い、異常と診断した場合には警告灯
(図示省略)を点灯させて表示するとともに、その異常
を必要に応じてメモリ内に記憶する。
Detection signals from various sensors such as the atmospheric pressure sensor 6, the air-fuel ratio sensor 8 and the angle sensor 9 described above are input to an ECU as a control unit. This EC
U is a well-known microcomputer including a memory and a CPU, which performs fuel injection control of the fuel injection valve 3 based on a detection signal of the air-fuel ratio sensor 8, that is, air-fuel ratio control by a feedback control method, and the like described later. An abnormality diagnosis of the fuel ratio sensor 8 is performed, and when the abnormality is diagnosed, a warning lamp (not shown) is turned on and displayed, and the abnormality is stored in the memory as necessary.

【0022】図1及び図2は、本実施例に係る空燃比セ
ンサ8の異常診断処理の制御の流れを示すフローチャー
トである。図2を参照して、S(ステップ)1では、燃
料カット運転を所定期間経験したかが判定される。この
燃料カット運転は、角度センサ9により検出される機関
回転数及び車速等に基づいて、一般的には減速時に行わ
れる。S2では、アイドルSWがONであるかが判定さ
れる。S3では、機関温度等の診断領域条件が成立して
いるかが判定される。S4では、燃料カット運転終了後
の燃料リカバー運転状態にあるかが判定される。これら
S1〜S4の全ての条件を満たしていれば、S5へ進
み、図1に示す空燃比センサ8の異常診断ルーチンが実
行される。
1 and 2 are flow charts showing the control flow of abnormality diagnosis processing of the air-fuel ratio sensor 8 according to this embodiment. Referring to FIG. 2, in S (step) 1, it is determined whether the fuel cut operation has been performed for a predetermined period. This fuel cut operation is generally performed during deceleration based on the engine speed, vehicle speed, etc. detected by the angle sensor 9. In S2, it is determined whether the idle SW is ON. In S3, it is determined whether or not a diagnostic region condition such as engine temperature is satisfied. In S4, it is determined whether the fuel recovery operation state after the fuel cut operation is completed. If all of these conditions of S1 to S4 are satisfied, the routine proceeds to S5, where the abnormality diagnosis routine of the air-fuel ratio sensor 8 shown in FIG. 1 is executed.

【0023】図1を参照して、S11では、空燃比セン
サ8を含む各種センサの出力が読み込まれる。S12で
は、空燃比センサ8の出力電圧が所定の最大値未満であ
るかを判定する。すなわち、空燃比に対応する空燃比セ
ンサ8の出力電圧が過度に大きくなると、後述する空燃
比の変化量ΔA/Fの算出精度の低下が懸念されるた
め、空燃比が所定の最大値(例えば100〜150)以
上の場合には、ΔA/Fの算出を禁止している。
Referring to FIG. 1, in S11, outputs of various sensors including the air-fuel ratio sensor 8 are read. In S12, it is determined whether the output voltage of the air-fuel ratio sensor 8 is less than a predetermined maximum value. That is, when the output voltage of the air-fuel ratio sensor 8 corresponding to the air-fuel ratio becomes excessively large, there is a concern that the calculation accuracy of the change amount ΔA / F of the air-fuel ratio, which will be described later, may decrease. 100 to 150) or more, the calculation of ΔA / F is prohibited.

【0024】S13では、大気圧センサ6により検出さ
れる大気圧に基づいて、空燃比センサ8の出力電圧−空
燃比テーブルを補正する。この理由として、図4に示す
ように、高地等で大気圧及びO2分圧が通常(正常時)
の大気圧に比して低い場合、空燃比センサ8の出力電圧
(b)は、正常な大気圧時の出力電圧(a)に比して、
低くなる傾向にある。従って、S13の補正を行わなか
った場合、診断パラメータとなるΔA/Fの値が、通常
の大気圧の場合と、高地等により低い大気圧の場合と、
で大きく異なるものとなってしまうからである。
In S13, the output voltage-air-fuel ratio table of the air-fuel ratio sensor 8 is corrected based on the atmospheric pressure detected by the atmospheric pressure sensor 6. The reason for this is that, as shown in FIG. 4, the atmospheric pressure and the O 2 partial pressure are normal (at normal times) in highlands.
When the output voltage (b) of the air-fuel ratio sensor 8 is lower than the output voltage (a) at normal atmospheric pressure,
It tends to be low. Therefore, when the correction of S13 is not performed, the value of ΔA / F, which is the diagnostic parameter, is the normal atmospheric pressure, and the low atmospheric pressure due to high altitude.
Because it will be very different.

【0025】このような出力電圧−空燃比テーブルの一
例を表1に示す。このテーブルにおける実空燃比の最大
値ABF15は、上述したように所定の最大値(例えば
100〜150)に設定されている。
Table 1 shows an example of such an output voltage-air / fuel ratio table. The maximum value ABF15 of the actual air-fuel ratio in this table is set to the predetermined maximum value (for example, 100 to 150) as described above.

【0026】[0026]

【表1】 [Table 1]

【0027】S14では、空燃比センサ8の出力電圧
と、上記の補正された出力電圧−空燃比テーブルとに基
づいて、排気ガスの空燃比A/Fを算出,記憶する。そ
してS15では、現在の空燃比A/Fと所定の変化量算
出期間ΔTだけ前の空燃比A/Fとの差、すなわち変化
量算出期間ΔTにおける空燃比の変化量ΔA/F(絶対
値)を算出し、逐次メモリに記憶する。なお、燃料リカ
バー運転時では空燃比が減少するために、上記の変化量
ΔA/F(絶対値)は空燃比の減少量に対応することと
なる。
In S14, the air-fuel ratio A / F of the exhaust gas is calculated and stored based on the output voltage of the air-fuel ratio sensor 8 and the corrected output voltage-air-fuel ratio table. Then, in S15, the difference between the current air-fuel ratio A / F and the air-fuel ratio A / F before the predetermined change amount calculation period ΔT, that is, the change amount ΔA / F (absolute value) of the air-fuel ratio in the change amount calculation period ΔT. Is calculated and sequentially stored in the memory. Since the air-fuel ratio decreases during the fuel recovery operation, the change amount ΔA / F (absolute value) corresponds to the decrease amount of the air-fuel ratio.

【0028】S16では、燃料リカバー運転を所定の診
断期間Pだけ経験したかが判定される。この診断期間P
は、図5にも示すように、燃料リカバー運転の開始直後
から空燃比センサ8の出力電圧がほとんど変化(減少)
しなくなるまでの範囲(例えば数秒)に設定される。言
い換えると、診断期間Pが経過するまで、S14及びS
15において空燃比A/F及び空燃比の変化量ΔA/F
が所定時間毎(例えば10ms毎又は所定のクランク角
毎)に繰り返し算出,記憶される。所定の診断期間Pが
経過した時点で、S16からS17へ進み、複数の変化
量ΔA/Fの中から変化量の最大値ΔA/Fmaxを選
択して読み込む。
At S16, it is determined whether the fuel recovery operation has been performed for a predetermined diagnosis period P. This diagnosis period P
As shown in FIG. 5, the output voltage of the air-fuel ratio sensor 8 changes (decreases) almost immediately after the start of the fuel recovery operation.
It is set to a range (for example, a few seconds) until it stops. In other words, S14 and S until the diagnosis period P elapses.
15, the air-fuel ratio A / F and the change amount ΔA / F of the air-fuel ratio
Is repeatedly calculated and stored every predetermined time (for example, every 10 ms or every predetermined crank angle). When the predetermined diagnosis period P has elapsed, the process proceeds from S16 to S17, and the maximum value ΔA / Fmax of the change amount is selected and read from the plurality of change amounts ΔA / F.

【0029】続くS18では、機関運転状態に応じて空
燃比の最大値ΔA/Fmaxを補正する。例えば、排気
ガスの移動遅れ(流速)による診断精度の低下を解消す
るために、図6に示すように、吸入空気量Qa(機関回
転×燃料噴射量)に基づいて、ΔA/Fmaxを補正す
る。より具体的には、表2に示すような16格子のテー
ブルを参照して、吸入空気量Qaに対応する補正係数N
TPHOS0,NTPHOS1,…,NTPHOS15
を選択し、この補正係数を用いてΔA/Fmaxを補正
する。
In the following S18, the maximum value ΔA / Fmax of the air-fuel ratio is corrected according to the engine operating condition. For example, as shown in FIG. 6, ΔA / Fmax is corrected based on the intake air amount Qa (engine rotation × fuel injection amount) in order to eliminate the deterioration of the diagnostic accuracy due to the movement delay (flow velocity) of the exhaust gas. . More specifically, the correction coefficient N corresponding to the intake air amount Qa is referred to by referring to a table of 16 grids as shown in Table 2.
TPHOS0, NTPHOS1, ..., NTPHOS15
Is selected, and ΔA / Fmax is corrected using this correction coefficient.

【0030】[0030]

【表2】 [Table 2]

【0031】また、好ましくは空燃比センサ8の素子温
に基づいて変化量最大値ΔA/Fmaxを補正する。な
お、これらの補正処理を、S13で検出されるΔA/F
に対して逐次行うようにしても良い。
Further, preferably, the maximum variation amount ΔA / Fmax is corrected based on the element temperature of the air-fuel ratio sensor 8. It should be noted that these correction processes are performed by ΔA / F detected in S13.
May be sequentially performed for each.

【0032】そして、S19では、補正後の変化量最大
値ΔA/Fmaxを、予め設定,記憶されている判定基
準値(診断クライテリア)ΔA/Fsafと比較する。
変化量最大値ΔA/Fmaxが判定基準値ΔA/Fsa
f以上であれば、空燃比センサ8が正常であると診断さ
れ(S21)、後述するフラグFNG等の記憶内容をク
リアして(S20)、この診断処理を終了する。このよ
うに正常と診断された場合、好ましくは機関が停止する
まで本診断ルーチンの実行を禁止する。しかしながら、
正常と判断された後でもこの診断ルーチンを繰り返し行
うように構成しても良い。
Then, in step S19, the corrected maximum variation amount ΔA / Fmax is compared with the preset and stored determination reference value (diagnosis criteria) ΔA / Fsaf.
The maximum change amount ΔA / Fmax is the determination reference value ΔA / Fsa.
If it is f or more, it is diagnosed that the air-fuel ratio sensor 8 is normal (S21), the stored contents of the flag FNG and the like which will be described later are cleared (S20), and this diagnosis processing is ended. When it is diagnosed that the engine is normal, the execution of this diagnostic routine is preferably prohibited until the engine is stopped. However,
The diagnosis routine may be repeatedly performed even after it is determined to be normal.

【0033】一方、S19において、変化量最大値ΔA
/Fmaxが判定基準値ΔA/Fsafよりも小さいと
判定された場合、空燃比センサ8が異常である可能性が
あるので、ステップS22へ進む。この実施例では、測
定値のばらつき等によって正常時に異常と誤判定されて
運転者に無用な警報を与えることのないように、S22
及びS23に示すフラグFNGを利用して、2回連続し
てΔA/FmaxがΔA/Fsafより小さいと判定さ
れた場合に限って、S24へ進み、空燃比センサ8を異
常と診断し、図示せぬ警告灯を点灯させるようになって
いる。
On the other hand, in S19, the maximum change amount ΔA
If it is determined that / Fmax is smaller than the determination reference value ΔA / Fsaf, the air-fuel ratio sensor 8 may be abnormal, so the routine proceeds to step S22. In this embodiment, S22 is performed so that the driver is not given an unnecessary alarm by being erroneously determined to be abnormal due to variations in the measured values.
Only when it is determined that ΔA / Fmax is smaller than ΔA / Fsaf twice in succession using the flag FNG shown in S23 and S23, the process proceeds to S24, and the air-fuel ratio sensor 8 is diagnosed as abnormal, and is not shown. The warning light is turned on.

