JP4505435B2 - Thick steel plate with excellent toughness in heat-affected zone of large heat input welding - Google Patents
Thick steel plate with excellent toughness in heat-affected zone of large heat input welding Download PDFInfo
- Publication number
- JP4505435B2 JP4505435B2 JP2006159095A JP2006159095A JP4505435B2 JP 4505435 B2 JP4505435 B2 JP 4505435B2 JP 2006159095 A JP2006159095 A JP 2006159095A JP 2006159095 A JP2006159095 A JP 2006159095A JP 4505435 B2 JP4505435 B2 JP 4505435B2
- Authority
- JP
- Japan
- Prior art keywords
- haz
- toughness
- heat input
- steel
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、大入熱溶接継手における溶接熱影響部(Heat Affected Zone:HAZ)の靭性に優れた厚鋼板に関するものである。本発明は、鉄鋼業において製造される厚鋼板に主に適用される。本発明は厚鋼板以外のH形鋼や鋼管などの鉄鋼製品へ適用することも可能である。本発明を適用した厚鋼板は、造船をはじめ建築、橋梁、タンク、海洋構造物、ラインパイプなどの溶接構造物に使用され、溶接施工能率の高い大入熱溶接を施され、かつ、溶接部靭性の要求レベルが高い場合に好適である。 The present invention relates to a thick steel plate excellent in the toughness of a heat affected zone (HAZ) in a high heat input welded joint. The present invention is mainly applied to thick steel plates manufactured in the steel industry. The present invention can also be applied to steel products such as H-shaped steel and steel pipe other than thick steel plates. The steel plate to which the present invention is applied is used for welding structures such as shipbuilding, buildings, bridges, tanks, offshore structures, line pipes, etc., and is subjected to high heat input welding with high welding work efficiency, and welded parts It is suitable when the required level of toughness is high.
近年、造船や建築などの溶接構造物に対する主要な要求は、構造の大型化、建造の高能率化、破壊に対する安全性向上である。このような動向を受け、溶接構造用の厚鋼板には、高能率な大入熱溶接を適用した場合に、より一層の高いHAZ靭性が求められる。同時に、厚鋼板の基本的な特性として、同じ鋼種を大量生産したときの母材強度のばらつきが小さいことや、小入熱溶接したときの溶接性が良好であることも、依然として強い要求がある。
厚鋼板の大入熱溶接HAZ靭性を高める従来技術は、溶融線近傍HAZの組織微細化を目指したものが一般的である。HAZ組織微細化の方法として大別して二つある。一つ目の方法は、オーステナイト(γ)粒の成長をピン止め効果で抑制して細粒γを維持し、フェライト(α)変態核であるγ粒界の面積をできるだけ多くして、HAZ組織を微細化する方法である。二つ目の方法は、γの粒界や粒内に存在する析出物をα変態核として活用してHAZ組織を微細化する方法である。この技術の要点は、α変態の核生成能の高い析出物をできるだけ数多く分散させることである。
In recent years, major requirements for welded structures such as shipbuilding and construction are to increase the size of structures, increase the efficiency of construction, and improve safety against destruction. In response to such trends, thicker steel sheets for welded structures are required to have higher HAZ toughness when high-efficiency large heat input welding is applied. At the same time, as a basic characteristic of thick steel plates, there is still a strong demand for small variations in the strength of the base metal when mass-producing the same steel type and good weldability when performing small heat input welding. .
The conventional technology for increasing the high heat input welding HAZ toughness of thick steel plates is generally aimed at refining the structure of the HAZ near the fusion line. There are roughly two methods for refining the HAZ structure. The first method is to suppress the growth of austenite (γ) grains by the pinning effect, maintain fine grains γ, increase the area of γ grain boundaries as ferrite (α) transformation nuclei as much as possible, and reduce the HAZ structure. This is a method for miniaturization. The second method is a method for refining the HAZ structure by utilizing precipitates present in the grain boundaries and grains of γ as α transformation nuclei. The key point of this technique is to disperse as many precipitates as possible of the α transformation with high nucleation ability.
二つ目のHAZ組織微細化方法において、特許文献1に開示されているように、α変態の核生成能の高い析出物としてVNの有効性が知られている。また、非特許文献1ではBNが、非特許文献2ではFe23(C,B)6やFe3(C,B)の有効性が知られている。これらの析出物がHAZの冷却過程でγ粒界やγ粒内に析出し、これらを変態核として数多くのα変態核が生成し、組織が微細化してHAZ靭性が向上することが知られている。
大入熱溶接HAZでVNをα変態核として利用する従来技術の問題点は、HAZの冷却過程のγ域で十分な量のVNを析出させるために、N量を意図的に高めており、連続鋳造鋳片の表面割れが発生しやすいことである。
In the second HAZ structure refinement method, as disclosed in Patent Document 1, the effectiveness of VN is known as a precipitate having a high nucleation ability of α transformation. Further, BN is known in Non-Patent Document 1, and Fe 23 (C, B) 6 and Fe 3 (C, B) are known in Non-Patent Document 2. It is known that these precipitates precipitate in the γ grain boundaries and γ grains during the cooling process of HAZ, and these α transformation nuclei are generated to form a large number of α transformation nuclei, making the structure finer and improving the HAZ toughness. Yes.
The problem of the prior art using VN as an α transformation nucleus in high heat input welding HAZ is that the amount of N is intentionally increased in order to deposit a sufficient amount of VN in the γ region of the cooling process of HAZ. It is that surface cracks of the continuous cast slab are likely to occur.
例えば特許文献1の実施例におけるN量は、表1から0.0081〜0.0156%Nと非常に高い特徴がある。このような高いN量の鋼を連続鋳造すると、連続鋳造機の曲げ部あるいは曲げ戻し部で鋳片表面に外力が作用したときに、γ粒界に多量に析出した窒化物が脆化を促し、γ粒界われが生じて鋳造工程の生産性が阻害されたり、鋳片の歩留まりが低下したり、圧延後の厚鋼板表面に割れが残存して手入れ負荷が増大するなど、製造コストが増加する問題がある。従って、連続鋳造鋳片の表面われを回避できるような低いN量を前提に、VN効果(α変態核効果)を引き出すことが求められている。 For example, the amount of N in the example of Patent Document 1 has a very high characteristic of 0.0081 to 0.0156% N from Table 1. When such a high N content steel is continuously cast, when an external force acts on the surface of the slab at the bending part or the bending back part of a continuous casting machine, a large amount of nitrides precipitated at the γ grain boundary promotes embrittlement. Γ grain boundary occurs, hindering the productivity of the casting process, reducing the yield of the slab, increasing cracks on the surface of the rolled steel plate and increasing the maintenance load. There is a problem to do. Accordingly, it is required to draw out the VN effect (α transformation nucleus effect) on the premise of a low N amount that can avoid surface cracking of the continuous cast slab.
一方、大入熱溶接HAZでB析出物をα変態核として利用する従来技術の問題点は、同じ鋼種の厚鋼板を大量生産した際に下記のような材質ばらつきが生じることである。
(1)厚鋼板製造時に母材の強度、靭性がばらつくこと。
(2)大入熱溶接時にHAZの靭性がばらつくこと。
(3)小入熱溶接時にHAZの溶接低温われ感受性や靭性がばらつくこと。
On the other hand, the problem of the prior art in which B precipitates are used as α transformation nuclei in high heat input welding HAZ is that the following material variations occur when mass steel plates of the same steel type are mass-produced.
(1) The strength and toughness of the base material vary when manufacturing thick steel plates.
(2) HAZ toughness varies during high heat input welding.
(3) The welding low temperature crack sensitivity and toughness of HAZ vary during small heat input welding.
これらの材質ばらつきが生じるのは、冷却過程におけるγ中の固溶B量に応じてγ粒界の焼入性が大きく変動するためである。固溶Bはγ粒界に偏析してγ粒界のエネルギーを低下させ、γ粒界からのα変態を抑制することが知られている。非特許文献3のFig.7に示されるように、γ中の固溶B量が0〜5ppm(0.0005%)のわずかな範囲において、固溶B量の増加に従って焼入性が著しく高まり、固溶Bが5ppm(0.0005%)で焼入性が飽和する。つまり、B添加した同じ鋼種の厚鋼板を大量生産する際、母材やHAZにおけるγ中固溶B量が0〜5ppm(0.0005%)の範囲で変動すると、焼入性が大きく変動してα変態組織の制御が不安定となり、強度や靭性が大きくばらつく。従って、このような材質ばらつきを回避できるような低いγ中固溶B量を前提に、B析出物効果(α変態核効果)を出すことが求められている。
γ中固溶Bがもたらす高い焼入性(硬化性)を回避するために、不純物元素としてのBを極微量に制御する技術が発明されている。たとえば、特許文献2では0.0002%以下に、特許文献3では0.0003%未満にB量を制御する必要がある。特許文献2の実施例の表1では、0.00004%(0.4ppm)〜0.00036(3.6ppm)の範囲で極微量のB量制御が行われている。
In order to avoid the high hardenability (curability) caused by the solid solution B in γ, a technique for controlling B as an impurity element in a very small amount has been invented. For example, it is necessary to control the B amount to 0.0002% or less in Patent Document 2 and to less than 0.0003% in Patent Document 3. In Table 1 of the example of Patent Document 2, a very small amount of B is controlled in the range of 0.00004% (0.4 ppm) to 0.00036 (3.6 ppm).
本発明の課題は、15〜100mmの厚みと325〜500MPa級の降伏強度を有し、20〜150kJ/mmの溶接入熱量で溶接されたHAZにおいて、−20℃〜0℃でのシャルピー衝撃吸収エネルギー平均値が150J以上である厚鋼板を提供することである。
本発明を適用した厚鋼板は、造船や建築やそれ以外の大型溶接構造物に使用が可能であり、溶接施工能率の高い大入熱溶接を施した場合でも、良好なHAZ靭性を確保できることを目指す。
An object of the present invention is to absorb Charpy impact at −20 ° C. to 0 ° C. in HAZ having a thickness of 15 to 100 mm and a yield strength of 325 to 500 MPa class and welded at a welding heat input of 20 to 150 kJ / mm. It is to provide a thick steel plate having an energy average value of 150 J or more.
The steel plate to which the present invention is applied can be used for shipbuilding, construction, and other large welded structures, and can ensure good HAZ toughness even when subjected to high heat input welding with high welding construction efficiency. aim.
「1」本発明は、質量%で、C :0.03〜0.2%、Si:0.5%以下、Mn:0.5〜2.0%、P :0.02%以下、S :0.001〜0.005%、Al:0.001〜0.1%、V :0.01〜0.1%、B :0.0001%以上0.0003%未満、N :0.001〜0.006%、O :0.004%以下を含有し、残部鉄および不可避的不純物からなることを特徴とする、溶接入熱量が20〜150kJ/mmの大入熱溶接熱影響部の靭性に優れた厚鋼板である。
「2」本発明は、「1」に記載の組成のうち、Al量が質量%で、0.003〜0.1%であり、さらに、質量%で、Ti:0.003〜0.017%を含有し、NとTiの質量%を用いて計算される下式(1)を満たすことを特徴とする、「1」に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板である。
N−Ti/3.4≧0.001% (1)
“1” The present invention is mass%, C: 0.03 to 0.2%, Si: 0.5% or less, Mn: 0.5 to 2.0%, P: 0.02% or less, S : 0.001-0.005%, Al: 0.001-0.1%, V: 0.01-0.1%, B: 0.0001% or more and less than 0.0003%, N: 0.001 ~ 0.006%, O: 0.004% or less, consisting of remaining iron and inevitable impurities, toughness of heat input heat affected zone with high heat input of 20 to 150 kJ / mm It is an excellent thick steel plate.
“2” In the present invention, in the composition described in “1”, the Al amount is 0.003 to 0.1% by mass%, and further Ti: 0.003 to 0.017 by mass%. %, And satisfies the following formula (1) calculated using the mass% of N and Ti. It is.
N-Ti / 3.4 ≧ 0.001% (1)
「3」本発明は、さらに、質量%で、Ca:0.0003〜0.003%、Mg:0.0003〜0.003%、La+Ce:0.001〜0.02%の一種または二種以上を含有することを特徴とする「1」または「2」に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板である。
「4」本発明は、さらに、質量%で、Cu:0.05〜1%、Ni:0.05〜3%、
Cr:0.05〜1%、Mo:0.05〜0.2%、Nb:0.003〜0.03%の一種または二種以上を含有することを特徴とする、「1」ないし「3」のいずれか1項に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板である。
“3” The present invention further includes one or two of mass%, Ca: 0.0003 to 0.003%, Mg: 0.0003 to 0.003%, La + Ce: 0.001 to 0.02%. It is a thick steel plate excellent in the toughness of the high heat input welding heat-affected zone as described in “1” or “2”, characterized by containing the above.
"4" The present invention further includes, in mass%, Cu: 0.05 to 1%, Ni: 0.05 to 3%,
One or two or more of Cr: 0.05 to 1%, Mo: 0.05 to 0.2 %, Nb: 0.003 to 0.03%, It is a thick steel plate excellent in the toughness of the high heat input welding heat-affected zone described in any one of items 3 ”.
本発明によって、15〜100mmの厚みと325〜500MPa級の降伏強度を有し、20〜150kJ/mmの溶接入熱量で溶接されたHAZにおいて、−20℃〜0℃でのシャルピー衝撃吸収エネルギー平均値が100J以上である厚鋼板を、安価に提供することが可能となる。
本発明を適用した厚鋼板は、造船や建築やそれ以外の溶接構造物に使用され、構造物の建造における高い溶接施工能率と、構造物の高い安全性・信頼性を両立することができる。
According to the present invention, the average Charpy impact absorption energy at −20 ° C. to 0 ° C. in HAZ having a thickness of 15 to 100 mm and a yield strength of 325 to 500 MPa class and welded at a welding heat input of 20 to 150 kJ / mm. It is possible to provide a steel plate having a value of 100 J or more at a low cost.
The steel plate to which the present invention is applied is used in shipbuilding, construction, and other welded structures, and can achieve both high welding construction efficiency in construction of the structure and high safety and reliability of the structure.
本発明は、大入熱溶接HAZにおいてVNとB析出物によるα変態核効果を複合的に利用することを意図した技術である。その前提の一つは、連続鋳造鋳片の表面割れを回避する観点から0.006%以下の低いN量に抑えることである。もう一つの前提は、材質ばらつきの原因となるγ中固溶B量を極力低減するために、B添加量を0.0003%以下の極微量に抑えることである。これら二つの前提条件のもとで、VNとB析出物のα核変態効果を複合的に利用して、良好な大入熱溶接HAZ靭性を達成することが本発明の思想である。 The present invention is a technique intended to utilize the α transformation nucleus effect by VN and B precipitates in high heat input welding HAZ. One of the premise is to suppress the N content to be as low as 0.006% or less from the viewpoint of avoiding surface cracking of the continuous cast slab. Another premise is to suppress the amount of B added to a very small amount of 0.0003% or less in order to reduce the amount of solute B in γ that causes material variations as much as possible. Under these two preconditions, the idea of the present invention is to achieve good high heat input welding HAZ toughness by utilizing the α-nuclear transformation effect of VN and B precipitates in combination.
V添加鋼においてN量を0.006%以下に低減すると、HAZのγ中で析出するVNの大きさが減少してα変態核として能力が減少してしまう。しかしながら、この低N系V添加鋼にわずか0.0001%以上0.0003%未満の極微量Bを添加すると、800℃から500℃の平均冷却速度が1.5℃/s以下となるHAZの場合に、γ粒界およびγ粒内でのα変態核効果が著しく促進される現象を本発明者らが見出した。
本発明者らがこのときのα変態核を詳細に解析したところ、γ粒界やγ粒内に析出したBNとVNあるいはV(C,N)の複合粒子が要因となってγ粒界およびγ粒内でのα変態核効果が著しく促進されることがわかった。C量が比較的高い場合には、さらにFe23(C,B)6やFe3(C,B)が複合析出している場合もあった。
つまり本発明者は、低いN量の緩冷却HAZにおいて、VNあるいはV(C,N)にBNおよびFe23(C,B)6、Fe3(C,B)が複合することでα変態核としての能力が著しく高まることを突き止めた。
When the amount of N is reduced to 0.006% or less in the V-added steel, the size of VN precipitated in γ of HAZ is reduced, and the ability as an α transformation nucleus is reduced. However, when a very small amount of B of 0.0001% or more and less than 0.0003% is added to this low N-based V-added steel, the average cooling rate from 800 ° C. to 500 ° C. becomes 1.5 ° C./s or less. In this case, the present inventors have found a phenomenon in which the α transformation nucleus effect in the γ grain boundary and in the γ grain is remarkably accelerated.
As a result of detailed analysis of the α transformation nucleus at this time by the present inventors, the γ grain boundary and the composite grain of BN and VN or V (C, N) precipitated in the γ grain and the γ grain boundary and It was found that the α transformation nucleus effect within the γ grain was remarkably promoted. When the amount of C is relatively high, Fe 23 (C, B) 6 and Fe 3 (C, B) may be further complex precipitated.
In other words, the present inventor has found that α-transformed nuclei are obtained by combining BN, Fe 23 (C, B) 6 , and Fe 3 (C, B) with VN or V (C, N) in a slow cooling HAZ with a low N content. As a result, it was found that the ability as
上述したB析出物やV析出物は冷却過程の800℃〜700℃のγ域で析出し、引き続く700℃〜500℃の冷却過程でこれらの複合粒子を核にしてα変態が生じるから、この800℃〜500℃の冷却速度が冶金的に重要である。800℃〜500℃の平均冷却速度が1.5℃/sより大きいとγ域でB析出物やV析出物が十分に析出しないのでその大きさが不十分でα変態核能が小さくなる。一方、この平均冷却速度が0.3℃/sより小さくなると、B析出物とV析出物の複合粒子から変態したαの成長が促進されて、α組織が粗大化してしまう。
従って、HAZにおける800℃〜500℃の平均冷却速度が1.5〜0.3℃/sとなる溶接条件を目安に本知見を適用することが重要である。溶接時の冷却速度の大小は、工業的には溶接入熱量の大小を用いて表現する慣例がある。そこで、上記の1.5〜0.3℃/sの平均冷却速度を溶接入熱量に対応させると、概ね20〜150kJ/mmとみなせる。
The B precipitates and V precipitates described above are precipitated in the γ region of 800 ° C. to 700 ° C. during the cooling process, and α transformation occurs in the subsequent cooling process of 700 ° C. to 500 ° C. using these composite particles as nuclei. A cooling rate of 800 ° C. to 500 ° C. is metallurgically important. When the average cooling rate of 800 ° C. to 500 ° C. is higher than 1.5 ° C./s, B precipitates and V precipitates are not sufficiently precipitated in the γ region, so that the size is insufficient and the α transformation nuclei are reduced. On the other hand, when the average cooling rate is less than 0.3 ° C./s, the growth of α transformed from the composite particles of B precipitate and V precipitate is promoted, and the α structure becomes coarse.
Therefore, it is important to apply this knowledge based on welding conditions in which the average cooling rate of 800 to 500 ° C. in HAZ is 1.5 to 0.3 ° C./s. Industrially, there is a convention to express the magnitude of the cooling rate during welding using the magnitude of the welding heat input. Thus, when the average cooling rate of 1.5 to 0.3 ° C./s is made to correspond to the heat input of welding, it can be regarded as approximately 20 to 150 kJ / mm.
以上説明したように、0.006%以下の低いN量のもとで、大入熱溶接HAZにおけるVNのα変態核効果を高めることを意図して、0.0001%以上0.0003%未満の範囲に厳格に制御された微量Bを複合添加し、VとBの複合析出物によるα変態核効果を有効に利用する技術はこれまで知見されていなかった。
従来、大入熱溶接に用いられるV添加鋼において、0.0003%未満の微量Bは不可避的に混入する不純物とみなされ、B混入量が0.0001%未満なのか0.0001%以上なのかを問題にすることはなかった。つまり、本発明のような微量Bの冶金的効果を、V添加鋼の大入熱溶接HAZにおいて利用する技術はなかった。
As explained above, with the low N content of 0.006% or less, the intention is to increase the α transformation nucleus effect of VN in the high heat input welding HAZ, but not less than 0.0001% and less than 0.0003%. Until now, no technology has been found to add a small amount of B that is strictly controlled within the above range, and to effectively use the α transformation nucleus effect of the combined precipitates of V and B.
Conventionally, in V-added steel used for high heat input welding, a trace amount B of less than 0.0003% is regarded as an inevitably mixed impurity, and the B content is less than 0.0001% or more than 0.0001%. It was never a problem. That is, there has been no technique that utilizes the metallurgical effect of a trace amount B as in the present invention in the high heat input welding HAZ of V-added steel.
本発明のようにB量を微量範囲に厳格に制御するためには、B量の分析方法が重要である。JIS G 1227 附属書2(規定) ほう酸メチル蒸留分離クルクミン吸光光度法(1)では、0.0001%以上(1ppm)のB量を分析することができる。
さらに、JIS G 1227 附属書3(規定) ほう酸メチル蒸留分離クルクミン吸光光度法(2)では、0.00005%(0.5ppm)以上のB量を分析することができる。これらの分析方法に準拠すれば、本発明が規定する0.0001〜0.0003%のB量の存在を確実かつ正確に確認できる。換言すると、本発明の規定外である0.0001%未満のB量を確認できる。
In order to strictly control the B amount within a minute range as in the present invention, a method for analyzing the B amount is important. JIS G 1227 Annex 2 (normative) In methyl borate distillation separation curcumin spectrophotometry (1), B amount of 0.0001% or more (1 ppm) can be analyzed.
Further, JIS G 1227 Annex 3 (normative) methyl borate distillation separation curcumin spectrophotometry (2) can analyze B amount of 0.00005% (0.5 ppm) or more. If these analytical methods are followed, the presence of 0.0001 to 0.0003% B content defined by the present invention can be confirmed reliably and accurately. In other words, a B amount of less than 0.0001%, which is outside the scope of the present invention, can be confirmed.
以下に本発明に係る厚鋼板における化学成分の限定理由について詳細に説明する。
Cは、母材の強度を確保するために0.03%以上必要であり、これが下限である。CはHAZにおいてV(C,N)やFe23(C,B)6やFe3(C,B)の析出を促す点でも利用される。ただし、Cが0.2%を超えると母材やHAZの靭性を損なうため、これが上限である。
Siは、脱酸元素および強化元素として有効であるが、0.5%を超えるとHAZ靭性を損なうためこれが上限である。SiはMA生成を助長して大入熱溶接HAZ靭性を劣化させる傾向があるため、本発明ではできるだけ少ないほうが好ましい。
Mnは、母材の強度と靭性を経済的に確保し、さらにHAZにおいてV析出物やB析出物の優先析出サイトとなるMnSを安定的に生成させるため、0.5%以上必要である。ただし、2%を超えてMnを添加すると、中心偏析の有害性が顕著となって母材とHAZの靭性を損なうため、これが上限である。
Pは、不純物元素であり、HAZ靭性を安定的に確保するために0.02%以下に低減する必要がある。
Sは、V析出物やB析出物の優先析出サイトとなるMnSを安定的に生成させるため、0.001%以上必要である。ただし、Sが0.005%を超えて含まれると粗大な硫化物が生成して母材やHAZの靭性を損なうため、これが上限である。
The reason for limiting the chemical components in the thick steel plate according to the present invention will be described in detail below.
C is required to be 0.03% or more in order to ensure the strength of the base material, and this is the lower limit. C is also used for promoting precipitation of V (C, N), Fe 23 (C, B) 6 and Fe 3 (C, B) in HAZ. However, if C exceeds 0.2%, the toughness of the base material and HAZ is impaired, so this is the upper limit.
Si is effective as a deoxidizing element and strengthening element, but if it exceeds 0.5%, the HAZ toughness is impaired, so this is the upper limit. Since Si tends to promote MA generation and deteriorate high heat input welding HAZ toughness, it is preferably as small as possible in the present invention.
Mn is required to be 0.5% or more in order to ensure the strength and toughness of the base material economically and to stably generate MnS that becomes a preferential precipitation site for V precipitates and B precipitates in HAZ. However, if Mn is added in excess of 2%, the hazard of central segregation becomes remarkable and the toughness of the base material and HAZ is impaired, so this is the upper limit.
P is an impurity element and needs to be reduced to 0.02% or less in order to stably secure the HAZ toughness.
S is required to be 0.001% or more in order to stably generate MnS that is a preferential precipitation site for V precipitates and B precipitates. However, if S exceeds 0.005%, coarse sulfides are generated and the toughness of the base metal and HAZ is impaired, so this is the upper limit.
Alは、脱酸を担い、不純物元素であるOを0.004%以下に低減するために必要である。Al以外にSiも脱酸に寄与するが、たとえSiが添加される場合でも0.001%以上のAlがないと安定的にOを0.004%以下に抑えることは難しい。ただし、Alが0.1%を超えると、アルミナ系の粗大酸化物やそのクラスターが生成し、母材とHAZの靭性を損なうため、これが上限である。なお、Al量の下限は、実施例に基づいて、0.003%以上とすることができる。
VとBは、本発明で最も重要な元素である。大入熱溶接の冷却過程における800℃から500℃の平均冷却速度が1.5〜0.3℃/s(溶接入熱量20〜150kJ/mmに概ね対応)の場合に、γ粒界とγ粒内にVN、V(C,N)、BN、Fe23(C,B)6、Fe3(C,B)が複合析出することで高いα変態核能を発揮する。そのために必要なVの下限は0.01%であり、Bの下限は0.0001%である。Vが0.1%を超えるとα変態後のHAZにおいてV炭化物による析出硬化が顕著となってHAZ靭性が劣化するから、これが上限である。Bが0.0003%以上になると、同じ鋼種の厚鋼板を大量生産した際の母材やHAZで固溶B量の変動が増加して材質ばらつきが大きくなるため、これが上限である。
Al is necessary for carrying out deoxidation and reducing O which is an impurity element to 0.004% or less. In addition to Al, Si also contributes to deoxidation, but even when Si is added, it is difficult to stably suppress O to 0.004% or less without 0.001% or more of Al. However, when Al exceeds 0.1%, an alumina-based coarse oxide or a cluster thereof is generated, and the toughness of the base material and the HAZ is impaired, so this is the upper limit. The lower limit of the Al amount can be set to 0.003% or more based on the example.
V and B are the most important elements in the present invention. When the average cooling rate from 800 ° C. to 500 ° C. in the cooling process of high heat input welding is 1.5 to 0.3 ° C./s (corresponding generally to welding heat input 20 to 150 kJ / mm), γ grain boundaries and γ VN, V (C, N), BN, Fe 23 (C, B) 6 , and Fe 3 (C, B) are precipitated in the grains, thereby exhibiting a high α transformation nuclear ability. Therefore, the lower limit of V required for this is 0.01%, and the lower limit of B is 0.0001%. If V exceeds 0.1%, precipitation hardening due to V carbides becomes prominent in the HAZ after α transformation and the HAZ toughness deteriorates, so this is the upper limit. When B is 0.0003% or more, the variation in the amount of solute B increases in the base material and HAZ when mass-produced thick steel plates of the same steel type are increased, and the material variation becomes large, so this is the upper limit.
Nは、本発明で重要な元素である。連続鋳造鋳片の表面割れを安定的に回避するため、0.006%以下に抑える必要があり、これが上限である。このような低いN量は、HAZの固溶N脆化を軽減する効果もある。また、HAZにおいてBNやVNやV(C,N)を析出させるために0.001%以上必要であり、これが下限である。Nが0.001%未満になると、BNが生成しにくいので母材やHAZのγ中固溶B量が増えて、材質ばらつきを誘発する危険もある。また、Tiが添加される場合には、冷却過程でBやVに優先してTiがNと結合してTiNを形成し、Nを消費してしまうから、BNやVNやV(C,N)を形成するためのNを余分に確保する必要がある。そのためには、以下の式(1)で規定されるNを確保する必要がある。以下の式(1)を満たさなければ、HAZにおいてBNやVNやV(C,N)の析出が不十分となってα変態核効果が低下してしまう。さらに、母材やHAZのγ中固溶B量が増えて、材質ばらつきを誘発する危険もある。
N−Ti/3.4≧0.001% …(1)
N is an important element in the present invention. In order to stably avoid the surface cracking of the continuous cast slab, it is necessary to suppress it to 0.006% or less, which is the upper limit. Such a low N content also has an effect of reducing solid solution N embrittlement of HAZ. Further, in order to precipitate BN, VN, and V (C, N) in HAZ, 0.001% or more is necessary, which is the lower limit. If N is less than 0.001%, it is difficult to form BN, so the amount of solute B in γ of the base material and HAZ increases, and there is a risk of inducing material variations. In addition, when Ti is added, Ti is combined with N to form TiN in preference to B and V in the cooling process, and consumes N. Therefore, BN, VN and V (C, N It is necessary to secure an extra N for forming (). For that purpose, it is necessary to secure N defined by the following formula (1). If the following formula (1) is not satisfied, precipitation of BN, VN, and V (C, N) in HAZ is insufficient, and the α transformation nucleus effect is lowered. Furthermore, there is a risk that the amount of solid solution B in γ of the base material or HAZ increases and induces material variations.
N-Ti / 3.4 ≧ 0.001% (1)
Oは、酸化物を構成し、一部の粗大酸化物が脆性破壊の発生起点として作用する有害性が懸念されるため、0.004%以下に抑える必要がある。
Tiは、母材とHAZの靭性を高めるために添加される。TiNを形成して鋳片加熱時やHAZ(最高加熱温度≦1350℃となる領域)のγ粒成長を抑制し、変態後のα組織を微細化して靭性を高める効果がある。この効果を発揮する下限は0.003%である。ただし、Tiが0.017%を超えて添加されるとHAZ靭性が硬化して脆化することに加えて、前記の式(1)を満たすN量が0.006%を超えてしまうので、これが上限である。
式(1)は、溶接加熱時の固溶Nが0.001%以上ないと、その後の冷却過程において安定的にBNやVNやV(C,N)がγ中に析出しないことを表現している。これよりもNが少ないと、BNやVNやV(C,N)を構成するためのNが量的に不十分となる。Ti添加の場合、BNやVNやV(C,N)に優先して高温でTiNが生成するため、TiNとしてTiに固定されるNを差し引いた残りのNを0.001%以上確保する必要がある。ここで、TiNとしてのN量は、Tiの原子量48とNの原子量14の比から質量%を用いてTi/3.4と計算される。全N量からTiNとしてのN量(Ti/3.4)を差し引いた残りのN量が0.001%以上必要であることを(1)は示している。
O constitutes an oxide, and there is concern about the harmful effect that some coarse oxides act as a starting point for brittle fracture. Therefore, it is necessary to suppress O to 0.004% or less.
Ti is added to increase the toughness of the base material and the HAZ. TiN is formed to suppress the growth of γ grains during slab heating or HAZ (the region where the maximum heating temperature ≦ 1350 ° C.), and has the effect of increasing the toughness by refining the α structure after transformation. The lower limit for exerting this effect is 0.003%. However, if Ti is added in excess of 0.017%, in addition to the HAZ toughness being cured and embrittled, the N amount satisfying the above formula (1) exceeds 0.006%. This is the upper limit.
Equation (1) expresses that BN, VN, and V (C, N) are not stably precipitated in γ in the subsequent cooling process unless the solute N during welding heating is 0.001% or more. ing. When N is less than this, N for constituting BN, VN, and V (C, N) becomes quantitatively insufficient. In the case of Ti addition, TiN is generated at a high temperature in preference to BN, VN and V (C, N), so it is necessary to secure 0.001% or more of the remaining N after subtracting N fixed to Ti as TiN. There is. Here, the amount of N as TiN is calculated as Ti / 3.4 using mass% from the ratio of atomic weight 48 of Ti and atomic weight 14 of N. (1) indicates that the remaining N amount obtained by subtracting the N amount (Ti / 3.4) as TiN from the total N amount needs to be 0.001% or more.
Ca、Mg、La+Ceは、脱酸あるいは脱硫によって鋼の清浄度を高めたり、微細な酸化物や硫化物を形成して組織微細化に寄与することで、母材やHAZの材質を改善する効果がある。その効果を発揮する下限はCaとMgは0.0003%であり、La+Ceは0.001%である。ただし、これらの元素を多量に添加してもその効果が飽和するため、経済的な観点からCaとMgは0.003%が、La+Ceは0.02%が上限である。
Cu、Ni、Cr、Moは、要求される母材の強度を確保するために添加される。いずれ元素も厚板圧延後の冷却過程でγ→α変態時の焼入性を高め、母材強度を高める効果がある。これらの元素が効果を発揮する下限は、Cu、Ni、Cr、Moについては0.05%である。ただし、これらの元素が多すぎるとHAZ靭性や溶接性が劣化するため、上限をもうける必要がある。Cu、Cr、Moの上限は1%であり、Niの上限は3%である。なお、Mo量の上限は、実施例に基づいて、0.2%以下とすることができる。
Nbは、母材の強度と靭性の両方を確保するために添加される。Nbは圧延γ組織を微細化し、γ→α変態時に焼入性を高め、α変態後に析出することで母材の強靭化に寄与する。この効果を発揮する下限は0.003%である。ただし、Nbが0.03%を超えて添加されるとHAZが硬化して脆化するので、これが上限である。
Ca, Mg, La + Ce improves the quality of the base material and HAZ by increasing the cleanliness of the steel by deoxidation or desulfurization, or by forming fine oxides and sulfides to contribute to the refinement of the structure. There is. The lower limit for exerting the effect is 0.0003% for Ca and Mg, and 0.001% for La + Ce. However, even if these elements are added in a large amount, the effect is saturated, so from the economical viewpoint, the upper limit is 0.003% for Ca and Mg and 0.02% for La + Ce.
Cu, Ni, Cr, and Mo are added to ensure the required strength of the base material. Each element has the effect of increasing the hardenability during the γ → α transformation in the cooling process after thick plate rolling and increasing the strength of the base material. The lower limit for the effect of these elements is 0.05% for Cu, Ni, Cr, and Mo. However, if there are too many of these elements, the HAZ toughness and weldability deteriorate, so an upper limit must be provided. The upper limit of Cu, Cr, and Mo is 1%, and the upper limit of Ni is 3%. In addition, the upper limit of Mo amount can be 0.2% or less based on an Example.
Nb is added in order to ensure both the strength and toughness of the base material. Nb refines the rolled γ structure, increases hardenability during the γ → α transformation, and precipitates after the α transformation, thereby contributing to the toughening of the base material. The lower limit for exerting this effect is 0.003%. However, if Nb is added over 0.03%, the HAZ hardens and becomes brittle, so this is the upper limit.
次に、本発明を適用した厚鋼板の製造方法の一例を説明する。
鉄鋼業の製鋼工程において、溶鋼の不純物元素を低減するとともに必要な合金元素を適正に添加し、連続鋳造によって鋳片を造る。溶鋼の成分調整において、B量を極微量の狭い範囲に制御することが重要であるから、製鋼原料や耐火物から混入するBを極力抑えるとともに、B含有量が安定した高品位なB合金を高い精度で秤量して溶鋼中に添加する。
B含有量の特定には、前述のJIS G 1227に従う、ほう酸メチル蒸留分離クルクミン吸光光度法(1)あるいは、JIS G 1227に従う、ほう酸メチル蒸留分離クルクミン吸光光度法(2)などの分析方法を適宜選択して用いれば良い。なお、B含有量の特定方法はこれらの方法に限るものではなく、本発明で規定するレベルの含有量の特定に供し得る他の分析方法を用いても良いのは勿論である。
鋳造時の冷却途中あるいは冷却後に鋼片を再加熱し、厚板圧延によって15〜100mmの厚みの鋼板を造り、圧延後に空冷あるいは水冷する。水冷途中で水冷を停止して空冷することもある。必要に応じて各種の熱処理を行うことで母材の強度と靭性を調整することもある。
Next, an example of the manufacturing method of the thick steel plate to which this invention is applied is demonstrated.
In the steelmaking process in the steel industry, the impurity elements of molten steel are reduced and the necessary alloying elements are added appropriately, and slabs are made by continuous casting. In adjusting the composition of molten steel, it is important to control the amount of B in a very small range, so that B mixed from steelmaking raw materials and refractories is suppressed as much as possible, and a high-grade B alloy with a stable B content is prepared. Weigh with high accuracy and add to molten steel.
In order to specify the B content, an analysis method such as methyl borate distillation separation curcumin absorption spectrophotometry (1) according to JIS G 1227 described above or methyl borate distillation separation curcumin absorption spectrophotometry (2) according to JIS G 1227 is appropriately used. Select and use. The method for specifying the B content is not limited to these methods, and it is needless to say that other analysis methods that can be used for specifying the content at the level defined in the present invention may be used.
The steel slab is reheated during or after cooling during casting, a steel plate having a thickness of 15 to 100 mm is produced by thick plate rolling, and air-cooled or water-cooled after rolling. In the middle of water cooling, water cooling may be stopped and air cooling may be performed. The strength and toughness of the base material may be adjusted by performing various heat treatments as necessary.
以上の如く製造された厚鋼板は、添加元素としてN量を0.006%以下の低い量として表面割れを回避した上で、VとNの規定量の複合添加によりα変態核効果を得、B含有量の厳格な規定により、溶接時の平均冷却速度が低い(0.3〜1.5℃/sec)場合に、換言すると、溶接入熱量が概ね20〜150kJ/mmとなる範囲において、γ粒界やγ粒内に析出したBNとVNあるいはV(C,N)の複合粒子が要因となってγ粒界およびγ粒内でのα変態核効果を著しく促進し、良好な靭性を確保できるので、−20℃〜0℃でのシャルピー衝撃吸収エネルギー平均値が150J以上である厚鋼板を、大量生産した場合に母材強度のばらつきなく、母材靭性のばらつきなく、大入熱溶接HAZ靭性ののばらつきなく、小入熱時のHAZの溶接低温割れ感受性や靭性のばらつきの無い状態で得ることができる。
また、C量が比較的高い場合には、これらに加えてさらにFe23(C,B)6やFe3(C,B)を複合析出させることによりα変態核効果を促進する。
即ち前述の厚鋼板であれば、造船や建築やそれ以外の溶接構造物に使用され、構造物の建造における高い溶接施工能率と、構造物の高い安全性・信頼性を両立することができる。
The steel plate manufactured as described above has an α transformation nucleus effect obtained by adding a specified amount of V and N together with avoiding surface cracks with an N amount as low as 0.006% or less as an additive element, When the average cooling rate during welding is low (0.3 to 1.5 ° C./sec) due to the strict regulation of the B content, in other words, in the range where the welding heat input is approximately 20 to 150 kJ / mm, γ grain boundaries and composite particles of BN and VN or V (C, N) precipitated in the γ grains significantly promote the α transformation nucleus effect in the γ grain boundaries and γ grains, and provide good toughness. High heat input welding with no variation in base material strength and base material toughness when mass-produced thick steel plates with an average value of Charpy impact absorption energy at −20 ° C. to 0 ° C. of 150 J or more. HAZ with small heat input without variation in HAZ toughness It can be obtained in the absence of variations in weld cold cracking susceptibility and toughness.
In addition, when the amount of C is relatively high, in addition to these, Fe 23 (C, B) 6 and Fe 3 (C, B) are further precipitated together to promote the α transformation nucleus effect.
That is, if it is the above-mentioned thick steel plate, it is used for shipbuilding, construction, and other welded structures, and it is possible to achieve both high welding construction efficiency in construction of the structure and high safety and reliability of the structure.
製鋼工程で溶鋼の化学成分を制御して連続鋳造によって鋼片を作製し、これを再加熱して厚板圧延によって15〜100mm厚みの鋼板とし、圧延後に空冷あるいは水冷を行った。必要に応じて熱処理を施し、降伏強度が325〜500MPa級である厚鋼板を製造した。
表1に鋼の化学成分を、表2に厚鋼板の機械的性質と1パス溶接継手のHAZ靭性を示す。エレクトロガス溶接法(Electrogas Welding:EGW)では図1に示すような突合せ継手を、エレクトロスラグ溶接法(Electroslag Welding:ESW)では図2に示すようなT字継手を作製し、溶接入熱量が20〜150kJ/mmの1パス大入熱溶接を適用した。
図1に突き合わせ溶接部を示すが、厚鋼板の母材1、2とそれらを突き合わせ溶接した溶接金属部3を有し、板厚中心線Sに沿って溶接金属部3から溶接線(FL)を超えて溶接熱影響部4を通過する部位から試験片5を採取した。
図2にT字継手溶接部を示すが、厚鋼板からなるスキンプレート7に間隙をあけて厚鋼板からなるダイヤフラム8をT字状に配置し、前記間隙を挟むように沿わせて配置した裏当金9、10により溶接時の溶融スラグと溶融金属が溶接部から流れ出ないように囲み、溶融したスラグ浴の中に溶接ワイヤを供給し、主として溶融スラグの抵抗熱によって溶接ワイヤを溶融させ、溶着金属部12を形成してなる溶接部である。この溶接部においてダイヤフラム8の板厚中心線に沿って溶接金属部12から溶解融線(FL)を超えてスキンプレート側の溶接熱影響部13を通過してスキンプレート7の内部側に至る部位から試験片15を採取した。
Steel slabs were produced by continuous casting while controlling the chemical components of the molten steel in the steel making process, and this was reheated to form steel plates having a thickness of 15 to 100 mm by thick plate rolling, and air cooling or water cooling was performed after rolling. Heat treatment was performed as necessary to produce a thick steel plate having a yield strength of 325 to 500 MPa class.
Table 1 shows the chemical composition of the steel, and Table 2 shows the mechanical properties of the thick steel plate and the HAZ toughness of the one-pass welded joint. A butt joint as shown in FIG. 1 is produced by electrogas welding (EGW) and a T-joint as shown in FIG. 2 is produced by electroslag welding (ESW). One-pass large heat input welding of ˜150 kJ / mm was applied.
FIG. 1 shows a butt weld, which includes base materials 1 and 2 of thick steel plates and a weld metal portion 3 obtained by butt welding them, and a weld line (FL) from the weld metal portion 3 along the plate thickness center line S. The test piece 5 was sampled from a portion passing through the weld heat affected zone 4 beyond the range.
FIG. 2 shows a T-jointed welded portion, and a back surface in which a diaphragm 8 made of a thick steel plate is arranged in a T-shape with a gap formed in a skin plate 7 made of a thick steel plate, and is arranged along the gap. Enclose the molten slag and molten metal so that they do not flow out of the welded portion by the metal 9, 10, supply the welding wire into the molten slag bath, and melt the welding wire mainly by the resistance heat of the molten slag, This is a welded portion formed by forming the weld metal portion 12. In this welded portion, along the plate thickness center line of the diaphragm 8, the portion that passes from the weld metal portion 12 to the inner side of the skin plate 7 through the weld heat affected zone 13 on the skin plate side, passing through the fusion line (FL). The test piece 15 was extract | collected from.
図1と図2に示す要領で、溶解融線(Fusion Line:FL)から1mm離れたHAZ、あるいはFLにノッチを入れ、EGW継手は−20℃で、ESW継手は0℃でシャルピー衝撃試験を行った。一つのノッチ位置と一つの試験温度について3本の試験を行い、平均の吸収エネルギーを採用した。シャルピー衝撃試験はJIS Z 2242に準拠し、JIS Z 2202のVノッチ試験片を用いた。 As shown in Fig. 1 and Fig. 2, a notch is made in HAZ or FL 1mm away from the fusion line (FL), EGW joint is -20 ℃, ESW joint is Charpy impact test at 0 ℃. went. Three tests were conducted for one notch position and one test temperature, and the average absorbed energy was adopted. The Charpy impact test was based on JIS Z 2242, and a V-notch test piece of JIS Z 2202 was used.
表1と表2に示す鋼1〜18は本発明鋼であり、鋼の化学成分は0.006%以下の低いN量のもとで適正にV量とB量が調整された鋼であり、連続鋳造鋳片の表面われは発生せず、0℃あるいは−20℃で150Jを超える良好なHAZ靭性が達成された。一方、鋼19〜26は比較鋼であり、鋼の化学成分が適正でないために、HAZ靭性が不十分であった。鋼19はSが少ないために、HAZのγ粒内においてMnSの個数が不足し、V析出物やB析出物の析出が抑制され、α変態核効果が十分に引き出せず、HAZ組織の微細化が不十分となって良好なHAZ靭性が得られなかった。鋼20はAlが少ないために脱酸が不十分なためにOを適正レベルまで低減できず、脆性破壊の発生起点として作用する粗大な酸化物が増加して、良好なHAZ靭性が得られなかった。鋼21はVが少ないために、鋼23はBが少ないために、鋼23と鋼25はNが少ないために、HAZのγ域でVN、V(C,N)、BNが十分に析出せず、α変態核効果が十分に引き出せないため、HAZ組織の微細化が不十分となって良好なHAZ靭性が得られなかった。鋼22はVが多いために析出硬化が生じて良好なHAZ靭性が得られなかった。鋼24はBが多いためにHAZの固溶Bが増えて変態後のHAZが硬くなり、良好なHAZ靭性が得られなかった。表2の比較鋼4’と比較鋼11’は、本発明鋼4、11と同じ母材を使用した試料であるが、溶接入熱量が少なすぎるか、多すぎるために、HAZ靭性が低下した。 Steels 1 to 18 shown in Tables 1 and 2 are steels of the present invention, and the chemical composition of the steel is steel in which the V and B contents are appropriately adjusted under a low N content of 0.006% or less. The surface crack of the continuous cast slab did not occur, and good HAZ toughness exceeding 150 J at 0 ° C. or −20 ° C. was achieved. On the other hand, Steels 19 to 26 are comparative steels, and the HAZ toughness was insufficient because the chemical components of the steel were not appropriate. Since the steel 19 has a small amount of S, the number of MnS in the HAZ γ grains is insufficient, the precipitation of V precipitates and B precipitates is suppressed, the α transformation nucleus effect cannot be sufficiently brought out, and the HAZ structure is refined. Was insufficient, and good HAZ toughness was not obtained. Steel 20 has a small amount of Al, so deoxidation is insufficient, so O cannot be reduced to an appropriate level, and coarse oxides acting as starting points for brittle fracture increase, resulting in poor HAZ toughness. It was. Since Steel 21 has a small amount of V, Steel 23 has a small amount of B, and Steel 23 and Steel 25 have a small amount of N, VN, V (C, N) and BN are sufficiently precipitated in the γ region of HAZ. In addition, since the α transformation nucleus effect cannot be sufficiently extracted, the HAZ structure is not sufficiently refined and good HAZ toughness cannot be obtained. Since the steel 22 had a large amount of V, precipitation hardening occurred and good HAZ toughness could not be obtained. Since Steel 24 has a large amount of B, the solid solution B of HAZ increased, and the HAZ after transformation became hard, and good HAZ toughness was not obtained. The comparative steel 4 'and the comparative steel 11' in Table 2 are samples using the same base material as the steels 4 and 11 of the present invention, but the HAZ toughness was lowered because the welding heat input was too little or too much. .
3 溶接金属部、
4 溶接熱影響部(HAZ)、
5 試験片、
12 溶接金属部、
13 溶接熱影響部(HAZ)、
15 試験片、
3 weld metal parts,
4 Welding heat affected zone (HAZ),
5 specimens,
12 Weld metal part,
13 Weld heat affected zone (HAZ),
15 specimens,
Claims (4)
C :0.03〜0.2%、
Si:0.5%以下、
Mn:0.5〜2.0%、
P :0.02%以下、
S :0.001〜0.005%、
Al:0.001〜0.1%、
V :0.01〜0.1%、
B :0.0001%以上0.0003%未満、
N :0.001〜0.006%、
O :0.004%以下
を含有し、残部鉄および不可避的不純物からなることを特徴とする、溶接入熱量が20〜150kJ/mmの大入熱溶接熱影響部の靭性に優れた厚鋼板。 % By mass
C: 0.03-0.2%,
Si: 0.5% or less,
Mn: 0.5 to 2.0%
P: 0.02% or less,
S: 0.001 to 0.005%,
Al: 0.001 to 0.1%,
V: 0.01-0.1%
B: 0.0001% or more and less than 0.0003%,
N: 0.001 to 0.006%,
A thick steel plate excellent in toughness of a high heat input welding heat-affected zone having a welding heat input of 20 to 150 kJ / mm, characterized by containing O 4: 0.004% or less and remaining iron and inevitable impurities.
さらに、質量%で、
Ti:0.003〜0.017%
を含有し、NとTiの質量%を用いて計算される下式(1)を満たすことを特徴とする、請求項1に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板。
N−Ti/3.4≧0.001% (1) Among the components according to claim 1, the amount of Al is mass%, and is 0.003 to 0.1%.
Furthermore, in mass%,
Ti: 0.003 to 0.017%
The thick steel plate excellent in toughness of the high heat input welding heat-affected zone according to claim 1, wherein the following formula (1) calculated using mass% of N and Ti is satisfied.
N-Ti / 3.4 ≧ 0.001% (1)
Ca:0.0003〜0.003%、
Mg:0.0003〜0.003%、
La+Ce:0.001〜0.02%
の一種または二種以上を含有することを特徴とする、請求項1または2に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板。 Furthermore, in mass%,
Ca: 0.0003 to 0.003%,
Mg: 0.0003 to 0.003%,
La + Ce: 0.001 to 0.02%
The thick steel plate excellent in toughness of the high heat input welding heat-affected zone according to claim 1 or 2, characterized by containing one or more of the following.
Cu:0.05〜1%、
Ni:0.05〜3%、
Cr:0.05〜1%、
Mo:0.05〜0.2%、
Nb:0.003〜0.03%
の一種または二種以上を含有することを特徴とする、請求項1ないし3のいずれか1項に記載の大入熱溶接熱影響部の靭性に優れた厚鋼板。 Furthermore, in mass%,
Cu: 0.05 to 1%,
Ni: 0.05-3%,
Cr: 0.05 to 1%,
Mo: 0.05 to 0.2%,
Nb: 0.003 to 0.03%
The thick steel plate excellent in toughness of the high heat input welding heat-affected zone according to any one of claims 1 to 3, characterized by containing one or more of the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006159095A JP4505435B2 (en) | 2006-06-07 | 2006-06-07 | Thick steel plate with excellent toughness in heat-affected zone of large heat input welding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006159095A JP4505435B2 (en) | 2006-06-07 | 2006-06-07 | Thick steel plate with excellent toughness in heat-affected zone of large heat input welding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007327100A JP2007327100A (en) | 2007-12-20 |
JP4505435B2 true JP4505435B2 (en) | 2010-07-21 |
Family
ID=38927757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006159095A Expired - Fee Related JP4505435B2 (en) | 2006-06-07 | 2006-06-07 | Thick steel plate with excellent toughness in heat-affected zone of large heat input welding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4505435B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10081042B2 (en) | 2013-08-16 | 2018-09-25 | Nippon Steel & Sumitomo Metal Corporation | Electric resistance welded steel pipe excellent in weld zone and method of production of same |
CN110241357B (en) * | 2019-06-10 | 2021-03-26 | 江阴兴澄特种钢铁有限公司 | 800 MPa-grade tough weather-proof thick steel plate and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09194990A (en) * | 1996-01-23 | 1997-07-29 | Sumitomo Metal Ind Ltd | High tensile strength steel excellent in toughness in weld heat-affected zone |
JPH10204574A (en) * | 1997-01-27 | 1998-08-04 | Nkk Corp | High tensile strength steel excellent in earthquake resistance |
JP2001226713A (en) * | 2000-02-14 | 2001-08-21 | Nkk Corp | Method for producing low yield ratio high tensile strength steel |
-
2006
- 2006-06-07 JP JP2006159095A patent/JP4505435B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09194990A (en) * | 1996-01-23 | 1997-07-29 | Sumitomo Metal Ind Ltd | High tensile strength steel excellent in toughness in weld heat-affected zone |
JPH10204574A (en) * | 1997-01-27 | 1998-08-04 | Nkk Corp | High tensile strength steel excellent in earthquake resistance |
JP2001226713A (en) * | 2000-02-14 | 2001-08-21 | Nkk Corp | Method for producing low yield ratio high tensile strength steel |
Also Published As
Publication number | Publication date |
---|---|
JP2007327100A (en) | 2007-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5079419B2 (en) | Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure | |
JP5076658B2 (en) | Steel material for large heat input welding | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP5509685B2 (en) | Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method | |
JP4551492B2 (en) | High-tensile steel plate having a tensile strength of 780 MPa or more with excellent weldability and a method for producing the same | |
JP5445723B1 (en) | Ultra high strength steel plate for welding | |
JP5849940B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP5493659B2 (en) | High strength steel with excellent toughness of heat affected zone | |
JP5768595B2 (en) | Method for producing refractory steel | |
JP5136156B2 (en) | Ultra-high heat input welded heat-affected zone toughness low yield ratio high-tensile thick steel plate and its manufacturing method | |
JP6665658B2 (en) | High strength steel plate | |
JP5999005B2 (en) | Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same | |
JP4770415B2 (en) | High tensile steel plate excellent in weldability and method for producing the same | |
JP2009263772A (en) | METHOD FOR MANUFACTURING THICK HIGH-TENSILE STRENGTH STEEL PLATE HAVING EXCELLENT WELDABILITY AND LOW-TEMPERATURE JOINT TOUGHNESS AND TENSILE STRENGTH OF AT LEAST 780 MPa | |
JP4505435B2 (en) | Thick steel plate with excellent toughness in heat-affected zone of large heat input welding | |
JP5008879B2 (en) | High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate | |
JP2013019021A (en) | Method for producing steel for weld structure, excellent in toughness at weld heat-affected zone in large-heat input welding | |
JP4901262B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JPWO2019050010A1 (en) | Steel sheet and manufacturing method thereof | |
JP5493658B2 (en) | A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness. | |
JP5862592B2 (en) | High-tensile steel plate with excellent weld heat-affected zone toughness | |
JP4505434B2 (en) | Thick steel plate with excellent toughness of heat affected zone | |
JP7260779B2 (en) | High strength steel plate for high heat input welding | |
JP7248896B2 (en) | High strength steel plate for high heat input welding | |
JP5811044B2 (en) | Thick high-strength steel sheet excellent in weldability and weld heat-affected zone toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100305 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100426 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4505435 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |