KR20090016854A - Ultra high strength welding joint of 950mpa grade having excellent low temperature toughness - Google Patents

Ultra high strength welding joint of 950mpa grade having excellent low temperature toughness Download PDF

Info

Publication number
KR20090016854A
KR20090016854A KR1020070081137A KR20070081137A KR20090016854A KR 20090016854 A KR20090016854 A KR 20090016854A KR 1020070081137 A KR1020070081137 A KR 1020070081137A KR 20070081137 A KR20070081137 A KR 20070081137A KR 20090016854 A KR20090016854 A KR 20090016854A
Authority
KR
South Korea
Prior art keywords
less
low temperature
temperature toughness
high strength
950mpa
Prior art date
Application number
KR1020070081137A
Other languages
Korean (ko)
Other versions
KR100925608B1 (en
Inventor
홍현욱
송우현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020070081137A priority Critical patent/KR100925608B1/en
Publication of KR20090016854A publication Critical patent/KR20090016854A/en
Application granted granted Critical
Publication of KR100925608B1 publication Critical patent/KR100925608B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A welding joint having more than 950MPa of tensile strength is provided to control a range of a carbon equivalent formula for a welding metal in order to secure ultra high tensile strength more than 950MPa as well as high toughness at a low temperature. A welding joint having more than 950MPa of tensile strength comprises the following components. A welding metal composed of a base metal and a filler metal satisfies a carbon equivalent value(Ceq) of the following formula in a range from 0.7% to 0.8%. Ceq=[C]+[Mn]/6+([Cr]+[Mo]+[V])/5+([Ni]+[Cu])/15. The welding metal comprises more than 60 area% of acicular ferrite, bainite, 10~20 area% of martensite.

Description

저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부{Ultra High Strength Welding Joint of 950MPa grade Having Excellent Low Temperature Toughness}Ultra high strength welding joint of 950mpa grade having excellent low temperature toughness}

본 발명은 용접구조체, 특히 인장강도 950MPa급 이상의 초고강도 강재를 용접하여 구성한 용접구조체의 저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부에 관한 것이다. 보다 상세하게는 모재와 용가재에 의해 형성되는 용접금속의 탄소당량 및 조직을 제어함에 따라 우수한 저온인성 및 950MPa급 이상의 초고강도를 갖는 용접이음부에 관한 것이다.The present invention relates to an ultra high strength welded joint of 950 MPa or higher grade having excellent low temperature toughness of a welded structure, particularly a welded structure constructed by welding an ultra high strength steel having a tensile strength of 950 MPa or higher. More specifically, the present invention relates to a welded joint having excellent low temperature toughness and ultra high strength of 950 MPa or more by controlling the carbon equivalent and structure of the weld metal formed by the base metal and the filler metal.

최근에는 석유나 천연가스의 자원개발이 점차 한랭지로 이동하면서, 이에 필요한 해양구조물, 선박, 파이프 라인 등이 -30℃ 이하에서도 안정적으로 운영될 수 있도록 우수한 저온인성 확보의 중요성이 점차 높아지고 있다. In recent years, as the development of oil and natural gas resources has gradually moved to a cold district, the importance of securing excellent low-temperature toughness is gradually increasing so that marine structures, ships, and pipelines required for this operation can be stably operated below -30 ° C.

게다가 저장 및 수송 효율의 향상, 구조물의 두께 및 크기 감소에 의한 시공비용 저감을 위해 강재의 고강도화가 절실히 요구되고 있는 상황이다. In addition, in order to improve the storage and transportation efficiency, and to reduce the construction cost by reducing the thickness and size of the structure, the high strength of the steel is urgently required.

일반적으로 강재는 강도가 증가할수록 인성은 감소하는 경향을 나타내므로,강도와 저온인성의 발란스(Balance)를 도출하기 위한 많은 노력들이 행해지고 있다.In general, since steels tend to decrease in toughness as strength increases, many efforts have been made to derive a balance between strength and low temperature toughness.

한편, 구조물을 제작하는 경우 필수적인 용접공정에 의해 형성되는 용접이음부는 용접열원에 의하여 급열 및 급냉을 겪게 되고 이때, 금속조직학적으로 그 부위는 결정립이 조대화되거나 취약한 조직으로 상변태가 발생하여 결국 모재 대비 품질 특성이 필연적으로 열화된다. On the other hand, when fabricating the structure, the welded joint formed by the essential welding process undergoes rapid quenching and quenching due to the welding heat source. At this time, the metal histologically, the site becomes coarse grains or a phase transformation occurs in a weak tissue. Quality characteristics inevitably deteriorate compared to the base metal.

따라서, 구조물의 강도와 저온인성을 확보함에 있어서, 언제나 용접이음부가 핵심이 되며, 용접이음부 품질이 목표로 하는 수준을 얻지 못한다면 강판은 제조할 수 있어도 구조물을 시공할 수가 없는 것이다. 이러한 이유로 우수한 용접이음부 품질을 얻기 위하여 강재 설계 및 용접재료, 용접시공 기술개발 등의 다양한 노력이 이루어지고 있다. Therefore, in securing the strength and low temperature toughness of the structure, the welded joint is always the core, and if the welded joint quality does not achieve the target level, the steel sheet can be manufactured even if the structure can not be constructed. For this reason, various efforts, such as steel design, welding materials, and welding construction technology, have been made to obtain excellent welded joint quality.