【0034】次に、図7及び図8を参照して、診断パラ
メータΔA/F算出用の変化量算出期間ΔTについて詳
述する。なお、図7は、空燃比変化量ΔA/Fの最大値
ΔA/Fmaxの分布(ばらつき)を示す特性図であ
り、実線mは、正常な空燃比センサ(正常品)の最大値
ΔA/Fmaxの分布を、実線nは、異常な(劣化し
た)空燃比センサ(異常品)の最大値ΔA/Fmaxの
分布を示している。図7に示すように、変化量最大値Δ
A/Fmaxにおける、正常品の平均値と異常品の平均
値との差をD,正常品の標準偏差をσOK,異常品の標
準偏差をσNG,とし、かつ、判定基準値ΔA/Fsa
fに対応する診断クライテリアをK・σNG(Kは所定
の定数)とした場合、この診断クライテリアK・σNG
に対する正常品(の標準偏差σOK)の余裕代S/N
は、次式で表される。
Next, the variation calculation period ΔT for calculating the diagnostic parameter ΔA / F will be described in detail with reference to FIGS. 7 and 8. 7 is a characteristic diagram showing the distribution (variation) of the maximum value ΔA / Fmax of the air-fuel ratio change amount ΔA / F, and the solid line m indicates the maximum value ΔA / Fmax of a normal air-fuel ratio sensor (normal product). The solid line n indicates the distribution of the maximum value ΔA / Fmax of the abnormal (deteriorated) air-fuel ratio sensor (abnormal product). As shown in FIG. 7, the maximum change amount Δ
In A / Fmax, the difference between the average value of the normal product and the average value of the abnormal product is D, the standard deviation of the normal product is σOK, the standard deviation of the abnormal product is σNG, and the determination reference value ΔA / Fsa.
When the diagnostic criterion corresponding to f is K · σNG (K is a predetermined constant), this diagnostic criterion K · σNG
Margin (S / N) of normal product (standard deviation σOK) of
Is expressed by the following equation.

【0035】[0035]

【数1】S/N = (D−KσNG)/σOK なお、本実施例ではK=3としたが、この値は異常品を
判別するための要求精度に応じて適当な値を設定でき
る。
## EQU1 ## S / N = (D-K.sigma.NG) /. Sigma.OK Note that K = 3 in this embodiment, but this value can be set to an appropriate value according to the required accuracy for determining an abnormal product.

【0036】上記の余裕代S/Nが大きくなるほど、診
断精度は高くなる。そこで本実施例では、図8に示すよ
うに、余裕代S/Nが十分に大きくなるように、上記の
期間ΔTを設定している。つまり、変化量算出期間ΔT
を、好ましくは余裕代S/Nが約5以上となる200〜
300ms,より好ましくはS/Nが最大となる約25
0msに設定する。
The larger the margin margin S / N, the higher the diagnostic accuracy. Therefore, in this embodiment, as shown in FIG. 8, the above period ΔT is set so that the margin margin S / N is sufficiently large. That is, the change amount calculation period ΔT
Is preferably 200 to which the margin S / N becomes about 5 or more.
300 ms, more preferably about 25 with maximum S / N
Set to 0 ms.

【0037】以上のように本実施例によれば、燃料リカ
バー運転の開始から極短い診断期間Pの間に、更に短い
所定の変化量算出期間ΔT(例えば200〜300m
s)における空燃比の変化量ΔA/Fを、例えば10m
s毎に逐次算出し、これら変化量ΔA/Fの最大値ΔA
/Fmaxを判定基準値ΔA/Fsafと比較する構成
としたため、短時間で正確な異常診断が可能となる。
As described above, according to the present embodiment, during the extremely short diagnostic period P from the start of the fuel recovery operation, a predetermined shorter variation amount calculation period ΔT (for example, 200 to 300 m).
s), the change amount ΔA / F of the air-fuel ratio is, for example, 10 m
The maximum value ΔA of these changes ΔA / F is calculated sequentially for each s.
Since / Fmax is compared with the determination reference value ΔA / Fsaf, accurate abnormality diagnosis can be performed in a short time.

【0038】特に、診断クライテリアからの余裕代S/
Nが十分に大きくなるように、変化量算出期間ΔTが最
適化されており、具体的には算出期間ΔTが200〜3
00ms、より好ましくは約250msに設定されてい
るため、ほぼ誤判定を生じることはなく、診断精度に非
常に優れている。また、このように算出期間ΔTを20
0〜300msと比較的大きい値に設定することによ
り、幾つかの気筒が燃料リカバー運転となる状態から全
ての気筒が燃料リカバー運転となるまでの間に生じる排
気ガスの移動遅れのばらつき等を適宜に吸収することが
できるというメリットもある。
Particularly, the margin allowance S / from the diagnostic criteria
The change amount calculation period ΔT is optimized so that N becomes sufficiently large. Specifically, the calculation period ΔT is 200 to 3
Since it is set to 00 ms, and more preferably to about 250 ms, almost no erroneous determination occurs and the diagnostic accuracy is very excellent. In addition, the calculation period ΔT is 20
By setting a relatively large value such as 0 to 300 ms, variations in the movement delay of the exhaust gas, etc., which occur between the state in which some cylinders are in fuel recovery operation and the time in which all cylinders are in fuel recovery operation, are appropriately set. It also has the advantage that it can be absorbed.

【0039】以上のように本発明を具体的な実施例に基
づいて説明してきたが、本発明は上記実施例に限定され
るものではなく、種々の変形,変更を含むものである。
例えば、上記実施例では、大気圧に基づいてセンサ出力
−空燃比テーブルを補正しているが(図1のS13)、
空燃比センサの出力電圧を直接的に補正するようにして
も良い。また、上述した吸入空気量の他、大気圧,機関
回転数,空燃比センサ8の素子温等の機関運転状態に応
じて、空燃比の変化量ΔA/F又はその最大値ΔA/F
maxを直接的又は間接的に補正することにより、更な
る診断精度の向上を図ることができる。
Although the present invention has been described based on the specific embodiments as described above, the present invention is not limited to the above embodiments and includes various modifications and changes.
For example, in the above embodiment, the sensor output-air-fuel ratio table is corrected based on the atmospheric pressure (S13 in FIG. 1),
The output voltage of the air-fuel ratio sensor may be directly corrected. In addition to the intake air amount described above, the air-fuel ratio change amount ΔA / F or its maximum value ΔA / F is also determined according to the engine operating conditions such as the atmospheric pressure, the engine speed, the element temperature of the air-fuel ratio sensor 8.
By directly or indirectly correcting max, it is possible to further improve the diagnostic accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る空燃比センサの異常診
断装置の制御の流れを示すフローチャートの異常診断ル
ーチン。
FIG. 1 is an abnormality diagnosis routine of a flowchart showing a control flow of an abnormality diagnosis device for an air-fuel ratio sensor according to an embodiment of the present invention.

【図2】上記空燃比センサの異常診断装置の制御の流れ
を示すフローチャート。
FIG. 2 is a flowchart showing a control flow of the abnormality diagnosis device for the air-fuel ratio sensor.

【図3】本実施例の機械的構成を示す構成説明図。FIG. 3 is a structural explanatory view showing a mechanical structure of the present embodiment.

【図4】大気圧及びO2分圧低下に伴う空燃比センサの
出力特性の変化を示す特性図。
FIG. 4 is a characteristic diagram showing changes in output characteristics of the air-fuel ratio sensor due to a decrease in atmospheric pressure and O 2 partial pressure.

【図5】燃料リカバー運転近傍における空燃比センサの
出力及び空燃比の変化量を示す特性図。
FIG. 5 is a characteristic diagram showing the output of the air-fuel ratio sensor and the amount of change in the air-fuel ratio near the fuel recovery operation.

【図6】燃料リカバー運転状態における吸入空気量と空
燃比の変化量との関係を示す特性図。
FIG. 6 is a characteristic diagram showing a relationship between an intake air amount and an air-fuel ratio change amount in a fuel recovery operation state.

【図7】正常品及び異常品の空燃比変化量の最大値の分
布を示す特性図。
FIG. 7 is a characteristic diagram showing the distribution of the maximum value of the air-fuel ratio change amount of a normal product and an abnormal product.

【図8】変化量算出期間と診断クライテリアからの余裕
代S/Nとの関係を示す特性図。
FIG. 8 is a characteristic diagram showing the relationship between the change amount calculation period and the margin S / N from the diagnostic criteria.

【符号の説明】[Explanation of symbols]

1…内燃機関 3…燃料噴射弁 4…吸気通路 5…排気通路 6…大気圧センサ 7…触媒 8…空燃比センサ 1 ... Internal combustion engine 3 ... Fuel injection valve 4 ... Intake passage 5 ... Exhaust passage 6 ... Atmospheric pressure sensor 7 ... Catalyst 8 ... Air-fuel ratio sensor

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G087 AA15 AA19 AA27 BB21 BB28 CC23 CC40 3G084 BA00 CA06 DA04 DA27 EA07 EA11 EB12 EB22 FA01 FA29 FA38 3G301 JA16 JB01 JB09 JB10 KA15 KA16 KA18 KA26 MA01 NA07 NB05 ND03 ND05 ND15 PA09Z PD02A PD02Z PE03Z    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2G087 AA15 AA19 AA27 BB21 BB28                       CC23 CC40                 3G084 BA00 CA06 DA04 DA27 EA07                       EA11 EB12 EB22 FA01 FA29                       FA38                 3G301 JA16 JB01 JB09 JB10 KA15                       KA16 KA18 KA26 MA01 NA07                       NB05 ND03 ND05 ND15 PA09Z                       PD02A PD02Z PE03Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 排気ガスの空燃比を検出する空燃比セン
サを備えた内燃機関に適用される空燃比センサの異常診
断処理装置において、 機関が燃料カット運転後の燃料リカバー運転状態にある
ことを検出する燃料リカバー運転検出手段と、 この燃料リカバー運転中に、空燃比センサの出力に基づ
いて、所定の変化量算出期間における空燃比の変化量を
逐次算出する変化量算出手段と、 このように算出された複数の変化量の最大値と、予め設
定されている判定基準値とを比較し、上記最大値が判定
基準値よりも小さい場合に、異常と判定する判定手段
と、を有することを特徴とする空燃比センサの異常診断
装置。
1. An abnormality diagnosis processing device for an air-fuel ratio sensor applied to an internal combustion engine equipped with an air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas, wherein the engine is in a fuel recovery operation state after a fuel cut operation. A fuel recovery operation detecting means for detecting, and a change amount calculating means for sequentially calculating the change amount of the air-fuel ratio in a predetermined change amount calculation period based on the output of the air-fuel ratio sensor during the fuel recovery operation, Comparing the maximum value of the plurality of calculated change amounts with a preset determination reference value, and when the maximum value is smaller than the determination reference value, determining means for determining an abnormality, A device for diagnosing air-fuel ratio sensor abnormality.
【請求項2】 上記変化量算出期間が、200〜300
msに設定されていることを特徴とする請求項1に記載
の空燃比センサの異常診断装置。
2. The change amount calculation period is 200 to 300.
The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the abnormality diagnosis device is set to ms.
【請求項3】 上記変化量算出期間が、約250msに
設定されていることを特徴とする請求項1に記載の空燃
比センサの異常診断装置。
3. The abnormality diagnosis device for an air-fuel ratio sensor according to claim 1, wherein the change amount calculation period is set to about 250 ms.
【請求項4】 上記空燃比の変化量の最大値における、
正常品の平均値と異常品の平均値との差をD、正常品の
標準偏差をσOK、異常品の標準偏差をσNG、所定の
定数をKとした場合に、(D−KσNG)/σOKの値
が大きくなるように、上記変化量算出期間が設定されて
いることを特徴とする請求項1〜3のいずれかに記載の
空燃比センサの異常診断装置。
4. At the maximum value of the amount of change in the air-fuel ratio,
(D-KσNG) / σOK The abnormality diagnosis device for an air-fuel ratio sensor according to any one of claims 1 to 3, wherein the change amount calculation period is set so as to increase the value of.
【請求項5】 吸入空気量を検出又は推定する手段と、
この吸入空気量に応じて上記空燃比の変化量又はその最
大値を補正する手段と、を有することを特徴とする請求
項1〜4のいずれかに記載の空燃比センサの異常診断装
置。
5. A means for detecting or estimating the intake air amount,
An abnormality diagnosis device for an air-fuel ratio sensor according to any one of claims 1 to 4, further comprising: means for correcting the amount of change in the air-fuel ratio or its maximum value in accordance with the intake air amount.
【請求項6】 空燃比が所定値以上の場合、上記変化量
算出手段による空燃比の変化量の算出を禁止することを
特徴とする請求項1〜5のいずれかに記載の空燃比セン
サの異常診断装置。
6. The air-fuel ratio sensor according to claim 1, wherein when the air-fuel ratio is greater than or equal to a predetermined value, calculation of the change amount of the air-fuel ratio by the change amount calculating means is prohibited. Abnormality diagnosis device.
JP2001207947A 2001-07-09 2001-07-09 Abnormality diagnosing device of air/fuel ratio sensor Pending JP2003020989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207947A JP2003020989A (en) 2001-07-09 2001-07-09 Abnormality diagnosing device of air/fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207947A JP2003020989A (en) 2001-07-09 2001-07-09 Abnormality diagnosing device of air/fuel ratio sensor

Publications (1)

Publication Number Publication Date
JP2003020989A true JP2003020989A (en) 2003-01-24

Family

ID=19043853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207947A Pending JP2003020989A (en) 2001-07-09 2001-07-09 Abnormality diagnosing device of air/fuel ratio sensor

Country Status (1)

Country Link
JP (1) JP2003020989A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328975A (en) * 2005-05-23 2006-12-07 Fuji Heavy Ind Ltd Abnormality diagnostic system of air-fuel ratio sensor
JP2007187128A (en) * 2006-01-16 2007-07-26 Mazda Motor Corp Degradation diagnosing device for linear air-fuel ratio sensor
JP2007192037A (en) * 2006-01-17 2007-08-02 Mazda Motor Corp Deterioration diagnosing device of linear air-fuel ratio sensor
JP2007198306A (en) * 2006-01-27 2007-08-09 Mazda Motor Corp Deterioration diagnosis device for linear air-fuel ratio sensor
US7340945B2 (en) 2005-09-01 2008-03-11 Toyota Jidosha Kabushiki Kaisha Failure detection apparatus and failure detection method for exhaust gas sensor
US7434450B2 (en) 2005-06-10 2008-10-14 Toyota Jidosha Kabushiki Kaisha Method and apparatus for detecting exhaust gas sensor defect
US7836758B2 (en) 2006-10-11 2010-11-23 Hitachi, Ltd. Deterioration diagnosis system for an air-fuel ratio sensor
US8245568B2 (en) 2009-06-23 2012-08-21 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method for air/fuel ratio sensor
JP2012251435A (en) * 2011-05-31 2012-12-20 Honda Motor Co Ltd Abnormality determination device of air-fuel ratio sensor
WO2013038490A1 (en) * 2011-09-13 2013-03-21 トヨタ自動車株式会社 Internal combustion engine control apparatus
US8794056B2 (en) 2011-01-27 2014-08-05 Honda Motor Co., Ltd. Abnormality determination device for air-fuel ratio sensor
WO2014207843A1 (en) * 2013-06-26 2014-12-31 トヨタ自動車株式会社 Internal-combustion-engine diagnostic device
WO2014207839A1 (en) * 2013-06-26 2014-12-31 トヨタ自動車株式会社 Internal-combustion-engine diagnostic device
WO2016046624A1 (en) * 2014-09-26 2016-03-31 Toyota Jidosha Kabushiki Kaisha Control device and control method of internal combustion

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328975A (en) * 2005-05-23 2006-12-07 Fuji Heavy Ind Ltd Abnormality diagnostic system of air-fuel ratio sensor
JP4647393B2 (en) * 2005-05-23 2011-03-09 富士重工業株式会社 Air-fuel ratio sensor abnormality diagnosis device
US7434450B2 (en) 2005-06-10 2008-10-14 Toyota Jidosha Kabushiki Kaisha Method and apparatus for detecting exhaust gas sensor defect
US7340945B2 (en) 2005-09-01 2008-03-11 Toyota Jidosha Kabushiki Kaisha Failure detection apparatus and failure detection method for exhaust gas sensor
JP4618134B2 (en) * 2006-01-16 2011-01-26 マツダ株式会社 Degradation diagnosis device for linear air-fuel ratio sensor
JP2007187128A (en) * 2006-01-16 2007-07-26 Mazda Motor Corp Degradation diagnosing device for linear air-fuel ratio sensor
JP2007192037A (en) * 2006-01-17 2007-08-02 Mazda Motor Corp Deterioration diagnosing device of linear air-fuel ratio sensor
JP4618135B2 (en) * 2006-01-17 2011-01-26 マツダ株式会社 Degradation diagnosis device for linear air-fuel ratio sensor
JP2007198306A (en) * 2006-01-27 2007-08-09 Mazda Motor Corp Deterioration diagnosis device for linear air-fuel ratio sensor
US7836758B2 (en) 2006-10-11 2010-11-23 Hitachi, Ltd. Deterioration diagnosis system for an air-fuel ratio sensor
DE102007048751B4 (en) * 2006-10-11 2014-02-13 Hitachi, Ltd. Deterioration diagnostic system for an air / fuel ratio sensor
US8245568B2 (en) 2009-06-23 2012-08-21 Toyota Jidosha Kabushiki Kaisha Abnormality detection apparatus and abnormality detection method for air/fuel ratio sensor
US8794056B2 (en) 2011-01-27 2014-08-05 Honda Motor Co., Ltd. Abnormality determination device for air-fuel ratio sensor
JP2012251435A (en) * 2011-05-31 2012-12-20 Honda Motor Co Ltd Abnormality determination device of air-fuel ratio sensor
US8965662B2 (en) 2011-05-31 2015-02-24 Honda Motor Co., Ltd. Abnormality determining apparatus for air-fuel ratio sensor
WO2013038490A1 (en) * 2011-09-13 2013-03-21 トヨタ自動車株式会社 Internal combustion engine control apparatus
JPWO2013038490A1 (en) * 2011-09-13 2015-03-23 トヨタ自動車株式会社 Control device for internal combustion engine
WO2014207839A1 (en) * 2013-06-26 2014-12-31 トヨタ自動車株式会社 Internal-combustion-engine diagnostic device
WO2014207843A1 (en) * 2013-06-26 2014-12-31 トヨタ自動車株式会社 Internal-combustion-engine diagnostic device
JP5983879B2 (en) * 2013-06-26 2016-09-06 トヨタ自動車株式会社 Diagnostic device for internal combustion engine
JP6011726B2 (en) * 2013-06-26 2016-10-19 トヨタ自動車株式会社 Diagnostic device for internal combustion engine
US9719449B2 (en) 2013-06-26 2017-08-01 Toyota Jidosha Kabushiki Kaisha Diagnosis system of internal combustion engine
RU2634911C2 (en) * 2013-06-26 2017-11-08 Тойота Дзидося Кабусики Кайся System of internal combustion engine diagnostics
WO2016046624A1 (en) * 2014-09-26 2016-03-31 Toyota Jidosha Kabushiki Kaisha Control device and control method of internal combustion
CN107076045A (en) * 2014-09-26 2017-08-18 丰田自动车株式会社 The control device and control method of explosive motor
RU2654526C1 (en) * 2014-09-26 2018-05-21 Тойота Дзидося Кабусики Кайся Control device and control method for internal combustion engine
CN107076045B (en) * 2014-09-26 2020-05-22 丰田自动车株式会社 Control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
US7103467B2 (en) Device for detecting response characteristics of sensor
US7954364B2 (en) Malfunction diagnosis apparatus for exhaust gas sensor and method for diagnosis
US7677091B2 (en) Air-fuel ratio controller for an internal combustion engine and diagnosis apparatus for intake sensors
JP3733660B2 (en) Degradation diagnostic device for oxygen sensor in internal combustion engine
JP2916831B2 (en) Diagnosis device for air-fuel ratio control device
JPH1073047A (en) Fault diagnostic device for water temperature sensor
JP2003020989A (en) Abnormality diagnosing device of air/fuel ratio sensor
JP2008144639A (en) Control device for internal combustion engine
JP3656501B2 (en) Air-fuel ratio sensor abnormality diagnosis device
JPH08284721A (en) Method and equipment for controlling output from internal combustion engine
JPH10148152A (en) Temperature estimating device for oxygen sensor in engine
JP5533471B2 (en) Catalyst deterioration diagnosis device
JP3149714B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
JP2005120933A (en) Control device for internal combustion engine
JP2004251186A (en) Device for diagnosing failure of cooling water temperature sensor for internal combustion engine
US10458355B2 (en) Engine control device and engine control method
JP2003201906A (en) Failure diagnostic device for catalyst pre-warming up system
JPH07310585A (en) Diagnostic device for cylinder internal pressure sensor
JP2977986B2 (en) Oxygen sensor deterioration detection method
JP2003120382A (en) Diagnostic device for abnormality of catalyst premature warming control system for internal combustion engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JPH066218Y2 (en) Alcohol sensor diagnostic device for internal combustion engine
JP4134480B2 (en) Air-fuel ratio sensor deterioration diagnosis device
JP2000205032A (en) Anomaly diagnostic system of internal combustion engine
JPH08284651A (en) Catalyst temperature estimating device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070803

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070907