KR20090008725A - Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof - Google Patents

Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof Download PDF

Info

Publication number
KR20090008725A
KR20090008725A KR1020070071902A KR20070071902A KR20090008725A KR 20090008725 A KR20090008725 A KR 20090008725A KR 1020070071902 A KR1020070071902 A KR 1020070071902A KR 20070071902 A KR20070071902 A KR 20070071902A KR 20090008725 A KR20090008725 A KR 20090008725A
Authority
KR
South Korea
Prior art keywords
group
hydroxy
compound
pyrrolidine
formula
Prior art date
Application number
KR1020070071902A
Other languages
Korean (ko)
Other versions
KR100915551B1 (en
Inventor
전용국
이재관
홍매화
김광섭
박광식
Original Assignee
주식회사 알에스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 알에스텍 filed Critical 주식회사 알에스텍
Priority to KR1020070071902A priority Critical patent/KR100915551B1/en
Priority to PCT/KR2008/004193 priority patent/WO2009011551A2/en
Publication of KR20090008725A publication Critical patent/KR20090008725A/en
Application granted granted Critical
Publication of KR100915551B1 publication Critical patent/KR100915551B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrrole Compounds (AREA)

Abstract

A production method of 3-hydroxypyrrolidine is provided to accomplish the simplification of reaction process and yield improvement by applying the reaction of each step to the next reaction without purifying process. The production method of 3-hydroxypyrrolidine comprise the steps of: (a) protecting -OH of 4-hollow-3-hydroxybutyric acid ester; (b) reducing the ester group of the compound obtained from the step (a) to prepare the corresponding alcohols; (c) reacting the alcohols obtained from the step (b) with sulfonylhalide to prepare the corresponding sulfonate; (d) reacting the sulfonate obtained from the step (c) with primary amine to prepare the hydroxy-protected pyrrolidine; and (e) deprotecting the compound obtained from the step (d) to prepare 3-hydroxy pyrrolidine.

Description

3-히드록시 피롤리딘 및 이의 유도체의 효율적 제조방법{PROCESS FOR THE EFFICIENT PREPARATION OF 3-HYDROXY PYRROLIDINE AND DERIVATIVES THEREOF} PROCESS FOR THE EFFICIENT PREPARATION OF 3-HYDROXY PYRROLIDINE AND DERIVATIVES THEREOF

본 발명은 화학적 및 광학적으로 순수한 3-하이드록시 피롤리딘 및 이의 유도체의 제조방법에 관한 것이다. 더욱 상세하게는, 본 발명은 3-하이드록시 피롤리딘 및 이의 유도체를, 출발물질의 광학순도의 저하 없이, 고 광학순도로 상업적 대량생산에 적합한 제조방법에 관한 것이다.The present invention relates to a process for preparing chemically and optically pure 3-hydroxy pyrrolidine and derivatives thereof. More particularly, the present invention relates to a process for preparing 3-hydroxy pyrrolidine and derivatives thereof suitable for commercial mass production in high optical purity, without lowering the optical purity of the starting materials.

키랄 3-히드록시 피롤리딘 및 이의 유도체는 항생제, 진통제, 전혈용해제, 항정신성 의약품등의 다양한 키랄 의약품들의 핵심 중간체로서 사용되어지는 키랄 중간체이다. 더욱이 현재 상기의 시판중인 의약품뿐 아니라 3-히드록시 피롤리딘 혹은 그 유도체로부터 유도되어진 다양한 화합물들이 여러 의약품 분야에서 좋은 약리 활성을 보여 주고 있고 현재 임상중인 여러 종류의 약이 개발 중이므로 그 수요는 더욱 증가될 전망이다. 그러므로 고 광학순도의 키랄 3-히드록시 피롤리딘 및 이의 유도체를 값싸고 효과적으로 제조할 수 있는 방법에 관한 연구는 의약 산업에 있어서 매우 중요하다.Chiral 3-hydroxy pyrrolidine and derivatives thereof are chiral intermediates that are used as key intermediates of various chiral medicines such as antibiotics, analgesics, whole blood solubilizers, antipsychotics and the like. In addition, various compounds derived from 3-hydroxypyrrolidine or derivatives thereof, as well as the above-mentioned commercially available pharmaceutical products, show good pharmacological activity in various pharmaceutical fields, and the demand for such drugs is currently being developed. It is expected to increase. Therefore, the research on how to manufacture high optical purity chiral 3-hydroxy pyrrolidine and its derivatives inexpensively and effectively is very important in the pharmaceutical industry.

키랄 3-히드록시 피롤리딘 및 이의 유도체를 제조하기 위한 종래의 제조방법 은 다음과 같다.Conventional preparation methods for preparing chiral 3-hydroxy pyrrolidine and derivatives thereof are as follows.

먼저 자연계에서 얻을 수 있는 천연의 키랄 풀(chiral pool)로부터 화학적 변형을 통해 키랄 3-히드록시 피롤리딘 및 이의 유도체를 제조하는 기술이 보고되어 있다.First, techniques for preparing chiral 3-hydroxy pyrrolidine and its derivatives through chemical modification from natural chiral pools obtainable in nature have been reported.

천연물인 사과산(malic acid)을 출발 물질로 하여 벤질 아민과 축합 반응을 통해 키랄 N-벤질화된 3-히드록시 디아미드를 제조하고, 얻어진 화합물을 강력한 환원제를 사용한 환원 반응을 통하여 키랄 N-벤질-3-히드록시 피롤리딘을 제조하는 기술이 보고되어 있다 [Synth. Commun. 1983 , 13, 117; Synth. Commun. 1985 , 15, 587]. 또한 글루탐산으로부터 공지된 제조 방법 [미국특허 제3,823,187호]을 통하여 키랄 4-아미노-2-히드록시부티르산을 제조하고 이 화합물로부터 히드록시 보호화 반응 및 분자내 고리화 반응을 수행하여 보호기가 있는 3-히드록시 피롤리디논을 제조한 후 이를 강력한 환원제를 사용한 환원 반응을 통하여 키랄 N-벤질-3-히드록시 피롤리딘을 제조하는 기술이 보고되어 있다[Synth. Commun. 1986 , 16, 1815].A chiral N-benzylated 3-hydroxy diamide is prepared by condensation with benzyl amine using natural malic acid as a starting material, and the obtained compound is subjected to a chiral N-benzyl through a reduction reaction using a strong reducing agent. Techniques for preparing -3-hydroxy pyrrolidine have been reported [ Synth. Commun. 1983 , 13 , 117; Synth. Commun. 1985 , 15 , 587]. In addition, chiral 4-amino-2-hydroxybutyric acid is prepared from glutamic acid through a known production method [US Pat. No. 3,823,187], and hydroxy protection and intramolecular cyclization reactions are carried out from this compound to provide a protective group. A technique has been reported for preparing chiral N-benzyl-3-hydroxy pyrrolidine through the preparation of hydroxy pyrrolidinone and then reduction using a strong reducing agent [ Synth. Commun. 1986 , 16 , 1815.

이 제조기술은 분자 내에 포함되어 있는 아미드기의 환원반응을 용이하게 이루어야만 목적하는 키랄 3-히드록시 피롤리딘을 제조할 수 있다. 그러나 상기의 제조 방법들의 경우 비록 저가의 천연물로부터 고 부가가치의 키랄 3-히드록시 피롤리딘 및 이의 유도체를 제조할 수 있는 장점은 있다. 그러나, 상기 방법들은 아미드기의 환원 과정을 포함하며, 아미드기의 환원을 수행하기 위해, 상업적 대량생산에 적용이 어려운 강력한 환원제인 리튬 알루미늄 하이드라이드를 사용해야만 하거 나, 고가의 디보란(diborane)을 사용해야하는 관계로 상업적으로 응용하는 데 있어 바람직하지 못하다.This production technique can be easily produced by the reduction of the amide group contained in the molecule to produce the desired chiral 3-hydroxy pyrrolidine. However, in the case of the above production method, there is an advantage in that it is possible to prepare high value-added chiral 3-hydroxy pyrrolidine and derivatives thereof from inexpensive natural products. However, these methods involve the reduction of amide groups, and in order to carry out the reduction of amide groups, it is necessary to use lithium aluminum hydride, a powerful reducing agent which is difficult to apply to commercial mass production, or expensive diborane. It is not desirable for commercial applications because of the need to use.

키랄 풀을 이용한 또 다른 제조방법으로는 키랄 4-히드록시-2-피롤리딘 카르복실산을 2-시클로헥센-1-온과 시클로헥산올을 조합하여 처리함으로서 탈이산화탄소반응을 수행하여 키랄 3-히드록시 피롤리딘을 제조하는 방법이 보고되어 있다 [WO 91/09013호; 미국특허 제5,233,053호; Chem. Lett., 1986, 893]. 그러나 동 제조방법의 경우, 합성 방법이 까다로울 뿐 만 아니라 수율이 높지 않으므로 산업적 대량생산의 적용에는 많은 어려움이 있다.Another method using chiral pools is to treat chiral 4-hydroxy-2-pyrrolidine carboxylic acid in combination with 2-cyclohexen-1-one and cyclohexanol to perform a decarbonation reaction. A method of preparing hydroxy pyrrolidine has been reported [WO 91/09013; US Patent No. 5,233,053; Chem. Lett., 1986 , 893]. However, in the case of the manufacturing method, not only the synthesis method is difficult, but also the yield is not high, there are many difficulties in the application of industrial mass production.

키랄 풀을 출발물질로 이용한 일반적인 유기합성 공정 대신에, 효소나 미생물을 이용한 비대칭 합성을 이용하여 키랄 3-히드록시 피롤리딘 및 이의 유도체를 제조하는 방법이 보고되어 있다.Instead of a general organic synthesis process using chiral pool as a starting material, a method for preparing chiral 3-hydroxy pyrrolidine and its derivatives using asymmetric synthesis using enzymes or microorganisms has been reported.

즉, 라세믹의 N-벤질-3-히드록시 피롤리딘으로부터 다양한 효소 및 미생물을 이용하여 한가지의 이성질체에 대하여 입체 선택적인 에스테르화 반응을 수행함으로서 광학활성을 갖는 키랄 N-벤질-3-히드록시 피롤리딘을 제조하는 방법이 보고되어 있다 [일본특허 평6-211782호; 일본특허 평6-141876호; 일본특허 평4-131093호]. 상기 제조방법과는 달리 효소 및 미생물을 이용하여 N-치환된-3-아실 옥시 피롤리딘의 입체선택적 가수분해 반응을 통하여 키랄 N-치환된-3-히드록시 피롤리딘을 제조하는 방법도 보고되어 있다 [WO 95/03421; 일본특허 평7-116138호; 일본특허 평1-141600; Bull Chem. Soc, Jpn., 1996 , 69, 207]. 그러나 상기와 같이 생촉매를 사용하여 분할하는 제조과정은 효소반응의 특성상 효소의 회수, 목적물의 분리 및 정제가 어렵고, 상업적 대량 생산시 낮은 생산량으로 인해 산업화 적용에는 많은 제한이 있다.That is, chiral N-benzyl-3-hydride having optical activity by performing stereoselective esterification reaction on one isomer from various racemic enzymes and microorganisms from racemic N-benzyl-3-hydroxy pyrrolidine. A method for producing oxy pyrrolidine has been reported [Japanese Patent Laid-Open No. 6-211782; Japanese Patent No. Hei 6-141876; Japanese Patent No. Hei 4-131093]. Unlike the preparation method, a method of preparing chiral N-substituted-3-hydroxy pyrrolidine through stereoselective hydrolysis of N-substituted-3-acyl oxypyrrolidine using enzymes and microorganisms is also provided. Reported [WO 95/03421; Japanese Patent No. Hei 7-116138; Japanese Patent No. Hei 1-1141600; Bull Chem. Soc, Jpn., 1996 , 69 , 207]. However, the production process using the biocatalyst as described above is difficult to recover the enzyme, the separation and purification of the target due to the nature of the enzyme reaction, and due to the low production in commercial mass production, there are many limitations in the industrial application.

생촉매와는 달리 라세믹의 N-치환된-3-히드록시 피롤리딘으로부터 다양한 분할 시약을 사용하여 키랄 N-치환된-3-히드록시 피롤리딘을 제조하는 방법도 보고되어 있으나[일본특허 소61-63652호; 일본특허 평6-73000호], 목적물의 낮은 수율과 낮은 광학순도로 인해, 산업화에 적용하기에는 어렵다.Unlike biocatalysts, chiral N-substituted-3-hydroxy pyrrolidines have been reported using various cleavage reagents from racemic N-substituted-3-hydroxy pyrrolidines [Japan Patent no. 61-63652; Japanese Patent Laid-Open No. 6-73000], due to the low yield of the target and low optical purity, it is difficult to apply to industrialization.

화학적인 합성 방법을 통하여 키랄 3-히드록시 피롤리딘 및 이의 유도체를 제조하는 종래의 공지된 방법으로는 전구체인 키랄 1,2,4-부탄트리올 혹은 그 유도체로부터 N-치환된-3-히드록시 피롤리딘을 제조하고 이로부터 목적 화합물을 수득하는 방법이 공지되어 있다. 즉, 키랄 4-할로-3-히드록시 부티레이트로부터 환원 반응을 통하여 제조된 4-할로-3-히드록시 부탄올로부터 1차 알코올기를 선택적으로 이탈기로 전환시킨 후 벤질 아민과 반응시킴으로서 키랄 N-벤질-3-히드록시 피롤리딘을 제조하는 기술이 보고되어 있다 [유럽특허 제452,143호; 미국특허 제5,144,042호].Conventionally known methods for preparing chiral 3-hydroxy pyrrolidine and derivatives thereof through chemical synthesis methods include N-substituted-3-n from the precursor chiral 1,2,4-butanetriol or derivatives thereof. It is known to prepare hydroxy pyrrolidine and to obtain the desired compound therefrom. That is, from the 4-halo-3-hydroxy butanol prepared by reduction from chiral 4-halo-3-hydroxy butyrate, the primary alcohol group is selectively converted to a leaving group and then reacted with benzyl amine to react with chiral N-benzyl-. Techniques for preparing 3-hydroxy pyrrolidine have been reported [European Patent No. 452,143; US Patent No. 5,144,042.

