KR20090010498A - Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof - Google Patents

Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof Download PDF

Info

Publication number
KR20090010498A
KR20090010498A KR1020070073634A KR20070073634A KR20090010498A KR 20090010498 A KR20090010498 A KR 20090010498A KR 1020070073634 A KR1020070073634 A KR 1020070073634A KR 20070073634 A KR20070073634 A KR 20070073634A KR 20090010498 A KR20090010498 A KR 20090010498A
Authority
KR
South Korea
Prior art keywords
semiconductor layer
solar cell
silicon solar
bulk silicon
manufacturing
Prior art date
Application number
KR1020070073634A
Other languages
Korean (ko)
Other versions
KR100913114B1 (en
Inventor
김종환
윤주환
정일형
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020070073634A priority Critical patent/KR100913114B1/en
Publication of KR20090010498A publication Critical patent/KR20090010498A/en
Application granted granted Critical
Publication of KR100913114B1 publication Critical patent/KR100913114B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The bulk type silicon solar cell and manufacturing method thereof are provided to improve the stability for temperature and to achieve the reliability of the high quality. The bulk type silicon solar cell comprises the semiconductor layer having doping concentration gradient; the active layer formed on the semiconductor layer; the semiconductor layer. The low concentration becomes the high concentration based on the interlayer junction surface. The semiconductor layer includes a plurality of semiconductor layers having various doping concentration. The reliability of device can be improved.

Description

고온 특성이 개선된 벌크형 실리콘 태양 전지 및 그 제조 방법 {BULK SILICON SOLAR CELL HAVING IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND MANUFACTURING METHOD THEREOF}Bulk silicon solar cell with improved high temperature characteristics and method for manufacturing same {BULK SILICON SOLAR CELL HAVING IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND MANUFACTURING METHOD THEREOF}

본 발명은 벌크형 실리콘 태양 전지 및 그 제조 방법에 관한 것으로, 보다 상세하게는 층간 접합면을 기준으로 저농도에서 고농도로 구배하여 도핑 농도 기울기를 가지는 반도체층과, 상기 반도체층 위에 순차로 형성된 활성층 및 상기 반도체층과 다른 영역의 반도체층을 포함하는 태양전지를 제공함으로써, 종래의 태양 전지 또는 태양 전지 모듈이 전력을 발생하는 조건에서 온도가 증가할 때 온도에 대한 안정성이 떨어지는 것을 개선하고 반도체층간 접착성을 증가시킨 벌크형 실리콘 태양 전지와 그의 제조 방법에 관한 것이다. The present invention relates to a bulk silicon solar cell and a method of manufacturing the same, and more particularly, a semiconductor layer having a gradient of doping concentration gradient from low to high concentrations based on the interlayer junction surface, an active layer sequentially formed on the semiconductor layer, and the By providing a solar cell including a semiconductor layer and a semiconductor layer in a different region, the conventional solar cell or solar cell module improves the drop in stability to temperature when the temperature increases under conditions of generating power and the adhesion between semiconductor layers The present invention relates to a bulk silicon solar cell having an increased thickness and a method of manufacturing the same.

태양전지는 태양으로부터 지구에 전달되는 빛에너지를 전기에너지로 변환하여 에너지를 생산하는 청정 에너지원으로서 수십 년간 많은 연구가 진행되어 오고 있다. 70년대 오일 파동 및 90년대 초반에 대두되었던 이산화탄소에 의한 온실효과 의 심각성, 90년대 말 지구 온난화 방지를 위한 이산화탄소 발생량의 규제를 위한 국제협정 등은 태양전지와 같은 청정에너지의 필요성을 인류에게 전달하는 중요한 계기가 되었으며, 지금까지 태양전지의 소재에 대한 연구로서, 단결정 실리콘, 다결정 실리콘, 비정질 실리콘, 비정질 SiC, 비정질 SiN, 비정질 SiGe, 비정질 SiSn 등의 IV 족계의 재료, 또는 갈륨비소(GaAs), 알루미늄갈륨비소(AlGaAs), 인듐인(InP) 등의 III-V 족이나 CdS, CdTe, Cu2S 등의 II-VI족의 화합물 반도체가 연구되어 오고 있고, 태양전지의 구조에 대한 연구로서는, 배면전계형을 포함하는 pn 구조, pin 구조, 헤테로접합구조, 쇼트키구조, 탠덤형이나 수직 접합형을 포함하는 다중접합구조 등이 연구되어 왔다. Solar cells have been researched for decades as clean energy sources that produce energy by converting light energy transmitted from the sun to the earth. The severity of the oil fluctuations in the 70's and the greenhouse effect caused by carbon dioxide in the early 90's, and the international agreement on the regulation of carbon dioxide emissions to prevent global warming in the late 90's, conveyed the necessity of clean energy such as solar cells to mankind. It has been an important instrument, and until now, researches on solar cell materials include group IV materials such as monocrystalline silicon, polycrystalline silicon, amorphous silicon, amorphous SiC, amorphous SiN, amorphous SiGe, amorphous SiSn, or gallium arsenide (GaAs), Compound semiconductors of group III-V such as aluminum gallium arsenide (AlGaAs) and indium phosphorus (InP), and group II-VI such as CdS, CdTe, Cu 2 S, and the like have been studied. The pn structure including the back electric field type, the pin structure, the heterojunction structure, the Schottky structure, the multijunction structure including the tandem type or the vertical junction type have been studied.

일반적으로 태양전지에 요구되는 특성 및 연구개발은 광전변환효율의 향상, 제조원가의 절감, 에너지 회수 년수의 감소 및 대면적화의 관점에서 진행되고 있다. In general, the characteristics and research and development required for solar cells are proceeding from the viewpoint of improving photoelectric conversion efficiency, reducing manufacturing cost, reducing the number of years of energy recovery and increasing the area.

광전변환효율은 일반 태양전지 셀이나 모듈에 대해 25℃ 정도의 온도에서 평가되고 있는데, 실제 태양전지에서 전력을 발생할 경우 온도가 70℃ 내지 75℃ 가량 증가되어 광전변환효율이 온도에 의해 영향받고 있다.The photoelectric conversion efficiency is evaluated at a temperature of about 25 ° C for a general solar cell or module. When power is generated in a real solar cell, the temperature is increased by about 70 ° C to 75 ° C, and the photoelectric conversion efficiency is affected by the temperature. .

온도에 따른 광전변환효율의 변화는 도 1에서 도시된 바와 같다.The change in photoelectric conversion efficiency with temperature is as shown in FIG. 1.

도 1을 참조하면, 20℃ 내지 25℃ 정도의 상온에서의 효율이 70℃ 내지 75℃의 고온에서는 현저하게 감소되는 것을 알 수 있다. 일반적인 결정형 태양전지는 25% 정도의 효율이 감소되고, 일본 Sanyo사의 HIT 태양전지 셀은 20% 정도 효율이 감소됨을 관찰할 수 있다.Referring to Figure 1, it can be seen that the efficiency at room temperature of about 20 ℃ to 25 ℃ is significantly reduced at a high temperature of 70 ℃ to 75 ℃. It can be observed that the efficiency of a typical crystalline solar cell is reduced by about 25%, and the efficiency of the HIT solar cell of Sanyo of Japan is reduced by about 20%.

이렇게 태양전지의 효율이 온도가 증가함에 따라 떨어지는 이유는 도 2의 전류-전압 특성곡선에서 알 수 있듯이, 온도가 증가함에 따라 Voc의 감소가 큰데 반하여 Isc는 소폭 증가하기 때문이다.The reason why the efficiency of the solar cell decreases as the temperature increases is that the decrease in Voc increases with increasing temperature, whereas Isc increases slightly as the current-voltage characteristic curve of FIG. 2 increases.

상기 Voc가 온도 증가에 따라 감소하는 것은 벌크 결정형 실리콘의 밴드갭(band gap) 에너지가 온도에 따라 감소하기 때문이며, Isc가 온도 증가에 따라 소폭 증가하는 것은 밴드갭(band gap) 에너지가 온도가 증가함에 따라 감소하므로 광 흡수도가 증가하기 때문이라고 알려진다.The Voc decreases with increasing temperature because the band gap energy of the bulk crystalline silicon decreases with temperature, and the slight increase of Isc with increasing temperature causes the band gap energy with increasing temperature. It is known that the light absorbance increases because it decreases with the increase.

결국 온도가 증가함에 따라 태양전지의 효율이 감소하는 이유는 전도대와 가전자대 사이의 밴드갭 에너지가 감소하는 것이므로 이러한 밴드갭 에너지의 감소를 줄이는 것이 태양전지의 효율을 개선하는 관건이 된다.After all, as the temperature increases, the efficiency of the solar cell decreases because the bandgap energy between the conduction band and the valence band decreases. Therefore, reducing the decrease of the bandgap energy becomes a key to improving the efficiency of the solar cell.

따라서, 온도에 대한 안정성이 개선된 태양전지를 개발하기 위해서 밴드갭 에너지의 감소를 줄이는 조건을 연구하고 이에 따라 발생되는 문제점을 해결하는 것이 필요하다.Therefore, in order to develop a solar cell having improved stability to temperature, it is necessary to study the conditions for reducing the reduction of the bandgap energy and to solve the problems caused therefrom.

본 발명의 목적은 상기와 같은 일반 태양 전지가 온도에 따라 효율이 떨어지는 문제점을 해결하기 위하여 안출된 것으로서, 온도 증가에 따른 밴드갭 에너지의 감소를 줄임과 동시에 그에 따른 파장 감응의 문제점을 개선한 벌크형 실리콘 태양 전지를 제공하는 데 있다. An object of the present invention is to solve the problem that the general solar cell is less efficient according to the temperature, the bulk type that reduces the bandgap energy decrease with temperature increase and thereby improves the problem of wavelength response To provide a silicon solar cell.

본 발명의 다른 목적은, 종래 태양 전지의 제조에 있어서 본래의 구조를 변경함 없이 간단한 공정을 통해 온도 증가에 따른 태양전지의 안정성이 개선된 태양전지의 제조방법을 제공함으로써 제조 단가가 절감되어 경제적이면서도 품질 특성이 개선된 벌크형 실리콘 태양 전지 제조 방법을 제공하는 것이다. Another object of the present invention is to provide a manufacturing method of a solar cell in which the stability of the solar cell is improved by increasing the temperature through a simple process without changing the original structure in the manufacturing of the conventional solar cell, the manufacturing cost is reduced and economical The present invention also provides a bulk silicon solar cell manufacturing method with improved quality characteristics.

상기 목적을 달성하기 위하여 본 발명의 벌크형 실리콘 태양전지는 도핑 농도 기울기를 가지는 반도체층 및 상기 반도체층 위에 순차로 형성된 활성층 및 상기 반도체층과 다른 영역의 반도체층을 포함할 수 있다.In order to achieve the above object, the bulk silicon solar cell of the present invention may include a semiconductor layer having a doping concentration gradient, an active layer sequentially formed on the semiconductor layer, and a semiconductor layer in a region different from the semiconductor layer.

본 발명에서 상기 도핑 농도 기울기는, 층간 접합면을 기준으로 저농도에서 고농도로 구배되는 것을 특징으로 할 수 있다.The doping concentration gradient in the present invention may be characterized in that it is gradient from low concentration to high concentration on the basis of the interlayer bonding surface.

상기 반도체층은 n 형 또는 p 형 반도체층일 수 있으므로, n-i-p형 또는 p-i-n형의 반도체층으로 순차적으로 적층되는 구조의 태양전지일 수 있다.The semiconductor layer may be an n-type or p-type semiconductor layer, and thus may be a solar cell having a structure sequentially stacked with an n-i-p-type or p-i-n-type semiconductor layer.

상기 도핑 농도 기울기를 가지는 반도체층은, 층간 접합면을 기준으로 저농 도에서 고농도로 도핑 농도를 달리하는 복수 개의 반도체층을 포함함으로써 형성될 수 있다.The semiconductor layer having the doping concentration gradient may be formed by including a plurality of semiconductor layers having different doping concentrations from low to high concentrations based on the interlayer bonding surface.

상기 목적을 달성하기 위하여 본 발명의 벌크형 실리콘 태양전지의 제조방법은 서로 다른 영역의 반도체층을 포함하는 벌크형 실리콘 태양전지의 제조방법에 있어서, 어느 하나의 반도체층에 접합면을 기준으로 저농도에서 고농도로 도핑 농도 기울기를 형성하는 단계를 포함한다.In order to achieve the above object, a method of manufacturing a bulk silicon solar cell of the present invention is a method of manufacturing a bulk silicon solar cell including semiconductor layers of different regions, and at a high concentration at a low concentration based on a junction surface of any one of the semiconductor layers. Forming a doping concentration gradient.

본 발명에서 상기 반도체층은 n형 또는 p형 반도체층일 수 있으므로, 도핑 농도 기울기를 가지는 n형 반도체층, 활성층, p형 반도체층의 순서로 적층되거나, 도핑 농도 기울기를 가지는 p형 반도체층, 활성층, n형 반도체층의 순서로 적층되는 단계를 포함한다.In the present invention, since the semiconductor layer may be an n-type or p-type semiconductor layer, an n-type semiconductor layer having an doping concentration gradient, an active layer, and a p-type semiconductor layer are stacked in this order, or a p-type semiconductor layer having an doping concentration gradient and an active layer. and laminating in order of the n-type semiconductor layer.

상기 도핑 농도의 기울기는 이온 주입(Ion Implantation)법, 열확산법, 포스포러스 옥시클로라이드(Phospho Oxychloride, POCl3) 확산법 중 어느 하나의 방법을 사용한 후 전기장을 인가하여 형성할 수 있다.The slope of the doping concentration may be formed by applying an electric field after using any one of ion implantation, thermal diffusion, and phosphorus oxychloride (POCl 3 ) diffusion method.

상기 목적을 달성하기 위한 본 발명의 벌크형 실리콘 태양 전지의 제조방법은 서로 다른 도핑 농도를 가지는 복수 개의 반도체층을 형성하는 단계 및 상기 반도체층의 상부에 활성층 및 상기 반도체층과 영역이 다른 반도체층을 적층하는 단계를 포함할 수 있다.The method of manufacturing a bulk silicon solar cell of the present invention for achieving the above object comprises the steps of forming a plurality of semiconductor layers having different doping concentrations and an active layer and a semiconductor layer having a different region from the semiconductor layer on top of the semiconductor layer. Laminating may be included.

본 발명에서 상기 반도체층은 활성층과의 접합면을 기준으로 저농도에서 고농도로 도핑된 복수 개의 반도체층을 형성함으로써 이루어 질 수 있다.In the present invention, the semiconductor layer may be formed by forming a plurality of semiconductor layers doped at a low concentration to a high concentration based on the bonding surface with the active layer.

본 발명은 온도 증가에 따라 태양 전지의 고온 안정성이 감소하는 이유가 밴드갭 에너지의 감소에 있으므로 이러한 밴드갭 에너지의 감소를 줄이기 위해 반도체층의 도핑 농도의 프로파일을 조절하는 것이다. In the present invention, since the high temperature stability of the solar cell decreases with increasing temperature, the band gap energy is decreased, so that the doping concentration profile of the semiconductor layer is adjusted to reduce the decrease of the band gap energy.

즉, 웨이퍼 상에 n형 또는 p형의 반도체층을 형성하기 위하여 불순물을 도핑함에 있어서 도핑 농도가 높을수록 밴드갭 에너지가 커진다. In other words, the higher the doping concentration, the greater the bandgap energy when doping impurities to form an n-type or p-type semiconductor layer on the wafer.

온도에 따른 에너지 상태를 나타내는 그래프인 도 3을 참조하여 알 수 있듯이, 온도가 저온이든지 고온이든지 관계없이 소정의 온도에서 살펴볼 때 도핑 농도가 높을수록 밴드갭 에너지의 차이는 크다. 그러한 밴드갭 에너지의 차이는 고온으로 올라갈수록 감소되는 것을 관찰할 수 있으나 고온에서도 마찬가지로 도핑 농도가 높을수록 비교적 밴드갭 에너지는 도핑 농도가 낮을 때에 비하여 큰 것을 알 수 있다.As can be seen with reference to FIG. 3, which is a graph showing an energy state according to temperature, the higher the doping concentration is, the larger the difference in the bandgap energy is. It can be seen that the difference in the bandgap energy decreases as the temperature increases, but the higher the doping concentration, the higher the doping concentration, and the relatively higher the bandgap energy when the doping concentration is lower.

본 발명은 이렇듯 밴드갭 에너지가 도핑 농도가 높음에 따라 커지는 것을 이용하여 태양 전지의 온도에 따른 안정성을 개선한 것이다.The present invention improves the stability according to the temperature of the solar cell by using the bandgap energy increases as the doping concentration is high.

태양전지 셀에서 불순물 반도체층의 도핑 농도를 높게 하여 밴드갭 에너지 감소를 최대한 줄인 것이다.In the solar cell, the dopant concentration of the impurity semiconductor layer is increased to reduce the band gap energy as much as possible.

p형 반도체층은 결정형 실리콘 웨이퍼에 도핑물질로서 붕소, 갈륨, 인듐 등 원자가가 3가인 원소의 가하여 형성하는 것이고, n형 반도체층은 결정형 실리콘 웨이퍼에 도핑물질로서 인, 비소, 안티몬과 같은 원자가 5가의 원소를 가하여 형성한다.The p-type semiconductor layer is formed by adding a valence trivalent element such as boron, gallium, or indium as a doping material to a crystalline silicon wafer, and the n-type semiconductor layer is a valence 5 such as phosphorus, arsenic, and antimony as a doping material to a crystalline silicon wafer. It is formed by adding an additional element.

본 발명의 도핑 농도의 기울기는 이들 불순물 원소 물질들의 농도를 달리하는 것이다.The slope of the doping concentration of the present invention is to vary the concentration of these impurity element materials.

그러나, 도핑 농도가 높을수록 온도 증가에 따른 효율이 낮아지는 것을 개선할 수는 있지만, 광 흡수시 단파장에 대한 감응도가 떨어지는 문제점이 있기 때문에 본 발명은 단파장을 웨이퍼의 앞쪽에서 감응시켜 걸러낼 수 있도록 도핑 농도의 기울기를 가지는 반도체층을 포함하는 태양전지를 제시한다.However, the higher the doping concentration, the lower the efficiency due to the increase in the temperature can be improved, but the sensitivity of the short wavelength at the time of light absorption has a problem that the present invention can be filtered by the short wavelength in the front of the wafer A solar cell including a semiconductor layer having a slope of a doping concentration is provided.

따라서, 웨이퍼를 불순물 반도체층으로 형성하기 위하여 도핑하는 단계에서 내부의 도핑 프로파일을 조절하여 접합면 쪽의 반도체층에는 저농도로 도핑되면서 그외 나머지 부분은 고농도로 도핑될 수 있게 도핑 농도 구배를 수행한다.Therefore, in the step of doping the wafer to form an impurity semiconductor layer, a doping concentration gradient is performed such that the doping profile of the wafer is adjusted so that the semiconductor layer on the side of the bonding surface is lightly doped and the remaining portions are doped at high concentration.

이를 위하여 고농도로 불순물이 도핑된 반도체층 위에 이와 상대적으로 저농도로 불순물이 도핑된 반도체층을 적층함으로써 도핑 농도 기울기를 가지는 반도체층을 형성할 수 있다. To this end, a semiconductor layer having a doping concentration gradient may be formed by stacking a semiconductor layer doped with a relatively low concentration of impurities on a semiconductor layer doped with a high concentration of impurities.

또한 하나의 웨이퍼층을 중심으로 도핑 농도를 달리하여 고농도에서 저농도로 주입하되, 활성층이나 다른 타입의 반도체층이 적층되는 접합면으로 갈수록 저농도로 구배되도록 주입하여 형성할 수 있다.In addition, it can be formed by injecting at a high concentration to a low concentration by varying the doping concentration with respect to one wafer layer, and to be injected at a lower concentration toward the bonding surface on which the active layer or another type of semiconductor layer is laminated.

반도체층에 농도 기울기를 형성하는 도핑 농도는 상대적인 불순물 농도 차를 형성하는 것으로 족할 것이나, 바람직하게는 고 도핑농도가 저 도핑농도에 비하여 10배 내지 100배의 고농도일 수 있다. The doping concentration for forming the concentration gradient in the semiconductor layer may be sufficient to form a relative impurity concentration difference, but preferably, the high doping concentration may be 10 to 100 times higher than the low doping concentration.

좀더 바람직하게는 접합면에 형성되는 반도체층의 도핑농도는 1016cm-3 내지 1017cm-3 이고, 나머지 고농도로 도핑되는 반도체층의 도핑농도는 1018cm-3 내지 1019cm-3 일 수 있다.More preferably, the doping concentration of the semiconductor layer formed on the junction surface is 10 16 cm -3 to 10 17 cm -3 , and the doping concentration of the remaining highly doped semiconductor layer is 10 18 cm -3 to 10 19 cm -3. Can be.

본 발명에 의하면 활성층과 다른 타입의 반도체층이 적층되는 반도체층의 접합면의 도핑 농도가 다른 고농도의 반도체 도핑농도에 비하여 저농도이기 때문에 단파장 빛이 웨이퍼의 앞쪽에서 걸러지므로 단파장 응답성이 개선된다.According to the present invention, since the doping concentration of the junction surface of the semiconductor layer in which the active layer and the other types of semiconductor layers are stacked is lower than that of other high concentration semiconductor doping concentrations, short wavelength light is filtered from the front of the wafer, thereby improving short wavelength response.

본 발명의 구체적인 실시예는 첨부한 도 4를 참조하여 알 수 있다. 상기 도면의 내용을 설명함에 있어서, 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Specific embodiments of the present invention can be seen with reference to the accompanying FIG. In describing the contents of the drawings, detailed descriptions of well-known functions and configurations determined to unnecessarily obscure the subject matter of the present invention will be omitted.

도 4를 참조하면 실리콘, 게르마늄 등의 물질로 구성된 웨이퍼에 도너(doner) 불순물을 고농도로 도핑하여 n형 반도체층(10)을 형성한다. 그 위에 상대적으로 저농도로 도너 불순물을 도핑하여 저농도 도핑된 n형 반도체층(11)을 형성한다.Referring to FIG. 4, a n-type semiconductor layer 10 is formed by doping a donor impurity in a high concentration on a wafer made of a material such as silicon or germanium. The lightly doped n-type semiconductor layer 11 is formed by doping donor impurities at a relatively low concentration.

상기 저농도 도핑된 n형 반도체층(11)의 두께는 0.5 마이크로미터 내지 수십 마이크로미터이나 바람직하게는 0.5㎛ 내지 1.5㎛ 일 것이다.The lightly doped n-type semiconductor layer 11 may have a thickness of 0.5 micrometers to several tens of micrometers, but preferably 0.5 μm to 1.5 μm.

그 위에 순차로 i형 반도체층(12) 및 p형 반도체층(13)을 형성하여 태양전지 셀을 구성한다.The i-type semiconductor layer 12 and the p-type semiconductor layer 13 are sequentially formed thereon to form a solar cell.

다른 실시예에서 p형 반도체층에 도핑 농도 기울기를 형성하고 그 위에 i형 반도체층과 n형 반도체층을 형성할 수도 있다.In another embodiment, the doping concentration gradient may be formed on the p-type semiconductor layer, and the i-type semiconductor layer and the n-type semiconductor layer may be formed thereon.

웨이퍼 내부의 도핑 농도 프로파일을 조절하여 p-n 접합쪽은 저농도의 도핑, 그외 나머지 부분은 고농도의 도핑이 되도록 하기 위한 본 발명의 또 다른 실시예로서, 고농도로 도핑된 웨이퍼 위에 저농도로 도핑된 웨이퍼층을 형성할 수 있다.Another embodiment of the present invention is to adjust the doping concentration profile inside the wafer so that the pn junction side is a low concentration doping, the remaining portion is a high concentration doping, a lightly doped wafer layer on the high concentration doped wafer Can be formed.

본 발명의 고온 특성이 개선된 벌크형 실리콘 태양전지를 형성하기 위한 방법으로서, 도핑 단계를 거친 후 고 전기장을 인가하여 고농도 도핑된 웨이퍼의 도핑 프로파일을 조절하는 단계를 수행할 수 있다.As a method for forming a bulk silicon solar cell having improved high temperature characteristics of the present invention, a step of adjusting a doping profile of a heavily doped wafer may be performed by applying a high electric field after a doping step.

다만 고 전기장의 인가는 태양전지의 방전 조건 이하에서 수행되어야 한다.However, application of high electric field should be carried out under the discharge condition of solar cell.

상기 도핑 단계에서의 불순물의 도핑 방법은 특정한 방법에 한정되지 않고 당업자가 알 수 있는 공지의 방법으로 족할 것이지만, 바람직하게는 이온주입법(Ion implantation), 열확산법(Thermal diffusion), 포스포러스 옥시클로라이드(Phosphorus Oxychloride, POCl3) 확산법 등이 이용될 수 있다.The doping method of the impurity in the doping step is not limited to a specific method and will be satisfied by a known method known to those skilled in the art, but preferably, ion implantation, thermal diffusion, phosphorus oxychloride ( Phosphorus Oxychloride, POCl 3 ) diffusion method and the like can be used.

이온주입법은 보론(B), 갈륨(Ga), 인듐(In)과 같은 3가 원소 또는 인(P), 비소(As), 안티몬(Sb)와 같은 5가 원소인 불순물(도펀트)을 진공 중에서 이온화한 뒤에 전기장에 의해 가속하여 실리콘 웨이퍼 표면에 넣음으로써 표면층을 p형화 또는 n형화하는 것이다. The ion implantation method is used to vacuum trivalent elements such as boron (B), gallium (Ga) and indium (In) or impurities (dopants) which are pentavalent elements such as phosphorus (P), arsenic (As) and antimony (Sb) in a vacuum. After ionization, the surface layer is p-typed or n-typed by being accelerated by an electric field and placed on the silicon wafer surface.

열확산법은 기판을 가열하여 불순물 원소를 실리콘 웨이퍼의 표면으로부터 스며들게 함으로써 표면층을 p형화 또는 n형화하는 방법이다. 보통 열확산 온도는 850℃ 내지 1000℃ 온도이고, 시간은 30분 내지 150분이면 적당하다.The thermal diffusion method is a method of p-type or n-type surface layer by heating a substrate so that impurity elements are permeated from the surface of a silicon wafer. Usually, thermal diffusion temperature is 850 degreeC-1000 degreeC, and time is suitable for 30 to 150 minutes.

포스포러스 옥시클로라이드(Phosphorus Oxychloride, POCl3) 확산법은 열확 산원(source)로서 인화합물 액체의 POCl3를 이용하여 800℃ 내지 900℃ 온도에서 60분 내지 90분간 열확산시키는 방법이다.Phosphorus oxychloride (Phosphorus Oxychloride, POCl 3) diffusion method is a method of thermal diffusion 60 minutes to 90 minutes at a temperature 800 ℃ to 900 ℃ using POCl 3 in a compound liquid as yeolhwak Maternity Hospital (source).

상기 이온주입법은 원하는 도핑 농도로 원하는 깊이까지 도핑할 수 있으므로 도핑 농도 구배를 위해 적합하다. The ion implantation method is suitable for a doping concentration gradient because it can be doped to a desired depth at a desired doping concentration.

결정형 웨이퍼 상에 선택적 도핑을 위하여 에칭법과 병행하여 불순물을 도핑할 수 있고, 인규산유리(Phospho Silicate Glass, PSG)와 같은 절연체층을 포함하는 웨이퍼에 도핑하기 위하여 상기의 도핑방법과 PSG 에칭법을 병행하여 사용할 수 있다.Impurities can be doped in parallel with the etching method for selective doping on the crystalline wafer, and the above doping method and the PSG etching method are simultaneously performed to dope a wafer including an insulator layer such as Phospho Silicate Glass (PSG). Can be used.

이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 당업자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 이러한 변경 또는 변형도 본 발명의 범위에 속한다. 또한, 본 명세서에서 설명한 각 구성요소의 물질은 당업자가 공지된 다양한 물질로부터 용이하게 선택하여 대체할 수 있다. 또한 당업자는 본 명세서에서 설명된 구성요소 중 일부를 성능의 열화 없이 생략하거나 성능을 개선하기 위해 구성요소를 추가할 수 있다. 뿐만 아니라, 당업자는 공정 환경이나 장비에 따라 본 명세서에서 설명한 방법 단계의 순서를 변경할 수도 있다. 따라서 본 발명의 범위는 설명된 실시형태가 아니라 특허청구범위 및 그 균등물에 의해 결정되어야 한다.The present invention has been described above in connection with specific embodiments of the present invention, but this is only an example and the present invention is not limited thereto. Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention, and such changes or modifications are within the scope of the present invention. In addition, the materials of each component described herein can be easily selected and replaced by a variety of materials known to those skilled in the art. Those skilled in the art can also omit some of the components described herein without adding performance degradation or add components to improve performance. In addition, those skilled in the art may change the order of the method steps described herein according to the process environment or equipment. Therefore, the scope of the present invention should be determined not by the embodiments described, but by the claims and their equivalents.

본 발명은 일반 태양 전지에 있어서, 온도에 따라 광전변환효율이 떨어지는 문제점을 해결하여 온도가 증가함에도 이에 대한 안정성이 개선한 효과가 있다.The present invention solves the problem that the photoelectric conversion efficiency is lowered according to the temperature in the general solar cell has an effect of improving the stability even when the temperature increases.

또한 온도에 대한 안정성을 개선함에 따라 접합성과 단파장 감응도가 떨어지는 문제점을 해결하여 고품질의 신뢰성이 좋은 태양전지를 제공할 수 있다.In addition, by improving the stability to temperature can solve the problem of poor bonding and short wavelength sensitivity can provide a high quality and reliable solar cell.

본 발명의 일 실시예에 따르면, 실리콘 웨이퍼 기판 위에 이온주입법을 사용하여 5 원자가 원소의 물질을 도핑한다. 도핑을 위해서는 다른 공지의 방법들이 사용될 수 있다.According to one embodiment of the present invention, a material of five valence elements is doped by using ion implantation on a silicon wafer substrate. Other known methods can be used for the doping.

n형 불순물로 도핑된 웨이퍼는 n형 반도체층을 형성하고 그 위에 순차로 활성층과 p형 반도체층을 형성한다.The wafer doped with n-type impurity forms an n-type semiconductor layer and sequentially forms an active layer and a p-type semiconductor layer thereon.

상기 형성된 태양전지 셀에 고 전기장을 인가하여 p-n 접합면으로부터 0.5 마이크로미터 내지 1 마이크로미터의 저농도 도핑된 반도체층을 형성한다. 이들 저농도 도핑 반도체층을 제외한 나머지 부분은 상대적으로 고농도로 도핑될 수 있으므로 하나의 반도체층에 도핑 농도 기울기를 형성할 수 있다.A high electric field is applied to the formed solar cell to form a lightly doped semiconductor layer of 0.5 micrometers to 1 micrometer from the p-n junction surface. The remaining portions except for these low concentration doped semiconductor layers may be relatively high doped, thereby forming a doping concentration gradient in one semiconductor layer.

보통 저농도의 도핑 반도체층의 도핑 농도는 1016cm-3 내지 1017cm- 3 이고, 나머지 고농도로 도핑되는 반도체층의 도핑농도는 1018cm-3 내지 1019cm- 3 인 것이 바 람직하다.Usually, the doping concentration of the lightly doped semiconductor layer is 10 16 cm -3 to 10 17 cm - 3 , and the doping concentration of the remaining heavily doped semiconductor layer is preferably 10 18 cm -3 to 10 19 cm - 3 . .

도 1은 온도에 따른 종래 실리콘 태양전지의 효율 분포를 나타낸 그래프.1 is a graph showing the efficiency distribution of a conventional silicon solar cell with temperature.

도 2는 태양전지의 전류-전압 특성 곡선의 온도 상관성을 나타낸 그래프.Figure 2 is a graph showing the temperature correlation of the current-voltage characteristic curve of the solar cell.

도 3은 태양전지의 온도에 따른 밴드갭 에너지 분포곡선을 나타낸 그래프.3 is a graph showing a bandgap energy distribution curve with temperature of a solar cell.

도 4는 본 발명의 일 실시에 따른 벌크형 실리콘 태양 전지의 구조를 나타낸 단면도.Figure 4 is a cross-sectional view showing the structure of a bulk silicon solar cell according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 고농도 도핑된 n형 반도체층 11 : 저농도 도핑된 n형 반도체층10: high concentration doped n-type semiconductor layer 11: low concentration doped n-type semiconductor layer

12 : i형 반도체층 13 : p형 반도체층12 i-type semiconductor layer 13 p-type semiconductor layer

Claims (9)

도핑 농도 기울기를 가지는 반도체층; 및A semiconductor layer having a doping concentration gradient; And 상기 반도체층 위에 순차로 형성된 활성층 및 상기 반도체층과 다른 영역의 반도체층을 포함하는 고온 특성이 개선된 벌크형 실리콘 태양전지.An improved bulk silicon solar cell including an active layer sequentially formed on the semiconductor layer and a semiconductor layer in a region different from the semiconductor layer. 제 1 항에 있어서, The method of claim 1, 상기 도핑 농도 기울기는, 층간 접합면을 기준으로 저농도에서 고농도로 구배되는 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지.The doping concentration gradient, the bulk silicon solar cell with improved high temperature characteristics, characterized in that the gradient from low to high concentrations based on the interlayer bonding surface. 제 1 항에 있어서, The method of claim 1, 상기 반도체층은, n 형 또는 p 형 반도체층인 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지.The semiconductor layer is a bulk silicon solar cell with improved high temperature characteristics, characterized in that the n-type or p-type semiconductor layer. 제 1 항에 있어서, The method of claim 1, 상기 반도체층은, 층간 접합면을 기준으로 저농도에서 고농도로 도핑 농도를 달리하는 복수 개의 반도체층을 포함하는 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지.The semiconductor layer is a bulk silicon solar cell with improved high temperature characteristics, characterized in that it comprises a plurality of semiconductor layers varying the doping concentration from low concentration to high concentration based on the interlayer bonding surface. 서로 다른 영역의 반도체층을 포함하는 벌크형 실리콘 태양전지의 제조방법 에 있어서,In the method of manufacturing a bulk silicon solar cell comprising a semiconductor layer of different regions, 어느 하나의 반도체층에 접합면을 기준으로 저농도에서 고농도로 도핑 농도 기울기를 형성하는 단계를 포함하는 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지의 제조 방법. A method of manufacturing a bulk silicon solar cell having improved high temperature characteristics, comprising the step of forming a doping concentration gradient from a low concentration to a high concentration based on a junction surface in any one semiconductor layer. 제 5항에 있어서, The method of claim 5, 상기 반도체층은 n형 또는 p형 반도체층인 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지의 제조방법.The semiconductor layer is a manufacturing method of the bulk silicon solar cell with improved high temperature characteristics, characterized in that the n-type or p-type semiconductor layer. 제 6 항에 있어서, The method of claim 6, 상기 도핑 농도의 기울기는 이온 주입(Ion Implantation)법, 열확산법, 포스포러스 옥시클로라이드(Phospho Oxychloride, POCl3) 확산법 중 어느 하나의 방법을 사용한 후 전기장을 인가하여 형성하는 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지의 제조방법.The slope of the doping concentration is formed by applying an electric field after using any one of ion implantation, thermal diffusion, and phosphorus oxychloride (POCl 3 ) diffusion method. Improved bulk silicon solar cell manufacturing method. 서로 다른 도핑 농도를 가지는 복수 개의 반도체층을 형성하는 단계; 및Forming a plurality of semiconductor layers having different doping concentrations; And 상기 반도체층의 상부에 활성층 및 상기 반도체층과 영역이 다른 반도체층을 적층하는 단계를 포함하는 고온 특성이 개선된 벌크형 실리콘 태양전지의 제조방법.A method of manufacturing a bulk silicon solar cell having improved high temperature characteristics, comprising: laminating an active layer and a semiconductor layer having a region different from that of the semiconductor layer on the semiconductor layer. 제 8항에 있어서, The method of claim 8, 상기 반도체층은, 활성층과의 접합면을 기준으로 저농도에서 고농도로 도핑된 반도체층으로 형성되는 것을 특징으로 하는 고온 특성이 개선된 벌크형 실리콘 태양전지의 제조방법.The semiconductor layer is a method of manufacturing a bulk silicon solar cell with improved high temperature characteristics, characterized in that formed as a semiconductor layer doped at a low concentration to a high concentration on the basis of the bonding surface with the active layer.
KR1020070073634A 2007-07-23 2007-07-23 Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof KR100913114B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070073634A KR100913114B1 (en) 2007-07-23 2007-07-23 Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070073634A KR100913114B1 (en) 2007-07-23 2007-07-23 Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20090010498A true KR20090010498A (en) 2009-01-30
KR100913114B1 KR100913114B1 (en) 2009-08-19

Family

ID=40489661

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070073634A KR100913114B1 (en) 2007-07-23 2007-07-23 Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100913114B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908962B2 (en) 2012-05-18 2024-02-20 Oxford University Innovation Limited Optoelectronic device comprising perovskites

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2019614B1 (en) * 2017-09-22 2019-04-17 Tno Dopant enhanced solar cell and method of manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548125A (en) * 1991-08-19 1993-02-26 Sony Corp Solar battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908962B2 (en) 2012-05-18 2024-02-20 Oxford University Innovation Limited Optoelectronic device comprising perovskites

Also Published As

Publication number Publication date
KR100913114B1 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP6093401B2 (en) Highly doped layers of tunnel junctions in solar cells.
US9287431B2 (en) Superstrate sub-cell voltage-matched multijunction solar cells
US9368671B2 (en) Bifacial tandem solar cells
US7629532B2 (en) Solar cell having active region with nanostructures having energy wells
US20160284916A1 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
US20200135955A1 (en) Tunnel Heterojunctions in Group IV/ Group II-VI Multijunction Solar Cells
JP2013541224A (en) Multijunction solar cell with dilute nitride subcells with graded doping
US20090314337A1 (en) Photovoltaic devices
KR20090121274A (en) Zinc oxide multi-junction photovoltaic cells and optoelectronic devices
JP2010118667A (en) Four junction inverted metamorphic multijunction solar cell with two metamorphic layers
AU2008264257A1 (en) Nanowire-based solar cell structure
US20150340528A1 (en) Monolithic tandem voltage-matched multijuntion solar cells
EP2399300A2 (en) Photovoltaic cell
US20140090700A1 (en) High-concentration multi-junction solar cell and method for fabricating same
US10811551B2 (en) Tandem solar cell including metal disk array
KR20120088719A (en) Improved photocell
JP5481665B2 (en) Multi-junction solar cell
Hekmatshoar et al. Novel heterojunction solar cells with conversion efficiencies approaching 21% on p-type crystalline silicon substrates
JP2014220351A (en) Multi-junction solar cell
KR101543767B1 (en) Method For Forming Selective Emitter Of Solar Cell Solar Cell and Fabricating Method Thereof
KR100913114B1 (en) Bulk silicon solar cell having improved high temperature characteristics and manufacturing method thereof
WO2012173619A1 (en) Tunnel heterojunctions in group iv / goup ii-vi multijunction solar cells
KR20130104347A (en) Solar cell and manufacturing method thereof
Steiner et al. Two-junction photovoltaic devices
Sebastian et al. Simulation and optimization of Lattice Mismatched InGaAs Thermophotovoltaic Cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120727

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130724

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140724

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150724

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160722

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee