JP4901262B2 - Thick steel plate with excellent toughness of heat affected zone - Google Patents
Thick steel plate with excellent toughness of heat affected zone Download PDFInfo
- Publication number
- JP4901262B2 JP4901262B2 JP2006090314A JP2006090314A JP4901262B2 JP 4901262 B2 JP4901262 B2 JP 4901262B2 JP 2006090314 A JP2006090314 A JP 2006090314A JP 2006090314 A JP2006090314 A JP 2006090314A JP 4901262 B2 JP4901262 B2 JP 4901262B2
- Authority
- JP
- Japan
- Prior art keywords
- toughness
- haz
- steel plate
- affected zone
- thick steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、大入熱溶接継手における溶接熱影響部(Heat Affected Zone:HAZ)の靭性に優れた厚鋼板に関するものである。本発明を適用した厚鋼板は、鉄鋼業において安価に製造することが可能であり、造船をはじめ建築、橋梁、タンク、海洋構造物、ラインパイプなどの溶接構造物に使用され、溶接施工能率の高い大入熱溶接を施され、かつ、溶接部靭性の要求レベルが高い場合に好適である。 The present invention relates to a thick steel plate excellent in the toughness of a heat affected zone (HAZ) in a high heat input welded joint. The steel plate to which the present invention is applied can be manufactured at a low cost in the steel industry, and is used for welding structures such as shipbuilding, architecture, bridges, tanks, offshore structures, line pipes, etc. It is suitable when high high heat input welding is performed and the required level of weld zone toughness is high.
近年、造船や建築などの溶接構造物に対する主要な要求は、構造の大型化、建造の高能率化、破壊に対する安全性向上である。このような動向を受け、溶接構造用の厚鋼板には、高能率な大入熱溶接を適用した場合に、より高いHAZ靭性が求められる。その反面、このような厚鋼板の製造者ならびに使用者の両方において、経済性がますます重要視されており、従来よりも安価な厚鋼板が求められている。 In recent years, major requirements for welded structures such as shipbuilding and construction are to increase the size of structures, increase the efficiency of construction, and improve safety against destruction. In response to such trends, thicker steel plates for welded structures are required to have higher HAZ toughness when high-efficiency large heat input welding is applied. On the other hand, both the producers and users of such thick steel plates are increasingly focusing on economic efficiency, and there is a demand for thick steel plates that are cheaper than before.
厚鋼板の大入熱溶接HAZ靭性を高める従来技術は、溶融線近傍HAZの組織微細化を目指したものが一般的である。HAZ組織微細化の方法として、γの粒界や粒内に存在する析出物をα変態核として活用してHAZ組織を微細化する方法がある。これを有効に機能させるためには、α変態の核生成能の高い析出物をできるだけ数多く分散させるのが望ましい。 The conventional technology for increasing the high heat input welding HAZ toughness of thick steel plates is generally aimed at refining the structure of the HAZ near the fusion line. As a method of refining the HAZ structure, there is a method of refining the HAZ structure by utilizing precipitates existing in the grain boundaries and grains of γ as α transformation nuclei. In order to make this function effectively, it is desirable to disperse as many precipitates as possible in the α-transformation with high nucleation ability.
このHAZ組織微細化方法において、α変態の核生成能の高い析出物としてVNの効果が知られている。VNはαとの格子整合性が良好なので、γ粒界やγ粒内に析出したVNを変態核として数多くのαが生成し、組織が微細化してHAZ靭性が向上する。このようなVN効果を利用した従来の大入熱溶接HAZ靭性技術として、例えば特許文献1がある。これは、10〜500nmのCa,Mgを含むVN複合析出物を1000個/mm2以上含有するものである。詳細には、γ粒内にピン止め用のCa,Mgを含む酸化物または硫化物とVNを共存させることにより、HAZにおいてγ粒を70〜170μmにして、−40℃でのシャルピー吸収エネルギー(vE−40)が100J以上という靭性を安定して確保する技術である。 In this HAZ structure refinement method, the effect of VN is known as a precipitate having a high nucleation ability of α transformation. Since VN has good lattice matching with α, a large amount of α is generated by using VN precipitated in γ grain boundaries and γ grains as transformation nuclei, the structure is refined, and HAZ toughness is improved. As a conventional large heat input welding HAZ toughness technique using such a VN effect, for example, there is Patent Document 1. This contains 1000 / mm 2 or more of VN composite precipitates containing Ca, Mg of 10 to 500 nm. Specifically, by allowing VN to coexist with pin oxides or sulfides containing Ca and Mg for pinning in the γ grains, the γ grains are made 70 to 170 μm in HAZ, and Charpy absorbed energy at −40 ° C. ( This is a technique for stably securing toughness of vE-40) of 100 J or more.
しかしながら、70〜170μmの細粒γでは、粒界上でのα変態後、粒内への炭素の濃化により焼入れ性が増加しベイナイト変態が先行してしまうため、粒内でα変態が起り難くなってしまう。さらに、γのピン止めに有効な10〜500nmの微細な粒子では、粒内変態核として機能し難いため、粒内の微細化が不十分な場合がある。このため、HAZ靭性が必要な値を示さない場合も出てくる。 However, in the fine grain γ of 70 to 170 μm, after the α transformation on the grain boundary, the hardenability increases due to the concentration of carbon in the grain and the bainite transformation precedes, so the α transformation occurs in the grain. It will be difficult. Furthermore, since fine particles of 10 to 500 nm effective for pinning γ are difficult to function as intragranular transformation nuclei, there are cases where the intragranular refinement is insufficient. For this reason, the case where the HAZ toughness does not show a necessary value may occur.
本発明の課題は、例えば40〜100mmの厚みと390〜500MPa級の降伏強度を有する厚鋼板において、20〜100kJ/mmの溶接入熱量で溶接されたHAZにおける−40℃でのシャルピー衝撃吸収エネルギー平均値が、安定して100J以上を示すようにすることである。 An object of the present invention is, for example, a thick steel plate having a thickness of 40 to 100 mm and a yield strength of 390 to 500 MPa class, and a Charpy impact absorption energy at −40 ° C. in HAZ welded with a welding heat input of 20 to 100 kJ / mm. The average value is to stably show 100 J or more.
本発明は、前述の課題を解決するために鋭意検討の結果なされたものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)溶接熱影響部を有する厚鋼板において、
質量%で、
C:0.03〜0.15%
Si:0.1〜0.5%
Mn:0.5〜1.8%
P:≦0.01%
S:0.001〜0.01%
Al:0.01〜0.1%
V:0.01〜0.15%
N:0.002〜0.008%
O:0.001〜0.004%
Ca:0.0003〜0.005%
Ni:0.05〜2%
を含有し、質量%を用いて計算される式(1)を満たし、残部が鉄および不可避的不純物によって化学成分が構成され、円相当径0.1〜1μmのV窒化物とCaを含む酸化物及び/または硫化物との複合析出物を100個/mm2以上、1000個/mm2未満含有し、前記溶接熱影響部の旧オーステナイト粒径が200〜800μmであることを特徴とする、大入熱溶接熱影響部の靭性に優れた厚鋼板。
3 ≦ V/N ≦ 15 …(1)
The present invention has been made as a result of intensive studies in order to solve the above-described problems, and the gist of the present invention is the following contents as described in the claims.
(1) In a thick steel plate having a weld heat affected zone,
% By mass
C: 0.03-0.15%
Si: 0.1-0.5%
Mn: 0.5-1.8%
P: ≤0.01%
S: 0.001 to 0.01%
Al: 0.01 to 0.1%
V: 0.01 to 0.15%
N: 0.002 to 0.008%
O: 0.001 to 0.004%
Ca: 0.0003 to 0.005%
Ni: 0.05-2%
Satisfies the formula (1) calculated using mass%, the balance is a chemical component composed of iron and unavoidable impurities, and an oxide containing V nitride and Ca having an equivalent circle diameter of 0.1 to 1 μm and / or composite precipitates of sulfides 100 / mm 2 or more, and contains less than 1000 / mm 2, wherein the prior austenite grain size of the weld heat affected zone is 200~800Myuemu, rafters Thick steel plate with excellent toughness of heat-welded heat affected zone.
3 ≦ V / N ≦ 15 (1)
(2)質量%で、
Cu:0.05〜0.8%
Cr:0.05〜0.8%
Mo:0.05〜0.8%
Nb:0.005〜0.03%
Ti:0.005〜0.02%
B:0.0003〜0.003%
の一種または二種以上をさらに含有することを特徴とする、前記(1)に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板。
(2) In mass%,
Cu: 0.05 to 0.8 %
C r: 0.05-0.8%
Mo: 0.05-0.8%
Nb: 0.005-0.03%
Ti: 0.005-0.02%
B: 0.0003 to 0.003%
The thick steel plate excellent in toughness of the high heat input welding heat-affected zone according to (1), further comprising one or more of the following.
本発明によって、例えば40〜100mmの厚みと390〜500MPa級の降伏強度を有する厚鋼板において、20〜100kJ/mmの溶接入熱量で溶接されたHAZにおける−40℃でのシャルピー衝撃吸収エネルギー平均値が、安定して100J以上を示すようになる。 According to the present invention, for example, in a thick steel plate having a thickness of 40 to 100 mm and a yield strength of 390 to 500 MPa class, an average value of Charpy impact absorption energy at −40 ° C. in HAZ welded with a welding heat input of 20 to 100 kJ / mm. However, it comes to show 100J or more stably.
本発明の狙いは、VNによるα変態核効果を大入熱溶接HAZで利用するに際して、連続鋳造鋳片の表面割れを回避するために、低いN量のもとでVN効果を引き出すことである。この技術的課題に対して、発明者らは基礎研究を行い、以下の新しい知見を得た。 The aim of the present invention is to draw out the VN effect under a low N content in order to avoid surface cracking of a continuous cast slab when the α transformation nucleus effect by VN is used in high heat input welding HAZ. . In response to this technical problem, the inventors conducted basic research and obtained the following new findings.
すなわち、低N量においてもVを0.01〜0.15%、Nを0.002〜0.008%で、V/Nを3〜15として、Ca含有酸化物あるいは硫化物とV窒化物を複合析出させることにより、α変態核となる円相当径0.1〜1μmの析出物を100〜1000個/mm2と大量に分散させることができることを知見した。さらにHAZにおける旧γ粒径を200〜800μmにすることにより、上記した析出物を核として粒界および粒内からのα変態が促進され、粗大なベイナイト組織を抑制してHAZ組織を微細化することが可能であることを知見した。 That is, even in a low N content, V is 0.01 to 0.15%, N is 0.002 to 0.008%, V / N is 3 to 15, and Ca-containing oxide or sulfide and V nitride are used. It has been found that precipitates with an equivalent circle diameter of 0.1 to 1 μm, which are α transformation nuclei, can be dispersed in a large amount of 100 to 1000 pieces / mm 2 by composite precipitation. Further, by setting the old γ grain size in the HAZ to 200 to 800 μm, α transformation from the grain boundary and inside the grain is promoted with the above precipitate as the nucleus, and the coarse bainite structure is suppressed and the HAZ structure is refined. It was found that it was possible.
VN効果を引き出すためのVとNの適正バランスは、次式(1)に示される。
3 ≦ V/N ≦ 15 …(1)
V/Nが3より小さいとVN析出物の形成が不十分であり、VN効果の発現が困難である。また、V/Nが15より大きい、つまり過剰にNが含まれると、VN形成後に余ったNがマトリックスに固溶して脆化をもたらす。したがって、式(1)のバランスでVとNを添加する必要がある。
The appropriate balance of V and N for extracting the VN effect is shown in the following equation (1).
3 ≦ V / N ≦ 15 (1)
If V / N is less than 3, the formation of VN precipitates is insufficient, and it is difficult to develop the VN effect. If V / N is greater than 15, that is, if N is excessively contained, the remaining N after VN formation is dissolved in the matrix and causes embrittlement. Therefore, it is necessary to add V and N in the balance of formula (1).
Vよりも強力な窒化物形成元素であるTi、Nb、Bなどが添加される場合においては、冷却時のHAZにおけるVNの析出に先立って、TiN、NbN、BNなどがγ相の高温側で析出することを考える必要があるが、本発明に係る成分範囲では、式(1)を目安にVN析出を制御すれば工業的にHAZ組織を微細化でき、HAZ靭性向上が可能である。 When Ti, Nb, B, etc., which are nitride forming elements stronger than V are added, TiN, NbN, BN, etc. are on the high temperature side of the γ phase prior to the precipitation of VN in the HAZ during cooling. Although it is necessary to consider the precipitation, in the component range according to the present invention, if the VN precipitation is controlled using the formula (1) as a guide, the HAZ structure can be refined industrially and the HAZ toughness can be improved.
本発明の重要な点は、Ca含有酸化物及び/又は硫化物をVNの析出サイトとして利用することにより、VNに加え、VNとCa含有酸化物及び/又は硫化物との複合析出物を生成し、この複合析出物をα変態核として用いることにより、α変態核を大幅に増加させることにある。Ca含有酸化物及び/又は硫化物の鋼中への分散は、溶鋼精錬においてSi、Mn、Alを添加して予備脱酸を行った後、Caを添加して最終の脱酸、脱硫を行い、その後連続鋳造することで可能である。 The important point of the present invention is that by using Ca-containing oxide and / or sulfide as a VN precipitation site, a composite precipitate of VN and Ca-containing oxide and / or sulfide is generated in addition to VN. However, the use of this composite precipitate as an α transformation nucleus is to greatly increase the α transformation nucleus. Dispersion of Ca-containing oxides and / or sulfides in steel is performed by adding Si, Mn, and Al to perform preliminary deoxidation in molten steel refining, and then adding Ca to perform final deoxidation and desulfurization. Then, continuous casting is possible.
粒子径を円相当径で0.1〜1μmとした理由は、0.1μm未満ではα変態核としての効果が小さいからである。また、1μmより大きいと脆性破壊の起点となり、逆に靭性が低下してしまうからである。
粒子の個数密度を100個/mm2以上、1000個/mm2未満とした理由は、100個/mm2より少ないと十分なα変態が起こらないため、ベイナイト組織が発達し、HAZ組織が微細化しないからである。また、1000個/mm2以上であると、旧γ粒径がピン止め効果により細かくなり旧γ粒径を200〜800μmにすることが困難となる。旧γ粒径を200〜800μmにするには900個/mm2以上ある事が好ましい。
The reason why the particle diameter is 0.1 to 1 μm in terms of the equivalent circle diameter is that if it is less than 0.1 μm, the effect as an α transformation nucleus is small. Further, if it is larger than 1 μm, it becomes a starting point of brittle fracture, and conversely, toughness is lowered.
The number density of particles 100 / mm 2 or more, the reason for the less than 1000 / mm 2, since 100 / mm 2 less than that sufficient α transformation does not occur, bainite develops, HAZ structure fine It is because it does not become. On the other hand, if it is 1000 / mm 2 or more, the old γ particle size becomes fine due to the pinning effect, and it becomes difficult to make the old γ particle size 200 to 800 μm. In order to make the old γ particle size 200-800 μm, it is preferably 900 / mm 2 or more.
溶接加熱後すなわちHAZの旧γ粒径を200〜800μmとした理由は、先に述べたように200μmより小さいと、粒界上でのα変態後、粒内への炭素の濃化により焼入れ性が増加しベイナイト変態が先行してしまうため、粒内変態が起り難くなってしまうからである。しかし、800μmより大きいと粒界αが粗大化し、靭性が低下してしまうため、これが上限である。 The reason why the old γ grain size of the HAZ is 200 to 800 μm after welding and heating is smaller than 200 μm, as described above, is hardenability due to carbon concentration in the grains after α transformation on the grain boundaries. This is because bainite transformation precedes, and intragranular transformation hardly occurs. However, if it is larger than 800 μm, the grain boundary α becomes coarse and the toughness decreases, so this is the upper limit.
以下に化学成分の限定理由について詳細に説明する。
Cは母材の強度を確保するために0.03%以上必要であるが、0.15%を超えると脆化第二相が増加しHAZ靭性が低下するため、その量を0.03〜0.15%とした。
The reason for limiting the chemical components will be described in detail below.
C is required to be 0.03% or more in order to ensure the strength of the base material. However, if it exceeds 0.15%, the second phase of embrittlement increases and the HAZ toughness decreases. 0.15%.
Siは、強度確保のほか脱酸元素として必須の元素であり、その効果を得るためには0.1%以上の添加が必要であり、また0.5%を越えると靭性に有害なMA(Martensite−Austenite constituent)生成を助長して大入熱溶接HAZ靭性を劣化させる傾向があるため、その量を0.1〜0.5%とした。 Si is an essential element as a deoxidizing element in addition to ensuring strength, and in order to obtain the effect, addition of 0.1% or more is necessary, and when it exceeds 0.5%, MA (which is harmful to toughness) Since there is a tendency to deteriorate the high heat input weld HAZ toughness by promoting the formation of martensite-authentite constituent), the amount is set to 0.1 to 0.5%.
Mnは母材の強度と靭性を経済的に確保するため0.5%以上必要である。ただし、1.8%を超えてMnを添加すると、中心偏析の有害性が顕著となって母材とHAZの靭性を損なうため、これが上限である。 Mn is required to be 0.5% or more in order to economically secure the strength and toughness of the base material. However, if Mn is added in excess of 1.8%, the hazard of central segregation becomes remarkable and the toughness of the base material and HAZ is impaired, so this is the upper limit.
Pは不純物元素であり、HAZ靭性を安定的に確保するために0.01%以下に低減する必要がある。
SはCa含有硫化物を形成してVNの析出サイトとさせるために0.001%以上必要である。しかし、Sが0.01%を超えて含まれると粗大な硫化物が形成して母材やHAZの靭性を損なうため、これが上限である。
P is an impurity element and needs to be reduced to 0.01% or less in order to stably secure the HAZ toughness.
S is required to be 0.001% or more in order to form a Ca-containing sulfide to be a VN precipitation site. However, if S exceeds 0.01%, coarse sulfides are formed and the toughness of the base material and HAZ is impaired, so this is the upper limit.
Alは脱酸を担い、不純物元素であるOを0.004%以下に低減するために必要である。Al以外にSiも脱酸に寄与するが、たとえSiが添加される場合でも0.01%以上のAlがないと安定的にOを0.004%以下に抑えることは難しい。ただし、Alが0.1%を超えると、アルミナ系の粗大酸化物やそのクラスターが生成し、母材とHAZの靭性を損なうため、これが上限である。 Al is necessary for deoxidation and to reduce O, which is an impurity element, to 0.004% or less. In addition to Al, Si also contributes to deoxidation, but even if Si is added, it is difficult to stably suppress O to 0.004% or less without 0.01% or more of Al. However, when Al exceeds 0.1%, an alumina-based coarse oxide or a cluster thereof is generated, and the toughness of the base material and the HAZ is impaired, so this is the upper limit.
Vは本発明で最も重要な元素である。大入熱溶接の冷却過程において、γ粒界とγ粒内にVNとして析出し、これがα変態核として機能することでHAZ組織の微細化をもたらす。そのために必要な下限のVは0.01%である。Vが0.15%を超えるとα変態後のHAZにおいてV炭化物による析出硬化が顕著となってHAZ靭性が劣化する。したがって、これが上限である。 V is the most important element in the present invention. In the cooling process of high heat input welding, VN precipitates in the γ grain boundaries and γ grains, and this functions as α transformation nuclei, leading to refinement of the HAZ structure. For this purpose, the lower limit V required is 0.01%. If V exceeds 0.15%, precipitation hardening by V carbides becomes prominent in HAZ after α transformation, and HAZ toughness deteriorates. Therefore, this is the upper limit.
Nは本発明で重要な元素である。連続鋳造鋳片の表面割れを安定的に回避するため、0.008%以下に抑える必要があり、これが上限である。ただし、HAZにおいてVNを析出させるために0.002%以上必要であり、これが下限である。 N is an important element in the present invention. In order to stably avoid the surface cracking of the continuous cast slab, it is necessary to suppress it to 0.008% or less, which is the upper limit. However, in order to precipitate VN in HAZ, 0.002% or more is necessary, and this is the lower limit.
Oは酸化物粒子を確保するために0.001%以上必要である。しかし、0.004%を超えると粗大酸化物が生成し、これらが脆性破壊の発生起点として作用する有害性が懸念されるため、0.004%以下に抑える必要がある。 O is required to be 0.001% or more in order to secure oxide particles. However, if it exceeds 0.004%, coarse oxides are produced, and there is concern about the harmful effect that these act as the starting point of brittle fracture.
Caは本発明で重要な元素である。先に説明した溶鋼への添加順序を考慮して0.0003%以上添加することで、Ca含有酸化物および硫化物の形成が可能である。0.0003%未満ではその量が不足してしまう。しかし、0.005%を超える過剰な添加は酸化物や硫化物の粗大化により脆性破壊の起点となり靭性が低下してしまうため、これが上限である。 Ca is an important element in the present invention. Ca addition oxide and sulfide can be formed by adding 0.0003% or more in consideration of the addition order to the molten steel described above. If it is less than 0.0003%, the amount is insufficient. However, excessive addition exceeding 0.005% becomes the starting point of brittle fracture due to the coarsening of oxides and sulfides, and the toughness is lowered, so this is the upper limit.
Cu、Ni、Cr、Mo、Bは要求される母材の強度を確保するために添加される。いずれ元素も厚板圧延後の冷却過程でγ→α変態時の焼入性を高め、母材強度を高める効果がある。これらの元素が効果を発揮する下限は、Cu、Ni、Cr、Moについては0.05%であり、Bについては0.0003%である。ただし、これらの元素が多すぎるとHAZ靭性や溶接性が劣化するため、上限をもうける必要がある。Cu、Cr、Moの上限は0.8%であり、Niの上限は2%であり、Bの上限は0.003%である。 Cu, Ni, Cr, Mo, and B are added to ensure the required strength of the base material. Each element has the effect of increasing the hardenability during the γ → α transformation in the cooling process after thick plate rolling and increasing the strength of the base material. The lower limit of the effect of these elements is 0.05% for Cu, Ni, Cr, and Mo, and 0.0003% for B. However, if there are too many of these elements, the HAZ toughness and weldability deteriorate, so an upper limit must be provided. The upper limit of Cu, Cr, and Mo is 0.8%, the upper limit of Ni is 2%, and the upper limit of B is 0.003%.
Nbは母材の強度と靭性の両方を確保するために添加される。Nbは圧延γ組織を微細化し、γ→α変態時に焼入性を高め、α変態後に析出することで母材の強靭化に寄与する。この効果を発揮する下限は0.005%である。ただし、Nbが0.03%を超えて添加されるとHAZが硬化して脆化するので、これが上限である。 Nb is added to ensure both the strength and toughness of the base material. Nb refines the rolled γ structure, increases hardenability during the γ → α transformation, and precipitates after the α transformation, thereby contributing to the toughening of the base material. The lower limit for exerting this effect is 0.005%. However, if Nb is added over 0.03%, the HAZ hardens and becomes brittle, so this is the upper limit.