상기 제조 방법의 경우 4-할로-3-히드록시 부탄올로부터 1차 알코올기 만을 선택적으로 이탈기로 전환시키기 쉽지 않을 뿐 아니라, 이 과정중에 아지리딘계, 아제피딘계의 유사 화합물이 생성되어, 목적화합물의 정제가 까다롭다. 따라서, 상기 방법은 목적화합물을 고순도로 제조하기에는 곤란하다.In the case of the above production method, not only the primary alcohol group is selectively converted from the 4-halo-3-hydroxy butanol to the leaving group, but also similar compounds of aziridine or azepidine are produced during this process. Tablets are tricky Therefore, this method is difficult to prepare the target compound in high purity.

또한 키랄 1,2,4-부탄트리올을 브롬화수소와 반응시켜 1번 위치와 4번 위치의 알코올기만을 선택적으로 브롬화 반응에 적용시켜 1,4-디브로모-2-부탄올을 제 조하고, 얻어진 화합물을 벤질아민과 반응시켜 키랄 N-벤질-3-히드록시 피롤리딘을 제조하는 기술이 공지되어 있다 [J. Med. Pharm. Chem., 1959, 1, 76]. 그러나 동 제조 방법은 브롬화 시약이 매우 유독할 뿐 아니라 고가이며 반응 종결 후 잔여의 브롬화 시약을 효과적으로 제거하기가 어렵다. 또한 제조 수율이 약 30% 이하의 수준으로 상업적 대량생산 시 가격적 경쟁력이 떨어진다는 단점이 있다.In addition, chiral 1,2,4-butanetriol is reacted with hydrogen bromide to selectively apply only alcohol groups in positions 1 and 4 to the bromination reaction to prepare 1,4-dibromo-2-butanol. The technique for producing chiral N-benzyl-3-hydroxy pyrrolidine by reacting the obtained compound with benzylamine is known [ J. Med. Pharm. Chem., 1959 , 1, 76]. However, the preparation method is not only very toxic to bromination reagents, but also expensive and difficult to effectively remove the remaining bromination reagents after the completion of the reaction. In addition, the production yield is less than about 30% has the disadvantage that the price competitiveness in commercial mass production is inferior.

최근 들어 키랄 4-할로 혹은 4-이탈기를 포함하는 3-히드록시 부티로나이트릴 혹은 이의 유도체들로부터 금속 촉매하에서 수소화 반응을 이용한 나이트릴기의 환원반응을 통하여 1차 아민을 생성하고 동시에 분자내 고리화 반응을 수행하여 키랄 3-히드록시 피롤리딘을 제조하는 방법이 공지되어 있다 [유럽특허 제347,818호; 유럽특허 제431,521호; 유럽특허 제269,258호]. 동 제조 방법은 종래의 화학적 합성 방법을 통한 제조공정에 비해 매우 단순한 제조 공정을 통하여 목적하는 키랄 3-히드록시 피롤리딘을 제조할 수 있다는 장점이 있다. 그러나 수소하에서 금속 촉매를 이용한 나이트릴기의 환원 반응시 야기되는 불순물, 즉, 분자간의 친핵성 치환 반응 및 축합반응에 의해 생성되는 불순물이 다량 생성되고 이를 제어하는 것이 용이하지 않기 때문에, 수율이 매우 낮고 정제가 어렵다는 단점이 있다 [Reduction in organic chemistry, Ellis Horwood Limited. 1984, p173].Recently, primary amines are produced from the 3-hydroxy butyronitrile containing chiral 4-halo or 4-leaving groups or derivatives thereof through reduction of nitrile groups using hydrogenation under metal catalysts and at the same time intramolecular rings. Processes for the production of chiral 3-hydroxy pyrrolidine are known by carrying out a chemical reaction [European Patent No. 347,818; European Patent No. 431,521; European Patent 269,258]. The manufacturing method has an advantage that the desired chiral 3-hydroxy pyrrolidine can be prepared through a very simple manufacturing process, compared to the conventional manufacturing process through chemical synthesis. However, since a large amount of impurities generated during the reduction reaction of the nitrile group using a metal catalyst under hydrogen, i.e., impurities produced by intermolecular nucleophilic substitution reaction and condensation reaction are produced and are not easy to control, the yield is very low. It is difficult to purify [ Reduction in organic chemistry , Ellis Horwood Limited. 1984 , p 173].

이상에서 언급한 바와 같이 고 광학순도의 키랄 3-히드록시 피롤리딘 및 이의 유도체의 제조를 위한 종래의 기술들의 경우, 상업적 대량생산에의 적용에 있어 개선되어야 하는 많은 문제점들을 내포하고 있다. 따라서 고 광학순도의 키랄 3-히드록시 피롤리딘 및 이의 유도체를 효과적으로 제조하는 방법에 대한 연구는 의약 산업에 있어서 매우 중요한 개발 과제라 할 수 있다.As mentioned above, the conventional techniques for the preparation of high optical purity chiral 3-hydroxy pyrrolidine and derivatives thereof include many problems that need to be improved in application to commercial mass production. Therefore, the research on how to effectively prepare high optical purity chiral 3-hydroxy pyrrolidine and derivatives thereof is a very important development task in the pharmaceutical industry.

본 발명자들은 상술한 종래기술의 문제점을 해결하기 위하여 면밀히 연구한 결과, 키랄 3-히드록시 피롤리딘 및 이의 유도체를, 상업적으로 구입이 용이하고 가격이 저렴한 출발물질을 사용하여 온화한 반응조건하에서 대량생산에 적합한 신규의 제조방법을 개발하였다.The present inventors have carefully studied to solve the above-mentioned problems of the prior art, and have found that chiral 3-hydroxy pyrrolidine and its derivatives are commercially available and inexpensive using a starting material in a large amount under mild reaction conditions. New manufacturing methods suitable for production have been developed.

따라서 본 발명의 목적은 키랄 3-히드록시 피롤리딘 및 이의 유도체의 효율적 신규 제조방법을 제공하는 것이다.It is therefore an object of the present invention to provide an efficient novel process for the preparation of chiral 3-hydroxy pyrrolidine and derivatives thereof.

본 발명의 다른 목적은, 출발물질의 광학순도의 저하 없이, 99.0%ee 또는 그 이상의 고 광학순도를 갖는 키랄 3-히드록시 피롤리딘 및 이의 유도체의 효율적 신규 제조방법을 제공하는 것이다.It is another object of the present invention to provide an efficient novel process for the preparation of chiral 3-hydroxy pyrrolidine and derivatives thereof having a high optical purity of 99.0% ee or higher, without lowering the optical purity of the starting materials.

본 발명의 또 다른 목적은 상업적 생산 시 공정상 안전하고 대량생산이 용이할 뿐 아니라 순도가 높은 키랄 3-히드록시 피롤리딘 및 이의 유도체의 효율적 신규 제조방법을 제공하는 것이다.It is still another object of the present invention to provide an efficient novel process for preparing chiral 3-hydroxy pyrrolidine and derivatives thereof, which is not only safe in process and easy to mass-produce in commercial production, but also high in purity.

본 발명의 바람직한 구현예에 따르면, (a) 4-할로-3-히드록시부티르산에스테르의 히드록시기를 보호화하는 단계, (b) 단계 (a)에서 얻어진 화합물의 에스테르기를 환원시켜 대응되는 알코올 화합물을 제조하는 단계, (c) 단계 (b)에서 얻어진 화합물을 술포닐 할라이드와 반응시켜, 대응되는 설포네이트 화합물을 제조하는 단계, (d) 단계 (c)에서 얻어진 화합물을 프라이머리 아민과 반응시켜 3-히드록시-보호된 피롤리딘 화합물을 수득하는 단계, 및 (e) 단계 (d)에서 얻어진 화합물을 탈 보호화하여 목적하는 화합물을 제조하는 단계를 포함하는, 3-히드록시 피롤리딘 및 이의 유도체의 제조방법이 제공된다.According to a preferred embodiment of the present invention, (a) protecting the hydroxy group of 4-halo-3-hydroxybutyric acid ester, (b) reducing the ester group of the compound obtained in step (a) to reduce the corresponding alcohol compound. Preparing, (c) reacting the compound obtained in step (b) with a sulfonyl halide to produce a corresponding sulfonate compound, (d) reacting the compound obtained in step (c) with a primary amine 3 3-hydroxy pyrrolidine, comprising the steps of: obtaining a hydroxy-protected pyrrolidine compound, and (e) deprotecting the compound obtained in step (d) to produce the desired compound, and Methods of preparing derivatives thereof are provided.

본 발명의 보다 바람직한 구현예에 따르면, 상기 출발물질인 4-할로-3-히드록시부티르산에스테르가 에틸-4-할로-3-히드록시부티르레이트 또는 메틸-4-할로-3-히드록시부티르레이트인, 3-히드록시 피롤리딘 및 이의 유도체의 제조방법이 제공된다.According to a more preferred embodiment of the invention, the starting material 4-halo-3-hydroxybutyric acid ester is ethyl-4-halo-3-hydroxybutyrate or methyl-4-halo-3-hydroxy moiety Methods of preparing 3-hydroxy pyrrolidine and derivatives thereof, which are tyrates, are provided.

본 발명의 다른 바람직한 구현예에 따르면, 상기 단계 (a)에서, 히드록시기가 이소부틸렌에 의해 보호화되는, 키랄 3-히드록시 피롤리딘 및 이의 유도체의 제조방법이 제공된다.According to another preferred embodiment of the present invention, in step (a), there is provided a process for preparing chiral 3-hydroxy pyrrolidine and derivatives thereof, wherein the hydroxy group is protected by isobutylene.

본 발명의 또 다른 바람직한 구현예에 따르면, 각 중간 단계의 생성물에 대한 정제과정을 거치지 않고 다음 단계에 적용되는, 3-히드록시 피롤리딘 및 이의 유도체의 제조방법이 제공된다.According to another preferred embodiment of the present invention, there is provided a process for preparing 3-hydroxy pyrrolidine and its derivatives, which is applied to the next step without undergoing purification of each intermediate step product.

본 발명은 3-히드록시 피롤리딘 및 이의 유도체의 효율적 제조 방법에 관한 것으로서, 상기 방법은 (a) 화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르의 히드록시기를 보호화하는 단계, (b) 단계 (a)에서 얻어진 화합물의 에스테르기를 환원시켜 대응되는 알코올 화합물을 제조하는 단계, (c) 단계 (b)에서 얻어진 화합물을 술포닐 할라이드와 반응시켜, 대응되는 설포네이트 화합물을 제조하는 단계, (d) 단계 (c)에서 얻어진 화합물을 프라이머리 아민과 반응시켜 히드록시-보호된 피롤리딘 화합물을 수득하는 단계, 및 (e) 단계 (d)에서 얻어진 화합물을 탈보 호화하여 화학식 1을 갖는 목적하는 3-히드록시 피롤리딘 및 이의 유도체를 제조하는 단계를 포함한다.The present invention relates to a method for efficiently preparing 3-hydroxy pyrrolidine and derivatives thereof, the method comprising: (a) protecting a hydroxy group of 4-halo-3-hydroxybutyric acid ester represented by the formula (2), (b) reducing the ester group of the compound obtained in step (a) to produce a corresponding alcohol compound, (c) reacting the compound obtained in step (b) with a sulfonyl halide to produce a corresponding sulfonate compound (D) reacting the compound obtained in step (c) with a primary amine to obtain a hydroxy-protected pyrrolidine compound, and (e) deboring the compound obtained in step (d) to formula 1 Preparing the desired 3-hydroxy pyrrolidine and derivatives thereof.

Figure 112007052123633-PAT00001
Figure 112007052123633-PAT00001

Figure 112007052123633-PAT00002
Figure 112007052123633-PAT00002

상기 화학식 1 또는 2에서, *는 키랄 센터를 의미하며, X는 할로겐원자(F, Cl, Br 또는 I)를 의미하며, 바람직하게는 Cl이다. R1은 에스테르형성기를 의미하며, 바람직하게는 C1-C4 알킬기이며, 더더욱 바람직하게는 에틸기 또는 메틸기이다. R3은 수소; C1-C10의 알킬기; C3-C8의 싸이크로알킬기; C1-C10의 알콕시기; C6-C10 아릴기; C4-C9 헤테로아릴기; C7-C10 아르알킬기; C3-C11 아실알킬기; C3-C11 아실옥시알킬기; C2-C10 에테르기; C2-C10 티오에테르기; C2-C10 케톤기; C2-C10 알데히드기; C2-C10 에스터기; (CH2)m-R4(이때 R4는 C1-C10의 알킬기, C3-C8의 싸이크로알킬기, C1-C10의 알콕시기, C6-C10 아릴기, C4 -C9 헤테로아릴기, C7-C10 아르알킬기, C3-C11 아실알킬기, C3-C11 아실옥시알킬기, C2-C10 에테르기, C2-C10 티오에테르기, C2-C10 케톤기, C2-C10 알데히드기 또는 C2-C10 에스터기를 나타내고, m은 1에서 8까지의 정수이다); 또는 할로겐원자, C1-C4 알킬기, 시아노, 히드록시기, 아미노기, 티올기, 니트로기 또는 아민기에 의해 치환된 이들의 치환체를 나타낸다.In Chemical Formula 1 or 2, * means chiral center, X means halogen atom (F, Cl, Br or I), preferably Cl. R 1 means an ester forming group, preferably a C 1 -C 4 alkyl group, even more preferably an ethyl group or a methyl group. R 3 is hydrogen; An alkyl group of C 1 -C 10 ; A C 3 -C 8 cycloalkyl group; An alkoxy group of C 1 -C 10 ; C 6 -C 10 aryl group; C 4 -C 9 heteroaryl group; C 7 -C 10 aralkyl group; C 3 -C 11 acylalkyl group; C 3 -C 11 acyloxyalkyl group; C 2 -C 10 ether group; C 2 -C 10 thioether group; C 2 -C 10 ketone group; C 2 -C 10 aldehyde group; C 2 -C 10 ester group; (CH 2) m -R 4 (wherein R 4 is an alkoxy group of C 1 -C 10 alkyl, C 3 alkyl group Cy croissant -C 8, C 1 -C 10 a, C 6 -C 10 aryl group, C 4 - C 9 heteroaryl group, C 7 -C 10 aralkyl, C 3 -C 11 acyl group, C 3 -C 11 acyloxy group, C 2 -C 10 ether, C 2 -C 10 thioether groups, C 2 -C 10 ketone group, C 2 -C 10 aldehyde group or C 2 -C 10 ester group, m is an integer from 1 to 8); Or substituents substituted by halogen atoms, C 1 -C 4 alkyl groups, cyano, hydroxy groups, amino groups, thiol groups, nitro groups or amine groups.

I. 화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르의 히드록시기의 보호화반응I. Protection reaction of the hydroxyl group of 4-halo-3-hydroxybutyric acid ester represented by the formula (2)

화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르의 히드록시기의 보호화는 당해분야에서 널리 알려진 히드록시 보호기를 사용하여 수행된다. 히드록시 보호기의 예로는 메톡시메틸기, 벤질옥시메틸기, 테트라히드로피란기, 테트라히드로퓨란기, t-부틸기, 트리페닐메틸기, 벤질기, 알릴기, 트리메틸실릴기, t-부틸디메틸실릴기, 트리페닐실릴기, 트리이소프로필실릴기, t-부틸카르보닐기, 벤조일기 등을 들 수 있다. 바람직하게는 히드록시 보호기가 t-부틸기인 것이다. t-부틸기에 의한 히드록시기의 보호화는 화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르를 산촉매 하에서 이소부티렌과 반응시킴으로써 용이하게 성취되었다. t-부틸기에 의한 히드록시기의 보호화는 높은 반응수율과 탈보호화의 간편함 등에서의 이점을 제공하였다. 이때 사용되는 산 촉매로는 특별히 제한되지 아니하며, 무기산, 유기산 및 산성 이온교환수지 등이 널리 사용될 수 있다. 이들은 단독으로 사용할 수도 있고, 2종 이상을 병행할 수도 있다. 이때 산 촉매의 사용량은, 화학식 2의 4-할로-3-히드록시부티르산에스테르를 기준으로, 0.01-0.5 당량, 바람직하게는 0.01-0.2 당량, 가장 바람직하게는 0.05-0.15 당량의 범위이다. 상기 보호화 반응에 사용되는 유기용매는 특별히 제한되지 아니하며, 당해 분야에서 통상 사용되는 유기 용매가 널리 사용될 수 있다. 유기 용매의 예로는, 지방족 또는 방향족의 탄화수소 용매, 할로겐화 탄화수소 용매, 에스테르 용매 및 에테르류의 용매를 사용할 수 있다. 구체적으로는, 톨루엔, 벤젠과 같은 방향족 유기용매, 헥산, 헤프탄, 시클로헥산과 같은 지방족 탄화수소 용매, 디클로로메탄, 디클로로에탄, 클로로포름과 같은 할로겐화 알칸, 에틸아세테이트 등과 같은 에스테르 용매, 에틸에테르, 테트라히드로퓨란, 디옥산 등과 같은 에테르류의 용매들이 사용가능하다. 반응온도는 0-50℃의 범위 내인 것이 바람직하다. 보다 바람직하게는, 10-40℃이다. 얻어진 화학식 3의 화합물은, 특별한 정제공정(예를 들면, 분별증류, 재결정 등) 없이, 차기 반응에 사용되어도 무방하다. 이것은 공정의 단순화와 수율의 상승을 추가적으로 제공한다. 히드록시 보호화 반응의 결과로서 아래의 화학식 3을 갖는 4-할로-3-히드록시-보호된 부티르산 에스테르가 얻어진다.Protection of the hydroxy group of 4-halo-3-hydroxybutyric acid ester represented by the formula (2) is carried out using a hydroxy protecting group well known in the art. Examples of the hydroxy protecting group include methoxymethyl group, benzyloxymethyl group, tetrahydropyran group, tetrahydrofuran group, t-butyl group, triphenylmethyl group, benzyl group, allyl group, trimethylsilyl group, t-butyldimethylsilyl group, Triphenylsilyl group, triisopropylsilyl group, t-butylcarbonyl group, benzoyl group and the like. Preferably the hydroxy protecting group is a t-butyl group. The protection of the hydroxy group by the t-butyl group was easily achieved by reacting the 4-halo-3-hydroxybutyric acid ester represented by the formula (2) with isobutyrene under an acid catalyst. The protection of hydroxy groups by t-butyl groups provided advantages such as high reaction yield and ease of deprotection. The acid catalyst used is not particularly limited, and inorganic acids, organic acids and acidic ion exchange resins may be widely used. These may be used independently and may use 2 or more types together. The acid catalyst is used in the range of 0.01-0.5 equivalents, preferably 0.01-0.2 equivalents, and most preferably 0.05-0.15 equivalents, based on 4-halo-3-hydroxybutyric acid ester of the formula (2). The organic solvent used in the protection reaction is not particularly limited, and organic solvents commonly used in the art may be widely used. As examples of the organic solvent, aliphatic or aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents and solvents of ethers can be used. Specifically, aromatic organic solvents such as toluene, benzene, aliphatic hydrocarbon solvents such as hexane, heptane, cyclohexane, halogenated alkanes such as dichloromethane, dichloroethane, chloroform, ester solvents such as ethyl acetate, ethyl ether, tetrahydro Solvents of ethers such as furan, dioxane and the like can be used. It is preferable that reaction temperature exists in the range of 0-50 degreeC. More preferably, it is 10-40 degreeC. The obtained compound of the formula (3) may be used for the next reaction without a special purification step (for example, fractional distillation, recrystallization, etc.). This further provides for simplification of the process and increase in yield. As a result of the hydroxy protection reaction, a 4-halo-3-hydroxy-protected butyric acid ester having the formula (3) below is obtained.

Figure 112007052123633-PAT00003
Figure 112007052123633-PAT00003

상기 화학식 3에서, X 및 R1은 화학식 2에서 정의된 바와 같고, P는 메톡시메틸기, 벤질옥시메틸기, 테트라히드로피란기, 테트라히드로퓨란기, t-부틸기, 트 리페닐메틸기, 벤질기, 알릴기, 트리메틸실릴기, t-부틸디메틸실릴기, 트리페닐실릴기, 트리이소프로필실릴기, t-부틸카르보닐기, 벤조일기 등의 히드록시 보호기를 의미하고, 바람직하게는 t-부틸기이다.In Formula 3, X and R 1 are as defined in Formula 2, P is a methoxymethyl group, benzyloxymethyl group, tetrahydropyran group, tetrahydrofuran group, t-butyl group, triphenylmethyl group, benzyl group And hydroxy protecting groups such as allyl group, trimethylsilyl group, t-butyldimethylsilyl group, triphenylsilyl group, triisopropylsilyl group, t-butylcarbonyl group and benzoyl group, preferably t-butyl group. .

II. 4-할로-3-히드록시-보호된 부티르산 에스테르의 환원에 의한 대응되는 알코올 화합물의 합성II. Synthesis of Corresponding Alcohol Compounds by Reduction of 4-Halo-3-hydroxy-Protected Butyric Acid Ester

화학식 3으로 표시되는 4-할로-3-히드록시-보호된 부티르산 에스테르는 환원에 의해 대응되는 제1차 알코올 화합물로 전환된다. 상기 환원반응에 사용될 수 있는 환원제의 예로는 보레인-메틸 설파이드 착물(borane-methylsulfide complex), 보레인-테트로하이드로퓨란 착물(borane-tetrahydrofuran complex), 디보레인(diborane), 리튬알루미늄하이드라이드(lithium aluminium hydride), 수소화붕소 금속염을 들 수 있다. 이들의 환원제와 함께 일반적으로 알려져 있는 활성화제를 병용하여 사용할 수 있다. 사용될 수 있는 활성화제로는 보론트리플루오라이드 디에틸이스레이드(boron trifluoride diethyl etherate), 칼슘클로라이드, 리튬클로라이드, 요오드(I2), 메틸알코올 등을 들 수 있다. 바람직하게는 수소화 붕소 알칼리금속염과 보론트리플루오라이드 디메틸이스레이드(boron trifluoride diethyl etherate)의 혼합물이다. 상기 수소화붕소 알칼리 금속염은, 화학식 3의 화합물에 대해 0.5-2.0당량, 바람직하게는 0.8-1.5당량 사용된다. 활성화제는, 수소화붕소 금속염에 대해, 0.5-2.0당량, 바람직하게는 1.0-1.5당량 사용된다.The 4-halo-3-hydroxy-protected butyric acid ester represented by the formula (3) is converted to the corresponding primary alcohol compound by reduction. Examples of reducing agents that can be used in the reduction reaction include borane-methylsulfide complex, borane-tetrahydrofuran complex, borane-tetrahydrofuran complex, diborane, lithium aluminum hydride ( lithium aluminum hydride) and a boron hydride metal salt. Generally known activating agents can be used in combination with these reducing agents. Examples of activators that can be used include boron trifluoride diethyl etherate, calcium chloride, lithium chloride, iodine (I 2 ), methyl alcohol and the like. Preferably it is a mixture of boron hydride alkali metal salt and boron trifluoride diethyl etherate. The boron hydride alkali metal salt is used in the amount of 0.5-2.0 equivalents, preferably 0.8-1.5 equivalents, based on the compound of formula (3). The activator is used in an amount of 0.5-2.0 equivalents, preferably 1.0-1.5 equivalents, relative to the boron hydride metal salt.

상기 환원반응에 사용되는 용매로는 특별히 제한되지 아니하며, 당해 분야에 서 통상 사용되는 용매가 사용된다. 구체적으로, 지방족 또는 방향족의 탄화수소 용매, 할로겐화 탄화수소 용매, 에테르 및 알코올이 사용될 수 있다. 이중에서도 독성이 적고 가격이 저렴한 유기용매가 채용될 수 있다. 예를 들면 톨루엔, 에탄올, 이소프로판올, 테트라히드로퓨란, 1,4-디옥산 등을 들 수 있다. 용매의 사용량은, 화학식 3의 화합물에 대해, 중량비로 1-10배의 범위내에서 사용될 수 있다. 바람직하게는 2-5배이다. 반응온도는 통상 0-100℃, 바람직하게는 20-50℃에서 수행된다.The solvent used for the reduction reaction is not particularly limited, and a solvent usually used in the art is used. Specifically, aliphatic or aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ethers and alcohols can be used. Among these, an organic solvent having low toxicity and low cost may be employed. For example, toluene, ethanol, isopropanol, tetrahydrofuran, 1,4-dioxane, etc. are mentioned. The amount of the solvent used may be used within a range of 1-10 times by weight based on the compound of Formula 3. Preferably it is 2-5 times. The reaction temperature is usually carried out at 0-100 占 폚, preferably 20-50 占 폚.

에스테르기의 환원반응의 결과로서, 아래의 화학식 4를 갖는 제1차 알코올 화합물이 얻어진다. 얻어진 화학식 4의 화합물은, 특별한 정제공정 없이, 차기 반응에 사용되어도 무방하다.As a result of the reduction reaction of the ester group, a primary alcohol compound having the following formula (4) is obtained. The obtained compound of formula 4 may be used in the next reaction without any special purification step.

Figure 112007052123633-PAT00004
Figure 112007052123633-PAT00004

상기 화학식 4에서, X 및 P는 상기에서 정의된 바와 같다.In Formula 4, X and P are as defined above.

III. 화학식 4를 갖는 화합물의 히스록시기를 이탈기로의 전환III. Conversion of hydroxyl groups of compounds of formula 4 to leaving groups

환원 반응에 의해 얻어진 화학식 4의 화합물은 술포닐 할라이드와 반응하여, 히드록시기가 이탈기로 전환된다. 결과적으로, 대응되는 화학식 5를 갖는 설포네이트 화합물이 얻어진다.The compound of formula (4) obtained by the reduction reaction reacts with sulfonyl halide to convert the hydroxy group into a leaving group. As a result, a sulfonate compound having the corresponding formula (5) is obtained.

Figure 112007052123633-PAT00005
Figure 112007052123633-PAT00005

상기 화학식 5에서, X 및 P는 상기에서 정의된 바와 같고, Sul은 술포닐기를 의미한다.In Formula 5, X and P are as defined above, Sul means a sulfonyl group.

화학식 4로 표시되는 화합물은 술포닐 할라이드와 반응하여 대응되는 설포네이트 화합물로 전환된다. 술포닐 할라이드는 R2SO2X (여기서, R2는 C1-C10 알킬기; C6-C10 아릴기; 니트로기, 메틸기, 에틸기, 시아노기, 플루오로기 또는 클로로기로 치환된 C1-C10 알킬기; 니트로기, 메틸기, 에틸기, 시아노, 플루오로기 또는 클로로기로 치환된 C6-C10 아릴기를 의미하고, X는 F, Cl, Br 또는 I를 의미한다)로 표현된다. 구체적 예로서는, 메탄술포닐 클로라이드(MsCl), p-톨루엔술포닐 클로라이ㄷ드(TsCl), 벤젠술포닐 클로라이드, 트리플루오로메탄술포닐 클로라이드 또는 니트로벤젠술포닐 클로라이드를 들 수 있다. 상기 반응은 통상 염기의 존재 하에서 수행된다. 사용가능한 염기의 예로는 이미다졸, 2,6-루티딘, N,N-디메틸아미노 피리딘 및 이들의 염, 제3급 아민 및 이들의 수화물을 들 수 있으며, 바람직하기로는 트리알킬아민이다. 트리알킬아민의 예로는 트리메틸아민, 트리에틸아민 및 디이소프로필에틸아민을 들 수 있다. 상기 염기는, 화학식 4로 표시되는 화합물을 기준으로, 0.8-10 당량, 바람직하게는, 1.0-3.0 당량 첨가된다. 상기 반응에 사용되는 유 기용매는 특별히 제한되지 아니하며, 당해 분야에서 통상 사용되는 유기 용매가 널리 사용될 수 있다. 유기 용매의 예로는, 지방족 또는 방향족의 탄화수소 용매, 할로겐화 탄화수소 용매 및 에테르류의 용매를 사용할 수 있다. 구체적으로는, 톨루엔, 벤젠과 같은 방향족 유기용매, 디클로로메탄, 클로로포름과 같은 할로겐화 알칸, 에틸에테르, 테트라히드로퓨란, 디옥산 등과 같은 에테르류의 용매들이 사용가능하다. 반응온도는 -20-40℃의 범위 내인 것이 바람직하다. 보다 바람직하게는, 0-30℃이다. 얻어진 화학식 5의 화합물은, 특별한 정제공정 없이, 차기 반응에 사용되어도 무방하다.The compound represented by the formula (4) is converted to the corresponding sulfonate compound by reaction with a sulfonyl halide. The sulfonyl halide is R 2 SO 2 X (wherein R 2 is a C 1 -C 10 alkyl group; C 6 -C 10 aryl group; C 1 substituted with nitro group, methyl group, ethyl group, cyano group, fluoro group or chloro group) -C 10 alkyl group; a nitro group, a methyl group, an ethyl group, a cyano group or a chloro group means a substituted C 6 -C 10 aryl and fluoro, X is represented by means F, Cl, Br or I). Specific examples include methanesulfonyl chloride (MsCl), p-toluenesulfonyl chloride (TsCl), benzenesulfonyl chloride, trifluoromethanesulfonyl chloride or nitrobenzenesulfonyl chloride. The reaction is usually carried out in the presence of a base. Examples of bases that can be used include imidazole, 2,6-lutidine, N, N-dimethylamino pyridine and salts thereof, tertiary amines and hydrates thereof, preferably trialkylamines. Examples of trialkylamines include trimethylamine, triethylamine and diisopropylethylamine. The base is added in an amount of 0.8-10 equivalents, preferably 1.0-3.0 equivalents, based on the compound represented by the formula (4). The organic solvent used in the reaction is not particularly limited, and organic solvents commonly used in the art may be widely used. As examples of the organic solvent, aliphatic or aromatic hydrocarbon solvents, halogenated hydrocarbon solvents and solvents of ethers can be used. Specifically, solvents of aromatic organic solvents such as toluene, benzene, halogenated alkanes such as dichloromethane, chloroform, ethers such as ethyl ether, tetrahydrofuran, dioxane and the like can be used. It is preferable that reaction temperature exists in the range of -20-40 degreeC. More preferably, it is 0-30 degreeC. The obtained compound of formula (5) may be used for the next reaction without any special purification step.

IV. 화학식 5를 갖는 화합물과 프라이머리 아민과의 반응에 의한 3-히드록시-보호된 피롤리딘 화합물의 합성IV. Synthesis of 3-hydroxy-protected Pyrrolidine Compound by Reaction of Compound Having Formula 5 with Primary Amine

화학식 5로 표시되는 화합물은 R3NH2(여기서, R3의 정의는 화학식 1에서 정의된 것과 같다)로 표현되는 프라이머리 아민(또는 제1차 아민)과의 반응에 의해 화학식 6을 갖는 3-히드록시-보호된 피롤리딘 화합물이 얻어진다.Compound represented by the formula (5) is a compound having a formula (6) by reaction with a primary amine (or primary amine) represented by R 3 NH 2 (wherein the definition of R 3 is as defined in formula 1) A hydroxy-protected pyrrolidine compound is obtained.

Figure 112007052123633-PAT00006
Figure 112007052123633-PAT00006

상기 화학식 6에서, P와 R3은 상기에 정의된 바와 같다.In Formula 6, P and R 3 are as defined above.

상기 반응은 염기의 존재하에서 수행되는 것이 좋다. 무기염기 또는 유기염 기가 채용될 수 있다. 사용가능한 무기염기로는 알칼리금속염 또는 알칼리토족 금속의 탄산염, 탄화수소염 및 수산화물 등을 들 수 있다. 구체적으로, 탄산리튬, 탄산나트륨, 탄산칼륨 및 탄산세슘, 리튬중탄산염, 나트륨중탄산염, 칼륨중탄산염 및 세슘중탄산염, 인산리튬, 인산나트륨, 인산칼륨, 인산세슘, 수산화나트륨, 수산화칼슘 등이 사용될 수 있다. 유기염기의 예로는 전술한 트리알킬아민이 채용될 수 있다. 상기 염기는, 화학식 5의 화합물을 기준으로, 1-10 당량, 바람직하게는 1-5 당량, 가장 바람직하게는 1.1-2 당량의 범위에서 사용된다. 유기 용매의 예로는, 알코올류, 지방족 또는 방향족의 탄화수소 용매, 할로겐화 탄화수소 용매 및 에테르류의 용매를 사용할 수 있다. 구체적으로는, 메틸알코올, 에틸알코올, 이소프로판올 등과 같은 알코올류, 톨루엔, 벤젠과 같은 방향족 유기용매, 디클로로메탄, 클로로포름과 같은 할로겐화 알칸, 에틸에테르, 테트라히드로퓨란, 디옥산 등과 같은 에테르류의 용매들이 사용가능하다. 바람직하게는 알코올류이다. 반응온도는 0-100℃의 범위 내인 것이 바람직하다. 보다 바람직하게는, 실온-80℃이다. 얻어진 화학식 6의 화합물은, 특별한 정제공정 없이, 차기 반응에 사용되어도 무방하다. The reaction is preferably carried out in the presence of a base. Inorganic or organic bases may be employed. Examples of the inorganic base that can be used include carbonates, hydrocarbon salts and hydroxides of alkali metal salts or alkaline earth metals. Specifically, lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate and cesium bicarbonate, lithium phosphate, sodium phosphate, potassium phosphate, cesium phosphate, sodium hydroxide, calcium hydroxide and the like can be used. As examples of the organic base, the aforementioned trialkylamine may be employed. The base is used in the range of 1-10 equivalents, preferably 1-5 equivalents, and most preferably 1.1-2 equivalents, based on the compound of formula 5. As examples of the organic solvent, alcohols, aliphatic or aromatic hydrocarbon solvents, halogenated hydrocarbon solvents and solvents of ethers can be used. Specifically, alcohols such as methyl alcohol, ethyl alcohol and isopropanol, aromatic organic solvents such as toluene and benzene, halogenated alkanes such as dichloromethane and chloroform, ethers such as ethyl ether, tetrahydrofuran and dioxane Can be used. Preferably it is alcohol. It is preferable that reaction temperature exists in the range of 0-100 degreeC. More preferably, it is room temperature-80 degreeC. The obtained compound of formula 6 may be used in the next reaction without any special purification step.

V. 화학식 6을 갖는 3-히드록시-보호된 피롤리딘 화합물의 탈보호화 반응에 의한 3-히드록시 피롤리딘 화합물의 합성V. Synthesis of 3-hydroxypyrrolidine Compounds by Deprotection of 3-hydroxy-Protected Pyrrolidine Compounds Having Formula 6

화학식 5로 표시되는 화합물을 탈보호화에 의해 목적물질인 화학식 1로 표시되는 3-히드록시 피롤리딘 및 이의 유도체가 얻어진다. 탈보호화 반응 조건은 해당 기술분야에서 통상의 지식을 가진 자에게 널리 공지되어 있다. 예를 들면, t-부틸 기가 사용될 경우, 산성 조건에서 탈보호화가 용이하게 성취된다. 사용가능한 산으로는 특별히 한정되지 않으나, 실용성면에서 무기산이 바람직하고, 그중에서도 염산 및 황산이 바람직하다. 이들은 단독으로 사용할 수도 있고, 2종 이상을 병행할 수도 있다. 또한, 산을 물로 희석하여 사용할 수도 있다. 상기 산은, 화학식 6의 화합물을 기준으로, 1-10 당량, 바람직하게는 1-5 당량, 가장 바람직하게는 1.1-3 당량의 범위에서 사용된다. 반응온도는 0-100℃의 범위 내인 것이 바람직하고, 보다 바람직하게는 실온-80℃이다. 상기 반응은 통상 물에서 수행하는데, 유기용매 또는 유기용매와 물의 혼합용매를 사용하여도 무방하다.By deprotection of the compound represented by the formula (5), 3-hydroxy pyrrolidine represented by the formula (1) and a derivative thereof are obtained. Deprotection reaction conditions are known in the art. It is well known to those skilled in the art. For example, when t-butyl groups are used, deprotection is easily achieved under acidic conditions. The acid that can be used is not particularly limited, but an inorganic acid is preferable in view of practicality, and hydrochloric acid and sulfuric acid are particularly preferred. These may be used independently and may use 2 or more types together. The acid can also be diluted with water and used. The acid is used in the range of 1-10 equivalents, preferably 1-5 equivalents, and most preferably 1.1-3 equivalents, based on the compound of formula 6. It is preferable that reaction temperature exists in the range of 0-100 degreeC, More preferably, it is room temperature-80 degreeC. The reaction is usually carried out in water, and an organic solvent or a mixed solvent of organic solvent and water may be used.

상기 탈보호화반응이 완결되면, 유기용매를 사용하여 추출방법으로 유기 불순물을 제거할 수 있다. 이때 사용가능한 용매로는 톨루엔, 벤젠과 같은 방향족 유기용매, 디클로로메탄, 디클로로에탄, 클로로포름과 같은 할로겐화 알칸, 에틸에테르 등과 같은 에테르류, 에틸아세테이트와 같은 에스테르 등이다. When the deprotection reaction is completed, organic impurities may be removed by an extraction method using an organic solvent. At this time, the solvent may be an aromatic organic solvent such as toluene, benzene, halogenated alkanes such as dichloromethane, dichloroethane, chloroform, ethers such as ethyl ether, esters such as ethyl acetate, and the like.

목적화합물의 자유 염기(free base)는 얻어진 상기 생성물염을 0.8-5당량(바람직하게는 1-2당량)의 무기염기로 처리하고, 무기염의 여과 제거, 또는 유기용매를 사용하여 추출방법에 의해 얻어진다. 이때 사용가능한 무기염기로는 알칼리금속염 또는 알칼리토족 금속의 탄산염 및 수산화물 등을 들 수 있다. 구체적으로, 탄산리튬, 탄산나트륨, 탄산칼륨 및 탄산세슘, 리튬중탄산염, 인산리튬, 인산나트륨, 인산칼륨, 인산세슘, 수산화나트륨, 수산화칼슘 등이 사용될 수 있다. 바람직하게는 수산화나트륨이다. 상기 염기는, 화학식 1의 화합물을 기준으로, 1-10 당량, 바람직하게는 1-5 당량, 가장 바람직하게는 1.1-2 당량의 범위에서 사용된다. The free base of the target compound is treated with 0.8-5 equivalents (preferably 1-2 equivalents) of inorganic base, and the obtained product salt is filtered out of the inorganic salt or extracted by using an organic solvent. Obtained. In this case, examples of the inorganic base that can be used include carbonates and hydroxides of alkali metal salts or alkaline earth metals. Specifically, lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate, lithium bicarbonate, lithium phosphate, sodium phosphate, potassium phosphate, cesium phosphate, sodium hydroxide, calcium hydroxide and the like can be used. Preferably sodium hydroxide. The base is used in the range of 1-10 equivalents, preferably 1-5 equivalents, and most preferably 1.1-2 equivalents, based on the compound of formula (1).

상기 화학식 2의 화합물로부터 목적하는 화학식 1의 화합물을 제조하는 전체 공정을 정리하면 아래의 반응식 1로 정리될 수 있다.Summarizing the entire process for preparing the compound of the formula (1) from the compound of the formula (2) can be summarized in the following scheme 1.

Figure 112007052123633-PAT00007
Figure 112007052123633-PAT00007

상기 반응식 1에서, X, R1, R3, P 및 Sul은 상기에서 정의된 바와 같다.In Scheme 1, X, R 1 , R 3 , P and Sul are as defined above.

상기에 명시된 각 단계를 거치면서, 출발물질의 광학순도는 실질적으로 유지된다. 따라서, 출발물질로서 광학활성체가 사용될 경우, 고광학순도를 갖는 키랄 3-히드록시 피롤리딘 및 이의 유도체가 얻어진다. 각 단계들은 온화한 조건에서 수행되고, 특별한 정제공정을 요구하지 아니한다. 결과적으로, 본 발명에 따른 방법은 고광학순도를 갖는 3-히드록시 피롤리딘 및 이의 유도체의 산업적 대량생산에 유용하게 적용될 수 있다.Through each of the steps specified above, the optical purity of the starting material is substantially maintained. Thus, when an optically active agent is used as a starting material, chiral 3-hydroxy pyrrolidine and derivatives thereof having high optical purity are obtained. Each step is carried out under mild conditions and does not require a special purification process. As a result, the method according to the invention can be usefully applied to the industrial mass production of 3-hydroxy pyrrolidine and its derivatives having high optical purity.

이하 실시예를 통해 본 발명을 보다 상세히 설명한다. 이들 실시예는 본 발명의 이해를 위해 제시되는 것으로서, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. These examples are presented for the understanding of the present invention, and the scope of the present invention is not limited to these examples.

실시예 1Example 1

고압반응기에 톨루엔 581mL, 에틸 S-4-클로로-3-히드록시부티르산에스테르 250.1g(1.501mol, 광학순도 99.3%ee) 및 H2SO4 14.7g(0.15mol)를 넣고, 이소부틸렌 191.2g(3.407mol)를 0℃에서 천천히 투입하였다. 이어서, 반응기를 밀폐하고 30℃에서 24시간 반응시켰다. 이때 반응압력은 약 2bar이였다. 반응혼합물의 온도를 10℃로 냉각 후, 압을 파기하고 NaHCO3 37.8g(0.45mol)의 수용액(461g)을 천천히 첨가한 후, 30분간 더 교반하여 주었다. 반응혼합물에 N2를 버블링하여 이소부틸렌을 제거하고, 층 분리 후, 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 에틸 S-4-클로로-3-t-부톡시부티르산에스테르 320.9g(미정제 수율 96%)를 수득하였다.Into a high pressure reactor, 581 mL of toluene, 250.1 g of ethyl S-4-chloro-3-hydroxybutyric acid ester (1.501 mol, optical purity 99.3% ee), and 14.7 g (0.15 mol) of H 2 SO 4 were added, and 191.2 g of isobutylene was added. (3.407 mol) was added slowly at 0 ° C. Subsequently, the reactor was sealed and reacted at 30 ° C. for 24 hours. At this time, the reaction pressure was about 2 bar. After cooling the temperature of the reaction mixture to 10 ° C, the pressure was broken and 37.8 g (0.45 mol) of NaHCO 3 aqueous solution (461 g) was slowly added, followed by further stirring for 30 minutes. Isobutylene was removed by bubbling N 2 to the reaction mixture, and after separating the layers, 30 g of Na 2 SO 4 was added to the organic layer, stirred for 30 minutes, and then a solid inorganic material was filtered out. Then, the solvent was removed under reduced pressure to give 320.9 g (crude yield 96%) of ethyl S-4-chloro-3-t-butoxybutyric acid ester in oil form.

실시예 2Example 2

고압반응기에 헥산 600mL, 에틸 S-4-클로로-3-히드록시부티르산에스테르 250.1g(1.501mol, 광학순도 99.3%ee) 및 H2SO4 14.7g(0.15mol)를 넣고, 이소부틸렌 191.2g(3.407mol)을 0℃에서 천천히 투입하였다. 이어서, 반응기를 밀폐하고 30℃에서 16시간 반응을 진행하였다. 이때 반응압력은 약 2bar이였다. 반응혼합물의 온 도를 10℃로 냉각 후, 압을 파기하고 NaHCO3 37.8g(0.45mol)의 수용액(461g)을 천천히 첨가한 후, 30분간 더 교반하여 주었다. 반응혼합물에 N2를 버블링하여 이소부틸렌을 제거하고, 층 분리 후, 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 에틸 S-4-클로로-3-t-부톡시부티르산에스테르 316.8g(미정제 수율 95%)를 수득하였다.In a high pressure reactor, 600 mL of hexane, 250.1 g of ethyl S-4-chloro-3-hydroxybutyric acid ester (1.501 mol, optical purity 99.3% ee), and 14.7 g (0.15 mol) of H 2 SO 4 were added, and 191.2 g of isobutylene was added. (3.407 mol) was added slowly at 0 ° C. Subsequently, the reactor was sealed and reacted at 30 ° C. for 16 hours. At this time, the reaction pressure was about 2 bar. After cooling the temperature of the reaction mixture to 10 ℃, the pressure was broken and NaHCO 3 37.8g (0.45mol) aqueous solution (461g) was slowly added, and stirred for 30 minutes. Isobutylene was removed by bubbling N 2 to the reaction mixture, and after separating the layers, 30 g of Na 2 SO 4 was added to the organic layer, stirred for 30 minutes, and then a solid inorganic material was filtered out. Thereafter, the solvent was removed under reduced pressure to obtain 316.8 g (crude yield 95%) of ethyl S-4-chloro-3-t-butoxybutyric acid ester in oil form.

실시예 3Example 3

NaBH4 73.1g(1.933mol)를 THF(테트라히드로푸란) 674mL에 넣고 BF3ㆍEt2O 235.2g(1.657mol)를 2시간 걸쳐 천천히 적가한 후 25℃에서 3h 교반시켰다. 실시 예 1에서 얻은 에틸S-4-클로로-3-t-부톡시부티르산에스테르 320.9g(1.441mol)를 20-25℃에서 4시간에 걸쳐 적가한 후 실온에서 8시간 교반시켰다. 반응혼합물의 온도를 10℃로 냉각 한 후 H2O 186.4g(10.36mol)로 반응종결(quanching)시키고 용매를 감압 증류하였다. 이어서 디클로로메탄 708mL를 넣고 여과한 후, 분층하고 유기층에 Na2SO4 50g를 넣고 2시간 교반시킨 후 여과하여, S-4-클로로-3-t-부톡시부탄올 디클로로메탄 용액을 얻었다.73.1 g (1.933 mol) of NaBH 4 was added to 674 mL of THF (tetrahydrofuran), and 235.2 g (1.657 mol) of BF 3 · Et 2 O was slowly added dropwise over 2 hours, followed by stirring at 25 ° C. for 3 h. 320.9 g (1.441 mol) of ethyl S-4-chloro-3-t-butoxybutyric acid ester obtained in Example 1 was added dropwise at 20-25 ° C. over 4 hours, followed by stirring at room temperature for 8 hours. After the reaction mixture was cooled to 10 ° C., the reaction was terminated with H 2 O 186.4 g (10.36 mol) and the solvent was distilled off under reduced pressure. Subsequently, 708 mL of dichloromethane was added thereto, and the mixture was separated. Then, 50 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours, followed by filtration to obtain an S-4-chloro-3-t-butoxybutanol dichloromethane solution.

상기에서 얻은 S-4-클로로-3-t-부톡시부탄올의 디클로로메탄 용액에 TEA(트리에틸아민) 209.6g(2.071mol)를 넣고 0℃로 냉각 후 MsCl 205.6g(1.795mol)를 3시간 걸쳐 천천히 적가한 후, 0℃에서 1시간 동안 추가로 교반하였다. 반응혼합물에 H2O 869.9g(48.332mol)를 넣고 30분 동안 교반시킨 후, 분층하고, 유기층에 Na2SO4 30g 를 넣고 2시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 S-4-클로로-3-t-부톡시부탄올메질레이트 335.6g(두단계 미정제 수율90%)를 수득하였다. 209.6 g (2.071 mol) of TEA (triethylamine) was added to a dichloromethane solution of S-4-chloro-3-t-butoxybutanol obtained above, and cooled to 0 ° C., 205.6 g (1.795 mol) of MsCl was added for 3 hours. After slowly dropwise adding, the mixture was further stirred at 0 ° C. for 1 hour. 869.9 g (48.332 mol) of H 2 O was added to the reaction mixture, which was stirred for 30 minutes. The mixture was separated, and 30 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours. Solid inorganic matters were filtered out. Thereafter, the solvent was removed under reduced pressure to obtain 335.6 g (two-step crude yield 90%) of S-4-chloro-3-t-butoxybutanol mesylate in oil form.

실시예 4Example 4

상기 실시예 3에서 얻은 S-4-클로로-3-t-부톡시부탄올의 디클로로메탄 용액에 TEA 209.6g(2.071mol)를 넣고 0℃로 냉각 후 TsCl 342.2g(1.795mol)를 3시간 걸쳐 천천히 투입한 후, 0℃에서 1시간 동안 추가로 교반하였다. 반응혼합물에 H2O 869.9g(48.332mol)를 넣고 30분 동안 교반시킨 후, 분층하고, 유기층에 Na2SO4 30g 를 넣고 2시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 S-4-클로로-3-t-부톡시부탄올토실레이트 409.6g(두단계 미정제 수율 86%)를 수득하였다.209.6 g (2.071 mol) of TEA was added to a dichloromethane solution of S-4-chloro-3-t-butoxybutanol obtained in Example 3, cooled to 0 ° C., and 342.2 g (1.795 mol) of TsCl was slowly dried over 3 hours. After the addition, the mixture was further stirred at 0 ° C. for 1 hour. 869.9 g (48.332 mol) of H 2 O was added to the reaction mixture, which was stirred for 30 minutes. The mixture was separated, and 30 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours. Solid inorganic matters were filtered out. Thereafter, the solvent was removed under reduced pressure to obtain 409.6 g (two-step crude yield 86%) of S-4-chloro-3-t-butoxybutanoltosylate.

실시예 5Example 5

고압반응기에 톨루엔 581mL, 메틸 S-4-클로로-3-히드록시부티르산에스테르 229g(1.501mol, 광학순도 99.31%ee) 및 H2SO4 14.7g(0.15mol)를 넣고, 이소부틸렌 191.2g(3.407mol)을 0℃에서 천천히 투입하였다. 이어서, 반응기를 밀폐하고 30℃에서 24시간 반응을 진행하였다. 이때 반응압력은 약 2bar이였다. 반응혼합물의 온도를 10℃로 냉각 후, 압을 파기하고 NaHCO3 37.8g(0.45mol)의 수용액(461g)을 천천히 첨가한 후, 30분간 더 교반하여 주었다. 반응혼합물에 N2를 버블링하여 이소부틸 렌을 제거하고, 층 분리 후, 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 메틸 S-4-클로로-3-t-부톡시부티르산에스테르 297.6g(미정제 수율 95%)를 수득하였다.Into a high pressure reactor, 581 mL of toluene, 229 g of methyl S-4-chloro-3-hydroxybutyric acid ester (1.501 mol, optical purity 99.31% ee), and 14.7 g (0.15 mol) of H 2 SO 4 were added, and 191.2 g of isobutylene ( 3.407 mol) was slowly added at 0 ° C. Subsequently, the reactor was sealed and the reaction proceeded at 30 ° C. for 24 hours. At this time, the reaction pressure was about 2 bar. After cooling the temperature of the reaction mixture to 10 ° C, the pressure was broken and 37.8 g (0.45 mol) of NaHCO 3 aqueous solution (461 g) was slowly added, followed by further stirring for 30 minutes. Isobutylene was removed by bubbling N 2 to the reaction mixture, and after separating the layers, 30 g of Na 2 SO 4 was added to the organic layer, stirred for 30 minutes, and then a solid inorganic material was filtered out. Thereafter, the solvent was removed under reduced pressure to obtain 297.6 g (crude yield 95%) of methyl S-4-chloro-3-t-butoxybutyric acid ester in oil form.

실시예 6Example 6

NaBH4 73.1g(1.933mol)를 THF 674mL에 넣고 BF3ㆍEt2O 235.2g(1.657mol)를 2시간 걸쳐 천천히 적가한 후 25℃에서 3h 교반시켰다. 실시 예 5에서 얻은 메틸S-4-클로로-3-t-부톡시부티르산에스테르 297.6g(1.426mol)를 20-25℃에서 4시간에 걸쳐 적가한 후 실온에서 8시간 교반시켰다. 반응혼합물의 온도를 10℃로 냉각 한 후 H2O 186.4g(10.36mol)로 반응종결(quanching)시키고 용매를 감압 증류하였다. 이어서 디클로로메탄 708mL를 넣고 여과한 후, 분층하고 유기층에 Na2SO4 50g를 넣고 2시간 교반시킨 후 여과하여, S-4-클로로-3-t-부톡시부탄올 용액을 얻었다.73.1 g (1.933 mol) of NaBH 4 was added to 674 mL of THF, and 235.2 g (1.657 mol) of BF 3 · Et 2 O was slowly added dropwise over 2 hours, followed by stirring at 25 ° C. for 3 h. 297.6 g (1.426 mol) of methylS-4-chloro-3-t-butoxybutyric acid esters obtained in Example 5 were added dropwise at 20-25 ° C. over 4 hours, followed by stirring at room temperature for 8 hours. After the reaction mixture was cooled to 10 ° C., the reaction was terminated with H 2 O 186.4 g (10.36 mol) and the solvent was distilled off under reduced pressure. Subsequently, 708 mL of dichloromethane was added thereto, followed by filtration. The layers were separated, 50 g of Na 2 SO 4 was added to the organic layer, the mixture was stirred for 2 hours, and filtered to obtain an S-4-chloro-3-t-butoxybutanol solution.

상기에서 얻은 S-4-클로로-3-t-부톡시부탄올의 디클로로메탄 용액에 TEA 209.6g(2.071mol)를 넣고 0℃로 냉각 후 MsCl 205.6g(1.795mol)를 3시간 걸쳐 천천히 적가한 후, 0℃에서 1시간 동안 추가로 교반하였다. 반응혼합물에 H2O 870g를 넣고 30분 동안 교반시킨 후, 분층하고, 유기층에 Na2SO4 30g 를 넣고 2시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 에틸 S-4-클로로-3-t-부톡시부탄올메질레이트 324.7g(두단계 미정제 수율88%)를 수득하였다.After adding 209.6 g (2.071 mol) of TEA to the dichloromethane solution of S-4-chloro-3-t-butoxybutanol obtained above and cooling to 0 ° C., 205.6 g (1.795 mol) of MsCl was slowly added dropwise over 3 hours. The mixture was further stirred at 0 ° C. for 1 hour. 870 g of H 2 O was added to the reaction mixture, which was stirred for 30 minutes. The mixture was separated, and 30 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours. Solid inorganic matters were filtered out. The solvent was then removed under reduced pressure to give 324.7 g (two-step crude yield 88%) of ethyl S-4-chloro-3-t-butoxybutanol mesylate in oil.

실시예 7Example 7

반응기에 벤질아민(BnNH2) 665.9g(6.214mol)을 넣고 50-60℃에서 실시예 3에서 얻은S-4-클로로-3-t-부톡시부탄올메질레이트 321.6g(1.243mol)을 2시간 걸쳐 적가한 후 1시간 동안 추가로 교반시켰다. 반응혼합물에 NaOH 99.4g(2.486mol)와 H2O 805g를 넣고 40℃에서 3시간 교반시켰다. 반응혼합물을 실온까지 낮춘 후 디클로로에탄 808mL를 넣고 분층 하였다. 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하고, 벤질아민을 회수하여 오일상의 S-3-t-부톡시-N-벤질피롤리딘 292 g를 수득하였다.665.9 g (6.214 mol) of benzylamine (BnNH 2 ) was added to the reactor, and 321.6 g (1.243 mol) of S-4-chloro-3-t-butoxybutanol mesylate obtained in Example 3 at 50-60 ° C. was used for 2 hours. After the dropwise addition, the mixture was further stirred for 1 hour. NaOH 99.4g (2.486mol) and H 2 O 805g were added to the reaction mixture, and the mixture was stirred at 40 ° C for 3 hours. After cooling the reaction mixture to room temperature, dichloroethane 808mL was added and partitioned. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then a solid inorganic material was filtered out. The solvent was then removed under reduced pressure, and benzylamine was recovered to yield 292 g of S-3-t-butoxy-N-benzylpyrrolidine in oil form.

1H NMR (CDCl3, 400MHz): δ 1.16(s, 9H), 1.64(m, 1H), 2.09(m, 1H), 2.24(dd, J = 6.0, 9.6Hz, 1H), 2.48(q, J = 8.0Hz, 1H), 2.60(m, 1H), 2.88(dd, J = 6.4, 9.2Hz, 1H), 3.50(d, J = 12.8Hz, 1H), 3.58(d, J = 12.8Hz, 1H), 4.17(m, 1H), 7.19~7.31(m, 5H) ppm. 1 H NMR (CDCl 3 , 400 MHz): δ 1.16 (s, 9H), 1.64 (m, 1H), 2.09 (m, 1H), 2.24 (dd, J = 6.0, 9.6 Hz, 1H), 2.48 (q, J = 8.0 Hz, 1H), 2.60 (m, 1H), 2.88 (dd, J = 6.4, 9.2 Hz, 1H), 3.50 (d, J = 12.8 Hz, 1H), 3.58 (d, J = 12.8 Hz, 1H), 4.17 (m, 1H), 7.19-7.31 (m, 5H) ppm.

상기에서 얻은 S-3-t-부톡시-N-벤질피롤리딘 292g을 디클로로에탄 581mL에 넣고, 농축 HCl 252g(2.486mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 100g 투입한 후, 유기층을 제거하였다. 수층에 디클로로에탄 294mL를 넣고 NaOH 109.4g(2.734mol)를 1시간 걸쳐 첨가한 후, 실온에서 2시간 교반시켰다. 분층하고 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 제거하한 후, 감압 증류하여 S-1-벤질-3-피롤리딘올 159.7g(두단계 수율 72.5%, 화학순도 99.4%, 광학순도 99.32%ee)을 수득하였다.292 g of S-3-t-butoxy-N-benzylpyrrolidine obtained above was added to 581 mL of dichloroethane, and 252 g (2.486 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. . The reaction mixture was cooled to room temperature, 100 g of water was added, and the organic layer was removed. 294 mL of dichloroethane was added to the aqueous layer, and 109.4 g (2.734 mol) of NaOH was added over 1 hour, followed by stirring at room temperature for 2 hours. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then the solid inorganic material was filtered out. After removing the solvent, distillation under reduced pressure afforded 159.7 g of S-1-benzyl-3-pyrrolidinol (two-step yield 72.5%, chemical purity 99.4%, optical purity 99.32% ee).

1H NMR (CDCl3, 400MHz): δ 1.75(m, 1H), 2.17(m, 2H), 2.31(m, 1H), 2.53(dd, J = 5.2, 10Hz, 1H), 2.65(d, J = 10Hz, 1H), 2.85(m, 1H), 3.63(s, 2H), 4.32(m, 1H), 7.21~7.28(m, 5H) ppm. 1 H NMR (CDCl 3 , 400 MHz): δ 1.75 (m, 1H), 2.17 (m, 2H), 2.31 (m, 1H), 2.53 (dd, J = 5.2, 10 Hz, 1H), 2.65 (d, J = 10 Hz, 1H), 2.85 (m, 1H), 3.63 (s, 2H), 4.32 (m, 1H), 7.21-7.28 (m, 5H) ppm.

실시예 8Example 8

에틸알코올 500mL에 BnNH2 99.4g(0.927mol) 및 Na2CO3 123.0g(1.159mol)을 넣고 50-60℃에서 실시예 3에서 얻은 S-4-클로로-3-t-부톡시부탄올메질레이트 200g(0.773mol)을 2시간 걸쳐 적가한 후 1시간 동안 추가로 교반시켰다. 상기 반응 용액을 감압농축하고 남은 잔여물에 물(300mL)와 디클로로에탄(400mL)를 첨가하고 30분간 교반하여 준 후 유기층을 분리하고, 얻어진 유기층에 Na2SO4 20g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 S-3-t-부톡시-N-벤질피롤리딘 180g를 수득하였다.94.4 g (0.927 mol) of BnNH 2 and 123.0 g (1.159 mol) of Na 2 CO 3 were added to 500 mL of ethyl alcohol, and S-4-chloro-3-t-butoxybutanol methacrylate obtained in Example 3 at 50-60 ° C. 200 g (0.773 mol) was added dropwise over 2 hours and then further stirred for 1 hour. The reaction solution was concentrated under reduced pressure, water (300 mL) and dichloroethane (400 mL) were added to the residue, followed by stirring for 30 minutes. The organic layer was separated, and 20 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes. After that, the inorganic solid was filtered. The solvent was then removed under reduced pressure to yield 180 g of S-3-t-butoxy-N-benzylpyrrolidine in oil form.

상기에서 얻은 S-3-t-부톡시-N-벤질피롤리딘 180g을 디클로로에탄 400g에 넣고, 농축 HCl 156.7g(1.546mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 50g 투입한 후, 유기층을 제거하였다. 수층에 디클로로에단 294mL를 넣고 NaOH 68.0g(1.701mol)를 1시간 걸쳐 첨가한 후, 실온에서 2시간 교반시켰다. 분층하고 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 제거하한 후, 감압 증류하여 S-1-벤질-3-피롤리딘올 86.3g(두단계수율 63%, 화학순도 99.3%, 광학순도 99.32%ee)을 수득하였다.180 g of S-3-t-butoxy-N-benzylpyrrolidine obtained above was added to 400 g of dichloroethane, 156.7 g (1.546 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. I was. The reaction mixture was cooled to room temperature, 50 g of water was added, and the organic layer was removed. 294 mL of dichloroethane was added to the aqueous layer, and 68.0 g (1.701 mol) of NaOH was added over 1 hour, followed by stirring at room temperature for 2 hours. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then the solid inorganic material was filtered out. After removing the solvent, distillation under reduced pressure afforded 86.3 g of S-1-benzyl-3-pyrrolidinol (63% yield in two steps, 99.3% chemical purity, 99.32% ee optical).

실시예 9Example 9

반응기에 BnNH2 655.3g(6.115mol)을 넣고 50-60℃에서 실시예 4에서 얻은S-4-클로로-3-t-부톡시부탄올토실레이트 409.6g(1.223mol)을 2시간 걸쳐 적가한 후 1시간 동안 추가로 교반시켰다. 반응혼합물에 NaOH 97.8g(2.446mol)와 H2O 800g를 넣고 40℃에서 3시간 교반시켰다. 반응혼합물을 실온까지 낮춘 후 디클로로에탄 800mL를 넣고 분층 하였다. 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하고, 벤질아민을 회수하여 오일상의 S-3-t-부톡시-N-벤질피롤리딘 288g를 수득하였다.655.3 g (6.115 mol) of BnNH 2 was added to the reactor, and 409.6 g (1.223 mol) of S-4-chloro-3-t-butoxybutanoltosylate obtained in Example 4 was added dropwise at 50-60 ° C. over 2 hours. It was further stirred for 1 hour. NaOH 97.8g (2.446mol) and H2O 800g were added to the reaction mixture, and the mixture was stirred at 40 ° C for 3 hours. After lowering the reaction mixture to room temperature, 800 mL of dichloroethane was added and partitioned. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then a solid inorganic material was filtered out. The solvent was then removed under reduced pressure, and benzylamine was recovered to yield 288 g of S-3-t-butoxy-N-benzylpyrrolidine as an oil.

상기에서 얻은 S-3-t-부톡시-N-벤질피롤리딘 288g을 디클로로에탄 578mL에 넣고, 농축 HCl 248g(2.446mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 100g 첨가한 후, 유기층을 제거하였다. 수층에 디클로로에탄 294mL를 넣고 NaOH 107.6g(2.691mol)를 1시간 걸쳐 첨가한 후, 실온에서 2시간 교반시켰다. 분층하고 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 제거하한 후, 감압 증류하여 S-1-벤질-3-피롤리딘올 149.6g(두단계 수율 69%, 화학순도 99.26%, 광학순도 99.3%ee)을 수득하였다.288 g of S-3-t-butoxy-N-benzylpyrrolidine obtained above was added to 578 mL of dichloroethane, and 248 g (2.446 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. . The reaction mixture was cooled to room temperature, 100 g of water was added, and the organic layer was removed. 294 mL of dichloroethane was added to the aqueous layer, and 107.6 g (2.691 mol) of NaOH was added over 1 hour, followed by stirring at room temperature for 2 hours. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then the solid inorganic material was filtered out. After removing the solvent, distillation under reduced pressure afforded 149.6 g of S-1-benzyl-3-pyrrolidinol (two-step yield 69%, chemical purity 99.26%, optical purity 99.3% ee).

실시예 10Example 10

메틸알코올 150mL에 40% MeNH2 수용액 300g(3.865mol) 및 K2CO3 128.3g(0.928mol)을 넣고 실온에서 실시예 3에서 얻은 S-4-클로로-3-t-부톡시부탄올메질레이트 200g(0.773mol)을 2시간 걸쳐 적가한 후, 20시간 동안 추가로 교반시켰다. 상기 반응 용액을 감압농축하고 남은 잔여물에 물(300mL)와 디클로로에탄(400mL)를 첨가하고 30분간 교반하여 준 후 유기층을 분리하고, 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 S-3-t-부톡시-N-메틸피롤리딘 112g를 수득하였다.300 g (3.865 mol) of 40% MeNH 2 solution and 128.3 g (0.928 mol) of K 2 CO 3 were added to 150 mL of methyl alcohol, and 200 g of S-4-chloro-3-t-butoxybutanol methacrylate obtained in Example 3 at room temperature. (0.773 mol) was added dropwise over 2 hours, followed by further stirring for 20 hours. The reaction solution was concentrated under reduced pressure, water (300 mL) and dichloroethane (400 mL) were added to the residue, followed by stirring for 30 minutes. The organic layer was separated, and 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes. After that, the inorganic solid was filtered. The solvent was then removed under reduced pressure to give 112 g of S-3-t-butoxy-N-methylpyrrolidine as an oil.

상기에서 얻은 S-3-t-부톡시-N-메틸피롤리딘 112g을 디클로로에탄 300mL에 넣고, 농축 HCl 117g(1.16mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 50g 첨가한 후, 유기층을 제거한 후, 수층을 감압농축하여 남은 잔여물에 이소프로판올(500mL)을 넣고, NaOH 46.38g(1.16mol)를 1시간 걸쳐 첨가한 후, 실온에서 5시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 제거하한 후, 감압 증류하여 S-1-메틸-3-피롤리딘올 45.3g(두단계 수율 58%, 화학순도 99.36%, 광학순도 99.31%ee)을 수득하였다.112 g of S-3-t-butoxy-N-methylpyrrolidine obtained above was added to 300 mL of dichloroethane, 117 g (1.16 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. . The reaction mixture was cooled to room temperature, 50 g of water was added, the organic layer was removed, the aqueous layer was concentrated under reduced pressure, and isopropanol (500 mL) was added to the residue, followed by addition of NaOH 46.38 g (1.16 mol) over 1 hour. Stir at room temperature for 5 hours. Solid inorganic matters were filtered out. After removing the solvent, distillation under reduced pressure afforded 45.3 g of S-1-methyl-3-pyrrolidinol (two-step yield 58%, chemical purity 99.36%, optical purity 99.31% ee).

1H NMR (CDCl3, 400MHz): δ 1.73(m, 1H), 2.20(m, 2H), 2.34(s, 3H), 2.47(dd, J = 5.2, 10Hz, 1H), 2.64(d, J = 10Hz, 1H), 2.85(m, 1H), 4.32(m, 1H) ppm. 1 H NMR (CDCl 3 , 400 MHz): δ 1.73 (m, 1H), 2.20 (m, 2H), 2.34 (s, 3H), 2.47 (dd, J = 5.2, 10 Hz, 1H), 2.64 (d, J = 10 Hz, 1H), 2.85 (m, 1H), 4.32 (m, 1H) ppm.

실시예 11Example 11

반응기에 7N NH3 메틸알코올 용액 552mL(3.865mol) 및 K2CO3 128.3g(0.928mol)을 넣고 실온에서 실시예 3에서 얻은 S-4-클로로-3-t-부톡시부탄올메질레이트 200g(0.773mol)을 2시간 걸쳐 적가한 후, 30시간 동안 추가로 교반시켰다. 상기 반응 용액을 감압농축하고 남은 잔여물에 물(300mL)와 디클로로에탄(400mL)를 첨가하고 30분간 교반하여 준 후 유기층을 분리하고, 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 S-3-t-부톡시-N-메틸피롤리딘 108g를 수득하였다.552 mL (3.865 mol) of 7N NH 3 methyl alcohol solution and 128.3 g (0.928 mol) of K 2 CO 3 were added to the reactor, and 200 g of S-4-chloro-3-t-butoxybutanolmethacrylate obtained in Example 3 at room temperature ( 0.773 mol) was added dropwise over 2 hours, followed by further stirring for 30 hours. The reaction solution was concentrated under reduced pressure, water (300 mL) and dichloroethane (400 mL) were added to the residue, followed by stirring for 30 minutes. The organic layer was separated, and 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes. After that, the inorganic solid was filtered. The solvent was then removed under reduced pressure to give 108 g of S-3-t-butoxy-N-methylpyrrolidine as an oil.

상기에서 얻은 S-3-t-부톡시-N-메틸피롤리딘 108g을 디클로로에탄 300mL에 넣고, 농축 HCl 117g(1.16mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 50g 첨가한 후, 유기층을 제거한 후, 수층을 감압농축하여 남은 잔여물에 이소프로판올(500mL)을 넣고, NaOH 46.38g(1.16mol)를 1시간 걸쳐 첨가한 후, 실온에서 5시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 제거한 후, 감압 증류하여 S-3-피롤리딘올 35g(두단계 수율 52%, 화학순도 99.26%, 광학순도 99.33%ee)을 수득하였다.108 g of S-3-t-butoxy-N-methylpyrrolidine obtained above was added to 300 mL of dichloroethane, 117 g (1.16 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. . The reaction mixture was cooled to room temperature, 50 g of water was added, the organic layer was removed, the aqueous layer was concentrated under reduced pressure, and isopropanol (500 mL) was added to the residue, followed by addition of NaOH 46.38 g (1.16 mol) over 1 hour. Stir at room temperature for 5 hours. Solid inorganic matters were filtered out. Thereafter, the solvent was removed and distilled under reduced pressure to obtain 35 g of S-3-pyrrolidinol (two-step yield 52%, chemical purity 99.26%, optical purity 99.33% ee).

1H NMR (CDCl3, 400MHz): δ 1.71(m, 1H), 1.95(m, 1H), 2.23(br s, 2H), 2.80~2.93(m, 3H), 3.13(m, 1H), 4.39(m, 1H) ppm. 1 H NMR (CDCl 3 , 400 MHz): δ 1.71 (m, 1H), 1.95 (m, 1H), 2.23 (br s, 2H), 2.80-2.93 (m, 3H), 3.13 (m, 1H), 4.39 (m, 1 H) ppm.

실시예 12Example 12

고압반응기에 톨루엔 581mL, 에틸 R-4-클로로-3-히드록시부티르산에스테르 250.1g(1.501mol, 광학순도 99.31%ee) 및 H2SO4 14.7g(0.15mol)를 넣고, 이소부틸렌 191.2g(3.407mol)을 0℃에서 천천히 투입하였다. 이어서, 반응기를 밀폐하고 30℃에서 24시간 반응을 진행하였다. 이때 반응압력은 약 2bar이였다. 반응혼합물의 온도를 10℃로 냉각 후, 압을 파기하고 NaHCO3 37.8g(0.45mol)의 수용액(461g)을 천천히 첨가한 후, 30분간 더 교반하여 주었다. 반응혼합물에 N2를 버블링하여 이소부틸렌을 제거하고, 층 분리 후, 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 에틸 R-4-클로로-3-t-부톡시부티르산에스테르 317.6g(미정제 수율 95%)를 수득하였다.Into a high pressure reactor, 581 mL of toluene, 250.1 g of ethyl R-4-chloro-3-hydroxybutyric acid ester (1.501 mol, optical purity 99.31% ee), and 14.7 g (0.15 mol) of H 2 SO 4 were added, and 191.2 g of isobutylene was added. (3.407 mol) was added slowly at 0 ° C. Subsequently, the reactor was sealed and the reaction proceeded at 30 ° C. for 24 hours. At this time, the reaction pressure was about 2 bar. After cooling the temperature of the reaction mixture to 10 ° C, the pressure was broken and 37.8 g (0.45 mol) of NaHCO 3 aqueous solution (461 g) was slowly added, followed by further stirring for 30 minutes. Isobutylene was removed by bubbling N 2 to the reaction mixture, and after separating the layers, 30 g of Na 2 SO 4 was added to the organic layer, stirred for 30 minutes, and then a solid inorganic material was filtered out. Thereafter, the solvent was removed under reduced pressure to obtain 317.6 g (crude yield 95%) of ethyl R-4-chloro-3-t-butoxybutyric acid ester in oil form.

실시예 13Example 13

NaBH4 73.1g(1.933mol)를 THF 674mL에 넣고 BF3ㆍEt2O 235.2g(1.657mol)를 2시간 걸쳐 천천히 적가한 후 25℃에서 3h 교반시켰다. 실시 예 12에서 얻은 에틸R-4-클로로-3-t-부톡시부티르산에스테르 317.6g(1.426mol)를 20-25℃에서 4시간에 걸쳐 적가한 후 실온에서 8시간 교반시켰다. 반응혼합물의 온도를 10℃로 냉각 한 후 H2O 186.4g(10.36mol)로 반응종결(quanching)시키고 용매를 감압 증류하였다. 이어서 디클로로메탄 708mL를 넣고 여과한 후, 분층하고 유기층에 Na2SO4 50g를 넣고 2시간 교반시킨 후 여과하여, R-4-클로로-3-t-부톡시부탄올 용액을 얻었다.73.1 g (1.933 mol) of NaBH 4 was added to 674 mL of THF, and 235.2 g (1.657 mol) of BF 3 · Et 2 O was slowly added dropwise over 2 hours, followed by stirring at 25 ° C. for 3 h. 317.6 g (1.426 mol) of ethyl R-4-chloro-3-t-butoxybutyric acid ester obtained in Example 12 were added dropwise at 20-25 ° C. over 4 hours, followed by stirring at room temperature for 8 hours. After the reaction mixture was cooled to 10 ° C., the reaction was terminated with H 2 O 186.4 g (10.36 mol) and the solvent was distilled off under reduced pressure. Subsequently, 708 mL of dichloromethane was added thereto, and the mixture was separated. Then, 50 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours, followed by filtration to obtain an R-4-chloro-3-t-butoxybutanol solution.

상기에서 얻은 R-4-클로로-3-t-부톡시부탄올의 디클로로메탄 용액에 TEA 209.6g(2.071mol)를 넣고 0℃로 냉각 후 MsCl 205.6g(1.795mol)를 3시간 걸쳐 천천 히 적가한 후, 0℃에서 1시간 동안 추가로 교반하였다. 반응혼합물에 H2O 869.9g(48.332mol)를 넣고 30분 동안 교반시킨 후, 분층하고, 유기층에 Na2SO4 30g 를 넣고 2시간 교반시켰다. 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하여 오일상의 R-4-클로로-3-t-부톡시부탄올메질레이트 339.5g(두단계 미정제 수율92%)를 수득하였다. 209.6 g (2.071 mol) of TEA was added to the dichloromethane solution of R-4-chloro-3-t-butoxybutanol obtained above, cooled to 0 ° C., and 205.6 g (1.795 mol) of MsCl was slowly added dropwise over 3 hours. Then, the mixture was further stirred at 0 ° C. for 1 hour. 869.9 g (48.332 mol) of H 2 O was added to the reaction mixture, which was then stirred for 30 minutes. The reaction mixture was separated, and 30 g of Na 2 SO 4 was added to the organic layer, followed by stirring for 2 hours. Solid inorganic matters were filtered out. Then, the solvent was removed under reduced pressure to obtain 339.5 g (two-step crude yield 92%) of R-4-chloro-3-t-butoxybutanol mesylate in oil phase.

실시예 14Example 14

반응기에 BnNH2 702.9g(6.559mol)을 넣고 50-60℃에서 실시예 13에서 얻은R-4-클로로-3-t-부톡시부탄올메질레이트 339.5g(1.312mol)을 2시간 걸쳐 적가한 후 1시간 동안 추가로 교반시켰다. 반응혼합물에 NaOH 105g(2.624mol)와 H2O 810g를 넣고 40℃에서 3시간 교반시켰다. 반응혼합물을 실온까지 낮춘 후 디클로로에탄 810mL를 넣고 분층 하였다. 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 감압 제거하고, 벤질아민을 회수하여 오일상의 R-3-t-부톡시-N-벤질피롤리딘 304g 수득하였다.After putting BnNH 2 702.9g (6.559mol) was added dropwise to the reactor R-4- chloro -3-t- butoxycarbonyl-butanol mejil rate 339.5g (1.312mol) obtained in Example 13 at 50-60 over 2 hours ℃ It was further stirred for 1 hour. NaOH 105g (2.624mol) and H 2 O 810g was added to the reaction mixture and stirred at 40 ° C for 3 hours. After the reaction mixture was cooled to room temperature, 810 mL of dichloroethane was added thereto, and the mixture was partitioned. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then a solid inorganic material was filtered out. The solvent was then removed under reduced pressure, and benzylamine was recovered to yield 304 g of R-3-t-butoxy-N-benzylpyrrolidine in oil form.

상기에서 얻은 R-3-t-부톡시-N-벤질피롤리딘 304g을 디클로로에탄 581mL에 넣고, 농축 HCl 252g(2.486mol)를 1시간 걸쳐 적가한 후, 55-60℃에서 2시간 교반시켰다. 반응 혼합물을 실온으로 냉각하고, 물 100g 투입한 후, 유기층을 제거하였다. 수층에 디클로로에탄 294mL를 넣고 NaOH 109.4g(2.734mol)를 1시간 걸쳐 첨가한 후, 실온에서 2시간 교반시켰다. 분층하고 얻어진 유기층에 Na2SO4 30g를 넣고 30분 동안 교반한 후, 고체상의 무기물을 여과하였다. 그 후 용매를 제거하한 후, 감압 증류하여 R-1-벤질-3-피롤리딘올 165.1g(두단계 수율 71%, 화학순도 99.26%, 광학순도 99.33%ee)을 수득하였다.304 g of R-3-t-butoxy-N-benzylpyrrolidine obtained above was added to 581 mL of dichloroethane, and 252 g (2.486 mol) of concentrated HCl was added dropwise over 1 hour, followed by stirring at 55-60 ° C. for 2 hours. . The reaction mixture was cooled to room temperature, 100 g of water was added, and the organic layer was removed. 294 mL of dichloroethane was added to the aqueous layer, and 109.4 g (2.734 mol) of NaOH was added over 1 hour, followed by stirring at room temperature for 2 hours. 30 g of Na 2 SO 4 was added to the obtained organic layer, followed by stirring for 30 minutes, and then the solid inorganic material was filtered out. Thereafter, the solvent was removed, followed by distillation under reduced pressure to obtain 165.1 g of R-1-benzyl-3-pyrrolidinol (two-step yield 71%, chemical purity 99.26%, optical purity 99.33% ee).

본 발명에 따른 키랄 화학식 1의 3-히드록시 피롤리딘 및 이의 유도체의 제조방법은, 출발물질의 광학순도가 완전하게 유지된 채, 3-히드록시 피롤리딘 및 이의 유도체를 고광학순도로 제공한다. 구체적으로, 출발물질로 사용되는 화학식 2의 키랄 화합물이 어떠한 키랄성의 저하 없이, 광학순도를 그대로 유지한 채, 99%ee 또는 그 이상의 고 광학순도를 갖는 3-히드록시 피롤리딘 및 이의 유도체가 높은 수율로 제조될 수 있다. 그리고, 각 단계의 반응이, 정제 과정을 거치지 않고도, 차기의 반응에 그대로 적용될 수 있다. 이것은 반응 공정의 단순화 및 수율 향상을 제공한다. 따라서, 본 발명에 따른 3-히드록시 피롤리딘 화합물의 제조방법은, 전체 공정에 걸쳐, 간편하고 온화한 조건에서 수행된다. 이것은, 본 발명에 따른 방법이 고광학순도를 갖는 3-히드록시 피롤리딘 및 이의 유도체의 산업적 대량생산에 유용하게 적용될 수 있음을 의미한다.According to the present invention, a method for preparing 3-hydroxy pyrrolidine and derivatives thereof according to the present invention is to provide 3-hydroxy pyrrolidine and its derivatives in high optical purity while maintaining the optical purity of the starting material. to provide. Specifically, the 3-hydroxypyrrolidine and its derivatives having a high optical purity of 99% ee or higher while maintaining the optical purity of the chiral compound of Formula 2 used as a starting material without any deterioration of chirality It can be produced in high yield. And the reaction of each step can be applied as it is to the next reaction, without going through a purification process. This provides for simplification of the reaction process and improvement of yield. Thus, the process for preparing the 3-hydroxypyrrolidine compound according to the present invention is carried out under simple and mild conditions throughout the whole process. This means that the process according to the invention can be usefully applied to the industrial mass production of 3-hydroxy pyrrolidine and its derivatives with high optical purity.

Claims (10)

(a) 화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르의 히드록시기를 보호화하는 단계,(a) protecting the hydroxy group of 4-halo-3-hydroxybutyric acid ester represented by formula (2), (b) 단계 (a)에서 얻어진 화합물의 에스테르기를 환원시켜 대응되는 알코올 화합물을 제조하는 단계,(b) reducing the ester group of the compound obtained in step (a) to produce a corresponding alcohol compound, (c) 단계 (b)에서 얻어진 화합물을 술포닐 할라이드와 반응시켜, 대응되는 설포네이트 화합물을 제조하는 단계,(c) reacting the compound obtained in step (b) with a sulfonyl halide to produce the corresponding sulfonate compound, (d) 단계 (c)에서 얻어진 화합물을 프라이머리 아민과 반응시켜 히드록시-보호된 피롤리딘 화합물을 수득하는 단계, 및(d) reacting the compound obtained in step (c) with a primary amine to obtain a hydroxy-protected pyrrolidine compound, and (e) 단계 (d)에서 얻어진 화합물을 탈보호화하여 화학식 1을 갖는 목적하는 3-히드록시 피롤리딘 화합물을 제조하는 단계를 포함하는, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.(e) deprotecting the compound obtained in step (d) to produce the desired 3-hydroxy pyrrolidine compound having formula (I). [화학식 1][Formula 1]
Figure 112007052123633-PAT00008
Figure 112007052123633-PAT00008
[화학식 2][Formula 2]
Figure 112007052123633-PAT00009
Figure 112007052123633-PAT00009
상기 화학식 1 또는 2에서, *는 키랄 센터를 의미하며, X는 할로겐원자(F, Cl, Br 또는 I)를 의미하며, R1은 C1-C4 알킬기이며, R3은 수소; C1-C10의 알킬기; C3-C8의 싸이크로알킬기; C1-C10의 알콕시기; C6-C10 아릴기; C4-C9 헤테로아릴기; C7-C10 아르알킬기; C3-C11 아실알킬기; C3-C11 아실옥시알킬기; C2-C10 에테르기; C2-C10 티오에테르기; C2-C10 케톤기; C2-C10 알데히드기; C2-C10 에스터기; (CH2)m-R4(이때 R4는 C1-C10의 알킬기, C3-C8의 싸이크로알킬기, C1-C10의 알콕시기, C6-C10 아릴기, C4 -C9 헤테로아릴기, C7-C10 아르알킬기, C3-C11 아실알킬기, C3-C11 아실옥시알킬기, C2-C10 에테르기, C2-C10 티오에테르기, C2-C10 케톤기, C2-C10 알데히드기 또는 C2-C10 에스터기를 나타내고, m은 1에서 8까지의 정수이다); 또는 할로겐원자, C1-C4 알킬기, 시아노, 히드록시기, 아미노기, 티올기, 니트로기 또는 아민기에 의해 치환된 이들의 치환체를 나타낸다.In Formula 1 or 2, * means a chiral center, X means a halogen atom (F, Cl, Br or I), R 1 is a C 1 -C 4 alkyl group, R 3 is hydrogen; An alkyl group of C 1 -C 10 ; A C 3 -C 8 cycloalkyl group; An alkoxy group of C 1 -C 10 ; C 6 -C 10 aryl group; C 4 -C 9 heteroaryl group; C 7 -C 10 aralkyl group; C 3 -C 11 acylalkyl group; C 3 -C 11 acyloxyalkyl group; C 2 -C 10 ether group; C 2 -C 10 thioether group; C 2 -C 10 ketone group; C 2 -C 10 aldehyde group; C 2 -C 10 ester group; (CH 2) m -R 4 (wherein R 4 is an alkoxy group of C 1 -C 10 alkyl, C 3 alkyl group Cy croissant -C 8, C 1 -C 10 a, C 6 -C 10 aryl group, C 4 - C 9 heteroaryl group, C 7 -C 10 aralkyl, C 3 -C 11 acyl group, C 3 -C 11 acyloxy group, C 2 -C 10 ether, C 2 -C 10 thioether groups, C 2 -C 10 ketone group, C 2 -C 10 aldehyde group or C 2 -C 10 ester group, m is an integer from 1 to 8); Or substituents substituted by halogen atoms, C 1 -C 4 alkyl groups, cyano, hydroxy groups, amino groups, thiol groups, nitro groups or amine groups.
제1항에 있어서, 상기 단계 (a)의 히드록시기의 보호화가 메톡시메틸기, 벤질옥시메틸기, 테트라히드로피란기, 테트라히드로퓨란기, t-부틸기, 트리페닐메틸 기, 벤질기, 알릴기, 트리메틸실릴기, t-부틸디메틸실릴기, 트리페닐실릴기, 트리이소프로필실릴기, t-부틸카르보닐기 및 벤조일기로 구성되는 군에서 선택되는 히드록시 보호기에 의해 수행되는, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.According to claim 1, wherein the protection of the hydroxyl group of step (a) is methoxymethyl group, benzyloxymethyl group, tetrahydropyran group, tetrahydrofuran group, t-butyl group, triphenylmethyl group, benzyl group, allyl group, 3-hydroxy pyrrolidine, which is carried out by a hydroxy protecting group selected from the group consisting of trimethylsilyl group, t-butyldimethylsilyl group, triphenylsilyl group, triisopropylsilyl group, t-butylcarbonyl group and benzoyl group And methods of preparing derivatives thereof. 제2항에 있어서, 상기 히드록시 보호기가 t-부틸기인, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The process for producing 3-hydroxy pyrrolidine and derivatives thereof according to claim 2, wherein the hydroxy protecting group is a t-butyl group. 제2항에 있어서, 상기 히드록시 보호기가 t-부틸기이고, X가 클로로이고, R1이 메틸기 또는 에틸기인, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The process for producing 3-hydroxy pyrrolidine and derivatives thereof according to claim 2, wherein the hydroxy protecting group is a t-butyl group, X is chloro and R 1 is a methyl group or an ethyl group. 제1항에 있어서, 상기 단계 (b)의 에스테르기의 환원이 보레인-메틸 설파이드 착물, 보레인-테트로하이드로퓨란 착물, 디보레인, 리튬알루미늄하이드라이드 및 수소화붕소 금속염으로 구성되는 군에서 선택되는 환원제의 존재하에서, 또는 상기 환원제와 보론트리플루오라이드 디에틸이스레이드(boron trifluoride diethyl etherate), 칼슘클로라이드, 리튬클로라이드, 요오드(I2) 및 메틸알코올로 구성되는 군에서 선택되는 활성화제의 혼합 조성의 존재하에서 수행되는, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The method of claim 1, wherein the reduction of the ester group in step (b) is selected from the group consisting of borane-methyl sulfide complex, borane-tetrohydrofuran complex, diborane, lithium aluminum hydride and boron hydride metal salt. In the presence of a reducing agent or a mixture of the reducing agent and an activator selected from the group consisting of boron trifluoride diethyl etherate, calcium chloride, lithium chloride, iodine (I 2 ) and methyl alcohol Process for the preparation of 3-hydroxy pyrrolidine and derivatives thereof, carried out in the presence of a composition. 제1항에 있어서, 상기 단계 (c)의 술포닐 할라이드는 R2SO2X (여기서, R2는 C1-C10 알킬기; C6-C10 아릴기; 니트로기, 메틸기, 에틸기, 시아노기, 플루오로기 또는 클로로기로 치환된 C1-C10 알킬기; 니트로기, 메틸기, 에틸기, 시아노, 플루오로기 또는 클로로기로 치환된 C6-C10 아릴기를 의미하고, X는 F, Cl, Br 또는 I를 의미한다)를 갖는, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The method of claim 1, wherein the sulfonyl halide of step (c) is R 2 SO 2 X (wherein R 2 is a C 1 -C 10 alkyl group; C 6 -C 10 aryl group; nitro group, methyl group, ethyl group, cya C 1 -C 10 alkyl group substituted with no group, fluoro group or chloro group; C 6 -C 10 aryl group substituted with nitro group, methyl group, ethyl group, cyano, fluoro group or chloro group, X is F, Cl , Br or I), 3-hydroxy pyrrolidine and derivatives thereof. 제2항에 있어서, 상기 히드록시 보호기가 t-부틸기이고, X가 클로로이고, R1가 메틸기 또는 에틸기이고, 상기 술포닐 할라이드가 메탄술포닐 클로라이드 또는 p-톨루엔술포닐 클로라이드이고, R3이 수소, 메틸기 또는 벤질기인, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.3. The hydroxy protecting group of claim 2, wherein the hydroxy protecting group is a t-butyl group, X is chloro, R 1 is a methyl group or an ethyl group, and the sulfonyl halide is methanesulfonyl chloride or p-toluenesulfonyl chloride, R 3 The method for producing 3-hydroxy pyrrolidine and its derivatives, which is hydrogen, methyl or benzyl. 제1항에 있어서, 히드록시 보호기 P가 t-부틸기이고, X가 클로로이고, R1가 메틸기 또는 에틸기이고, R2가 메틸기 또는 p-메틸페닐기이고, R3이 수소인, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The 3-hydroxy compound of claim 1, wherein the hydroxy protecting group P is a t-butyl group, X is chloro, R 1 is a methyl group or an ethyl group, R 2 is a methyl group or a p-methylphenyl group, and R 3 is hydrogen. Process for the preparation of oxy pyrrolidine and derivatives thereof. (a) 화학식 2로 표시되는 4-할로-3-히드록시부티르산에스테르의 히드록시기를 보호화하기 위해, 상기 화학식 2의 화합물을 이소부티렌과 반응시키는 단계,(a) reacting the compound of formula 2 with isobutylene to protect the hydroxyl group of 4-halo-3-hydroxybutyric acid ester represented by formula (2), (b) 단계 (a)에서 얻어진 화합물의 에스테르기를 환원시켜 대응되는 알코올 화합물을 제조하는 단계,(b) reducing the ester group of the compound obtained in step (a) to produce a corresponding alcohol compound, (c) 단계 (b)에서 얻어진 화합물을 술포닐 할라이드와 반응시켜, 대응되는 설포네이트 화합물을 제조하는 단계,(c) reacting the compound obtained in step (b) with a sulfonyl halide to produce the corresponding sulfonate compound, (d) 단계 (c)에서 얻어진 화합물을 R3NH2로 표현되는 프라이머리 아민과 반응시켜 3-히드록시-보호된 피롤리딘 화합물을 수득하는 단계, 및(d) reacting the compound obtained in step (c) with a primary amine represented by R 3 NH 2 to obtain a 3-hydroxy-protected pyrrolidine compound, and (e) 단계 (d)에서 얻어진 화합물을 산의 존재하에서 탈보호화하여 화학식 1을 갖는 목적하는 3-히드록시 피롤리딘 화합물을 제조하는 단계를 포함하는, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.(e) dehydroxylating the compound obtained in step (d) in the presence of an acid to produce the desired 3-hydroxy pyrrolidine compound having Formula 1, 3-hydroxy pyrrolidine and derivatives thereof Method of preparation. [화학식 1][Formula 1]
Figure 112007052123633-PAT00010
Figure 112007052123633-PAT00010
[화학식 2][Formula 2]
Figure 112007052123633-PAT00011
Figure 112007052123633-PAT00011
상기 화학식 1 또는 2에서, *는 키랄 센터를 의미하며, X는 할로겐원자(F, Cl, Br 또는 I)를 의미하며, R1은 C1-C4 알킬기이며, R3은 수소; C1-C10의 알킬기; C3-C8의 싸이크로알킬기; C1-C10의 알콕시기; C6-C10 아릴기; C4-C9 헤테로아릴기; C7-C10 아르알킬기; C3-C11 아실알킬기; C3-C11 아실옥시알킬기; C2-C10 에테르기; C2-C10 티오에테르기; C2-C10 케톤기; C2-C10 알데히드기; C2-C10 에스터기; (CH2)m-R4(이때 R4는 C1-C10의 알킬기, C3-C8의 싸이크로알킬기, C1-C10의 알콕시기, C6-C10 아릴기, C4 -C9 헤테로아릴기, C7-C10 아르알킬기, C3-C11 아실알킬기, C3-C11 아실옥시알킬기, C2-C10 에테르기, C2-C10 티오에테르기, C2-C10 케톤기, C2-C10 알데히드기 또는 C2-C10 에스터기를 나타내고, m은 1에서 8까지의 정수이다); 또는 할로겐원자, C1-C4 알킬기, 시아노, 히드록시기, 아미노기, 티올기, 니트로기 또는 아민기에 의해 치환된 이들의 치환체를 나타낸다.In Formula 1 or 2, * means a chiral center, X means a halogen atom (F, Cl, Br or I), R 1 is a C 1 -C 4 alkyl group, R 3 is hydrogen; An alkyl group of C 1 -C 10 ; A C 3 -C 8 cycloalkyl group; An alkoxy group of C 1 -C 10 ; C 6 -C 10 aryl group; C 4 -C 9 heteroaryl group; C 7 -C 10 aralkyl group; C 3 -C 11 acylalkyl group; C 3 -C 11 acyloxyalkyl group; C 2 -C 10 ether group; C 2 -C 10 thioether group; C 2 -C 10 ketone group; C 2 -C 10 aldehyde group; C 2 -C 10 ester group; (CH 2) m -R 4 (wherein R 4 is an alkoxy group of C 1 -C 10 alkyl, C 3 alkyl group Cy croissant -C 8, C 1 -C 10 a, C 6 -C 10 aryl group, C 4 - C 9 heteroaryl group, C 7 -C 10 aralkyl, C 3 -C 11 acyl group, C 3 -C 11 acyloxy group, C 2 -C 10 ether, C 2 -C 10 thioether groups, C 2 -C 10 ketone group, C 2 -C 10 aldehyde group or C 2 -C 10 ester group, m is an integer from 1 to 8); Or substituents substituted by halogen atoms, C 1 -C 4 alkyl groups, cyano, hydroxy groups, amino groups, thiol groups, nitro groups or amine groups.
제9항에 있어서, 상기 X가 클로로이고, R1가 메틸기 또는 에틸기인, 3-히드록시 피롤리딘 및 이의 유도체의 제조 방법.The process for producing 3-hydroxy pyrrolidine and derivatives thereof according to claim 9, wherein X is chloro and R 1 is a methyl group or an ethyl group.
KR1020070071902A 2007-07-18 2007-07-18 Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof KR100915551B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070071902A KR100915551B1 (en) 2007-07-18 2007-07-18 Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof
PCT/KR2008/004193 WO2009011551A2 (en) 2007-07-18 2008-07-17 Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070071902A KR100915551B1 (en) 2007-07-18 2007-07-18 Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof

Publications (2)

Publication Number Publication Date
KR20090008725A true KR20090008725A (en) 2009-01-22
KR100915551B1 KR100915551B1 (en) 2009-09-10

Family

ID=40260223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070071902A KR100915551B1 (en) 2007-07-18 2007-07-18 Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof

Country Status (2)

Country Link
KR (1) KR100915551B1 (en)
WO (1) WO2009011551A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858615B1 (en) 2017-09-28 2018-06-28 정영걸 Cleaning brush attached to mouthwasher
KR20190132041A (en) 2018-05-18 2019-11-27 정영걸 Manual cleaning brush connected to the cleaning liquid supply member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3486232B1 (en) 2013-12-27 2021-09-01 API Corporation Method for producing 5-hydroxypiperidine-2-carboxylic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104061A (en) 1983-11-08 1985-06-08 Sankyo Co Ltd Preparation of pyrrolidine derivative
JPH0776209B2 (en) * 1990-04-11 1995-08-16 高砂香料工業株式会社 Process for producing optically active 3-hydroxypyrrolidine derivative
JP2005281168A (en) * 2004-03-29 2005-10-13 Daiso Co Ltd Method for producing 3-pyrrolidinol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858615B1 (en) 2017-09-28 2018-06-28 정영걸 Cleaning brush attached to mouthwasher
KR20190132041A (en) 2018-05-18 2019-11-27 정영걸 Manual cleaning brush connected to the cleaning liquid supply member

Also Published As

Publication number Publication date
WO2009011551A3 (en) 2009-03-12
KR100915551B1 (en) 2009-09-10
WO2009011551A2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
KR100915551B1 (en) Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof
HUT68255A (en) Process for the preparation of beta-phenylisoserine derivatives and use thereof
JP5548129B2 (en) Asymmetric organic catalyst
CN112500361B (en) Preparation method of (S) -4-phenyl-2-oxazolidinone
JP2006500407A (en) Methods for the synthesis of intermediates useful for the synthesis of tubulin inhibitors
JP5301676B2 (en) Process for producing (3S, 4S) -4-((R) -2- (benzyloxy) tridecyl) -3-hexyl-2-oxetanone and novel intermediate used therefor
WO2006075778A1 (en) Production method of optically active cyclohexane ether compounds
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
CA2516465A1 (en) Chemical process for the preparation of intermediates to obtain n-formyl hydroxylamine compounds
EP3606907B1 (en) Racemic beta-aminosulfone compounds
JPH0557248B2 (en)
JP2004534040A (en) Stereoselective synthesis of 2-hydroxy-4-phenylbutyrate
EP1926709A1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
JP5704763B2 (en) Production of trans-4-aminocyclopent-2-ene-1-carboxylic acid derivative
CA2266473A1 (en) A method for producing optically active erythro-3-amino-2-hydroxybutyric esters and acids thereof
EP3606908A1 (en) Resolution of racemic beta-aminosulfone compounds
US5834618A (en) Process for the preparation of 3-amino-2-hydroxy-4-phenylbutyronitrile derivatives
JP2005298337A (en) METHOD FOR PRODUCING beta-HYDROXYAMINO ACID DERIVATIVE AND INTERMEDIATE OF THE SAME
KR100483317B1 (en) METHOD FOR THE PREPARATION OF α-PHENYL-α-PROPOXYBENZENEACETIC ACID 1-METHYL-4-PIPERIDINYL ESTER HYDROCHLORIDE
CN117586177A (en) Preparation method of avibactam intermediate
US8871950B1 (en) Process for preparing (+)-polyoxamic acid
JP2022110339A (en) METHOD FOR PRODUCING α-(MERCAPTOMETHYL) ACRYLATE
JP5344287B2 (en) Process for producing α-difluorohalomethylcarbonyl compound
CN115322106A (en) Synthesis method of trans-3-azido-1-methylcyclobutanol and trans-3-amino-1-methylcyclobutanol
KR100461571B1 (en) A process for preparing (S)-1,2,4-butanetriol

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120809

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130809

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160729

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170825

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180813

Year of fee payment: 10