KR20080090056A - Electron element using silicone slurry and manufacturing method of the same - Google Patents
Electron element using silicone slurry and manufacturing method of the same Download PDFInfo
- Publication number
- KR20080090056A KR20080090056A KR1020070033023A KR20070033023A KR20080090056A KR 20080090056 A KR20080090056 A KR 20080090056A KR 1020070033023 A KR1020070033023 A KR 1020070033023A KR 20070033023 A KR20070033023 A KR 20070033023A KR 20080090056 A KR20080090056 A KR 20080090056A
- Authority
- KR
- South Korea
- Prior art keywords
- silicon
- slurry
- silicon slurry
- electronic device
- layer
- Prior art date
Links
- 239000002002 slurry Substances 0.000 title claims abstract description 104
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 229920001296 polysiloxane Polymers 0.000 title 1
- 238000007613 slurry method Methods 0.000 title 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 135
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 127
- 239000010703 silicon Substances 0.000 claims abstract description 127
- 238000000034 method Methods 0.000 claims abstract description 62
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 20
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 229910021417 amorphous silicon Inorganic materials 0.000 claims abstract description 12
- 239000002019 doping agent Substances 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 8
- 239000011863 silicon-based powder Substances 0.000 claims abstract description 8
- 239000010408 film Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 239000000356 contaminant Substances 0.000 claims description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000000701 coagulant Substances 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 238000007669 thermal treatment Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 2
- 229910052736 halogen Inorganic materials 0.000 claims description 2
- 150000002367 halogens Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 1
- 238000007598 dipping method Methods 0.000 claims 1
- 238000007650 screen-printing Methods 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 239000007921 spray Substances 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 29
- 239000000463 material Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052950 sphalerite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
- H01L29/78651—Silicon transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Thin Film Transistor (AREA)
- Photovoltaic Devices (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Manufacturing & Machinery (AREA)
- Electromagnetism (AREA)
Abstract
Description
도1은 본 발명에서 사용하는 웨이퍼 제조공정에서 발생된 실리콘 슬러리의 상태를 나타낸 확대도면.1 is an enlarged view showing the state of the silicon slurry generated in the wafer manufacturing process used in the present invention.
도2는 본 발명에 따른 실리콘 슬러리를 이용하여 제조된 전자소자의 하나인 다이오드의 한 실시예를 나타낸 단면도.Figure 2 is a cross-sectional view showing one embodiment of a diode which is one of the electronic devices manufactured using the silicon slurry according to the present invention.
<도면의 주요 부분에 대한 설명>Description of the main parts of the drawing
10 : 기판 11 : 캐소드 전극10
12 : 활성층 13 : 도핑층12
14 : 애노드 전극14: anode electrode
본 발명은 실리콘 슬러리를 이용한 전자소자 및 그 제조방법에 관한 것으로, 특히 실리콘 웨이퍼 제작 과정에서 발생하는 실리콘 슬러리를 전자소자를 제조하기 위해 사용되는 실리콘 및 실리콘 웨이퍼 대신 사용하여 전자소자를 제조함으로써 비용을 절감하고, 소결 및 열처리를 통해 전류 밀도와 특성을 제어할 수 있는 실리콘 슬러리를 이용한 전자소자 및 그 소자의 제조방법을 제공한다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electronic device using a silicon slurry and a method of manufacturing the same, and in particular, the cost of manufacturing an electronic device by using a silicon slurry generated in the process of manufacturing a silicon wafer instead of the silicon and silicon wafers used to manufacture the electronic device. The present invention provides an electronic device and a method for manufacturing the device using a silicon slurry that can reduce, control the current density and characteristics through sintering and heat treatment.
현재까지 실리콘을 포함하여 제조된 주요 전자소자로는 다이오드, 박막 트랜지스터, 태양전지 등이 있다.To date, major electronic devices manufactured including silicon include diodes, thin film transistors, and solar cells.
