KR20090016577A - 금속 주조용 피더 요소 - Google Patents

금속 주조용 피더 요소 Download PDF

Info

Publication number
KR20090016577A
KR20090016577A KR1020087029881A KR20087029881A KR20090016577A KR 20090016577 A KR20090016577 A KR 20090016577A KR 1020087029881 A KR1020087029881 A KR 1020087029881A KR 20087029881 A KR20087029881 A KR 20087029881A KR 20090016577 A KR20090016577 A KR 20090016577A
Authority
KR
South Korea
Prior art keywords
feeder
sidewall
feeder element
sleeve
angle
Prior art date
Application number
KR1020087029881A
Other languages
English (en)
Other versions
KR101361436B1 (ko
Inventor
트레버 레오날드 태커베리
필립 로버트 달스트롬
앤써니 코스모 미디어
콜린 포웰
Original Assignee
호세코 인터내셔널 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 호세코 인터내셔널 리미티드 filed Critical 호세코 인터내셔널 리미티드
Publication of KR20090016577A publication Critical patent/KR20090016577A/ko
Application granted granted Critical
Publication of KR101361436B1 publication Critical patent/KR101361436B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C19/00Components or accessories for moulding machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/084Breaker cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/08Features with respect to supply of molten metal, e.g. ingates, circular gates, skim gates
    • B22C9/088Feeder heads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

본 발명은 금속 주조시 사용하기 위한 피더 요소에 있어서, (ⅰ) 주형 모형 상에 장착하기 위한 제1 단부와, (ⅱ) 피더 슬리브를 수납하기 위한 대향하는 제2 단부와, (ⅲ) 측벽에 의해 제1 및 제2 단부 사이에 한정되는 보어를 포함하며, 사용시 제1 및 제2 단부 사이의 거리를 줄이도록 압축 가능하며, 계단식 측벽은 피더 요소의 제2 단부 및 사용하는 피더 슬리브를 위한 장착면을 한정하되 보어 축에 대해 90˚보다 작은 각도로 경사지는 제1 측벽 영역과, 제1 측벽 영역에 접하되 측벽에 계단을 한정하도록 제1 측벽에 평행하거나 보어 축에 대해 제1 측벽 영역과 다른 각도로 경사지는 제2 측벽 영역을 갖는 피더 요소를 개시한다. 피더 요소는 WO2005/051568에 개시된 요소를 넘어선 개선점을 제공한다.
피더 요소, 피더 슬리브, 계단식 측벽, 주형, 주물사

Description

금속 주조용 피더 요소{FEEDER ELEMENT FOR METAL CASTING}
본 발명은 주조 주형을 이용하는 금속 주조 작업에서, 다음에 한정되지 않지만 특히 중압 모래 조형 시스템에 사용하기 위한 개선된 피더 요소에 관한 것이다.
통상의 주조 공정에서 용탕은 주물의 형상을 한정하는 사전 형성된 주형 공동부 내로 주입된다. 그러나, 금속은 고화됨에 따라 수축되어 수축공을 형성하고, 수축공은 다시 최종 주물에 허용할 수 없는 결함을 가져온다. 이는 주조 산업에서 널리 알려진 문제로서 주형 제조 과정에서 주형에 합체되는 피더 슬리브 또는 라이저(riser)를 이용하여 처리되고 있다. 각각의 피더 슬리브는 주형 공동부와 연통하는 추가적인 (일반적으로 폐쇄된) 부피 또는 공동부를 제공함으로써 용탕은 피더 슬리브 내로도 진입하게 된다. 응고가 진행되는 동안, 피더 슬리브 내부의 용탕은 다시 주형 공동부로 유입되어 주물의 수축을 상쇄한다. 피더 슬리브 공동부 내부의 금속이 주형 공동부 내부의 금속보다 오랫동안 용탕 상태로 있음으로 해서, 용탕과 접촉시 추가 열이 생성되어 응고를 지연시키도록 피더 슬리브가 고도로 절연성이거나 보다 일반적으로 발열성이 되도록 제조되는 것이 중요하다.
응고와 주형재의 제거 후, 피더 슬리브 공동부 내부에서 나오는 불필요한 잔여 금속이 주물에 부착 상태로 남아 있는데 이는 제거되어야 한다. 잔여 금속을 용이하게 제거하기 위해, 일반적으로 넥 다운 슬리브(neck down sleeve)로 지칭되는 설계에서 피더 슬리브 공동부는 그 기부(즉 주형 공동부에 가장 인접하게 되는 피더 슬리브의 단부) 방향으로 테이퍼될 수 있다. 충격이 잔여 금속에 가해지면, 잔여 금속은 주형에 인접한 최약 지점에서 분리된다(이 공정을 일반적으로 "녹-오프(knock off)"라 함). 또한, 주물에 소형 족문을 하는 것이 인접 특징부들에 의해 접근이 제한될 수 있는 주물 영역에 피더 슬리브들을 위치 설정할 수 있도록 하기 위해 바람직하다.
피더 슬리브들은 주형 공동부의 표면 상으로 직접 적용될 수도 있지만 주로 브레이커 코어와 함께 사용된다. 브레이커 코어는 단지 그 중심부에 구멍이 있어 주형 공동부와 피더 슬리브 사이에 안착되는 디스크형 내화재(통상적으로, 수지 접합 샌드 코어 또는 세라믹 코어 또는 피더 슬리브재의 코어)이다. 브레이커 코어를 관통하는 구멍의 직경은 피더 슬리브의 내측 공동부의 직경보다 작도록 설계(반드시 테이퍼될 필요는 없음)됨으로써 녹-오프는 주형이 가까운 브레이커 코어에서 발생하게 된다.
브레이커 코어는 금속 중에서 제조될 수도 있다. DE 196 42 838 공보(A1)는 종래의 세라믹 브레이커 코어를 강성의 편평한 환형체로 대체한 개량된 공급 시스템을 개시하고 DE 201 12 425 공보(U1)는 강성의 "모자형(hat-shaped)" 환형체를 이용하는 개량된 공급 시스템을 개시한다.
주조 주형은 일반적으로 주형 공동부를 한정하는 조형 모형을 이용하여 형성된다. 모형판 상에는 피더 슬리브들을 위한 장착 지점인 소정 위치에 핀들이 마련 된다. 모형판 상에 필요한 슬리브들이 장착된 후, 주형은 피더 슬리브들이 덮히고 주형 상자가 채워질 때까지 모형판 상으로 그리고 피더 슬리브들 주변에 주물사를 주입함으로써 형성된다. 주형은 용탕의 주입 동안 침식을 견디고 용탕이 채워질 때 주형에 작용하는 철정압을 지탱하고 금속이 응고될 때 팽창/압축력을 견디기에 충분한 강도를 가져야만 한다.
주물사는 두 가지 주요 범주로 분류될 수 있는데, (유기 결합제인지 무기 결합제인지에 기초한) 화학 접합형과 클레이 접합형이 있다. 화학적으로 접합되는 조형 결합제는 통상적으로 결합제와 화학 경화제가 주물사와 혼합되고 결합제와 경화제는 즉시 반응하면서도 주물사가 모형판 둘레에 형상화되어 제거와 주조를 위해 충분하게 경화되기에 충분히 저속으로 반응하는 자기-경화 시스템(self-hardening system)이다.
클레이 접합형 조형은 결합제로서 클레이와 물을 이용하며 "생(green)" 상태 또는 비건조 상태로 이용될 수 있으며 일반적으로 생사(greensand)로 지칭된다. 생사 혼합물은 압축력만으로는 쉽게 유동하거나 쉽게 이동하지 않으며, 따라서 모형 둘레에 생사를 압착하여 상술한 바와 같은 충분한 강도 특성을 주형에 제공하기 위해, 졸팅(jolting), 진동, 압착 및 래밍(ramming)의 다양한 조합이 적용되어 균일한 강도의 주형을 높은 생산성으로 제조한다. 주물사는 통상적으로 고압으로 압축(압착)되는데, 일반적으로 유압 램을 이용한다(이 공정을 "래밍 업(ramming up)이라 함). 주물 복잡성과 생산성 요건이 증가함에 따라, 치수 안정성이 보다 높은 주형이 요구되고 있고 래밍 압력을 높이는 경향이 있는데, 이런 높은 래밍 압력은 특히 브레이커 코어 또는 피더 슬리브가 래밍 업 이전에 모형판과 직접 접촉할 경우 존재하는 피더 슬리브 및/또는 브레이커 코어의 파괴를 가져올 수 있다.
위와 같은 문제는 스프링 핀을 사용함으로써 부분적으로 완화된다. 피더 슬리브와 선택 사항인 위치설정 코어(조성과 전체 치수가 브레이커 코어와 유사)는 초기에 모형판에서 이격되어 있지만 래밍 업시 모형판을 향해 이동한다. 스프링 핀과 피더 슬리브는 래밍 후 슬리브의 최종 위치가 모형판과 직접 접촉하지 않고 통상적으로 모형 표면에서 5 내지 25 mm 떨어져 위치할 수 있도록 설계될 수 있다. 녹-오프 지점은 스프링 핀의 기부의 치수와 프로파일에 의존하기 때문에 종종 예측할 수 없으며, 따라서 추가 세척 비용을 필요로 한다. EP-A-1184104에서 제공하는 해법은 이분형(two-part) 피더 슬리브이다. 주형 형성 동안 압축되면 하나의 주형(슬리브)부가 다른 주형부 내로 삽입된다. 주형(슬리브)부들 중 하나는 항상 모형판과 접촉하고 있으며 스프링 핀이 필요없다. 그러나, EP-A-1184104의 접음 배열구조에는 문제가 있다. 예컨대, 접음 작용으로 인해 조형 후 피더 슬리브의 부피는 가변적이고 조형 기계압, 주조 기하학 및 모래 특성을 포함하는 인자의 범위에 의존한다. 이런 비예측성은 공급 성능에 치명적인 효과를 줄 수 있다. 또한, 이런 배열구조는 발열성 슬리브들이 요구되는 곳에는 이상적으로 적합하지 않다. 발열성 슬리브들이 사용될 때, 주조면과 발열재의 직접 접촉은 바람직하지 않으며 열악한 표면 마무리와 주조면의 국부적 오염과 표면 하부의 가스 결함을 가져올 수 있다.
EP-A-1184104의 접음식 배열구조의 또다른 단점은 두 개의 주형(슬리브)부의 초기 이격거리를 유지하기 위해 요구되는 탭이나 플랜지로 인한 것이다. 주형 동안, 이들 소형의 탭은 파괴되어 (이로써 접음 작용이 발생할 수 있도록 함) 바로 주물사 내로 떨어진다. 기간이 지남에 따라 이들 조각은 주물사 내에 쌓이게 된다. 이 문제는 이들 조각이 발열재로 제조된 경우 특히 심각하다. 주물사에서 나온 수분은 잠재적으로 발열재(예컨대, 금속 알루미늄)와 반응하여 작은 파열성 결함을 형성할 가능성이 있다.
DE 201 12 425 공보(U1)에서는 슬리브의 무게를 지탱하는 장착면에 한 쌍의 이격 립을 제공하여 이격 립이 장착면과 함께 슬리브가 안착될 채널 또는 홈을 형성하도록 함으로써 슬리브 파괴의 효과를 완화하고자 시도했다. 내측 립은 슬리브의 파괴된 조각이 주형 안으로 떨어지는 것을 방지하고 외측 립은 파괴된 조각이 주물사 안으로 떨어지는 것을 방지한다.
(그 전체 내용이 본 출원에 원용되는) WO 2005/051568은 고압 사형 조형 시스템에 특히 유용한 피더 요소(붕괴형 브레이커 코어)을 개시한다. 피더 요소는 주형 모형 상에 장착하기 위한 제1 단부와, 피더 슬리브를 수납하기 위한 대향하는 제2 단부와, 계단식 측벽에 의해 제1 및 제2 단부 사이에 한정되는 보어를 갖는다. 계단식 측벽은 (압착 강도에 대응하는) 소정 부하를 받으면 비가역적으로 변형되도록 설계된다. 피더 요소는 종래의 브레이커 코어에 비해 다음과 같은 수많은 장점을 제공한다.
(ⅰ) 보다 작은 피더 요소 접촉 면적(주물에 대한 개구)
(ⅱ) 주물 표면 상의 작은 족문(외부 프로파일 접촉부)
(ⅲ) 주형 형성 동안 고압 하에서의 피더 슬리브 파괴 가능성 저감
(ⅳ) 세척 요구를 크게 줄인 일정한 녹-오프
WO 2005/051568의 피더 요소는 고압 사형 조형 시스템으로 예시된다. 수반되는 높은 래밍 압력은 높은 강도(그리고 고가)의 피더 슬리브의 사용을 필요로 한다. 이런 높은 강도는 피더 슬리브의 설계(즉, 형상, 두께 등)와 재료(즉, 내화재, 결합제 유형, 제조 공정 등)의 조합에 의해 달성된다. 실시예들은 내압성(즉 높은 강도)를 갖고 스폿 공급(고밀도, 고발열성, 두터운 벽, 높지 않은 부피 공급 요구)를 위해 설계된 FEEDEX HD-VS159 피더 슬리브를 구비한 피더 요소의 사용을 예시한다. 피더 슬리브는 피더 슬리브의 무게를 지탱하고 보어 축에 수직한 장착면을 거쳐 피더 요소에 고정된다. 중간 압력 조형의 경우에는, 보다 낮은 강도의 슬리브들, 즉 서로 다른 설계(즉, 형상 및 벽 두께 등) 및/또는 서로 다른 조성(즉, 낮은 강도)을 이용할 잠재적 기회가 있다. 슬리브 설계와 조성에 관계없이, 사용시에는 여전히 주물로부터의 녹-오프(주물 상의 족문의 가변성 및 크기)와 관련된 논점과 피더 요소 하부에서의 양호한 모래 압착에 대한 요구가 있다. WO 2005/051568의 피더 요소가 중간 압력 조형 라인에서 이용되었다면, 피더 요소가 (높은 조형 압력에 비해) 낮은 조형 압력으로 충분히 붕괴하도록 피더 요소를 설계하는 것이, 즉 보다 낮은 초기 압착 강도를 갖도록 설계하는 것이 필요할 것이다. 또한, 보다 낮은 강도의 피더 슬리브(통상적으로 저밀도 슬리브)를 사용하는 것이 무척 유리할 수 있는데, 이런 피더 슬리브는 보다 넓은 범위의 슬리브 설계와 조성이 보다 넓은 범위의 주조 유형과 이에 대응하는 보다 저렴한 피더 슬리브에 대해 성공적이고 최적으로 사용될 수 있도록 할 것이다. 그러나, 발명자들은 이를 적용하고자 했을 때, 놀랍게도 조형 중에 피더 슬리브가 손상되어 파괴됨으로써 주조용으로 사용될 경우 결함을 가진 주물을 생성하게 됨을 발견했다.
제1 태양에 있어서, 본 발명의 목적은 주조 조형 작업에 사용될 수 있는 개선된 피더 요소를 제공하는 것이다. 특히, 제1 태양에 있어서, 본 발명의 목적은 주조 결함을 도입하지 않고도 상대적으로 취약한 피더 슬리브를 사용할 수 있도록 하면서 붕괴형 피더 요소의 용도를 중간 압력 조형 시스템으로 확장시키는 것이다.
본 발명의 제1 태양에 따르면, 금속 주조시 사용하기 위한 피더 요소에 있어서, (ⅰ) 주형 모형 상에 장착하기 위한 제1 단부와, (ⅱ) 피더 슬리브를 수납하기 위한 대향하는 제2 단부와, (ⅲ) 계단식 측벽에 의해 제1 및 제2 단부 사이에 한정되는 보어를 포함하며, 사용시 제1 및 제2 단부 사이의 거리를 줄이도록 압축 가능하며, 계단식 측벽은 피더 요소의 제2 단부 및 사용하는 피더 슬리브를 위한 장착면을 한정하되 보어 축에 대해 90˚보다 작은 각도로 경사지는 제1 측벽 영역과, 제1 측벽 영역에 접하되 측벽에 계단을 한정하도록 제1 측벽 영역에 평행하거나 제1 측벽 영역과 다른 각도로 보어 축에 경사지는 제2 측벽 영역을 갖는 피더 요소가 마련된다.
피더 요소는 측벽에 복수의 계단이 한정되도록 추가 측벽 영역을 포함할 수 있으며, 이 경우 추가 측벽 영역 중 적어도 하나는 바람직하게는 보어 축에 대해 제1 측벽 영역보다 큰 각도로 경사진다.
WO 2005/051568에서는 비록 피더 슬리브를 위한 장착면을 한정하고 피더 슬리브의 무게를 지탱하는 측벽 영역의 배향이 특별히 제한되지는 않았지만, 바람직하게는 모든 실시예에 도시된 바와 같이 보어 축에 수직한 것으로 보아야 한다. 이 장착면의 배향에 주어지는 유일한 의의는 피더 슬리브를 장착하기에 가장 편리하다는 것이다.
바람직하게는, 제1 측벽 영역은 보어 축에 대해 5˚ 내지 85˚ 사이의 각도, 바람직하게는 15˚ 내지 80˚ 사이의 각도, 보다 바람직하게는 25˚ 내지 75˚ 사이의 각도, 가장 바람직하게는 30˚ 내지 70˚ 사이의 각도로 경사진다. 예컨대, 제1 측벽 영역은 보어 축에 대해 60˚의 각도로 경사질 수 있다.
압축량과 압축에 요구되는 힘은 피더 요소의 제조 재료와 측벽의 형상 및 두께를 포함하는 많은 인자들에 의해 영향을 받게 된다. 또한, 개개의 피더 요소는 원하는 용도, 수반되는 예상 압력과 피더 크기 요건에 따라 설계될 것이다.
바람직하게는, 초기 압착 강도(즉, 압축을 개시하여 비사용 상태 및 비압착 상태에서 갖는 고유 가요성을 넘어 피더 요소를 비가역적으로 변형시키는 데 요구되는 힘)는 5000 N 이하이고, 보다 바람직하게는 3000 N 이하이다. 초기 압착 강도가 너무 높을 경우, 피더 슬리브는 조형 압력으로 인해 압축이 개시되기 전에 손상될 수 있다. 바람직하게는, 초기 압착 강도는 적어도 250 N이다. 압착 강도가 너무 낮으면, 예컨대 복수의 요소가 보관을 위해 적층되는 경우 또는 운반 도중에 피더 요소의 압축이 갑자기 개시될 수 있다.
본 발명의 피더 요소는 붕괴형 브레이커 코어로 간주될 수 있는데, 이 용어는 사용 중인 요소의 일부 기능을 적절히 설명하기 때문이다. 전통적으로, 브레이커 코어는 수지 접합 샌드를 포함하거나 세라믹 재료 또는 피더 슬리브 재료의 코어이다. 그러나, 본 발명의 피더 요소는 금속을 포함하는 그 밖의 적절한 다양한 재료로 제조될 수 있다. 소정의 구성에서, 피더 요소를 피더 넥으로 보는 것이 보다 적절할 것이다.
본 출원에서, "압축 가능한(compressible)"이란 용어는 광의의 개념으로 사용되며 피더 요소의 제1 단부와 제2 단부 사이의 길이가 압축 전보다 압축 후에 짧아지는 것만을 시사하고자 한다. 바라직하게는, 상기 압축은 비가역적인 것으로서, 압축 유도력을 제거한 후 피더 요소가 그 원형으로 복귀하지 않는다.
특히 바람직한 실시예에서, 피더 요소의 계단식 측벽은 제2열 측벽 영역(제2열은 적어도 하나의 부재를 가짐)들과 상호 연결되어 일체로 형성되는 (하나보다 많은 부재를 가질 때) 직경이 증가하는 링 형상(반드시 편평할 필요는 없음)의 제1열 측벽 영역(제1열은 적어도 하나의 부재를 가짐)들을 포함한다. 바람직하게는, 측벽 영역들은 사실상 균일한 두께를 가짐으로써, 피더 요소의 보어의 직경은 피더 요소의 제1 단부에서 제2 단부쪽으로 증가한다. 편리하게는, 제2열 측벽 영역들은 절두 원추형(즉 보어 축에 경사짐)일 수도 있지만 원통형(즉 보어 축에 평행함)이다. 양 열의 측벽 영역들은 비원형 형상(예컨대, 타원형, 정사각형, 직사각형 또는 별 형상)일 수 있다. 제2 측벽 영역은 피더 요소의 제2 단부에 가장 인접한 제2열의 측벽 영역을 구성한다.
피더 요소의 압축 거동은 각각의 측벽 영역의 치수를 조절함으로서 변경될 수 있다. 일 실시예에서, 제1열 측벽 영역들 모두는 동일한 길이를 갖고 제2열 측벽 영역들 모두는 (제1열 측벽 영역과 동일하거나 다를 수 있고 제1 측벽 영역과 동일하거나 다를 수 있는) 동일한 길이를 갖는다. 그러나, 바람직한 실시예에서, 제1열 측벽 영역들 및/또는 제2열 측벽 영역들의 길이는 피더 요소의 단부 방향으로 점진적으로 증가한다.
피더 요소는 제1 측벽 영역과 각각 하나의 제1 및 제2열 측벽 영역에 의해 한정될 수 있다. 그러나, 피더 요소는 각각 많게는 여섯 개 이상의 제1 및 제2열 측벽 영역들을 가질 수 있다. 특히 바람직한 실시예에서, 네 개의 제1열 및 다섯 개의 제2열 측벽 영역들이 제공된다.
바람직하게는, 측벽 영역들의 두께는 제1 측벽 영역들의 내경과 외경 사이의 거리(즉 평평한 링(환형체)의 경우 환형 두께)의 약 4 내지 24%이고, 바람직하게는 약 6 내지 20%, 보다 바람직하게는 약 8 내지 16%이다.
바람직하게는, 제1열 측벽 영역들의 내경과 외경 사이의 거리는 4 내지 10 mm이고 보다 바람직하게는 5 내지 7.5 mm이다. 바람직하게는, 측벽 영역의 두께는 0.2 내지 1.5 mm이고 가장 바람직하게는 0.3 내지 1.2 mm이다. 측벽 영역의 이상적인 두께는 요소에 따라 변경될 수 있고 피더 요소의 크기, 형상 및 재료와 제조를 위해 사용되는 공정에 의해 영향을 받을 수 있다.
편리한 실시예에서, 피더 요소와 주물 사이에는 모서리 접촉부만이 형성되는데, 피더 요소의 제1 단부(기부)는 보어 축에 수직하지 않은 제1열 또는 제2열의 측벽 영역에 의해 한정된다. 상술한 논의로부터 알 수 있는 바와 같이, 이런 배열은 피더 요소의 족문과 접촉 영역을 최소화하는 데 유리하다. 이런 실시예에서, 피더 요소의 제1 단부를 한정하는 측벽 영역은 그 열에 있는 그 밖의 측벽 영역과 다른 길이 및/또는 배향을 가질 수 있다. 예컨대, 기부를 한정하는 측벽 영역은 5 내지 30˚, 바람직하게는 5 내지 15˚의 각도로 보어 축에 대해 경사질 수 있다. 바람직하게는, 피더 요소의 제1 단부를 한정하는 측벽 영역의 자유 모서리는 내향하는 환형 플랜지 또는 비드를 갖는다.
상술한 논의로부터 알 수 있는 바와 같이, 피더 요소는 피더 슬리브와 함께 사용하기 위한 것이다. 따라서, 본 발명은 제2 태양으로서 제1 태양에 따르는 피더 요소와 이에 고정된 피더 슬리브를 포함하는 금속 주조용 피더 시스템을 제공한다.
표준 피더 슬리브는 (붕괴형 또는 그 밖의) 브레이커 코어 상에 장착하기 위한 환형 기부를 갖는다. 제2 태양의 피더 시스템에서, 피더 슬리브의 기부는 피더 요소의 제1 측벽 영역과 동일한 각도로 프로파일 된다.
피더 슬리브의 특성은 특별히 제한되지 않으며 예컨대, 절연성이거나 발열성 또는 이들 모두의 조합일 수 있다. 그 제조 양식은 다음 어느 것에도 제한되지 않지만, 예컨대 슬러리 또는 코어 숏 방식(core-shot method)을 이용하여 제조될 수 있다. 통상적으로, 피더 슬리브는 내화 충전제(예컨대, 섬유, 중공형 미소구 및/또는 미립재)와 결합제의 혼합물로 제조된다. 발열성 슬리브는 연료(일반적으로 알루미늄 또는 알루미늄 합금)와 일반적으로 개시제/감광제를 추가로 필요로 한다. 적절한 피더 슬리브로는 예컨대 호세코(Foseco) 사에서 상표명 칼민(KALMIN), 칼미넥스(KALMINEX) 또는 피덱스(FEEDEX)로 판매되는 것들이 있다. 피더 슬리브는 폐쇄 또는 개방 실린더형, 타원형, 넥다운(neckdown)형, 반구형을 포함한 많은 형상으로 이용 가능한다. 바람직하게는, 피더 요소는 편평 상부이거나 반구형이거나 편평 상부 반구형일 수 있는 폐쇄형(캡형) 슬리브로 구성된 종래의 모든 인서트 슬리브 설계 또는 그 밖의 모든 인서트 슬리브 설계와 함께 사용된다. 피더 슬리브는 편리하게는 접착제에 의해 피더 요소에 고정될 수 있지만 누름 끼움되거나 슬리브를 피더 요소의 일부 둘레에 장착시킬 수도 있다. 바람직하게는, 피더 슬리브는 피더 요소에 부착된다.
본 발명은 3.5 kN의 값까지 낮게 사용되도록 낮은 강도의 슬리브가 사용될 수 있도록 한다. 바람직하게는, 슬리브 강도는 적어도 5 kN이다. 바람직하게는, 슬리브 강도는 20 kN보다 작다. 비교 편의상, 피더 슬리브의 강도는 피더 슬리브재로 제조된 50x50mm 원통형 시험체의 압착 강도로서 정의된다. 201/70 EM 압축 시험기(폼 앤드 테스트 세이드너(Form & Test Seidner), 독일)가 사용되며 제조자의 지시에 따라 작동되었다. 시험체를 하부 강판의 중심에 놓고 하부판을 20 mm/분의 속도로 상부판을 향해 이동시킴으로서 파괴될 때까지 부하를 가했다. 피더 슬리브의 유효 강도는 정확한 조성, 사용된 결합제 및 제조 방법뿐만 아니라 슬리브의 크기와 설계에도 의존하게 되는데, 이는 시험체의 강도가 표준형 편평 상부 6/9K 슬리브에 대해 측정된 강도보다 일반적으로 높다는 사실에 의해 설명된다. 본 발명과 함께 이용될 수 있는 보다 큰 범위의 슬리브 조성과 설계의 잠재적 유용성은 (기술적으로 그리고 경제적으로) 가정 적합한 슬리브가 각각 개별적 주물에 대해 특정될 수 있도록 하는데, 이는 종래 기술에서는 가능하지 않다.
도1은 본 발명에 따른 피더 요소의 특징들을 갖는 시험편의 단면도이다.
도2a 및 도2b는 각각 공지된 피더 요소의 단면도와 상면도이다.
도3a는 공지된 VSK 피더 슬리브 설계이다.
도3b는 공지된 6/9K 피더 슬리브 설계이다.
도3c는 편평 상부 반구형 피더 슬리브 설계이다.
도4는 다른 공지된 피더 요소의 단면도이다.
도5a 내지 도5c는 사용시 도4의 공지된 피더 요소의 컴퓨터 시뮬레이션이다.
도6은 본 발명에 따른 피더 요소의 단면도이다.
도7a 및 도7b는 사용시 도6의 피더 요소의 컴퓨터 시뮬레이션이다.
도8은 본 발명에 따른 다른 피더 요소의 단면도이다.
도9는 본 발명에 따른 피더 요소와 함께 개량된 기부를 구비한 편평 상부 반구형 피더 슬리브이다.
도10a는 압축 하의 KALMINEX 2000ZP 6/9K 피더 슬리브에 있어서 변위에 대해 인가되는 힘의 관계를 도시한 선도이다.
도10b 내지 도10i는 각도(α)를 변경하는 경우 KALMINEX 2000ZP 6/9K 피더 슬리브와 함께 사용된 도1의 시험편에 있어서 변위에 대해 인가되는 힘의 관계를 도시한 선도들이다.
도면 번역
도 10a 내지 도 10i 에서
Force - N : 힘 - N
Displacement - mm : 변위 - mm
Feeder sleeve only-no feeder element : 피더 슬리브 단독-피더 요소 없음
Deg : 도
이하, 본 발명의 여러 예시적인 실시예들을 첨부 도면을 참조하여 설명하기로 한다.
방법론 (Methodology)
다음의 실시예에서, 본 발명에 따른 피더 시스템뿐만 아니라 표준 피더 슬리브를 구비한 표준형 피더 요소를 포함하는 표준형 피더 시스템을 시험했다. 표준형과 본 발명의 피더 요소 모두는 강판을 프레스 가공하여 제조된 것이다. 본 발명의 피더 슬리브의 기부에 대한 프로파일링은 기존 프로파일로 슬리브(편평 상부 반구형 슬리브)를 제조하거나 표준형 슬리브(6/9K형 슬리브)에 연마지를 이용하여 달성되었다. 프로파일 된 6/9K형 피더 슬리브를 상업상 제조할 때, 기존 프로파일로 피더 슬리브를 제조하는 것이 보다 실용적일 수 있을 것이다.
조형 시험 (Moulding Test)
클레이 접합형 생사 시스템을 이용하여 상용 허만(Herman) 조형기에서 시험 을 수행했다. 목재 모형판을 강판에 볼트 체결했다. 그후, 네 개의 피더 요소와 대응하는 피더 슬리브들을 위치설정 핀을 이용하여 모형판의 중심선에서 150 mm와 114 mm 이격되도록 모형판에 장착했다. 대략 576 mm x 432 mm x 192 mm(길이 x 폭 x 높이)의 치수를 갖는 주형을 제공하도록 조형틀을 모형판에 배치했다. 모래는 그 수준이 주형틀의 높이 위로 대략 50 mm에 있도록 주형틀에 첨가되었다. 모래의 무게는 대략 112 kg이었다. 576 mm x 432 mm 크기의 램판을 주형틀의 높이보다 144 mm 상부에 배치하고(비압축 상태의 모래의 표면 위로 대략 94 mm) 램판을 하향 이동시켜 소정 압력까지 주형을 압축함으로써 3 내지 6초 동안 주형틀의 수준까지 모래를 압착했다. 그후, 주형을 배출하여 피더 요소와 피더 슬리브의 조건을 관찰했다.
압축 시험 (Compression Test)
피더 요소 시험편과 피더 슬리브를 하운스필드(Hounsfield) 압축 강도 시험기의 두 평행판 사이에 안착시켜서 시험을 했다.
바닥판을 고정하고 상부판을 분당 30 mm의 일정한 속도로 기계 나사 기구에 의해 하향 이동시켜 판의 변위에 대해 인가된 힘의 그래프를 도시했다.
압축 시험된 피더 요소 시험편은 도1에 도시된 기본 구성을 가졌다. 간단히 설명해서, 피더 요소 시험편(10)은 원통형 측벽 영역(14)(높이 h)이 상향 연장되는 원형 기부(12)(직경 D)로 구성된다. 원통형 측벽 영역(14)에 대해 각도 α만큼 경사지는 외향 테이퍼 측벽 영역(16)(최대 직경 d)이 원통형 측벽 영역(14)에 접한 다. 테이퍼 측벽 영역(16)은 사용시 피더 슬리브를 위한 장착면으로서 작용한다. 압축 시험에 사용되는 이들 시험편은 주조에 사용되지 않을 것이기 때문에 기부에 개구가 마련되지 않는다.
α가 90˚(표준형), 80˚, 70˚, 60˚, 50˚, 40˚, 30˚ 또는 20˚인 다양한 피더 요소가 준비된다. 시험편은 두께가 0.5 mm인 연강으로 제조되었다. 표준형 피더 요소 시험편(α= 90˚)의 경우, D는 53.5 mm이고 h는 7.5 mm이고 d는 80.0 mm였다. 시험편은 α가 변경되더라도 원통형 측벽 영역(14)의 높이(h)와 외향 테이퍼 측벽 영역(16)의 최대 직경(d)과 제1 측벽 영역(16)에 의해 제공되는 장착면의 면적이 일정하게 유지되도록(즉, α가 감소함에 따라 원형 기부(12)의 직경(D)이 증가하도록) 설계되었다. 피더 요소들은 0.55 내지 0.65 g/㎠의 밀도와 대략 4 kN의 압축 강도를 갖는 호세코(Foseco)에서 제공하는 KALMINEX 2000ZP 6/9K 발열성 피더 슬리브를 이용하여 시험되었다.
비교예 1- 조형 시험
표1에 기재된 다음의 피더 슬리브들과 조합하여 피더 요소(WO2005/051568호에 설명되고 도2a 및 도2b에 도시된 바와 같은 MH/33이라는 명칭으로 판매되는 금속 붕괴형 브레이커 코어)를 시험했다.
표 1
FEEDEX HD KALMINEX 95 KALMINEX 2000XP KALMINEX 2000XP
형상 VSK(도3a에 도시된 바와 같은 후벽 소형 슬리브) 6/9K(도3b에 도시된 바와 같은 윌리암즈 에지를 구비한 평행 원추형 캡 인서트 슬리브) 6/9K(도3b에 도시된 바와 같은 윌리암즈 에지를 구비한 평행 원추형 캡 인서트 슬리브) 편평 상부 반구형(도3c에 도시된 바와 같은 가변형 벽부를 갖는 편평-상부 폐쇄 반구형 슬리브)
제조공정 코어 숏 슬러리 형성 코어 숏 코어 숏
밀도(g/㎤) 1.35~1.45 0.85~0.95 0.55~0.65 0.55~0.65
강도(kN)a 고(>25) 중(10~11) 중(11~12) 중(11~12)
강도(kN)b n/a 중(8~9) 중(9~10) n/a
a) 표준 원통형 시험편 b) 실제 6/9k 슬리브의 강도
슬리브 조성은 요구되는 제품 특성에 따라 변하지만, 모두 일반적인 조성인 20% 내지 25%의 알루미늄 연료, 10% 내지 20%의 산화제 및 감광제, 5% 내지 10%의 유기 결합제 및 35% 내지 55%의 내화 충전제를 갖는다. 사용되는 내화 충전제의 유형은 슬리브의 밀도와 강도 모두에 가장 직접적인 영향을 준다.
도2a 및 도2b를 참조하면, 피더 요소(20)는 주형 모형 상에 장착하기 위한 제1 단부(기부)(22)와, 피더 슬리브를 수납하기 위한 대향하는 제2 단부(상부)(24)와, 계단식 측벽(28)에 의해 제1 및 제2 단부(22, 24) 사이에 한정되는 보어(26)를 포함한다. 피더 요소(20)의 제2 단부(24)는 제1 측벽 영역(25)에 의해 한정되고, 상기 제1 측벽 영역(25)은 보어 축(A)에 수직하다. 제2 측벽 영역(30)은 제1 측벽 영역(25)과 접하며 보어 축(A)에 평행하다. 계단식 측벽(28)은 대략적으로 동일한 높이를 갖는 교호하는 제1열 및 제2열 측벽 영역(28a, 28b)들을 추가로 포함한다. 제2 측벽 영역(30)은 피더 요소(20)의 제2 단부(24)에 가장 인접한 제2열(28b)의 제1 측벽 영역을 구성한다. 제1열 측벽 영역(28a)은 보어 축(A)에 수직한 세 개의 측벽 영역들로 구성된다. 제2열 측벽 영역(28b)은 네 개의 측벽 영역들로 구성된다. 제2열(28b)의 세 개의 제1 측벽 영역들은 보어 축(A)에 평행하다. 제4 측벽 영역(32)은 보어 축(A)에 대해 15˚의 각도로 경사지고 그 족문을 최소화하여 녹-오프를 개선하기 위해 내향하는 환형 플랜지를 갖는다. 또한, 제4 측벽 영역(32)은 제2열(28b)의 다른 측벽들의 길이의 대략 두 배이다.
피더 요소들과 피더 슬리브들은 380 PSI(2620 kN)의 조형 압력을 이용하여 상술한 바와 같이 조형된다. 피더 요소들은 원하는 바에 따라 붕괴되었으며 FEEDEX HD VSK 피더 슬리브에는 가시적인 손상이 전혀 없었지만, KALMINEX 95 6/9K 슬리브의 기부와 KALMINEX 2000XP 반구형 슬리브에는 일부 함몰(슬리브의 압축)뿐 아니라 크랙과 일부 파괴가 있었다. KALMINEX 2000XP 6/9K 슬리브는 심각한 손상을 보였으며 슬리브 기부는 여러 조각으로 파괴되었다. KALMINEX 2000ZP 피더 슬리브에 대하여는 380 PSI(2620 kN) 에서 손상을 입은 KALMINEX XP와 KALMINEX 95 피더 슬리브보다 약하기 때문에 피더 요소(20)를 이용하여 시험하지 않았다.
그후, 일련의 시험을 620 PSI(4275 kN)의 보다 높은 조형 압력에서 반복했다. 다시, 모든 피더 요소들이 붕괴했지만, 이번에는 모든 슬리브가 가시적인 손상을 입었다. FEEDEX HD VSK 슬리브의 기부에 여러 개의 작은 내부 크랙이 있었으며 한 경우에 피더 요소에 인접해서 흠이 있었다. KALMINEX 95 6/9K 슬리브의 경우, 슬리브의 기부에 보다 광범위한 크랙이 있었으며 슬리브가 어느 정도 휘어지고 함몰했다(조형 후 슬리브 높이가 최고 10 mm 만큼 감소되었다). KALMINEX 2000XP 편평 상부 반구형 슬리브는 심각한 손상을 보였으며 슬리브 기부는 여러 조각으로 파괴되었다. KALMINEX 2000XP 6/9K 슬리브에 대해서는 시험하지 않았다.
모든 경우에, 조형 후 붕괴된 피더 요소의 제1 측벽 영역은 수평부를 지나, 즉 보어 축에 대해 90˚보다 큰 각도로 하향 절곡되었다.
비교예 2-컴퓨터 시뮬레이션
FEEDEX HD VSK 슬리브와 유사한 치수를 갖는 표준형 피더 슬리브와 도4의 피더 요소(40)을 포함하는 피더 시스템에 대해 부가되는 응력을 평가하기 위해 컴퓨터 시뮬레이션(아바쿼스(ABAQUS), 아바쿼스사 제조)을 수행했다. 첨단 유한요소 해석 소프트웨어는 시뮬레이션에 사용된 정적 및 동적 응력-변형 리졸버를 포함한다. 시뮬레이션은 피더 요소를 z-축으로 고정한 다음, 피더 요소가 소정 시간 내에 소정 거리만큼 z축으로 압축되도록 모델을 변형 수준 하에 둠으로써 수행되었다. 이는 모델의 다양한 부분을 다양한 응력 하에 둔다. 모델은 슬리브와 피더 요소의 기계적 특성을 이용하여 피더 슬리브 내의 응력이 모사될 수 있고 금속 피더 요소가 압축되도록 프로그램되었다.
도4를 참조하면, 피더 요소(40)는 주형 모형 상에 장착하기 위한 제1 단부(기부)(42)와, 피더 슬리브를 수납하기 위한 대향하는 제2 단부(상부)(43)와, 계단식 측벽(45)에 의해 제1 및 제2 단부(42, 43) 사이에 한정되는 보어(44)를 포함한다. 제2 단부(43)는 제1 측벽 영역(46)에 의해 한정되고, 상기 제1 측벽 영역(46)은 보어 축(A)에 수직하다. 제2 측벽 영역(47)은 제1 측벽 영역(46)과 접하며 보어 축(A)에 평행하다. 계단식 측벽(45)은 대략적으로 동일한 높이를 갖는 교호하 는 제1열 및 제2열 측벽 영역(45a, 45b)들을 추가로 포함한다. 제2 측벽 영역(47)은 제2열(45b)의 제1 측벽 영역을 구성한다. 제1열 측벽 영역(45a)은 보어 축(A)에 수직한 두 개의 측벽 영역들로 구성된다. 제2열 측벽 영역(45b)은 보어 축(A)에 평행한 세 개의 측벽 영역들로 구성된다.
도5a는 조형 전에 도4의 피더 요소(40) 상에 장착된 피더 슬리브(50)의 일부를 도시한다. 도5b는 피더 요소(40) 상에 장착된 피더 슬리브(50)의 기부의 확대도이다. 도5c는 조형 동안 동일한 피더 슬리브(50)와 피더 요소(40)의 확대도이다. 피더 슬리브 공동부는 화살표 A에 의해 지시된다. 키에 도시된 바와 같은 음영은 피더 슬리브(50)에 부가되는 힘의 크기를 나타낸다. 도5c를 참조하면, 피더 요소(40)는 원하는 바에 따라 가압에 의해 변형됨을 알 수 있다. 놀랍게도, 장착면(46)은 그 주연 모서리가 증분적으로 하향 압축된다. 이는 화살표 B에 의해 지시된 바와 같이 피더 슬리브(50)의 내벽(점 하중)에 집중되는 힘의 불균일 분포를 가져온다.
실시예 1-컴퓨터 시뮬레이션
비교예 2의 컴퓨터 시뮬레이션은 비교예 1에서 관찰되는 크랙이 피더 슬리브 내벽 상의 점 부하에 의해 야기될 수 있음을 제시한다. 본 발명자들은 피더 요소의 형상을 변경함으로써 이를 완화하고자 시도했다. 시뮬레이션은 도4의 피더 요소(40) 대신 도6의 피더 요소(52)를 이용하여 다시 수행되었다. 본 발명의 피더 요소(52)는 피더 요소의 장착면(54)이 보어 축(A)에 대해 60˚의 각도로 경사진다 는 것을 제외하고 모든 면에 있어 도4에 도시된 피더 요소와 동일하다. 피더 슬리브(56)(도7a)의 기부는 동일한 각도로 프로파일 되었다.
도7a 및 도7b는 각각 조형 이전과 조형 동안 피더 요소(52)와 이에 대응하는 피더 슬리브(56)의 기부를 도시한다. 도7b는 조형 동안 힘이 더 이상 피더 슬리브(56)의 내벽에 집중되지 않음을 보여준다. 힘은 피더 슬리브(56)의 기부를 따라 보다 균일하게 분포됨으로써 기부의 어느 부분도 과도한 힘을 겪지 않는다. 최대 힘(화살표 B)의 영역은 피더 슬리브 공동부(화살표 A)에서 멀리 떨어진 슬리브의 영역이다. 이 영역에서의 파괴는 피더 슬리브 재료의 파편들이 주물 안으로 들어가서 결함을 야기하도록 하지 않을 것이다.
실시예 1- 조형 시험
도8에 도시된 바와 같은 피더 요소(60)를 아래의 표2에 기재된 (도9에 도시된 바와 같은) 편평 상부 반구형 피더 슬리브들과 조합하여 시험했다.
표2
KALMINEX 2000ZP KALMINEX 95 KALMINEX 2000XP
제조공정 슬러리 형성 슬러리 형성 코어 숏
밀도(g/㎤) 0.55~0.65 0.85~0.95 0.55~0.65
강도(kN)a 저(4~5) 중(10~11) 중(1~12)
a) 표준형 원통 시험편
슬리브 조성은 요구되는 제품 특성에 따라 변하지만, 모두 일반적인 조성인 20% 내지 25%의 알루미늄 연료, 10% 내지 20%의 산화제 및 감광제, 5% 내지 10%의 유기 결합제 및 35% 내지 55%의 내화 충전제를 갖는다. 사용되는 내화 충전제의 유형은 슬리브의 밀도와 강도 모두에 가장 직접적인 영향을 준다.
도8을 참조하면, 피더 요소(60)는 제1 측벽 영역(62)이 보어 축에 대해 60˚로 경사진다는 것을 제외하고 도2a 및 도2b에 도시된 피더 요소(20)와 동일하다. 피더 요소는 연철로 제조되며 0.5 mm의 두께를 갖는다. 최대 직경은 92.9 mm이고 높이 h는 35.4 mm이다. 보어(26)의 직경은 피더 요소의 기부에서 22.9 mm이다.
피더 요소(60)와 피더 슬리브 조합은 420 PSI(2896 kPa) 와 700 PSI(4826 kPa) 사이의 다양한 압력으로 상술한 바와 같이 조형되었다. 아래의 표3에는 그 결과가 요약되어 있다.
표3
압력 KALMINEX 2000ZP KALMINEX 2000XP KALMINEX 95
420 PSI(2896 kPa) 슬리브 휨 손상 없음 손상 없음
460 PSI(3172 kPa) 슬리브 휨 손상 없음 손상 없음
520 PSI(3585 kPa) 슬리브 휨 손상 없음 손상 없음
580 PSI(3999 kPa) 슬리브 휨 손상 없음 손상 없음
600 PSI(4137 kPa) 슬리브 휨 손상 없음 손상 없음
700 PSI(4826 kPa) 슬리브 휨 반구부 크랙 손상 없음
700 PSI(4826 kPa) 반복시험 붕괴됨 반구부 크랙 슬리브 일 측면 휨
피더 요소(60) 및 KALMINEX 2000ZP 피더 슬리브
이 조합은 시험된 것 중에서 가장 취약했으며 낮은 조형 압력(420 PSI; 2896 kPa)에서 손상 징후를 보였다. 피더 요소는 충분히 압축되지 않았으며 피더 슬리브는 휘어졌다. 이에도 불구하고, 피더 요소에 인접한 피더 슬리브의 기부에는 크랙이나 파괴의 징후가 없었다.
피더 요소(60) 및 KALMINEX 2000XP 피더 슬리브
이 조합은 적당히 높은 압력(700 PSI; 4826 kPa)까지 성공적이었다. 피더 슬리브에는 결과적으로 슬리브의 반구부를 따라 수평 크랙이 발생했다. 이는 슬리브 조성(결합제)과 슬리브 형상 및 제조 방법(코어-숏)의 영향에 기인한 것이었다. 손상은 바로 드러나지는 않았으며, 슬리브가 램-업 이후 모래 주형에서 배출될 때에만 드러났다. 기대했던 바와 같이, 피더 요소의 압축 수준은 피더 요소가 거의 완전히 압축될 때까지 조형 압력이 증가함에 따라 증가했다. 피더 슬리브 내측에서 슬리브 파편이 발견되지 않았으며, 따라서 이런 양식의 손상은 반드시 주물 내로의 파편 낙하와 주조 결합을 가져오지는 않을 것이다.
편평 상부 반구형 KALMINEX 2000XP 피더 슬리브는 훨씬 낮은 압력에서 손상된 비교예 1의 종래의 피더 요소(20)와 이용되었다. 피더 슬리브는 단지 380 PSI(2620 kPa)에서 함몰되고 그 기부를 따라 크랙이 발생되며 620 PSI(4275 kPa)에서 심각한 손상이 발생했다.
피더 요소(60) 및 KALMINEX 95 피더 슬리브
이 조합도 매우 성공적이었다. 피더 요소(60)는 압축되었고 피더 슬리브의 첫 번째 손상은 적절히 높은 압력(700 PSI; 4826 kPa)에서만 발생했다. 피더 슬리브가 휘어진 후 피더 슬리브 내측에서 피더 슬리브 파편이 전혀 발견되지 않았으며, 따라서 주형이 주입되었더라도 그 손상이 반드시 주조 결합을 가져오지는 않을 것이다.
KALMINEX 95 6/9K 피더 슬리브는 비교예 1의 종래의 피더 요소(20)와 이용되었지만 그 결과는 많이 달랐다. 피더 슬리브는 단지 380 PSI(2620 kPa)에서 그 기부를 따라 크랙이 발생했다. 피더 슬리브는 620 PSI(4275 kPa)에서 그 기부를 따라 보다 광범위한 크랙이 발생했고 크게 함몰되었다. 기부를 따르는 크랙은 피더 슬리브의 조각들이 주물로 들어갈 수 있기 때문에 특히 문제된다.
본 발명의 피더 요소(60)는 비교예 1에 도시된 피더 요소(20)와 같은 종래의 피더 요소보다 우수한 효과를 제공한다. 피더 요소(52)와 함께 사용되는 경우, 중간 강도 피더 슬리브들인 KALMINEX 2000XP와 KALMINEX 95는 훨씬 높은 압력까지 성공적이다. 또한, 피더 슬리브들이 결과적으로 손상되더라도, 그 손상 모드는 주물 결함으로 이어지기 쉽지 않다.
실시예 2-압축 시험
도10a를 참조하면, 피더 요소 시험편을 구비하지 않은 (도3b에 도시된 바와 같은) KALMINEX 2000ZP 6/9K 피더 슬리브에 있어 판 변위에 따른 힘이 도표화되어 있다. 본 출원에서 슬리브 압착 강도(대략 4.5 kN)으로 지칭되는 임계력이 인가될 때까지(Z 지점) 힘이 증가함에 따라 피더 슬리브는 피더 슬리브의 고유 가요성(압축성)과 연계되어 압축되고, 임계점 이후 슬리브의 압축은 낮아지는 부하 하에서 정상 상태로 진행한다.
도10c를 참조하면, α를 80˚로 한 피더 요소 시험편(10)과 그 기부가 80˚ 의 각도로 프로파일 된 KALMINEX 2000ZP 6/9K 피더 슬리브에 있어 판 변위에 따른 힘이 도표화되어 있다. 본 출원에서 초기 피더 요소 압착 강도로 지칭되는 임력력이 인가될 때(A 지점)까지 힘이 증가함에 따라 피더 요소와 슬리브는 최소로 압축되고 임계점 이후 압축은 보다 낮은 부하 하에서 급속히 진행하게 되며, 이때 B 지점은 초기 피더 요소 시험편 압착 강도가 발생한 후 최소의 힘 측정치를 표시한다. 추가의 압축이 발생하고 힘은 최대값(최대 피더 요소 압착 강도, C 지점)까지 증가한다. 피더 요소 시험편이 그 최대 변위(D 지점)에 도달하거나 인접할 때, 힘은 슬리브 본체가 파손되기 시작할 때까지 급속히 증가한다. 슬리브에 대한 시각적 관찰에 따르면 A 지점에서는 피더 슬리브의 바닥 코너(내측 기부 및 벽)에 어느 정도의 파손이 있다.
도10b는 α를 90˚로 한 피더 요소 시험편(10)과 편평 기부를 갖는 KALMINEX 2000ZP 6/9K 피더 슬리브에 있어 판 변위에 따른 힘의 도표이다. 이는 도10c(α=80˚)에서의 곡선과 유사하지만 보다 완만한 곡선을 보여주며 초기 변위가 보다 낮게 인가된 힘에서 발생하여 장기간 계속된다. 이는 보다 낮은 초기 피더 요소 시험편 압착 강도로 인한 것이지만, 또한 보다 크게는 피더 요소가 피더 슬리브 내로 밀려 올라가서 측정된 변위를 일으키도록 피더 요소 시험편으로부터 인가되어 피더 슬리브를 파괴(손상)하는 힘으로 인한 피더 슬리브 기부에서의 손상으로 인한 것이다.
도10d와 도10e는 그 기부가 각각 70˚ 및 60˚의 각도로 프로파일 된 KALMINEX 2000ZP 6/9K 피더 슬리브와 함께 시험될 때 α가 각각 70˚와 60˚인 피 더 요소 시험편(10)에 있어 판 변위에 따른 힘의 도표이다. 이들 도표를 도10c(α=80˚)와 비교하면, 초기 피더 요소 시험편 압착 강도(A)는 α가 감소함에 따라 증가함을 알 수 있다. 또한, 슬리브의 기부에 발생한 가시적 손상의 양은 크게 저감되었으며 α가 70˚일 때 최소가 되어 슬리브의 파손이 눈에 보이지 않았다.
도10f와 도10g는 그 기부가 각각 50˚ 및 40˚의 각도로 프로파일 된 KALMINEX 2000ZP 6/9K 피더 슬리브와 함께 시험될 때 α가 각각 50˚와 40˚인 피더 요소 시험편에 있어 판 변위에 따른 힘의 도표이다. 이들 모두의 경우, 초기 피더 요소 시험편 압착 강도(A 지점)는 사전 측정된 피더 슬리브 압착 강도(Z, 대략 4.5 kN)와 유사하다. 그러나 두 경우에, 피더 요소의 붕괴로 인해 통상의 슬리브 압착점(Z 지점)에 비해 A 지점에서 보다 크게 변위된다. 피더 요소 시험편으로 인해 피더 슬리브의 기부에 야기되는 손상은 관찰되지 않았다.
도10h와 도10i는 그 기부가 각각 30˚ 및 20˚의 각도로 프로파일 된 KALMINEX 2000ZP 6/9K 피더 슬리브와 함께 시험될 때 α가 각각 30˚와 20˚인 피더 요소 시험편(10)에 있어 판 변위에 따른 힘의 도표이다. 이들 도표를 도10g(α=40˚)와 비교하면, 초기 피더 요소 압착 강도(A)는 이제 α가 감소함에 따라 감소하고 초기 피더 요소 압착 강도 이전의 변위량은 증가함을 알 수 있다. 이는 부분적으로 피더 요소 시험편의 압착 동안 진행된 거리로 인한 것이고, 부분적으로 피더 슬리브의 기부에서 피더 요소 시험편 자체 내로 진행되는 피더 슬리브의 작은 압축량으로 인한 것으로 생각된다.
피더 요소의 이상적 초기 압착 강도는 이용되는 조형 압력과 피더 슬리브(압 축 강도)에 의존하게 된다. 초기 피더 요소 압착 강도는 슬리브 압착(압축) 강도보다 명백히 낮아야 하며, 이상적으로 초기 압착 강도는 3000 N보다 낮아야 한다. 초기 압착 강도가 너무 높으면, 조형 압력은 피더 요소가 압축될 기회를 갖기 전에 피더 슬리브의 손상을 일으킬 수 있다. 이상적인 최대 압착 강도는 피더 요소 코어가 의도된 용도, 즉 이용되는 조형 압력과 슬리브 조성(강도)에 훨씬 많이 의존한다. 최대 압착 강도가 이용되는 조형 압력에 대해 너무 높으면, 피더 요소는 불충분하게 붕괴되고 뒤이어 모래 압착도 불충분하게 된다. 또한, 너무 높은 최대 압착 강도는 성공적으로 이용될 수 있는 슬리브의 유형(강도)를 제한한다.

Claims (23)

  1. 금속 주조시 사용하기 위한 피더 요소로서, 상기 피더 요소는:
    (ⅰ) 주형 모형 상에 장착하기 위한 제1 단부와,
    (ⅱ) 피더 슬리브를 수납하기 위한 대향하는 제2 단부와,
    (ⅲ) 계단식 측벽에 의해 제1 및 제2 단부 사이에 한정되는 보어를 포함하며,
    상기 피더 요소는 사용시 제1 및 제2 단부 사이의 거리를 줄이도록 압축 가능하며,
    계단식 측벽은 피더 요소의 제2 단부 및 사용시 피더 슬리브를 위한 장착면을 한정하되 보어 축에 대해 90˚보다 작은 각도로 경사지는 제1 측벽 영역과, 제1 측벽 영역에 접하되 측벽에 계단을 한정하도록 제1 측벽 영역에 평행하거나 보어 축에 대해 제1 측벽 영역과 다른 각도로 경사지는 제2 측벽 영역을 갖는 것을 특징으로 하는 피더 요소.
  2. 제1항에 있어서, 측벽에 복수의 계단이 한정되도록 추가 측벽 영역을 포함하는 것을 특징으로 하는 피더 요소.
  3. 제2항에 있어서, 추가 측벽 영역 중 최소한 하나는 보어 축에 대해 제1 측벽 영역보다 큰 각도로 경사지는 것을 특징으로 하는 피더 요소.
  4. 상기 항 중 어느 한 항에 있어서, 제1 측벽 영역은 보어 축에 대해 5˚ 내지 85˚ 사이의 각도로 경사지는 것을 특징으로 하는 피더 요소.
  5. 상기 항 중 어느 한 항에 있어서, 제1 측벽 영역은 보어 축에 대해 30˚ 내지 70˚ 사이의 각도로 경사지는 것을 특징으로 하는 피더 요소.
  6. 상기 항 중 어느 한 항에 있어서, 초기 압착 강도는 5000 N 이하인 것을 특징으로 하는 피더 요소.
  7. 상기 항 중 어느 한 항에 있어서, 초기 압착 강도는 최소한 250 N인 것을 특징으로 하는 피더 요소.
  8. 상기 항 중 어느 한 항에 있어서, 사용시 상기 압축은 비가역적인 것을 특징으로 하는 피더 요소.
  9. 상기 항 중 어느 한 항에 있어서, 피더 요소의 계단식 측벽은 제2열 측벽 영역들과 상호 연결되어 일체로 형성되는 링 형상의 제1열 측벽 영역들을 포함하는 것을 특징으로 하는 피더 요소.
  10. 제9항에 있어서, 제1 측벽 영역과 각각 하나의 제1열 및 제2열 측벽 영역에 의해 한정되는 것을 특징으로 하는 피더 요소.
  11. 제9항 또는 제10항에 있어서, 측벽 영역들의 두께는 0.2 내지 1.5 mm인 것을 특징으로 하는 피더 요소.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서, 상기 링들은 원형인 것을 특징으로 하는 피더 요소.
  13. 제9항 내지 제12항 중 어느 한 항에 있어서, 상기 링들은 편평한 것을 특징으로 하는 피더 요소.
  14. 제9항 내지 제13항 중 어느 한 항에 있어서, 측벽 영역들은 사실상 균일한 두께를 가짐으로써, 피더 요소의 보어의 직경은 피더 요소의 제1 단부에서 제2 단부쪽으로 증가하는 것을 특징으로 하는 피더 요소.
  15. 제9항 내지 제14항 중 어느 한 항에 있어서, 제2열 측벽 영역들은 환형인 것을 특징으로 하는 피더 요소.
  16. 제9항 내지 제15항 중 어느 한 항에 있어서, 피더 요소의 제1 단부는 대응하 는 열의 다른 측벽 영역들보다 큰 길이를 갖는 측벽 영역에 의해 한정되는 것을 특징으로 하는 피더 요소.
  17. 제9항 내지 제16항 중 어느 한 항에 있어서, 피더 요소의 제1 단부를 한정하는 측벽 영역은 보어 축에 대해 5˚ 내지 30˚의 각도로 경사지는 것을 특징으로 하는 피더 요소.
  18. 제9항 내지 제17항 중 어느 한 항에 있어서, 측벽 영역들의 두께는 제1 측벽 영역(들)의 내경과 외경 사이의 거리의 4 내지 24%인 것을 특징으로 하는 피더 요소.
  19. 제18항에 있어서, 피더 요소의 제1 단부를 한정하는 측벽 영역의 자유 모서리는 내향하는 환형 플랜지 또는 비드를 갖는 것을 특징으로 하는 피더 요소.
  20. 제1항 내지 제19항 중 어느 한 항에 따르는 피더 요소와 이에 고정된 피더 슬리브를 포함하는 것을 특징으로 하는 금속 주조용 피더 시스템.
  21. 제20항에 있어서, 피더 슬리브는 접착제에 의해 또는 피더 요소와 누름 끼움에 의해 또는 피더 요소의 일부 주변에 피더 슬리브를 조형함으로써 피더 요소에 고정되는 것을 특징으로 하는 금속 주조용 피더 시스템.
  22. 제20항 또는 제21항에 있어서, 피더 슬리브의 기부는 제1항 내지 제20항 중 어느 한 항에 따르는 피더 요소의 제1 측벽 영역과 동일한 각도로 프로파일 되는 것을 특징으로 하는 금속 주조용 피더 시스템.
  23. 제20항 내지 제22항 중 어느 한 항에 있어서, 슬리브 강도는 최소한 5 kN이고 20 kN보다 작은 것을 특징으로 하는 금속 주조용 피더 시스템.
KR1020087029881A 2006-06-09 2007-04-30 금속 주조용 피더 요소 KR101361436B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB0611430.0A GB0611430D0 (en) 2006-06-09 2006-06-09 Improved feeder element for metal casting
GB0611430.0 2006-06-09
PCT/GB2007/001572 WO2007141466A1 (en) 2006-06-09 2007-04-30 Feeder element for metal casting

Publications (2)

Publication Number Publication Date
KR20090016577A true KR20090016577A (ko) 2009-02-16
KR101361436B1 KR101361436B1 (ko) 2014-02-10

Family

ID=36745596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087029881A KR101361436B1 (ko) 2006-06-09 2007-04-30 금속 주조용 피더 요소

Country Status (14)

Country Link
US (1) US20090014482A1 (ko)
EP (1) EP1879710B1 (ko)
JP (1) JP5068312B2 (ko)
KR (1) KR101361436B1 (ko)
CN (1) CN101466488A (ko)
AT (1) ATE424950T1 (ko)
AU (1) AU2007255228B2 (ko)
BR (1) BRPI0712328B1 (ko)
CA (1) CA2597109C (ko)
DE (2) DE202006011980U1 (ko)
ES (1) ES2322211T3 (ko)
GB (1) GB0611430D0 (ko)
MX (1) MX2008015021A (ko)
WO (1) WO2007141466A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2489450E (pt) 2011-02-17 2014-10-24 Foseco Int Elemento alimentador
ES2454250T3 (es) 2012-05-15 2014-04-10 Foseco International Limited Manguito alimentador DISA-K arqueado
WO2014124766A1 (de) 2013-02-15 2014-08-21 Chemex Gmbh Speisereinsatz und verfahren zu dessen anordnung in einer giessform
EP2792432A1 (en) * 2013-04-16 2014-10-22 Foseco International Limited Feeder element
DE102015103593B3 (de) * 2015-03-11 2016-05-12 GTP Schäfer Gießtechnische Produkte GmbH Verfahren zur Herstellung eines sowohl exotherme als auch isolierende Bereiche aufweisenden Speisereinsatzes
WO2017007433A1 (en) * 2015-07-08 2017-01-12 Gündoğdu Muhittin Metal breaker conical core
US10286445B2 (en) 2015-09-02 2019-05-14 Foseco International Limited Feeder system
HUE049156T2 (hu) * 2015-09-02 2020-09-28 Foseco Int Adagolórendszer
TR201714494A2 (tr) * 2017-09-28 2019-04-22 Cukurova Kimya Enduestrisi A S Besleyici gömlek koruma elemanı.
TR201716582A2 (tr) * 2017-10-26 2019-05-21 Cukurova Kimya Enduestrisi A S Besleyici gömlek sabitleme sistemi.
DE102017131280A1 (de) 2017-12-22 2019-06-27 Chemex Foundry Solutions Gmbh Verfahren zum Herstellen eines Formteils sowie Speisereinsatz zur Verwendung in einem solchen Verfahren
DE102019102449A1 (de) 2019-01-31 2020-08-06 Chemex Foundry Solutions Gmbh Einteiliger Speiserkörper zur Verwendung beim Gießen von Metallen
TWI823196B (zh) * 2021-11-26 2023-11-21 財團法人金屬工業研究發展中心 自動生成冒口之系統與方法
DE202022105722U1 (de) * 2022-10-11 2022-11-04 Ask Chemicals Gmbh Speiser mit beweglicher Tülle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566188Y2 (ko) * 1978-12-13 1981-02-10
JPH0513643U (ja) * 1991-08-09 1993-02-23 株式会社大田鋳造所 鋳造用湯道スリーブの固定具
JPH08238556A (ja) 1995-03-03 1996-09-17 Toyota Motor Corp 樹脂製の中子の除去方法
ES2138411T3 (es) * 1996-04-24 2000-01-01 Sintokogio Ltd Procedimiento para producir un molde.
DE20112425U1 (de) 2001-07-27 2001-10-18 Gtp Schaefer Giestechnische Pr Speisereinsatz mit metallischem Speiserfuß
GB0325134D0 (en) * 2003-10-28 2003-12-03 Foseco Int Improved feeder element for metal casting

Also Published As

Publication number Publication date
JP5068312B2 (ja) 2012-11-07
GB0611430D0 (en) 2006-07-19
AU2007255228B2 (en) 2010-10-14
JP2009539612A (ja) 2009-11-19
EP1879710B1 (en) 2009-03-11
CA2597109C (en) 2008-11-18
DE602007000670D1 (de) 2009-04-23
KR101361436B1 (ko) 2014-02-10
CA2597109A1 (en) 2007-11-12
EP1879710A1 (en) 2008-01-23
BRPI0712328A2 (pt) 2012-01-10
WO2007141466A1 (en) 2007-12-13
BRPI0712328B1 (pt) 2015-12-08
ES2322211T3 (es) 2009-06-17
US20090014482A1 (en) 2009-01-15
MX2008015021A (es) 2009-02-20
ATE424950T1 (de) 2009-03-15
CN101466488A (zh) 2009-06-24
DE202006011980U1 (de) 2006-10-05
AU2007255228A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
KR101361436B1 (ko) 금속 주조용 피더 요소
KR101576819B1 (ko) 피더 요소와, 이를 포함하는 피더 시스템
US7500509B2 (en) Feeder element for metal casting
KR101721504B1 (ko) 피더 요소와, 이를 포함하는 피더 시스템
KR101995530B1 (ko) 피더 시스템
KR101976527B1 (ko) 넥다운 피더
JP6748750B2 (ja) 押湯システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200123

Year of fee payment: 7