지금까지로는 인장강도 700MPa급의 강재에 대한 용접이음부 저온인성이 확보되고 있는 상황이나, 고강도화의 요구가 더욱 강해짐에 따라 950MPa급의 초고강도 강재를 사용한 구조물이 필요로 하게 되었다. Until now, the low temperature toughness of welded joints for steel with 700MPa tensile strength has been secured, but as the demand for higher strength has increased, a structure using ultra-high strength steel of 950MPa grade has been required.

이와 같은 초고강도 강재에 대하여 동급의 강도와 우수한 저온인성을 보유한 용접이음부를 얻기 위해서는 기존의 기술적용으로는 한계를 가지고 있는 실정이다. 심지어 그 특성을 만족하도록 하는 용가재 역시 상용화되어 있지 않다. In order to obtain welded joints having the same strength and excellent low temperature toughness for such ultra-high strength steels, there is a limitation in existing technical applications. Even filler metals that satisfy their characteristics are not commercially available.

따라서, 저온인성이 우수하면서 초고강도의 용접이음부를 제조하는 것이 강재 제조 및 용접가공업계의 주요 과제들 중의 하나가 되어 왔다.Therefore, manufacturing a weld joint of very high strength while excellent in low temperature toughness has become one of the major problems in the steel manufacturing and welding processing industry.

종래에는 이러한 문제의 해결 수단으로서 일본 공개특허공보 2000-199036호에서는 용접금속의 평균인장강도가 강판의 인장강도-100MPa 이상이며, Ni함유량이 모재와 비교하여 1% 이상 높은 것을 특징으로 하는 초고강도 라인파이프의 제조방법을 제공하고 있다. 그러나, 이는 결과론적인 데이터 제공에 한정되어 있으며 쉽고 간편한 실질적인 제조방법으로 도입하기에는 한계가 있는 실정이다. Conventionally, in Japanese Unexamined Patent Publication No. 2000-199036, as a means of solving such a problem, the average tensile strength of the weld metal is at least 100 MPa of tensile strength of the steel sheet, and Ni content is 1% or more higher than that of the base metal. Provided are methods for producing line pipes. However, this is limited to providing consequent data and there is a limit to introducing it into an easy and simple practical manufacturing method.

또한, 일본 공개특허공보 2002-115032호에서는 잔류 오스테나이트 상을 1% 이상 함유하는 용접금속을 특징으로 하는 초고강도 라인파이프의 제조방법을 보고하고 있으나, 이는 용접이음부의 저온인성 향상이 목적이 아니라 저온균열의 방지를 주목적으로 하고 있으며 간단하게 계산하여 용접금속을 설계하는 데에 도움을 주지 못할 뿐만 아니라 결과론적인 정보 제공에 지나지 않는다.In addition, Japanese Laid-Open Patent Publication No. 2002-115032 reports a method for producing an ultra-high strength line pipe, which is characterized by a weld metal containing 1% or more of retained austenite phase, but this is to improve the low temperature toughness of the weld joint. In addition, the main purpose is to prevent cold cracking, and it is not only helpful to design the weld metal by simple calculation, but also provide consequent information.

본 발명은 상기한 종래의 문제점을 개선하기 위한 것으로, 인장강도 950MPa급 이상의 초고강도 강재를 용접하여 구성한 용접구조체에서 저온인성이 우수하고 950MPa급 이상의 초고강도를 갖는 용접이음부를 제공하는데, 그 목적이 있다.The present invention is to improve the above-mentioned conventional problems, to provide a welded joint having excellent low-temperature toughness and ultra-high strength of 950 MPa or more in a welded structure constructed by welding an ultra high strength steel of tensile strength of 950 MPa or more, and an object thereof. There is this.

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

용접구조체의 용접이음부에 있어서, 모재와 용가재에 의해 형성되는 용접금속이 하기 (1)식에서 나타난 탄소당량 Ceq 값 0.7~0.8%의 범위 안에 있고, 조직은 60면적% 이상의 침상 페라이트(Acicular ferrite)와 베이나이트 및 10~20 면적%의 마르텐사이트의 혼합조직으로 이루어지는 저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부에 관한 것이다.In the welded joint of the welded structure, the weld metal formed by the base material and filler metal is in the range of 0.7-0.8% of the carbon equivalent Ceq value shown in the following formula (1), and the structure is acicular ferrite of 60 area% or more. Ultra high strength welded joint of 950MPa grade or more having excellent low temperature toughness composed of a mixed structure of and bainite and martensite of 10 to 20 area%.

Ceq = [C] + [Mn]/6 + ([Cr] + [Mo] + [V])/5 + ([Ni] + [Cu])/15) … (1)Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Ni] + [Cu]) / 15)... (One)

단, [C], [Mn], [Cr], [Mo], [V], [Ni] 및 [Cu]는, 각각 C, Mn, Cr, Mo, V, Ni 및 Cu의 함량(중량%)을 나타낸다.However, [C], [Mn], [Cr], [Mo], [V], [Ni] and [Cu] are contents of C, Mn, Cr, Mo, V, Ni and Cu, respectively (% by weight). ).

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명자들은 저온인성이 우수한 950MPa 급 이상의 초고강도 용접이음부를 제조할 수 있는 방안을 연구하기 위하여 강판 설계, 용가재 설계 및 용접조건 등에 초점을 맞추어 면밀히 검토하던 중, 초고강도와 저온인성의 밸런스를 확보할 수 있 는 최적의 조직 분율을 도출하였으며, 이러한 조직 분율을 확보하기 위하여 용접금속의 탄소당량식의 범위를 적절히 제어하면 용접이음부의 저온인성뿐만 아니라 950MPa 급 이상의 초고강도를 확보할 수 있다는 것을 새롭게 규명하고, 그 결과에 기초하여 본 발명을 완성하게 되었다.The inventors of the present invention closely examine the balance between ultra high strength and low temperature toughness while focusing on steel plate design, filler metal design and welding conditions in order to study a method for manufacturing a super high strength welded joint having a low temperature toughness of 950 MPa or more. The optimum tissue fraction that can be secured was derived, and the proper control of the range of carbon equivalent formula of the weld metal to secure such a tissue fraction can ensure not only low-temperature toughness of the weld joint but also ultra-high strength of 950 MPa or more. The present invention was newly identified and the present invention was completed based on the results.

이하, 본 발명의 저온인성이 우수한 950MPa 급 이상의 초고강도 용접이음부에 대하여 상세히 설명한다.Hereinafter, the ultra-high strength welded joint of 950 MPa or more excellent in low temperature toughness of the present invention will be described in detail.

일반적으로 700MPa급 이하의 용접금속을 제조하는 경우에는 동급의 강도와 우수한 저온인성을 얻을 수 있는 침상 페라이트 (Acicular ferrite) 조직을 목표로 성분설계가 이루어졌으나, 그 이상의 강도 특히 950MPa급 이상의 초고강도에서는 침상 페라이트 조직으로 동등의 강도를 맞출 수가 없으며, 따라서 강도 향상을 위하여 새로운 조직들의 최적 혼합을 필요로 한다.In general, in the case of manufacturing the welding metal of 700MPa or less, the component design is aimed at acicular ferrite structure that can obtain the same strength and excellent low temperature toughness. Needle-like ferrite tissues cannot match equal strength, thus requiring optimal mixing of new tissues for strength improvement.

본 발명은 용접구조체의 용접이음부에 있어서, 모재와 용가재에 의해 형성되는 용접금속의 조직이 60면적% 이상의 침상 페라이트(Acicular ferrite)와 베이나이트 및 10~20 면적%의 마르텐사이트의 혼합조직으로 이루어지는 것이다.According to the present invention, in the welded joint of the welded structure, the weld metal formed by the base material and the filler metal is a mixed structure of acicular ferrite, bainite, and martensite of 10-20 area% or more. It is done.

상기 강도가 높은 마르텐사이트 조직 비율이 많아지면 용접금속의 강도는 쉽게 달성할 수는 있는 반면 저온인성 측면에서는 만족스럽지 못한 결과를 가져올 수 있다. 반대로 상기 인성이 우수한 침상 페라이트 및 하부 베이나이트(Lower bainite) 조직 비율이 높아지면 용접금속의 인성은 향상될 수 있는 반면 강도는 초고강도 급에 이르지 못할 수 있다. 따라서, 상기 용접금속의 조직은 60면적% 이상의 침상 페라이트(Acicular ferrite)와 베이나이트 및 10~20면적%의 마르텐사이트의 혼합조직으로 이루어지는 것이 바람직하다.If the high martensite structure ratio is high, the strength of the weld metal may be easily achieved, but may be unsatisfactory in terms of low temperature toughness. On the contrary, when the ratio of the needle-like ferrite and lower bainite structure having excellent toughness is increased, the toughness of the weld metal may be improved while the strength may not reach the ultra high strength level. Therefore, it is preferable that the structure of the weld metal is made of a mixed structure of acicular ferrite and acicular ferrite and bainite, and martensite of 10 to 20 area%.

또한, 이러한 용접금속의 혼합조직을 얻기 위해서는 모재와 용가재가 통상의 용접조건에 의해 희석이 되어 형성된 용접금속이 아래에서 나타낸 탄소당량 Ceq 값 0.7~0.8%의 범위 안에 있도록 모재와 용가재의 성분설계가 이루어져야 한다.In addition, in order to obtain a mixed structure of the weld metal, the base metal and the filler metal are designed so that the weld metal formed by diluting the base metal and the filler metal under ordinary welding conditions is in the range of 0.7 to 0.8% of the carbon equivalent Ceq value shown below. Should be done.

Ceq = [C] + [Mn]/6 + ([Cr] + [Mo] + [V])/5 + ([Ni] + [Cu])/15) … (1)Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Ni] + [Cu]) / 15)... (One)

단, [C], [Mn], [Cr], [Mo], [V], [Ni] 및 [Cu]는, 각각 C, Mn, Cr, Mo, V, Ni 및 Cu의 함량(중량%)을 나타낸다. However, [C], [Mn], [Cr], [Mo], [V], [Ni] and [Cu] are contents of C, Mn, Cr, Mo, V, Ni and Cu, respectively (% by weight). ).

여기서 탄소당량 Ceq 값은 0.7~0.8 범위 안에 있어야만 저온인성과 초고강도의 밸런스가 이루어지며, 이때 용접금속 조직은 60면적% 이상의 침상 페라이트(Acicular ferrite)와 베이나이트 및 10~20면적%의 마르텐사이트의 혼합조직으로 이루어지는 것이다. 상기 용접금속의 탄소당량 Ceq 값이 0.7 미만일 경우에는 저온인성은 우수하나 초고강도를 달성하지 못하는 반면 0.8을 초과일 경우에는 초고강도는 이루어지나 저온인성이 저하될 수 있다.Here, the carbon equivalent Ceq value must be in the range of 0.7 to 0.8 to achieve low-temperature toughness and ultra-high strength balance.At this time, the weld metal structure has acicular ferrite and bainite and bainite and martensite of 10 to 20 area%. It consists of a mixed structure of. When the carbon equivalent Ceq value of the weld metal is less than 0.7, low temperature toughness is excellent but ultra high strength is not achieved, whereas when the carbon equivalent Ceq value is higher than 0.8, ultra high strength may be achieved but low temperature toughness may be reduced.

또한, 본 발명의 일 실시예에 따라 상기 모재는 중량%로, C: 0.03~0.10%, Si: 0.6% 이하, Mn: 1.6~2.1%, Cu: 1.0% 이하, Ni: 1.0% 이하, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1 ~0.5%, Cr: 1.0% 이하, Ti: 0.005~0.03%, Al: 0.001~0.06%, B: 0.0005~0.0025%, N: 0.001~0.006%, P: 0.02% 이하, S: 0.005% 이하, Ca: 0.006% 이하, 나머지 Fe 및 기타 불가피한 불순물로 이루어지는 것이 바람직할 수 있다.In addition, according to an embodiment of the present invention, the base material is% by weight, C: 0.03 to 0.10%, Si: 0.6% or less, Mn: 1.6 to 2.1%, Cu: 1.0% or less, Ni: 1.0% or less, Nb : 0.01 to 0.06%, V: 0.01 to 0.1%, Mo: 0.1 to 0.5%, Cr: 1.0% or less, Ti: 0.005 to 0.03%, Al: 0.001 to 0.06%, B: 0.0005 to 0.0025%, N: 0.001 It may be desirable to make up to 0.006%, P: 0.02% or less, S: 0.005% or less, Ca: 0.006% or less, remaining Fe and other unavoidable impurities.

또한, 본 발명의 일 실시예에 따라 상기 용가재는 중량%로, C: 0.05~0.1%, Si: 0.3~0.6%, Mn: 1.0~3.0%, Ni: 1.5~6.0%, Cr+Mo+V: 0.5~2.5%, N: 0.006% 이하, P: 0.02% 이하, S: 0.005% 이하, O: 0.03% 이하, 나머지 Fe 및 기타 불가피한 불순물로 이루어지는 것이 바람직할 수 있다.In addition, according to an embodiment of the present invention, the filler metal is in weight percent, C: 0.05 to 0.1%, Si: 0.3 to 0.6%, Mn: 1.0 to 3.0%, Ni: 1.5 to 6.0%, Cr + Mo + V : 0.5-2.5%, N: 0.006% or less, P: 0.02% or less, S: 0.005% or less, O: 0.03% or less, and the remaining Fe and other unavoidable impurities may be preferable.

본 발명에 따르면, 인장강도 950MPa급 이상의 초고강도 강재를 용접하여 구성한 용접구조체에서 저온인성이 우수하고 950MPa급 이상의 초고강도를 갖는 용접이음부를 제공할 수 있는 효과가 있다.According to the present invention, there is an effect of providing a welded joint having excellent low-temperature toughness and ultra-high strength of 950 MPa or more in a welded structure constructed by welding an ultra high strength steel of 950 MPa or more of tensile strength.

(실시예)(Example)

모재의 제조는 300톤 전로에서 용융금속(Molten metal)의 정련을 통해 화학성분을 제어한 후, 연속 주조하여 슬래브를 얻는다. 그 후 1100℃에서 재가열한 후 압연과정을 통해 누적 압하량이 80%가 되는 제어 압연을 16mm까지 행하고, 그 뒤 20~30℃/sec의 냉각속도로 수냉 처리하여 강판을 얻었다. 상기에서 얻어진 강판의 화학성분 및 기계적 특성을 표 1에 나타내었다.In the preparation of the base material, the slab is obtained by controlling the chemical composition through the refining of molten metal in a 300 ton converter. After that, after reheating at 1100 ° C., the rolling was controlled to 16 mm in which the cumulative reduction was 80% through a rolling process, and thereafter, water cooling was performed at a cooling rate of 20 to 30 ° C./sec to obtain a steel sheet. Table 1 shows the chemical components and mechanical properties of the steel sheet obtained above.

강판Grater 화학성분 (wt. %)Chemical composition (wt.%) 기계적 특성Mechanical properties CC SiSi MnMn PP SS Cr+Mo+VCr + Mo + V Ni+CuNi + Cu CeqCeq TS (MPa)TS (MPa) vE-30℃ (J)vE-30 ℃ (J) AA 0.050.05 0.150.15 1.91.9 0.0060.006 0.0010.001 0.640.64 0.50.5 0.520.52 10181018 240240 BB 0.090.09 0.150.15 1.91.9 0.0050.005 0.0010.001 0.640.64 0.20.2 0.550.55 10771077 186186

표 1에 나타난 바와 같이, 강판 A는 강도가 목표 범위 내에 있으며 동시에 저온인성(샤르피 V 노치 충격시험을 통한 -30℃에서의 흡수 에너지) 값도 높게 나타났다. 한편, 강판 A에 비교하여 C 및 Cr 함량이 높고 Mo 및 Ni 함량이 적은 강판 B의 강도는 목표범위에 있지만 저온인성값은 다소 낮게 나타났다. As shown in Table 1, the steel sheet A had a high strength within the target range and at the same time high temperature toughness (absorbed energy at -30 ° C through Charpy V notch impact test). On the other hand, compared with the steel sheet A, the strength of the steel sheet B having a high C and Cr content and a low Mo and Ni content is in the target range, but the low temperature toughness value is rather low.

이러한 강판에 대하여 하기 표 2에 나타낸 용가재(a~c)를 사용하여 서브머지드 아크 용접을 실시하였다. 플럭스는 상용화된 소결형의 고염기성 타입을 사용하였으며, 3전극봉을 이용하여 용접속도 1.6m/min, 용접입열량 2.0~5.0kJ/mm을 적용하였다. 용접이음부의 화학성분, 조직분율 및 기계적 특성에 대한 실험을 실시한 후, 그 결과를 하기 표 3에 나타내었다.Submerged arc welding was performed about such a steel plate using the filler metals a-c shown in Table 2 below. Flux used a commercially available sintered high base type and a welding speed of 1.6m / min and a welding heat input of 2.0 ~ 5.0kJ / mm were applied using a three-electrode electrode. After performing experiments on the chemical composition, tissue fraction and mechanical properties of the welded joint, the results are shown in Table 3 below.

용가재 Dragonfly 화학성분(Wt.%)Chemical composition (Wt.%) CC SiSi MnMn NiNi Cr+Mo+VCr + Mo + V aa 0.060.06 0.510.51 1.61.6 2.02.0 0.530.53 bb 0.080.08 0.400.40 2.62.6 5.75.7 2.342.34 cc 0.070.07 0.440.44 2.32.3 4.54.5 1.741.74

분실시 번호Lost Number 강판Grater 용가재Dragonfly 용접 입열량 (kJ/mm)Welding heat input (kJ / mm) 용접금속 특성Weld metal properties 화학성분Chemical composition 조직분율Tissue fraction 기계적 특성Mechanical properties CC MnMn Cr+Mo +VCr + Mo + V Ni+CuNi + Cu CeqCeq 마르텐 사이트 (%)Martensiite (%) AF+B (%)AF + B (%) TS (MPa)TS (MPa) vE- 30℃ (J)vE- 30 ℃ (J) 1One AA bb 5.05.0 0.070.07 1.81.8 1.331.33 2.52.5 0.80.8 1919 8181 10961096 126126 22 AA cc 2.82.8 0.070.07 1.91.9 1.01.0 2.32.3 0.740.74 1212 8888 988988 130130 33 AA cc 3.23.2 0.070.07 1.91.9 1.11.1 2.22.2 0.750.75 1717 8383 10041004 144144 44 BB aa 2.02.0 0.090.09 2.22.2 0.680.68 1.551.55 0.700.70 1111 8989 963963 9898 55 BB cc 3.23.2 0.080.08 1.91.9 1.11.1 1.91.9 0.740.74 1212 8888 971971 106106 66 AA aa 3.23.2 0.060.06 1.71.7 0.550.55 1.21.2 0.520.52 00 100100 898898 9494 77 AA bb 3.23.2 0.080.08 2.22.2 1.451.45 3.33.3 0.940.94 7676 2424 11141114 6565 88 BB aa 3.23.2 0.080.08 1.71.7 0.60.6 1.11.1 0.550.55 00 100100 904904 4343 99 BB bb 3.23.2 0.10.1 2.22.2 1.411.41 2.92.9 0.950.95 8484 1616 11021102 5050

상기 표 3에 나타난 바와 같이, 본 발명의 탄소당량 범위를 만족하는 발명예(1~5)의 경우 목표로 하는 10~20면적% 분율의 마르텐사이트와 80% 이상의 침상 페라이트 및 베이나이트의 혼합조직을 확보할 수 있었다. 따라서, 이러한 발명예(1~5)는 인장강도 950MPa 이상의 초고강도를 만족시키면서 저온인성은 -30℃ 에서도 90J 이상의 우수한 흡수에너지를 나타냄을 잘 알 수 있다. As shown in Table 3, in the case of the invention examples (1 to 5) satisfying the carbon equivalent range of the present invention, the mixed structure of the target martensite with a target area of 10 to 20 area%, and at least 80% acicular ferrite and bainite Could secure. Accordingly, it can be seen that the inventive examples (1 to 5) exhibited excellent absorption energy of 90J or more even at -30 ° C while satisfying ultrahigh strength of 950 MPa or more.

반면, 비교예(6 및 8)는 용접금속의 탄소당량 (Ceq)이 본 발명의 한정범위 (0.7~0.8)보다 작은 값을 나타내었다. 따라서 이러한 성분계로 인하여 용접 이후 냉각시 소입성(Hardenability)이 작아 강도상승에 주 역할을 하는 마르텐사이트 변태가 전혀 이루어지지 않았으며(마르텐사이트 분율 0%) 그 결과 목표로 하는 인장강도를 확보하지 못하였다. On the other hand, Comparative Examples (6 and 8) showed a value of carbon equivalent (Ceq) of the weld metal is smaller than the limited range (0.7 ~ 0.8) of the present invention. Therefore, due to this component system, the hardenability during cooling after welding is low, and thus no martensite transformation, which plays a major role in strength increase, is achieved (martensite fraction of 0%). As a result, the target tensile strength cannot be secured. It was.

또한, 비교예(7 및 9)의 경우에는 용접금속의 탄소당량(Ceq)이 본 발명의 한정범위보다 큰 값을 나타내었다. 이러한 과도한 성분계로 인하여 용접 이후 냉각시 소입성(Hardenability)이 높아져서 강도 상승에 주 역할을 하는 마르텐사이트 생성이 과하게 이루어지고(마르텐사이트 분율 76%(비교예 7), 84%(비교예 9)), 반면 저온인성 향상에 유리한 역할을 하는 침상 페라이트의 분율이 목표로 하는 60% 보다 훨씬 작은 24%(비교예 7), 16%(비교예 9)를 나타내었다. 그 결과 용접금속의 인장강도는 950MPa급 보다 큰 1100MPa 이상의 초고강도를 나타내고 있지만, 저온인성은 -30℃에서 비교예 7 65J, 비교예 9 50J로서, 만족스럽지 못한 특성을 나타냄을 알 수 있다. In Comparative Examples (7 and 9), the carbon equivalent (Ceq) of the weld metal was larger than the limited range of the present invention. This excessive component system increases the hardenability during cooling after welding, resulting in excessive martensite formation, which plays a major role in the strength increase (martensite fraction 76% (Comparative Example 7), 84% (Comparative Example 9)). On the other hand, the fraction of acicular ferrite, which has a favorable role in improving low temperature toughness, was much smaller than the target 60% (24% (Comparative Example 7), 16% (Comparative Example 9)). As a result, the tensile strength of the weld metal was 1100 MPa or more, which is higher than the 950 MPa grade, but the low temperature toughness of Comparative Example 7 65J and Comparative Example 9 50J at −30 ° C. showed unsatisfactory characteristics.

Claims (3)

용접구조체의 용접이음부에 있어서, 모재와 용가재에 의해 형성되는 용접금속이 하기 (1)식에서 나타난 탄소당량 Ceq 값 0.7~0.8%의 범위 안에 있고, 조직은 60면적% 이상의 침상 페라이트(Acicular ferrite)와 베이나이트 및 10~20 면적%의 마르텐사이트의 혼합조직으로 이루어지는 저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부.In the welded joint of the welded structure, the weld metal formed by the base material and filler metal is in the range of 0.7-0.8% of the carbon equivalent Ceq value shown in the following formula (1), and the structure is acicular ferrite of 60 area% or more. Ultra high strength welded joint of 950MPa grade or more with excellent low temperature toughness composed of mixed structure of bainite and martensite of 10 ~ 20 area%. Ceq = [C] + [Mn]/6 + ([Cr] + [Mo] + [V])/5 + ([Ni] + [Cu])/15) … (1)Ceq = [C] + [Mn] / 6 + ([Cr] + [Mo] + [V]) / 5 + ([Ni] + [Cu]) / 15)... (One) 단, [C], [Mn], [Cr], [Mo], [V], [Ni] 및 [Cu]는, 각각 C, Mn, Cr, Mo, V, Ni 및 Cu의 함량(중량%)을 나타낸다.However, [C], [Mn], [Cr], [Mo], [V], [Ni] and [Cu] are contents of C, Mn, Cr, Mo, V, Ni and Cu, respectively (% by weight). ). 제 1항에 있어서, 상기 모재는 중량%로, C: 0.03~0.10%, Si: 0.6% 이하, Mn: 1.6~2.1%, Cu: 1.0% 이하, Ni: 1.0% 이하, Nb: 0.01~0.06%, V: 0.01~0.1%, Mo: 0.1 ~0.5%, Cr: 1.0% 이하, Ti: 0.005~0.03%, Al: 0.001~0.06%, B: 0.0005~0.0025%, N: 0.001~0.006%, P: 0.02% 이하, S: 0.005% 이하, Ca: 0.006% 이하, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부.According to claim 1, wherein the base material is by weight, C: 0.03 ~ 0.10%, Si: 0.6% or less, Mn: 1.6 ~ 2.1%, Cu: 1.0% or less, Ni: 1.0% or less, Nb: 0.01 ~ 0.06 %, V: 0.01-0.1%, Mo: 0.1-0.5%, Cr: 1.0% or less, Ti: 0.005-0.03%, Al: 0.001-0.06%, B: 0.0005-0.0025%, N: 0.001-0.006%, P: 0.02% or less, S: 0.005% or less, Ca: 0.006% or less, ultra-high strength welded joint of 950 MPa or more having excellent low temperature toughness composed of remaining Fe and other unavoidable impurities. 제 1항 또는 제 2항에 있어서, 상기 용가재는 중량%로, C: 0.05~0.1%, Si: 0.3~0.6%, Mn: 1.0~3.0%, Ni: 1.5~6.0%, Cr+Mo+V: 0.5~2.5%, N: 0.006% 이하, P: 0.02% 이하, S: 0.005% 이하, O: 0.03% 이하, 나머지 Fe 및 기타 불가피한 불순물로 이루어진 저온인성이 우수한 950MPa급 이상의 초고강도 용접이음부.The filler metal according to claim 1 or 2, wherein the filler metal is in weight percent, C: 0.05 to 0.1%, Si: 0.3 to 0.6%, Mn: 1.0 to 3.0%, Ni: 1.5 to 6.0%, Cr + Mo + V. : 0.5 ~ 2.5%, N: 0.006% or less, P: 0.02% or less, S: 0.005% or less, O: 0.03% or less, ultra high strength welded joint of 950 MPa or more with excellent low temperature toughness made of remaining Fe and other unavoidable impurities .
KR1020070081137A 2007-08-13 2007-08-13 Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness KR100925608B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070081137A KR100925608B1 (en) 2007-08-13 2007-08-13 Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070081137A KR100925608B1 (en) 2007-08-13 2007-08-13 Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness

Publications (2)

Publication Number Publication Date
KR20090016854A true KR20090016854A (en) 2009-02-18
KR100925608B1 KR100925608B1 (en) 2009-11-06

Family

ID=40685762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070081137A KR100925608B1 (en) 2007-08-13 2007-08-13 Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness

Country Status (1)

Country Link
KR (1) KR100925608B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
KR101317275B1 (en) * 2011-11-03 2013-10-14 포항공과대학교 산학협력단 Steel sheet having good low temperature toughness
KR101382991B1 (en) * 2012-12-26 2014-04-08 주식회사 포스코 Ultra high strength flux cored arc welded joint having excellent low temperature toughness
KR101449209B1 (en) * 2012-12-27 2014-10-08 주식회사 포스코 Welding joint
KR101465088B1 (en) * 2012-08-17 2014-11-26 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
WO2015099219A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN104903046A (en) * 2012-12-27 2015-09-09 Posco公司 Ultra high strength flux cored arc welded joint having excellent impact toughness and welding wire for manufacturing same
CN105171268A (en) * 2015-07-28 2015-12-23 江苏省沙钢钢铁研究院有限公司 High corrosion-resisting type submerged arc welding wire and weld metal
KR20160080096A (en) * 2016-06-20 2016-07-07 주식회사 포스코 Ultra high strength gas metal arc weld metal joint
CN105792981A (en) * 2013-12-06 2016-07-20 Posco公司 Flux-cored arc welding material having remarkable impact resistance and abrasion resistance
US9981346B2 (en) 2012-11-22 2018-05-29 POSCO Gyeongsangbuk-Do Welded joint of extremely low-temperature steel, and welding materials for preparing same
CN108103393A (en) * 2017-06-01 2018-06-01 海宁瑞奥金属科技有限公司 A kind of weld metal of high-intensity and high-tenacity bridge steel welded joint
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
KR20220022399A (en) * 2020-08-18 2022-02-25 현대제철 주식회사 Submerged arc welded metal joint having excellent low temperature toughness and low hardness and welded steel pipe have the same
KR102373705B1 (en) * 2020-10-16 2022-03-14 주식회사 포스코 Submerged arc welding material, welded joint having excellent low temperature toughness and high strength and method of manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69607702T2 (en) 1995-02-03 2000-11-23 Nippon Steel Corp High-strength conduit steel with a low yield strength-tensile strength ratio and excellent low-temperature toughness
JP3367374B2 (en) 1997-03-31 2003-01-14 住友金属工業株式会社 Welded high tensile steel pipe
JP3969328B2 (en) 2003-03-26 2007-09-05 住友金属工業株式会社 Non-tempered seamless steel pipe
JP4196810B2 (en) 2003-10-31 2008-12-17 住友金属工業株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317275B1 (en) * 2011-11-03 2013-10-14 포항공과대학교 산학협력단 Steel sheet having good low temperature toughness
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
KR101465088B1 (en) * 2012-08-17 2014-11-26 포항공과대학교 산학협력단 Low carbon high strength steel plates with good low temperature toughness and manufacturing method for the same
US9981346B2 (en) 2012-11-22 2018-05-29 POSCO Gyeongsangbuk-Do Welded joint of extremely low-temperature steel, and welding materials for preparing same
KR101382991B1 (en) * 2012-12-26 2014-04-08 주식회사 포스코 Ultra high strength flux cored arc welded joint having excellent low temperature toughness
CN104903046A (en) * 2012-12-27 2015-09-09 Posco公司 Ultra high strength flux cored arc welded joint having excellent impact toughness and welding wire for manufacturing same
KR101449209B1 (en) * 2012-12-27 2014-10-08 주식회사 포스코 Welding joint
DE112013006287B4 (en) 2012-12-27 2022-01-27 Posco High-strength flux-cored arc-weld joint with excellent impact resistance, and welding wire for its manufacture
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
US10279436B2 (en) 2013-12-06 2019-05-07 Posco Flux-cored arc welding material having remarkable impact resistance and abrasion resistance
CN105792981A (en) * 2013-12-06 2016-07-20 Posco公司 Flux-cored arc welding material having remarkable impact resistance and abrasion resistance
WO2015099219A1 (en) * 2013-12-24 2015-07-02 주식회사 포스코 Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN105848820A (en) * 2013-12-24 2016-08-10 Posco公司 Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
US10266929B2 (en) 2013-12-24 2019-04-23 Posco Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
CN105171268A (en) * 2015-07-28 2015-12-23 江苏省沙钢钢铁研究院有限公司 High corrosion-resisting type submerged arc welding wire and weld metal
KR20160080096A (en) * 2016-06-20 2016-07-07 주식회사 포스코 Ultra high strength gas metal arc weld metal joint
CN108103393A (en) * 2017-06-01 2018-06-01 海宁瑞奥金属科技有限公司 A kind of weld metal of high-intensity and high-tenacity bridge steel welded joint
KR20220022399A (en) * 2020-08-18 2022-02-25 현대제철 주식회사 Submerged arc welded metal joint having excellent low temperature toughness and low hardness and welded steel pipe have the same
KR102373705B1 (en) * 2020-10-16 2022-03-14 주식회사 포스코 Submerged arc welding material, welded joint having excellent low temperature toughness and high strength and method of manufacturing the same

Also Published As

Publication number Publication date
KR100925608B1 (en) 2009-11-06

Similar Documents

Publication Publication Date Title
KR100925608B1 (en) Ultra High Strength Welding Joint of 950??? grade Having Excellent Low Temperature Toughness
JP6857729B2 (en) Super austenitic stainless steel rolled composite steel sheet and its manufacturing method
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
US10835997B2 (en) Super high strength gas protection welding wire containing V and manufacturing method therefor
WO1996023909A1 (en) High-strength line-pipe steel having low yield ratio and excellent low-temperature toughness
EP2128294B1 (en) Base metal for clad steel plate having high strength and excellent toughness in welding heat-affected zone, and method of producing the same
KR101304859B1 (en) Ultra high strength steel plate for pipeline with high resistance to surface cracking and manufacturing metod of the same
JP2001355039A (en) Ultrahigh strength steel tube excellent in low temperature toughness of weld zone and its production method
JP2015085331A (en) Submerged arc weld metal excellent in ultralow-temperature toughness, and submerged arc welding wire and flux forming the same
KR20110102436A (en) Method of manufacturing sheet steel for sour-resistant line pipe
JP2006241551A (en) Thick steel plate having excellent weldability and low temperature toughness
JP4475023B2 (en) Ultra high strength bend pipe with excellent low temperature toughness
JP4949210B2 (en) Steel excellent in toughness of weld heat-affected zone and method for producing the same
KR20170052654A (en) Thick steel plate for tank giving weld heat affected zone with excellent toughness
JPH08209287A (en) Steel for high strength line pipe having low yield ratio and excellent in low temperature toughness
JP2006110581A (en) High strength and high toughness wire for arc welding
JPH0941074A (en) Ultra-high tensile strength steel excellent in low temperature tougheness
JP4901262B2 (en) Thick steel plate with excellent toughness of heat affected zone
JP4964480B2 (en) High strength steel pipe excellent in toughness of welded portion and method for producing the same
RU2136776C1 (en) High-strength steel for main pipelines with low yield factor and high low-temperature ductility
KR101679668B1 (en) Manufacturing method for high strength steel palte with low temperature toughness and high strength steel palte with low temperature toughness thereof
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
KR102275814B1 (en) Ultra thick steel plate and manufacturing method for offshore structure having ultra-high strength and high toughness
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151027

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191030

Year of fee payment: 11