또한, 상기 전자소자들 중 다이오드는 기판 상부에 형성된 두개의 전극 사이에 실리콘 웨이퍼를 사용하여 활성층을 형성하였다.In addition, among the electronic devices, a diode forms an active layer using a silicon wafer between two electrodes formed on a substrate.
또한, 디스플레이에 사용되는 상기 박막트랜지스터는 대부분 고가의 실리콘 웨이퍼 기판 상에 형성하거나 비정질 실리콘을 기상 증착법으로 유리기판 상에 증착하여 활성층으로 사용하였으며, 태양전지를 구성하는 활성층은 대부분 값비싼 실리콘 웨이퍼를 이용하거나 비정질 실리콘을 증착하는 방법을 이용하여 형성하였다. In addition, most of the thin film transistors used in displays are formed on expensive silicon wafer substrates, or amorphous silicon is deposited on glass substrates by vapor deposition, and used as active layers. Most active layers constituting solar cells use expensive silicon wafers. Or using a method of depositing amorphous silicon.
그러나, 상기 전자소자들에 사용되는 실리콘들은 비정질 실리콘이나 다결정 실리콘 또는 실리콘 웨이퍼를 그대로 사용하기 때문에 전자소자를 제조하기 위한 비용이 많이 소요된다는 문제점이 있었다.However, silicon used in the electronic devices has a problem in that it takes a lot of cost to manufacture an electronic device because it uses amorphous silicon, polycrystalline silicon or a silicon wafer as it is.
이에, 본 발명은 저가의 전자소자를 제조하기 위한 한 방법으로서, 활성층을 형성하기 위해 실리콘 웨이퍼나 비정질 실리콘을 사용하는 대신에 실리콘 웨이퍼의 제조공정에서 필연적으로 발생되는 실리콘 슬러리를 활용하고자 하는 것이다. Accordingly, the present invention is to use a silicon slurry inevitably generated in the manufacturing process of a silicon wafer instead of using a silicon wafer or amorphous silicon to form an active layer as a method for manufacturing an inexpensive electronic device.
그러나, 상기 실리콘 슬러리는 일반적인 웨이퍼에 비해서 파우더 형태이기 때문에 다루기가 쉽고 값싸게 소재를 얻을 수 있다는 장점을 가지고 있으나, 현재까지는 실리콘 슬러리를 활용할 경우 그 소자 특성이 저하되기 때문에 재활용하지 못하고 폐기처분해야 하는 것이 실정이었다.However, the silicon slurry has a merit that it is easy to handle and inexpensively obtain a material because it is in a powder form compared to a general wafer, but until now, the use of the silicon slurry deteriorates the device properties, so it must be disposed of without disposal. It was a fact.
즉, 실리콘 슬러리를 이용하여 소자를 제작하는 경우에는 상기 실리콘 슬러리가 실리콘 웨이퍼 보다 소자의 특성이 좋지 못하여 전자소자의 재료로 사용할 수 없다는 문제점이 있다.In other words, when the device is manufactured using the silicon slurry, the silicon slurry may not be used as a material of the electronic device because the silicon slurry has poor device characteristics than the silicon wafer.
따라서, 상기 문제점을 해결하기 위하여 본 발명은 실리콘웨이퍼 제조공정에서 발생하는 고순도 실리콘 슬러리를 재활용하여 저가의 전자소자를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a low-cost electronic device by recycling the high-purity silicon slurry generated in the silicon wafer manufacturing process.
또한, 상기 재활용되는 실리콘 슬러리를 사용하여 전자소자의 활성층을 형성함으로써 폐기 처분되는 실리콘 슬러리를 상용화할 수 있도록 하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to make a commercially available silicon slurry to be disposed of by disposing the active layer of the electronic device using the recycled silicon slurry.
또한, 상기 실리콘 슬러리를 사용함으로써 종래에 전자소자에 사용되던 실리콘 웨이퍼 또는 비정질 실리콘을 대체함으로써 활성층을 용이하게 형성하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to easily form an active layer by replacing the silicon wafer or amorphous silicon, which is conventionally used for electronic devices, by using the silicon slurry.