Tiは母材とHAZの靭性を高めるために添加される。TiNを形成して鋳片加熱時やHAZ(最高加熱温度≦1350℃となる領域)のγ粒成長を抑制し、変態後のα組織を微細化して靭性を高める効果がある。この効果を発揮する下限は0.005%である。ただし、Tiが0.02%を超えて添加されるとHAZ靭性が硬化して脆化するので、これが上限である。 Ti is added to increase the toughness of the base material and the HAZ. TiN is formed to suppress the growth of γ grains during slab heating or HAZ (the region where the maximum heating temperature ≦ 1350 ° C.), and has the effect of increasing the toughness by refining the α structure after transformation. The lower limit for exerting this effect is 0.005%. However, if Ti is added in excess of 0.02%, the HAZ toughness is hardened and becomes brittle, so this is the upper limit.
次に、本発明を適用した鋼板の製造方法の例を説明する。鉄鋼業の製鋼工程において、Si、Mn、Alを溶鋼に添加して予備脱酸を行った後、Caを添加して最終の脱酸と脱硫を行い、連続鋳造によって鋳片を造る。上記したように、Si、Mn、Al及びCaの添加順をこのようにすることにより、Ca含有酸化物および硫化物の鋼中への分散が可能になる。そして、鋳造時の冷却途中あるいは冷却後に鋼片を再加熱し、厚板圧延によって所定の厚みの鋼板を造り、圧延後に空冷するか、あるいは水冷する。水冷途中で水冷を停止して空冷することもある。冷却後に適当な熱処理を行うことで、母材の強度と靭性を調整することもある。 Next, the example of the manufacturing method of the steel plate to which this invention is applied is demonstrated. In the steelmaking process of the iron and steel industry, Si, Mn, and Al are added to molten steel for preliminary deoxidation, then Ca is added for final deoxidation and desulfurization, and a slab is made by continuous casting. As described above, by making the addition order of Si, Mn, Al, and Ca in this way, Ca-containing oxides and sulfides can be dispersed in the steel. Then, the steel slab is reheated during or after cooling during casting, a steel plate having a predetermined thickness is formed by thick plate rolling, and air-cooled or water-cooled after rolling. In the middle of water cooling, water cooling may be stopped and air cooling may be performed. By performing an appropriate heat treatment after cooling, the strength and toughness of the base material may be adjusted.
製鋼工程で溶鋼の脱酸、脱硫手順と化学成分を制御して連続鋳造によって鋼片を作製し、これを再加熱して厚板圧延によって40〜100mm厚みの鋼板とし、空冷あるいは水冷を行った。必要に応じて熱処理を施し、降伏強度が390〜500MPaである厚鋼板を製造した。表1に鋼の化学成分とピン止め粒子個数を、表2に鋼板の製造方法と機械的性質と1パス溶接継手のHAZ靭性を示す。表1において成分の単位は質量%である。 Steel strip was produced by continuous casting by controlling the deoxidation and desulfurization procedures and chemical composition of the molten steel in the steel making process. . Heat treatment was performed as necessary to produce a thick steel plate having a yield strength of 390 to 500 MPa. Table 1 shows the chemical composition of steel and the number of pinned particles, and Table 2 shows the steel sheet manufacturing method, mechanical properties, and HAZ toughness of one-pass welded joints. In Table 1, the unit of the component is% by mass.
なお、ピン止め粒子の個数は、次のような方法で測定した。鋼板の任意の場所から抽出レプリカ資料を作成し、これを透過型電子顕微鏡(TEM)を用いて10000〜50000倍で1000μm2以上の面積を観察し、対象となる0.1〜1μmの大きさのV窒化物または/およびV窒化物とCaを含む酸化物または/および硫化物との複合析出物の個数を測定し、単位面積あたりの個数に換算した。 The number of pinning particles was measured by the following method. Create an extracted replica material from any location on the steel sheet, and observe the area of 1000 μm 2 or more at a magnification of 10,000 to 50,000 times using a transmission electron microscope (TEM), and target V of 0.1 to 1 μm in size The number of composite precipitates of nitride or / and V nitride and Ca-containing oxide or / and sulfide was measured and converted to the number per unit area.
また、図1に示すようにエレクトロガス溶接法を用いて突合せ継手を作製した。そして図1に示す要領で、溶解融線(FL)から1mm離れたHAZ、あるいはFLにノッチを入れ、-40℃でシャルピー衝撃試験を行った。ここでのシャルピー衝撃試験はJIS Z 2242に準拠し、JIS Z 2202のVノッチ試験片を用いた。またシャルピー衝撃試験の結果は3本の試験片の平均値を示しており、降伏応力(YS)と引張応力(TS)は2本の試験片の平均値を示している。 In addition, as shown in FIG. 1, a butt joint was produced using an electrogas welding method. Then, as shown in FIG. 1, a notch was made in HAZ or FL 1 mm away from melt melting line (FL), and a Charpy impact test was conducted at -40 ° C. The Charpy impact test here was based on JIS Z 2242, and a V-notch test piece of JIS Z 2202 was used. Moreover, the result of the Charpy impact test has shown the average value of three test pieces, and the yield stress (YS) and the tensile stress (TS) have shown the average value of two test pieces.
鋼1〜5は本発明鋼であり、鋼の化学成分、複合析出物の密度、及び旧γ粒径が適切に制御されているためvE−40は100Jを超える良好なHAZ靭性が達成されている。 Steels 1 to 5 are steels of the present invention. Since the chemical composition of steel, the density of composite precipitates, and the prior γ grain size are appropriately controlled, vE-40 has achieved a good HAZ toughness exceeding 100 J. Yes.
鋼6はVが過剰に添加されており、V/Nが本発明要件を大きく外れているため、V炭化物の析出脆化によりvE−40は大幅に低下している。またCa無添加であるため、粒子個数密度が本発明要件を外れていることも靭性低下原因である。
鋼7はNが過剰に添加されており、V/Nが本発明要件を外れているため、固溶N脆化によりvE−40は大幅に低下している。
鋼8はVが無添加でありV/Nが本発明要件を大きく外れているため、粒内変態が全く見られず、粒内全体がベイナイト組織となったことからvE−40は大幅に低下している。
鋼9はV/N比は本発明要件を満足しているものの、Ca無添加であるため粒子個数密度が本発明要件を満足していないため、粒内変態量が不足し、vE−40は低下している。
In Steel 6, since V is excessively added and V / N greatly deviates from the requirement of the present invention, vE-40 is greatly lowered due to precipitation embrittlement of V carbide. Further, since Ca is not added, the fact that the particle number density deviates from the requirement of the present invention is also a cause of toughness reduction.
In Steel 7, since N is excessively added and V / N is out of the requirement of the present invention, vE-40 is greatly lowered due to solute N embrittlement.
In Steel 8, since V is not added and V / N greatly deviates from the requirement of the present invention, no intragranular transformation is seen at all, and vE-40 is greatly reduced because the entire intragranular structure has a bainite structure. is doing.
Steel 9 satisfies the requirements of the present invention in terms of the V / N ratio, but since the particle number density does not satisfy the requirements of the present invention because Ca is not added, the amount of intragranular transformation is insufficient, and vE-40 is It is falling.
以上示したように、本発明を適用することにより、40〜100mmの厚みと390〜500MPa級の降伏強度を有し、20〜100kJ/mmの溶接入熱量で溶接されたHAZにおいて、−40℃でのシャルピー衝撃吸収エネルギー平均値が100J以上である厚鋼板を提供できることが確認された。 As described above, by applying the present invention, in HAZ having a thickness of 40 to 100 mm and a yield strength of 390 to 500 MPa class and welded with a welding heat input of 20 to 100 kJ / mm, −40 ° C. It was confirmed that a thick steel plate having an average value of Charpy impact absorption energy at 100 J or more can be provided.
Claims (2)
質量%で、
C:0.03〜0.15%
Si:0.1〜0.5%
Mn:0.5〜1.8%
P:≦0.01%
S:0.001〜0.01%
Al:0.01〜0.1%
V:0.01〜0.15%
N:0.002〜0.008%
O:0.001〜0.004%
Ca:0.0003〜0.005%
Ni:0.05〜2%
を含有し、質量%を用いて計算される式(1)を満たし、残部が鉄および不可避的不純物によって化学成分が構成され、円相当径0.1〜1μmのV窒化物とCaを含む酸化物及び/または硫化物との複合析出物を100個/mm2以上、1000個/mm2未満含有し、前記溶接熱影響部の旧オーステナイト粒径が200〜800μmであることを特徴とする、大入熱溶接熱影響部の靭性に優れた厚鋼板。
3 ≦ V/N ≦ 15 …(1) In thick steel plate with weld heat affected zone,
% By mass
C: 0.03-0.15%
Si: 0.1-0.5%
Mn: 0.5-1.8%
P: ≤0.01%
S: 0.001 to 0.01%
Al: 0.01 to 0.1%
V: 0.01 to 0.15%
N: 0.002 to 0.008%
O: 0.001 to 0.004%
Ca: 0.0003 to 0.005%
Ni: 0.05-2%
Satisfies the formula (1) calculated using mass%, the balance is a chemical component composed of iron and unavoidable impurities, and an oxide containing V nitride and Ca having an equivalent circle diameter of 0.1 to 1 μm and / or composite precipitates of sulfides 100 / mm 2 or more, and contains less than 1000 / mm 2, wherein the prior austenite grain size of the weld heat affected zone is 200~800Myuemu, rafters Thick steel plate with excellent toughness of heat-welded heat affected zone.
3 ≦ V / N ≦ 15 (1)
Cu:0.05〜0.8%
Cr:0.05〜0.8%
Mo:0.05〜0.8%
Nb:0.005〜0.03%
Ti:0.005〜0.02%
B:0.0003〜0.003%
の一種または二種以上をさらに含有することを特徴とする、請求項1に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板。 % By mass
Cu: 0.05 to 0.8 %
C r: 0.05-0.8%
Mo: 0.05-0.8%
Nb: 0.005-0.03%
Ti: 0.005-0.02%
B: 0.0003 to 0.003%
The thick steel plate excellent in toughness of the high heat input welding heat-affected zone according to claim 1, further comprising one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090314A JP4901262B2 (en) | 2006-03-29 | 2006-03-29 | Thick steel plate with excellent toughness of heat affected zone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006090314A JP4901262B2 (en) | 2006-03-29 | 2006-03-29 | Thick steel plate with excellent toughness of heat affected zone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262508A JP2007262508A (en) | 2007-10-11 |
JP4901262B2 true JP4901262B2 (en) | 2012-03-21 |
Family
ID=38635766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006090314A Active JP4901262B2 (en) | 2006-03-29 | 2006-03-29 | Thick steel plate with excellent toughness of heat affected zone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4901262B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101578380B (en) | 2007-12-06 | 2011-01-12 | 新日本制铁株式会社 | Process for producing thick high-strength steel plate excellent in brittle fracture arrestability and toughness of zone affected by heat in large-heat-input welding and thick high-strength steel plate |
JP5343486B2 (en) * | 2008-09-26 | 2013-11-13 | Jfeスチール株式会社 | Steel material for large heat input welding |
WO2014199488A1 (en) * | 2013-06-13 | 2014-12-18 | 新日鐵住金株式会社 | Ultrahigh-tensile-strength steel plate for welding |
CN113278872B (en) * | 2021-05-19 | 2022-03-22 | 攀钢集团研究院有限公司 | VN microalloying engineering machinery steel and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4356156B2 (en) * | 1999-10-13 | 2009-11-04 | Jfeスチール株式会社 | Steel plate for welded structure with excellent toughness of heat affected zone |
JP3502822B2 (en) * | 2000-02-10 | 2004-03-02 | 新日本製鐵株式会社 | Steel material excellent in toughness of welded heat-affected zone and method for producing the same |
JP4660250B2 (en) * | 2004-04-07 | 2011-03-30 | 新日本製鐵株式会社 | Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding |
JP4276574B2 (en) * | 2004-04-12 | 2009-06-10 | 新日本製鐵株式会社 | Thick steel plate with excellent toughness of heat affected zone |
-
2006
- 2006-03-29 JP JP2006090314A patent/JP4901262B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007262508A (en) | 2007-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5079419B2 (en) | Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure | |
KR101119240B1 (en) | Weld steel pipe with excellent low-temperature toughness for high-strength line pipe and process for producing the same | |
WO2010134220A1 (en) | Steel material for high heat input welding | |
JP5217385B2 (en) | Steel sheet for high toughness line pipe and method for producing the same | |
JP5493659B2 (en) | High strength steel with excellent toughness of heat affected zone | |
JP2010280976A (en) | Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same | |
JP5509654B2 (en) | High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same | |
JP6308151B2 (en) | Low yield ratio high strength thick steel plate for building structures with excellent toughness of super high heat input welds and its manufacturing method | |
JP2009235548A (en) | Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld affected zone, and method for producing the same | |
JP4901262B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JP4949210B2 (en) | Steel excellent in toughness of weld heat-affected zone and method for producing the same | |
JP4276574B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JP4449388B2 (en) | Manufacturing method of high-strength thick steel plates with excellent brittle crack propagation stop properties and super high heat input welding heat-affected zone toughness | |
JP6308148B2 (en) | Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP5493658B2 (en) | A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness. | |
JP2007224404A (en) | High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate | |
JP4259374B2 (en) | High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same | |
JP4505435B2 (en) | Thick steel plate with excellent toughness in heat-affected zone of large heat input welding | |
JP2005272854A (en) | Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part | |
JP2007246933A (en) | High strength steel pipe with excellent weld zone toughness, and its manufacturing method | |
JP4505434B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JP5888119B2 (en) | Thick steel plate with excellent HAZ toughness | |
JP5493557B2 (en) | Steel material for large heat input welding | |
JP5659949B2 (en) | Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111220 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111227 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4901262 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150113 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |