KR20080088748A - 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법 - Google Patents

플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법 Download PDF

Info

Publication number
KR20080088748A
KR20080088748A KR1020070031424A KR20070031424A KR20080088748A KR 20080088748 A KR20080088748 A KR 20080088748A KR 1020070031424 A KR1020070031424 A KR 1020070031424A KR 20070031424 A KR20070031424 A KR 20070031424A KR 20080088748 A KR20080088748 A KR 20080088748A
Authority
KR
South Korea
Prior art keywords
reaction chamber
gas
frequency power
plasma
nitrogen gas
Prior art date
Application number
KR1020070031424A
Other languages
English (en)
Inventor
정우찬
이승태
이종규
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070031424A priority Critical patent/KR20080088748A/ko
Publication of KR20080088748A publication Critical patent/KR20080088748A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 생산수율을 증대 또는 극대화할 수 있는 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마 화학기상증착방법을 개시한다. 그의 설비는, 외부로부터 밀폐된 공간을 제공하는 반응 챔버; 상기 반응 챔버 내부의 공기를 소정의 진공압으로 펌핑하는 진공 펌프; 상기 진공 펌프의 펌핑에 의해 소정의 진공압을 갖는 상기 반응 챔버의 하단에서 웨이퍼를 지지하면서 소정의 온도로 가열시키는 히터 블록; 상기 히터 블록에 대향되는 상기 반응 챔버의 상단에 형성된 샤워 헤드; 상기 샤워 헤드를 통해 상기 반응 챔버 내에 소정 유량의 이소프렌 가스와 질소 가스를 혼합하여 공급하는 반응 가스 공급부; 및 상기 반응 가스 공급부에서 공급되는 상기 이소프렌 가스와 상기 질소 가스를 플라즈마 상태로 여기시키고 일정 혼합비 이상으로 혼합시키기 위해 고주파 파워 및 저주파 파워가 동시에 인가되도록 상기 샤워 헤드의 상부에 형성된 플라즈마 전극을 포함하여 이루어진다.
Figure P1020070031424
화학기상증착(CVD), 이소프렌, 질소, 고주파(High Frequency), 저주파(Low Frequency)

Description

플라즈마 화학기상증착설비 및 그를 이용한 플라즈마 화학기상증착방법{Equipment for plasma enhanced chemical vapor deposition and methode used the same}
도 1은 종래 기술에 따른 플라즈마 화학기상증착설비를 개략적으로 나타내는 단면도.
도 2는 본 발명의 실시예에 따른 플라즈마 화학기상증착설비를 개략적으로 나타낸 단면도.
도 3은 본 발명의 플라즈마 화학기상증착방법을 나타내는 흐름도.
* 도면의 주요 부분에 대한 부호의 설명 *
110 : 반응 챔버 120 : 진공 펌프
130 : 히터 블록 140 : 샤워 헤드
150 : 반응 가스 공급부 160 : 플라즈마 전극
본 발명은 반도체 제조설비에 관한 것으로서, 보다 상세하게는 웨이퍼 상에 플라즈마 화학기상증착방법으로 비정질 탄소막(amorphous carbon layer)을 형성하는 플라즈마 화학기상증착설비 및 그를 이용한 화학기상증착방법에 관한 것이다.
최근, 반도체 제조 업계에서는 반도체 칩의 동작 속도를 증대시키고 단위 면적당 정보 저장 능력을 증가시키기 위하여 반도체 집적 회로 공정에 적용되는 최소 선폭이 꾸준히 줄어드는 추세에 있다. 또한, 반도체 웨이퍼 상에 집적화 되는 트랜지스터와 같은 반도체 소자의 크기가 서브 하프 마이크론 이하로 축소되고 있다.
이와 같은 반도체 소자는 증착 공정, 포토공정, 식각공정, 확산공정을 통하여 제조될 수 있으며, 이러한 공정들이 수차례에서 수십차례 반복되어야 적어도 하나의 반도체 장치가 탄생될 수 있다. 특히, 상기 증착 공정은 반도체 소자 제조의 재현성 및 신뢰성에 있어서 개선이 요구되는 필수적인 공정으로 졸겔(sol-gel)방법, 스퍼터링(sputtering)방법, 전기도금(electro-plating)방법, 증기(evaporation)방법, 화학기상증착(chemical vapor deposition)방법, 분자 빔 에피탁시(molecule beam eptaxy)방법, 원자층 증착방법 등에 의하여 웨이퍼 상에 상기 가공막을 형성하는 공정이다.
그중 상기 화학기상증착방법은 다른 증착방법보다 웨이퍼 상에 형성되는 증착 특성과, 가공막의 균일성이 우수하기 때문에 가장 보편적으로 사용되고 있다. 이와 같은 화학기상증착방법에는 LPCVD(Low Pressure Chemical Vapor Deposition), APCVD(Atmospheric Pressure Chemical Vapor Deposition), LTCVD(Low Temperature Chemical Vapor Deposition), PECVD(Plasma Enhanced Chemical Vapor Deposition) 등으로 나눌 수 있다.
예컨대, 상기 PECVD는 전기적 방전을 통해 기체 내에 화학반응을 일으켜 형성된 물을 웨이퍼 상에 증착함으로서 유전막을 형성하는 공정이다. 그리고, 종래의 상기 PECVD공정은 다수의 웨이퍼를 플라즈마 화학기상증착설비 내부에 투입한 후, 일괄적으로 PECVD공정을 수행함으로서 다수의 웨이퍼 상에 특정막을 형성하였으나, 최근에 반도체장치가 고집적화되고 웨이퍼가 대구경화됨에 따라 플라즈마 화학기상증착설비 내부에 한 장의 웨이퍼를 투입한 후 PECVD공정을 진행하고, 상기 한 장의 웨이퍼에 대한 PECVD공정이 수행된 이후에는 상기 플라즈마 화학기상증착설비 내부에 존재하는 잔류가스 및 반응생성물을 제거하는 세정 및 퍼지공정을 수행하고 있다.
특히, 반도체 장치의 고집적화 및 패턴의 사이즈가 점점 축소되어 가는 과정에서 포토공정의 한계를 극복하고자 하는 대안으로 제안된 하드 마스크막의 상부에서 포토레지스트의 노광 시에 일정 수준의 굴절율과 흡수율이 요구되는 비정질 탄소막의 증착 조건을 찾기 위한 연구개발이 활발히 이루어지고 있다.
이와 같은 비정질 탄소막을 증착하는 플라즈마 화학기상증착설비 및 그를 이용한 화학기상증착방법은 미국특허출원 제2005-0199585호에 개시되어 있다.
이하, 도면을 참조하여 종래 기술에 따른 플라즈마 화학기상증착설비를 설명하면 다음과 같다.
도 1은 종래 기술에 따른 플라즈마 화학기상증착설비를 개략적으로 나타내는 단면도이다.