또한, 실리콘 슬러리를 이용하여 형성된 전자소자의 활성층에 대해 소결 처리 등을 통해 특성을 변화시켜 원하는 전류 밀도 및 특성을 제어할 수 있도록 하는 것을 또 다른 목적으로 한다.In addition, another object of the present invention is to change the characteristics of the active layer of the electronic device formed by using the silicon slurry through sintering treatment so as to control desired current density and characteristics.
상기 목적을 달성하기 위하여 본 발명은, 기판 상부에 실리콘 웨이퍼 또는 비정질 실리콘으로 형성되는 활성층 또는 도핑층을 갖는 전자소자에 있어서, 상기 활성층은 실리콘 웨이퍼 제조공정에서 발생한 실리콘 슬러리를 박막 형태로 형성하고, 소결 처리를 실시하여 형성된 것을 특징으로 하는 실리콘 슬러리를 이용하여 제조된 전자소자를 제공한다.In order to achieve the above object, the present invention, in the electronic device having an active layer or a doping layer formed of a silicon wafer or amorphous silicon on the substrate, the active layer is formed of a silicon slurry in the silicon wafer manufacturing process in a thin film form, Provided is an electronic device manufactured using a silicon slurry, which is formed by performing a sintering process.
또한, 기판 상부에 실리콘 웨이퍼 또는 비정질 실리콘으로 형성되는 활성층 또는 도핑층을 갖는 전자소자의 제조방법에 있어서, 실리콘 슬러리를 이용하여 박막형태의 실리콘 슬러리층을 형성하는 단계와; 상기 실리콘 슬러리층 상부로부터 p형 도펀트 또는 n형 도펀트를 주입하는 단계와; 상기 실리콘 슬러리층이 형성된 소자에 열처리를 실시하여 활성층을 형성하는 단계를 포함하는 것을 특징으로 하는 실리콘 슬러리를 이용한 전자소자 제조방법을 제공한다.In addition, a method of manufacturing an electronic device having an active layer or a doping layer formed of a silicon wafer or amorphous silicon on a substrate, the method comprising: forming a silicon slurry layer in a thin film form using a silicon slurry; Implanting a p-type dopant or an n-type dopant from the top of the silicon slurry layer; It provides an electronic device manufacturing method using a silicon slurry comprising the step of forming an active layer by performing a heat treatment on the device on which the silicon slurry layer is formed.
본 발명에 사용되는 실리콘 웨이퍼 제조공정에서 발생한 실리콘 슬러리의 종류로는 n형 도핑된 실리콘 슬러리, p형 도핑된 실리콘 슬러리, n형 또는 p형 도핑이 되지 않은 진성 실리콘 슬러리 등이 있으며, 상기 실리콘 슬러리는 입자의 크기가 수~수십㎛이다.Examples of the silicon slurry generated in the silicon wafer manufacturing process used in the present invention include n-type doped silicon slurry, p-type doped silicon slurry, n-type or p-type doped intrinsic silicon slurry, and the like. The particle size is several tens to several micrometers.
상기와 같은 실리콘 슬러리를 박막 트랜지스터에 사용하기 위해서는 실리콘 슬러리를 바로 사용하는 방법, 실리콘 슬러리를 박막형태로 형성하는 방법, 상기 박막을 형성하고 소결처리를 통하여 특성을 향상시켜주는 방법 등을 통해 활성층으로 형성한다.In order to use such a silicon slurry in a thin film transistor, a method of directly using a silicon slurry, a method of forming a silicon slurry into a thin film form, a method of forming the thin film and improving characteristics through sintering, etc. Form.
또한, 상기 실리콘 파우더를 이용하여 활성층을 구성하는 박막을 형성한 후 실시하는 소결은 고온에서 이루어지기 때문에 기판으로부터의 오염물질의 유입을 막아 주기 위해 기판 상부에 버퍼층을 형성하는 것이 바람직하다. 상기 버퍼층은 실리콘 산화막, 실리콘 질화막, 실리콘 산화 질화막, 실리케이트막 등으로 형성한다. In addition, since the sintering is performed at a high temperature after forming the thin film constituting the active layer using the silicon powder, it is preferable to form a buffer layer on the substrate to prevent the influx of contaminants from the substrate. The buffer layer is formed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicate film, or the like.
상기 실리콘 파우더는 반도체 웨이퍼 제조과정의 슬라이스 공정에서 얻어진 실리콘 슬러리, 실리콘과 Ge 웨이퍼 제조과정에서 발생하는 슬러리, 그리고 화합물 반도체 웨이퍼를 제작하면서 발생하는 슬러리 등을 이용한다.As the silicon powder, a silicon slurry obtained in the slice process of the semiconductor wafer manufacturing process, a slurry generated in the silicon and Ge wafer manufacturing process, and a slurry produced while manufacturing the compound semiconductor wafer are used.
또한, 화합물 반도체 실리콘 웨이퍼를 제작하는 재료의 실시예로는 GaAs, GaN, InP, SiC, SiGe, ZnS, CdTe, HGxCd1-xTe, AlxGa1-xAs, Al1Ga1-xAsySb1-y 등이 있으며, 이들을 이용하여 웨이퍼를 제조하는 과정에서 발생되는 슬러리를 사용할 수도 있다.In addition, examples of materials for fabricating compound semiconductor silicon wafers include GaAs, GaN, InP, SiC, SiGe, ZnS, CdTe, HG x Cd 1-x Te, Al x Ga 1-x As, Al 1 Ga 1- x As y Sb 1-y and the like, a slurry generated in the process of manufacturing a wafer using them may be used.
또한, 상기와 같이 얻어진 실리콘 슬러리 및 기타 웨이퍼를 만들면서 발생한 슬러리를 1 ㎛ 이하의 크기를 갖는 실리콘 파우더로 만들어 사용한다. In addition, the slurry generated while making the silicon slurry and other wafers obtained as described above is used to make a silicon powder having a size of 1 ㎛ or less.
또한, 상기와 같은 실리콘 파우더를 솔벤트 및 유기용제, 계면활성제, 분산 제, 접착제, 응고제 등의 화학물질을 첨가하여 용액 상태로 만들어 사용할 수도 있다.In addition, the silicon powder as described above may be used in the form of a solution by adding chemicals such as solvents and organic solvents, surfactants, dispersants, adhesives, coagulants.
이하, 첨부된 도면을 참조로 하여 본 발명을 좀 더 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
먼저, 도1은 본 발명에 사용되는 실리콘 웨이퍼 제조공정에서 발생한 실리콘 슬러리를 주사전자 현미경으로 촬영한 사진으로서, 실리콘 슬러리의 입자는 수~수십㎛ 크기를 갖는다. First, Figure 1 is a photograph taken by a scanning electron microscope of the silicon slurry produced in the silicon wafer manufacturing process used in the present invention, the particles of the silicon slurry has a size of several tens to several tens.
이때, 상기 실리콘 슬러리를 후술하는 전자소자를 제조하기 위해 그대로 사용하거나, 그라인딩 또는 연마 공정을 통하여 입자의 크기를 더 작은 1㎛ 이하로 제조하여 사용한다. 또한, 솔벤트 및 유기용제, 계면활성제, 분산제, 접착제, 응고제 등의 화학물질을 첨가하여 용액 상태로 제조하여 사용할 수도 있다.In this case, the silicon slurry is used as it is to manufacture the electronic device described below, or the particle size is manufactured to be used to produce a particle size of 1 μm or less through grinding or polishing. In addition, a solvent and an organic solvent, a surfactant, a dispersant, an adhesive, a coagulant, etc. may be added to prepare a solution and use it.
다음에, 도2는 상기 도1에서 설명한 실리콘 슬러리를 이용하여 제조된 전자소자의 하나인 다이오드의 한 실시예를 나타낸 것으로, 기판(10) 상부에 금속 또는 전도성 페이스트를 이용하여 캐소드 전극(11)을 형성하고, 상기 캐소드 전극(11) 상부에 진성 실리콘 슬러리를 이용하여 활성층(12)을 형성한다. 다음에, 상기 활성층 상부에 p형 도핑된 실리콘 슬러리 또는 n형 도핑된 실리콘 슬러리를 사용하여 도핑층(13)을 형성하고, 상기 도핑층 상부에 금속 또는 전도성 페이스트를 사용하여 애노드 전극(14)을 형성한다. 이때, 상기 기판은 유연성을 가지는 메탈 기판을 사용할 수도 있다.Next, FIG. 2 illustrates an embodiment of a diode, which is one of electronic devices manufactured by using the silicon slurry described with reference to FIG. 1. The
또한, 상기 도핑층(13)은 진성 실리콘 슬러리를 이용하여 상대적으로 두꺼운 박막 형태로 형성하고, 상기 실리콘 슬러리층 상부로부터 이온주입 공정을 통해 p형 도펀트 또는 n형 도펀트를 주입함으로써 도핑층을 형성할 수도 있다.In addition, the
상기 이온주입 공정은 플라즈마 발생장치에서 생성된 이온을 열확산법을 이용하여 주입하는 방법과, 이온 빔을 이용하여 직접 이온을 임플란트(implant)시키는 방법을 사용한다. 상기 열확산법은 주입한 가스(gas)를 플라즈마로 방전시켜 분해한 후 온도를 올려 시료 표면으로 열 확산에 의해 주입하는 방법이고, 이온 빔을 이용한 방법은 이온화된 원자를 수십-수백kV로 가속하여 처리하고자 하는 재료의 표면에 강제적으로 주입하는 방법이다.The ion implantation process uses a method of implanting ions generated in the plasma generator using a thermal diffusion method, and a method of implanting ions directly using an ion beam. The thermal diffusion method is a method in which the injected gas is discharged into a plasma to decompose it, and then the temperature is increased by thermal diffusion to the sample surface. The method using an ion beam accelerates the ionized atoms to several tens to hundreds of kV. This method is forcibly injected into the surface of the material to be treated.
또한, 사용되는 실리콘 슬러리의 형태는 웨이퍼 공정에서 발생한 슬러리를 그대로 사용하거나, 미세한 입자로 가공된 실리콘 슬러리 또는 용액 상태로 제조된 실리콘 슬러리를 사용할 수 있다.In addition, the form of the silicon slurry used may be a slurry generated in the wafer process as it is, or a silicon slurry processed into fine particles or a silicon slurry manufactured in a solution state may be used.
다음에, 상기와 같이 실리콘 슬러리로 제조된 활성층과 도핑층은 전자소자로서의 특성이 저하되고, 기판에 잘 접착되지 않음에 따라 소결 공정을 실시하여 접착력을 향상시키고, 실리콘 슬러리에 함유된 유기물을 제거하여야 한다.Next, the active layer and the doped layer made of the silicon slurry as described above are deteriorated as an electronic device and do not adhere well to the substrate, thereby performing a sintering process to improve adhesion and to remove organic substances contained in the silicon slurry. shall.
또한, 상기 소결 공정을 실시한 후 슬리콘 슬러리층에 도핑을 실시하여 접합(p-n junction )이 이루어지도록 하고, 다시 한번 소결 공정을 실시할 수도 있다.In addition, after the sintering process, the sintered slurry layer may be doped to form a p-n junction, and the sintering process may be performed once again.
상기와 같은 소결 공정은 열처리방법 또는 빔 조사방법 등을 단독 또는 병행하여 사용하며, 열처리 방법으로는 할로겐 램프, 자외선 램프 등을 이용하여 점진적으로 온도를 향상시키는 퍼니스(Furnace) 방법이나 급격하게 온도를 향상시키는 급속열처리(RTA)방법 등이 사용되고, 상기 빔 조사 방법으로는 UV 어닐링(annealing) 또는 레이저 조사를 이용한 어닐링 방법 등이 사용되며, 상기 열처리 방법과 빔 조사방법을 혼합한 급속열처리(RTA) 및 UV 어닐링을 함께 사용할 수도 있다. 이때, 슬러리 층의 소결온도는 실리콘의 녹는점 1414℃ 보다 낮게 유지하여야 한다.In the sintering process as described above, a heat treatment method or a beam irradiation method is used alone or in parallel, and as a heat treatment method, a furnace method or a sudden method of gradually increasing the temperature using a halogen lamp or an ultraviolet lamp is used. A rapid thermal treatment (RTA) method for improving and the like is used. As the beam irradiation method, an annealing method using UV annealing or laser irradiation is used. And UV annealing may be used together. At this time, the sintering temperature of the slurry layer should be kept below the melting point of 1414 ℃ of silicon.
또한, 상기 고온 소결 공정에서 기판으로부터의 오염물질이 유입되는 것을 방지하기 위하여 실리콘 산화막, 실리콘 질화막, 실리콘 산화 질화막, 실리케이트 막 등으로 형성되는 버퍼층을 더 형성할 수도 있다.In addition, a buffer layer formed of a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicate film, or the like may be further formed to prevent contaminants from the substrate in the high temperature sintering process.
상기와 같이 전자소자를 형성하는 기판 상부에 실리콘 웨이퍼나 비정질 실리콘 등을 대신하여 웨이퍼 제조공정에서 발생한 실리콘 슬러리를 이용하여 다이오드, 박막 트랜지스터, 태양전지 등의 전자소자를 제조할 수 있다.As described above, an electronic device such as a diode, a thin film transistor, or a solar cell may be manufactured by using a silicon slurry generated in a wafer manufacturing process in place of a silicon wafer or amorphous silicon on the substrate forming the electronic device.
이상과 같이 본 발명을 도면에 도시한 실시예를 참고하여 설명하였으나, 이는 발명을 설명하기 위한 것일 뿐이며, 본 발명이 속하는 기술 분야의 통상의 지식을 가진 자라면 고안의 상세한 설명으로부터 다양한 변형 또는 균등한 실시예가 가능하다는 것을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 권리범위는 특허 청구범위의 기술적 사상에 의해 결정되어야 한다. While the present invention has been described with reference to the embodiments shown in the drawings, it is only for illustrating the invention, and those skilled in the art to which the present invention pertains various modifications or equivalents from the detailed description of the invention. It will be appreciated that one embodiment is possible. Therefore, the true scope of the present invention should be determined by the technical spirit of the claims.
본 발명은 실리콘웨이퍼 제조공정에서 발생하는 고순도 실리콘 슬러리를 재활용하여 저가의 전자소자 및 그 제조방법을 제공할 수 있다.The present invention can provide a low-cost electronic device and a method of manufacturing the same by recycling the high purity silicon slurry generated in the silicon wafer manufacturing process.
또한, 상기 재활용되는 실리콘 슬러리의 입자 크기를 균일하게 감소시켜 실리콘 파우더를 제조하고, 이를 사용하여 태양전지의 활성층을 형성함으로써 폐기 처분되는 실리콘 슬러리를 상용화 할 수 있다.In addition, by uniformly reducing the particle size of the recycled silicon slurry to produce a silicon powder, it can be used to commercialize the silicon slurry disposed of by forming an active layer of the solar cell.
또한, 상기 실리콘 슬러리를 사용하여 종래에 전자소자에 사용되던 실리콘 웨이퍼 또는 비정질 실리콘을 대체함으로써 활성층을 용이하게 형성할 수 있다.In addition, the active layer may be easily formed by replacing the silicon wafer or the amorphous silicon, which is conventionally used in an electronic device, by using the silicon slurry.
또한, 실리콘 슬러리를 이용하여 형성된 전자소자의 활성층을 소결처리 등을 통해 특성을 변화시켜 원하는 전류 밀도 및 특성을 제어할 수 있다.In addition, the active layer of the electronic device formed by using the silicon slurry may be changed in characteristics through sintering to control desired current density and characteristics.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070033023A KR100865960B1 (en) | 2007-04-03 | 2007-04-03 | Electron Element Using Silicone Slurry and Manufacturing Method of the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20070033023A KR100865960B1 (en) | 2007-04-03 | 2007-04-03 | Electron Element Using Silicone Slurry and Manufacturing Method of the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20080090056A true KR20080090056A (en) | 2008-10-08 |
KR100865960B1 KR100865960B1 (en) | 2008-10-30 |
Family
ID=40151448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20070033023A KR100865960B1 (en) | 2007-04-03 | 2007-04-03 | Electron Element Using Silicone Slurry and Manufacturing Method of the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100865960B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834898A (en) * | 2010-04-23 | 2012-12-19 | 日立化成工业株式会社 | N-type diffusion layer forming composition, method of producing n-type diffusion layer, and method of producing solar cell element |
KR101329392B1 (en) * | 2011-12-21 | 2013-11-14 | 재단법인 포항산업과학연구원 | METHOD FOR MANUFACTURING FORMED SiC PRODUCT FOR GROWTH OF SiC SINGLE CRYSTAL |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000067B1 (en) | 2008-12-30 | 2010-12-10 | 엘지전자 주식회사 | Laser Firing Apparatus For High Efficiency Sollar Cell And Fabrication Method For High Efficiency Sollar Cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005123355A (en) * | 2003-10-16 | 2005-05-12 | Seiko Epson Corp | Forming method of polysilicon film and thin film transistor consisting of polysilicon film formed by this method |
CN103121799A (en) * | 2004-03-09 | 2013-05-29 | 出光兴产株式会社 | Sputtering target, transparent conductive film, thin film transistor substrate, method for manufacturing thin film transistor substrate, and liquid crystal display device |
-
2007
- 2007-04-03 KR KR20070033023A patent/KR100865960B1/en active IP Right Grant
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102834898A (en) * | 2010-04-23 | 2012-12-19 | 日立化成工业株式会社 | N-type diffusion layer forming composition, method of producing n-type diffusion layer, and method of producing solar cell element |
CN102834898B (en) * | 2010-04-23 | 2016-06-15 | 日立化成工业株式会社 | N-type diffusion layer forms the manufacture method of constituent, the manufacture method of n-type diffusion layer and solar cell device |
KR101329392B1 (en) * | 2011-12-21 | 2013-11-14 | 재단법인 포항산업과학연구원 | METHOD FOR MANUFACTURING FORMED SiC PRODUCT FOR GROWTH OF SiC SINGLE CRYSTAL |
Also Published As
Publication number | Publication date |
---|---|
KR100865960B1 (en) | 2008-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6898400B2 (en) | Diamond Semiconductor Systems and Methods | |
CN109671612B (en) | Gallium oxide semiconductor structure and preparation method thereof | |
US11915934B2 (en) | Diamond semiconductor system and method | |
TWI615943B (en) | Diamond semiconductor system and method | |
EP2186138A2 (en) | A patterned assembly for manufacturing a solar cell and a method thereof | |
KR100865960B1 (en) | Electron Element Using Silicone Slurry and Manufacturing Method of the Same | |
US6555451B1 (en) | Method for making shallow diffusion junctions in semiconductors using elemental doping | |
KR100885716B1 (en) | Solar Cell Using Silicone Slurry and Manufacturing Method of the Same | |
CN114188362A (en) | SOI (silicon on insulator) with special structure and preparation method thereof | |
US9985159B2 (en) | Passivated contact formation using ion implantation | |
KR100871113B1 (en) | Thin Film Transistor Using Silicone Slurry and Manufacturing Method of the Same | |
JPH0529235A (en) | Manufacture of gaas element having high purity layer | |
JP2004087848A (en) | Method of manufacturing semiconductor device | |
JP2006040932A (en) | Nitride semiconductor device and its manufacturing method | |
TW201427052A (en) | Wide band gap photovoltaic device and process of manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121023 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20131007 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20141024 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20151106 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20161021 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20171127 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20181023 Year of fee payment: 11 |