도 1에 도시한 바와 같이, 종래 기술에 따른 화학기상증착장치는, 외부로부터 밀폐된 공간을 제공하는 반응 챔버(10)와, 상기 반응 챔버(10) 내부의 공기를 소정의 진공압으로 펌핑하는 진공 펌프(20)와, 상기 진공 펌프(20)의 펌핑에 의해 소정의 진공압을 갖는 상기 반응 챔버(10)의 하단에서 웨이퍼를 지지하면서 소정의 온도로 가열시키는 히터 블록(30)과, 상기 히터 블록(30)에 대향되는 상기 반응 챔버(10)의 상단에 형성된 샤워 헤드(40)와, 상기 샤워 헤드(40)를 통해 상기 반응 챔버(10) 내에 소정 유량의 이소프렌 가스를 공급하는 반응 가스 공급부(50)와, 상기 반응 가스 공급부(50)에서 공급되는 상기 이소프렌 가스를 고주파 파워를 이용하여 플라즈마 상태로 여기시키도록 상기 샤워 헤드(40)의 상부에 형성된 플라즈마 전극(60)을 포함하여 구성된다.
여기서, 상기 반응 가스 공급부(50)는 소정의 온도를 갖는 상기 이소프렌 가스를 일정 유량으로 상기 반응 챔버(10) 내에 공급한다. 또한, 상기 히터 블록(30)은 상기 반응 챔버(10) 내에서 상기 웨이퍼(70) 상에 상기 실리콘 산화막을 안정적으로 증착시키기 위해 상기 웨이퍼(70)를 소정의 온도로 가열하도록 형성되어 있다.
상기 플라즈마 전극(60)은 전원공급부 또는 외부에서 인가되는 상기 고주파 파워를 이용하여 상기 이소프렌 가스를 플라즈마 상태로 만들어 상기 히터 블록(30)에 의해 지지되는 웨이퍼 상에 비정질 탄소막을 형성토록 할 수 있다. 예컨대, 상기 고주파 파워(High Frequency power)는 약 10MHz 내지 약 30MHz 정도의 주파수를 갖는다.
하지만, 종래 기술에 따른 플라즈마 화학기상증착설비 및 그를 이용한 화학기상증착방법은 다음과 같은 문제점이 있었다.
종래의 플라즈마 화학기상증착설비 및 그를 이용한 화학기상증착방법은, 반응 챔버(10) 내에 반응 가스로서 이소프렌 가스 단독으로 공급하고, 고주파 파워로 플라즈마 상태의 상기 이소프렌 가스를 이용하여 약 1.3정도의 높은 굴절율을 갖고 약 0.3정도의 낮은 흡수율을 갖는 비정질 탄소막을 형성토록 할 수 있으나, 후속에서 상기 비정질 탄소막 상에 형성되는 포토레지스트의 노광시에 요구되는 약 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성할 수 없어 노광 공정의 불량을 야기시킬 수 있기 때문에 생산수율이 떨어지는 단점이 있었다.
상술한 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성토록 하여 생산수율을 증대 또는 극대화할 수 있는 플라즈마 화학기상증착방법을 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명의 양태(aspect)에 따른 플라즈마 화학기상증착설비는, 외부로부터 밀폐된 공간을 제공하는 반응 챔버; 상기 반응 챔버 내부의 공기를 소정의 진공압으로 펌핑하는 진공 펌프; 상기 진공 펌프의 펌핑에 의해 소정의 진공압을 갖는 상기 반응 챔버의 하단에서 웨이퍼를 지지하면서 소정의 온도로 가열시키는 히터 블록; 상기 히터 블록에 대향되는 상기 반응 챔버의 상단에 형성된 샤워 헤드; 상기 샤워 헤드를 통해 상기 반응 챔버 내에 소정 유량의 이소프렌 가스와 질소 가스를 혼합하여 공급하는 반응 가스 공급부; 및 상기 반응 가스 공급부에서 공급되는 상기 이소프렌 가스와 상기 질소 가스를 플라즈마 상태로 여기시키고 일정 혼합비 이상으로 혼합시키기 위해 고주파 파워 및 저주파 파워가 동시에 인가되도록 상기 샤워 헤드의 상부에 형성된 플라즈마 전극을 포함함을 특징으로 한다.
본 발명의 다른 양태는, 진공 펌프를 이용하여 소정의 진공압을 갖도록 반응 챔버 내부의 공기를 펌핑하는 단계; 상기 반응 챔버의 진공압을 유지시키면서 상기 반응 챔버 내부에 질소 가스를 공급하는 단계; 상기 질소 가스가 공급되는 상기 반응 챔버의 상단에 형성된 제 1 플라즈마 전극에 고주파 파워를 인가하여 상기 질소 가스의 플라즈마 반응을 유도하는 단계; 상기 질소 가스의 플라즈마 반응이 유도된 상기 반응 챔버 내에 소정 유량의 이소프렌 가스를 공급하는 단계; 및 상기 이소프렌 가스가 공급되는 상기 반응 챔버의 상단에 형성된 제 1 플라즈마 전극과 인접하는 제 2 플라즈마 전극에 상기 고주파 파워에 비해 상대적으로 저주파 영역의 저주파 파워를 인가하여 상기 반응 챔버 하단의 히터 블록 상에 지지되는 웨이퍼 상에 비정질 탄소막을 형성하는 단계를 포함하는 플라즈마 화학기상증착방법이다.
이하, 도면을 참조하여 본 발명의 실시예에 따른 플라즈마 화학기상증착설비 및 그를 이용한 화학기상증착방법을 설명하면 다음과 같다. 본 발명의 실시예는 여러가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예로 인해 한정되어 지는 것으로 해석되어져서는 안된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서 도면에서의 요소의 형상은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이다.
도 2는 본 발명의 실시예에 따른 플라즈마 화학기상증착설비를 개략적으로 나타낸 단면도이다
도 2에 도시된 바와 같이, 본 발명의 플라즈마 화학기상증착설비는, 외부로부터 밀폐된 공간을 제공하는 반응 챔버(110)와, 상기 반응 챔버(110) 내부의 공기를 소정의 진공압으로 펌핑하는 진공 펌프(120)와, 상기 진공 펌프(120)의 펌핑에 의해 소정의 진공압을 갖는 상기 반응 챔버(110)의 하단에서 웨이퍼를 지지하면서 소정의 온도로 가열시키는 히터 블록(130)과, 상기 히터 블록(130)에 대향되는 상기 반응 챔버(110)의 상단에 형성된 샤워 헤드(140)와, 상기 샤워 헤드(140)를 통해 상기 반응 챔버(110) 내에 소정 유량의 이소프렌 가스와 질소 가스를 혼합하여 공급하는 반응 가스 공급부(150)와, 상기 반응 가스 공급부(150)에서 공급되는 상기 이소프렌 가스와 상기 질소 가스를 플라즈마 상태로 여기시키고 일정 혼합비 이상으로 혼합시키기 위해 고주파 파워 및 저주파 파워(Low Frequency power)가 동시에 인가되도록 상기 샤워 헤드(140)의 상부에 형성된 플라즈마 전극(160)을 포함하여 구성된다.
여기서, 상기 반응 챔버(110)는 상기 이소프렌 가스와 질소 가스를 이용하여 일정 수준의 굴절율과 흡수율을 갖는 비정질 탄소막을 형성토록 하기 위해 외부로부터 독립된 공간을 제공토록 형성되어 있다. 예컨대, 상기 반응 챔버(110)는 약 4×10-3torr 정도의 진공압을 유지토록 상기 진공 펌프(120)에 의해 펌핑된다.
상기 진공 펌프(120)는 상기 반응 챔버(110)의 하단으로 연결되는 배기 라인에 연결되어 상기 반응 챔버(110) 내부의 상기 질소 가스 및 상기 이소프렌 가스와, 상기 이소프렌 가스와 질소 가스가 반응되어 상기 웨이퍼 상에 비정질 탄소막을 형성하고 남은 반응 후가스를 펌핑시킬 수도 있다. 예컨대, 상기 진공 펌프(120)는 상기 반응 챔버(110) 내부의 공기를 약 1×10-3Torr 정도의 저진공으로 펌핑하는 드라이 펌프 또는 로터리 펌프와 같은 저진공 펌프와, 상기 저진공 펌프 및 상기 반응 챔버(110)사이에서 직렬로 연결되어 상기 반응 챔버(110) 내부의 공기를 약 1×10-6Torr 정도의 고진공으로 펌핑하는 터보 펌프와 같은 고진공 펌프를 포함하여 이루어진다.
상기 히터 블록(130)은 상기 반응 챔버(110) 내에서 상기 웨이퍼 상에 상기 비정질 탄소막을 안정적으로 증착시키기 위해 상기 웨이퍼를 소정의 온도로 가열하도록 형성되어 있다. 예컨대, 복수개의 상기 히터 블록(130)은 상기 웨이퍼(170)의 하면에 접촉되어 복수개의 웨이퍼(170)를 약 100℃ 내지 약 400℃정도의 온도로 가열시킨다.
상기 반응 가스 공급부(150)는 상기 샤워 헤드(140)를 통해 소정 온도의 상 기 이소프렌 가스와 상기 질소 가스를 일정한 유량으로 상기 반응 챔버(110) 내에 공급한다. 예컨대, 상기 반응 가스 공급부(150)는 상기 반응 챔버(110) 내부의 펌핑이 완료되면, 약 0.4SCCM 내지 약 0.75SCCM 정도의 유량으로 상기 이소프렌 가스를 공급하고, 약 100SCCM 정도의 유량으로 상기 질소 가스를 공급한다.
상기 샤워 헤드(140)는 상기 반응 가스 공급부(150)에서 공급되는 상기 이소프렌 가스 및 질소 가스를 상기 웨이퍼의 전면에 분사토록 형성되어 있다. 상기 샤워 헤드(140)는 상기 반응 가스 공급부(150)에서 공급되는 상기 이소프렌 가스 및 상기 질소 가스의 압력을 완충(buffering)하여 혼합시키고, 상기 웨이퍼의 전면에서 균일한 압력으로 상기 이소프렌 가스 및 상기 질소 가스를 토출하도록 형성되어 있다. 예컨대, 상기 샤워 헤드(140)는 상기 이소프렌 가스 및 상기 질소 가스를 토출하는 다공이 제조사별로 여러 가지 타입으로 구분되어 형성되어 있는데, 육각형 모양의 다공이 형성되어 있거나, 원형 모양의 다공이 형성되어 있다. 도시되지는 않았지만, 상기 다공은 상기 샤워 헤드(140)의 중심에서 가장자리까지 동일 또는 유사한 크기를 갖도록 형성될 수 있고, 상기 샤워 헤드(140)의 중심에서 가장자리까지 점진적으로 크기가 증가되도록 형성될 수 있다. 또한, 상기 샤워 헤드(140)는 상기 반응 가스 공급부(150)에서 상기 반응 챔버(110)에 연결되는 공급 배관(도시되지 않음)의 말단에서 토출되는 상기 이소프렌 가스 및 상기 질소 가스의 흐름을 가로막아 상기 이소프렌 가스 및 상기 질소 가스가 상기 샤워 헤드(140)의 가장자리로 펼쳐져 상기 다공으로 분사되도록 형성되는 패널 디퓨저를 더 포함하여 이루어질 수도 있다.
상기 플라즈마 전극(160)은 상기 고주파 파워 및 상기 저주파 파워를 이용하여 상기 이소프렌 가스와 질소 가스를 고온의 플라즈마 상태로 여기시키고, 상기 이소프렌 가스와 상기 질소 가스를 일정한 혼합비로 혼합시킨다. 예컨대, 상기 플라즈마 전극(160)은 약 100W 내지 약 200W 정도의 에너지를 갖고 약 10MHz 내지 약 30MHz정도의 고주파를 갖는 고주파 파워를 인가하는 제 1 플라즈마 전극(162)과, 상기 제 1 플라즈마 전극(162)에 인가되는 고주파 파워에 비해 상대적으로 낮은 약 13.5MHz정도의 저주파를 갖는 저주파 파워를 인가하는 제 2 플라즈마 전극(164)을 포함하여 이루어진다. 따라서, 상기 제 1 플라즈마 전극(162) 및 상기 제 2 플라즈마 전극(164)은 상기 반응 가스 공급부(150)에서 공급된 상기 이소프렌 가스와 상기 질소 가스에 고주파 파워 및 저주파 파워를 인가하여 상기 이소프렌 가스와 상기 질소 가스를 일정하게 혼합시켜 약 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성토록 할 수 있다. 상기 제 1 플라즈마 전극(162) 및 상기 제 2 플라즈마 전극(164)은 상기 웨이퍼 상부에서 수평으로 구분되도록 형성되거나, 수직으로 적층된 구조로 구분되도록 형성될 수 있다. 이때, 상기 제 1 플라즈마 전극(162) 및 상기 제 2 플라즈마 전극(164)에 인가되는 상기 고주파 파워와 상기 저주파 파워는 서로 다른 대역의 주파수를 갖기 때문에 서로간에 간섭이 발생되지 않는다. 도시되지 않았지만, 상기 제 1 플라즈마 전극(162) 및 상기 제 2 플라즈마 전극(164)에 인가되는 상기 고주파 파워와 상기 저주파 파워가 상기 반응 챔버(110) 내부에서 피드백되거나 반사되는 반사파와, 상기 고주파 파워 및 상기 저주파 파워의 임피던스를 매칭시키는 제 1 매칭박스와, 제 2 매칭박스가 상기 반응 챔버(110)의 외부에 형성되어 있다.
따라서, 본 발명의 실시예에 따른 플라즈마 화학기상증착설비는 반응 챔버(110) 내부에 소정 유량의 이소프렌 가스와 질소 가스를 공급하는 반응 가스 공급부(150)와, 상기 반응 가스 공급부(150)에서 공급되는 상기 이소프렌 가스 및 상기 질소 가스를 플라즈마 상태로 여기시키고 일정한 혼합비로 혼합시키는 플라즈마 전극(160)을 구비하여 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성토록 할 수 있기 때문에 생산수율을 증대 또는 극대화할 수 있다.
이와 같이 구성된 본 발명의 실시예에 따른 플라즈마 화학기상증착설비를 이용한 화학기상증착방법을 설명하면 다음과 같다.
도 3은 본 발명의 플라즈마 화학기상증착방법을 나타내는 흐름도이다.
도 3에 도시된 바와 같이, 본 발명의 플라즈마 화학기상증착방법은, 상기 반응 챔버(110) 내의 상기 히터 블록(130) 상에 웨이퍼가 탑재되면, 상기 진공 펌프(120)를 이용하여 상기 반응 챔버(110) 내부의 공기를 펌핑한다(S10). 여기서, 상기 반응 챔버(110)는 상기 고진공 펌프에 의해 내부의 공기가 고진공으로 펌핑된 후 저진공으로 펌핑되도록 설정된다. 왜냐하면, 후속에서 이루어지는 비정질 탄소막의 증착 공정은 약 4×10-3Torr 정도의 저진공에서 수행되어야만 하기 때문이다.
다음, 상기 반응 챔버(110)의 진공압을 유지시키면서 상기 반응 챔버(110) 내부에 질소 가스를 공급한다(S20). 여기서, 상기 반응 챔버(110) 내에 공급되는 질소 가스는 상기 진공 펌프(120)에 의해 펌핑되는 공기와 동일 또는 유사한 유량으로 공급된다. 예컨대, 상기 질소 가스는 약 100SCCM정도의 유량으로 상기 반응 챔버(110) 내에 공급된다.
그 다음, 상기 질소 가스가 공급되는 상기 반응 챔버(110)의 상단에 형성된 제 1 플라즈마 전극(162)에 고주파 파워를 인가하여 상기 질소 가스의 플라즈마 반응을 유도한다(S30). 여기서, 상기 질소 가스는 상기 고주파 파워에 의해 음의 전하량을 갖는 전자와, 질소 이온으로 분리된 플라즈마 상태를 갖는다. 예컨대, 상기 질소 가스는 상기 고주파 파워에 의해 플라즈마 반응되면서 푸른색(blue color)의 고유 색상을 갖는다. 또한, 상기 고주파 파워는 약 10MHz 내지 약 30MHz정도의 주파수를 갖고 약 100W 내지 약 300W정도의 에너지를 갖도록 공급된다.
그리고, 상기 질소 가스의 플라즈마 반응이 유도된 상기 반응 챔버(110) 내에 소정 유량의 이소프렌 가스를 공급한다(S40). 여기서, 상기 이소프렌 가스는 웨이퍼 상에 비정질 탄소막을 형성하기 위한 탄소를 근간으로 하는 소스 가스로서 상기 질소 가스와 혼합되어 상기 반응 챔버(110) 하단의 히터 블록(130) 상부에서 지지되는 웨이퍼 상으로 유동된다. 예컨대, 상기 반응 가스 공급부(150)는 상기 이소프렌 가스를 약 0.4SCCM 내지 약 0.75SCCM정도의 유량으로 공급한다.
마지막으로, 상기 이소프렌 가스가 공급되는 상기 반응 챔버(110)의 상단에 형성된 제 1 플라즈마 전극(162)과 인접하는 제 2 플라즈마 전극(164)에 상기 고주파 파워에 비해 상대적으로 저주파 영역의 저주파 파워를 인가하여 상기 반응 챔버(110) 하단의 히터 블록(130) 상에 지지되는 웨이퍼 상에 비정질 탄소막을 형성 한다(S50). 여기서, 상기 제 2 플라즈마 전극(164)에서 인가되는 상기 저주파 파워는 약 13.5KHz 정도의 주파수를 갖는다. 이때, 상기 저주파 파워는 상기 반응 챔버(110) 내에 공급되는 상기 이소프렌 가스와 상기 질소 가스를 균일하게 혼합시킬 수 있다.
따라서, 본 발명의 플라즈마 화학기상증착방법은 고주파 파워에 의해 플라즈마 반응되는 질소 가스 분위기의 반응 챔버(110) 내에 이소프렌 가스를 상기 질소 가스와 함께 공급하면서 저주파 파워를 이용하여 상기 이소프렌 가스와 상기 질소 가스를 일정한 혼합비를 갖도록 혼합시켜 약 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성토록 할 수 있기 때문에 생산수율을 증대 또는 극대화할 수 있다.
또한, 본 발명에서 개시된 발명 개념과 실시예가 본 발명의 동일 목적을 수행하기 위하여 다른 구조로 수정하거나 설계하기 위한 기초로서 당해 기술 분야의 숙련된 사람들에 의해 사용되어질 수 있을 것이다. 당해 기술 분야의 숙련된 사람에 의한 그와 같은 수정 또는 변경된 등가 구조는 특허 청구 범위에서 기술한 발명의 사상이나 범위를 벗어나지 않는 한도 내에서 다양한 변화, 치환 및 변경이 가능하다.
이상 상술한 바와 같이, 본 발명에 의하면, 반응 챔버 내부에 소정 유량의 이소프렌 가스와 질소 가스를 공급하는 반응 가스 공급부와, 상기 반응 가스 공급 부에서 공급되는 상기 이소프렌 가스 및 상기 질소 가스를 플라즈마 상태로 여기시키고 일정한 혼합비로 혼합시키는 플라즈마 전극을 구비하여 1.1정도의 낮은 굴절율을 갖고 약 0.4정도의 높은 흡수율을 갖는 비정질 탄소막을 형성토록 할 수 있기 때문에 생산수율을 증대 또는 극대화할 수 있는 효과가 있다.

Claims (3)

  1. 외부로부터 밀폐된 공간을 제공하는 반응 챔버;
    상기 반응 챔버 내부의 공기를 소정의 진공압으로 펌핑하는 진공 펌프;
    상기 진공 펌프의 펌핑에 의해 소정의 진공압을 갖는 상기 반응 챔버의 하단에서 웨이퍼를 지지하면서 소정의 온도로 가열시키는 히터 블록;
    상기 히터 블록에 대향되는 상기 반응 챔버의 상단에 형성된 샤워 헤드;
    상기 샤워 헤드를 통해 상기 반응 챔버 내에 소정 유량의 이소프렌 가스와 질소 가스를 혼합하여 공급하는 반응 가스 공급부; 및
    상기 반응 가스 공급부에서 공급되는 상기 이소프렌 가스와 상기 질소 가스를 플라즈마 상태로 여기시키고 일정 혼합비 이상으로 혼합시키기 위해 고주파 파워 및 저주파 파워가 동시에 인가되도록 상기 샤워 헤드의 상부에 형성된 플라즈마 전극을 포함함을 특징으로 하는 플라즈마 화학기상증착설비.
  2. 제 1 항에 있어서,
    상기 플라즈마 전극은 상기 고주파 파워가 인가되는 제 1 플라즈마 전극과, 상기 제 1 플라즈마 전극에 인가되는 상기 고주파 파워에 비해 주파수가 상대적으로 낮은 상기 저주파 파워를 인가하는 제 2 플라즈마 전극을 포함함을 특징으로 하는 플라즈마 화학기상증착설비.
  3. 진공 펌프를 이용하여 소정의 진공압을 갖도록 반응 챔버 내부의 공기를 펌핑하는 단계;
    상기 반응 챔버의 진공압을 유지시키면서 상기 반응 챔버 내부에 질소 가스를 공급하는 단계;
    상기 질소 가스가 공급되는 상기 반응 챔버의 상단에 형성된 제 1 플라즈마 전극에 고주파 파워를 인가하여 상기 질소 가스의 플라즈마 반응을 유도하는 단계;
    상기 질소 가스의 플라즈마 반응이 유도된 상기 반응 챔버 내에 소정 유량의 이소프렌 가스를 공급하는 단계; 및
    상기 이소프렌 가스가 공급되는 상기 반응 챔버의 상단에 형성된 제 1 플라즈마 전극과 인접하는 제 2 플라즈마 전극에 상기 고주파 파워에 비해 상대적으로 저주파 영역의 저주파 파워를 인가하여 상기 반응 챔버 하단의 히터 블록 상에 지지되는 웨이퍼 상에 비정질 탄소막을 형성하는 단계를 포함함을 특징으로 하는 플라즈마 화학기상증착방법.
KR1020070031424A 2007-03-30 2007-03-30 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법 KR20080088748A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070031424A KR20080088748A (ko) 2007-03-30 2007-03-30 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070031424A KR20080088748A (ko) 2007-03-30 2007-03-30 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법

Publications (1)

Publication Number Publication Date
KR20080088748A true KR20080088748A (ko) 2008-10-06

Family

ID=40150735

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070031424A KR20080088748A (ko) 2007-03-30 2007-03-30 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법

Country Status (1)

Country Link
KR (1) KR20080088748A (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120079961A (ko) * 2011-01-06 2012-07-16 주식회사 원익아이피에스 라이너 어셈블리 및 이를 구비하는 기판 처리 장치
KR101357181B1 (ko) * 2008-10-14 2014-01-29 어플라이드 머티어리얼스, 인코포레이티드 플라즈마-강화 화학적 기상 증착(pecvd)에 의해 등각성 비정질 탄소막을 증착하기 위한 방법
WO2014149175A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. An amorphous carbon deposition process using dual rf bias frequency applications

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101357181B1 (ko) * 2008-10-14 2014-01-29 어플라이드 머티어리얼스, 인코포레이티드 플라즈마-강화 화학적 기상 증착(pecvd)에 의해 등각성 비정질 탄소막을 증착하기 위한 방법
KR20120079961A (ko) * 2011-01-06 2012-07-16 주식회사 원익아이피에스 라이너 어셈블리 및 이를 구비하는 기판 처리 장치
WO2014149175A1 (en) * 2013-03-15 2014-09-25 Applied Materials, Inc. An amorphous carbon deposition process using dual rf bias frequency applications

Similar Documents

Publication Publication Date Title
JP6890550B2 (ja) 高アスペクト比ビアの洗浄
US5015330A (en) Film forming method and film forming device
US7709063B2 (en) Remote plasma apparatus for processing substrate with two types of gases
KR100783200B1 (ko) 박막 증착 장치 및 기판 플라즈마 처리 장치
TWI434334B (zh) 電漿cvd裝置
KR20110020829A (ko) 반도체 웨이퍼를 에칭하기 위한 장치
US11289308B2 (en) Apparatus and method for processing substrate and method of manufacturing semiconductor device using the method
JP2023156333A (ja) パターニングのための高品質c膜のパルスプラズマ(dc/rf)蒸着
TWI405260B (zh) A plasma etching treatment method and a plasma etching processing apparatus
US6150762A (en) Method of manufacturing cathode for plasma etching apparatus using chemical surface treatment with potassium hydroxide (KOH), and cathode manufactured thereby
US20080314408A1 (en) Plasma etching apparatus and chamber cleaning method using the same
KR102058912B1 (ko) 기판 처리 장치
KR20080088748A (ko) 플라즈마 화학기상증착설비 및 그를 이용한 플라즈마화학기상증착방법
KR100573929B1 (ko) 플라즈마를 이용한 표면 세정 장치 및 방법
KR100867174B1 (ko) 반도체 장치의 제조 방법, 반도체 장치의 제조 장치, 제어프로그램 및 컴퓨터 기억 매체
KR20080035735A (ko) 플라즈마 화학기상증착설비
KR100541195B1 (ko) 산화 금속막 증착 챔버의 세정 방법 및 이를 수행하기위한 증착 장치
JP2020155603A (ja) 基板処理方法および基板処理装置
US9646818B2 (en) Method of forming planar carbon layer by applying plasma power to a combination of hydrocarbon precursor and hydrogen-containing precursor
US9305795B2 (en) Plasma processing method
KR20150010779A (ko) 퇴적물 제거 방법 및 가스 처리 장치
KR102018183B1 (ko) 기판 처리 장치
JP2007123783A (ja) 半導体装置の製造方法
WO2012060423A1 (ja) ラジカルクリーニング装置及び方法
KR20140086607A (ko) 박막 고속 증착방법 및 증착장치

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination