KR20080085482A - Learning method of pressure-difference of cpf sensor in detecting soot - Google Patents

Learning method of pressure-difference of cpf sensor in detecting soot Download PDF

Info

Publication number
KR20080085482A
KR20080085482A KR1020070027089A KR20070027089A KR20080085482A KR 20080085482 A KR20080085482 A KR 20080085482A KR 1020070027089 A KR1020070027089 A KR 1020070027089A KR 20070027089 A KR20070027089 A KR 20070027089A KR 20080085482 A KR20080085482 A KR 20080085482A
Authority
KR
South Korea
Prior art keywords
differential pressure
soot
cpf
filter
accumulated
Prior art date
Application number
KR1020070027089A
Other languages
Korean (ko)
Inventor
최현우
Original Assignee
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020070027089A priority Critical patent/KR20080085482A/en
Publication of KR20080085482A publication Critical patent/KR20080085482A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/08Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a pressure sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0402Methods of control or diagnosing using adaptive learning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

A method for learning difference pressure when detecting soot in a differential sensor of a CPF(Catalyzed Particulate Filter) is provided to precisely determine the amount of soot accumulated in the filter by regarding a filter finishing with a regeneration operation as a monolith. A method for learning differential pressure when detecting soot in a differential sensor of a CPF comprises the step of determining whether soot is accumulated after the CPF is regenerated. The differential pressure of the regenerated CPF is detected. The step of determining whether soot is accumulated is performed by keeping the regenerated CPF for a predetermined time. The differential pressure of the CPF represents a sum of differential pressure of a monolith, differential pressure of soot and differential pressure of ash. The differential pressure of the monolith represents a soot-free differential pressure obtained before the soot is accumulated. The differential pressure of soot represents is obtained by excluding the soot-free differential pressure from differential pressure of the differential pressure sensor. The differential pressure of ash is calculated based on an ash factor.

Description

CPF 차압센서의 검댕 검출 시 차압 학습 방법{LEARNING METHOD OF PRESSURE-DIFFERENCE OF CPF SENSOR IN DETECTING SOOT}LIFINING METHOD OF PRESSURE-DIFFERENCE OF CPF SENSOR IN DETECTING SOOT}

도 1 내지 도 3은 일반적인 DPF의 구조를 도시한 도면;1 to 3 show the structure of a typical DPF;

도 4는 빈 CPF의 차압을 엔진 단체에서 측정한 그래프; 그리고,4 is a graph of measuring differential pressure of an empty CPF at an engine unit; And,

도 5는 CPF 차압센서의 차압을 학습하는 방법을 도시한 플로우 챠트이다.5 is a flow chart illustrating a method of learning the differential pressure of the CPF differential pressure sensor.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : DPF 2 : CPF1: DPF 2: CPF

3 : DOC 4 : 스틸하우징3: DOC 4: Steel Housing

5 : 압력 파이프5: pressure pipe

본 발명은 CPF 차압센서의 검댕 검출 시 차압 학습 방법에 관한 것이다. 보다 상세하게는 필터 내부에 축적된 검댕의 양을 ECU가 정확하게 판단할 수 있으며, 이 결과 최적의 시간에 필터를 재생시킴으로써 필터의 내구성을 향상시키고, 연비 및 오일의 희석(dilution) 정도를 개선할 수 있는 CPF 차압센서의 검댕 검출 시 차압 학습 방법에 관한 것이다.The present invention relates to a differential pressure learning method when detecting soot of a CPF differential pressure sensor. More specifically, the ECU can accurately determine the amount of soot accumulated in the filter, and as a result, it is possible to improve the durability of the filter by regenerating the filter at an optimal time, and to improve the fuel economy and the degree of dilution of oil. The present invention relates to a differential pressure learning method for detecting soot of a CPF differential pressure sensor.

차량의 배기가스는 엔진으로부터 연소된 혼합기가 배기관을 통하여 대기 중으로 방출되는 가스를 말하는데, 이러한 배기가스에는 일산화탄소, 질소산화물 및 미연소탄화수소가 주를 이룬다. 그런데 특히 디젤 엔진 차량에 있어서는 공기가 대부분의 운전 조건에서 충분한 상태로 연소되기 때문에 일산화탄소와 탄화수소는 가솔린 차량에 비하여 아주 적게 배출되나, 질소 산화물 및 입자상 물질(매연)이 많이 배출된다.The exhaust gas of a vehicle refers to a gas in which a mixture combusted from an engine is released into the atmosphere through an exhaust pipe, which is mainly composed of carbon monoxide, nitrogen oxides, and unburned hydrocarbons. However, especially in diesel engine vehicles, carbon monoxide and hydrocarbons are emitted much less than gasoline vehicles because air is sufficiently burned in most driving conditions, but nitrogen oxides and particulate matter (soot) are emitted.

이러한 배기가스를 필터링하기 위하여 디젤 엔진 차량은 통상 도 1에 도시한 DPF(diesel particulate filter) 필터(1′)를 구비하고 있다. DPF필터(1′)는 봄베 형상의 스틸하우징(4)에 DOC(3; diesel oxidization catalyst) 및 CPF(2; catalyzed particulate filter) 구간을 설치하여 배기가스가 이 구간을 지나면서 촉매에 의해 산화되고, 특히 CPF(2) 구간에서 입자상 물질이 충분히 필터링 되게 한 후 외부로 배출시키고 있다.In order to filter such exhaust gas, a diesel engine vehicle is usually provided with a diesel particulate filter (DPF) filter 1 'shown in FIG. The DPF filter 1 'is provided with a diesel oxidization catalyst (DOC) and a catalyzed particulate filter (CPF) section in the cylinder-shaped steel housing 4, whereby the exhaust gas is oxidized by the catalyst as it passes through the section. In particular, the particulate matter is sufficiently filtered in the CPF (2) section and then discharged to the outside.

DPF필터(1′)에 의한 필터링 작용을 구체적으로 살펴보면, 도 2에 도시한 것과 같이, DOC(3)에서는 배기가스가 불투과성의 촉매벽(3′)을 따라 실질적으로 평행류를 이루어 전진하면서 산화된다. 그런데 CPF(2)에서는 그 단면도를 도시한 도 3에서 알 수 있는 것과 같이, 촉매가 있는 다공질벽(2′)의 전단과 후단에 엇갈려서 플러그(2″)를 배치함으로써, DOC(3)를 통과한 배기가스가 상하의 다공질벽(2′)을 통과하면서 입자상 물질이 그 표면에 퇴적되도록 하고 있다. 이와 같이 침전된 입자상 물질은 필터 내부의 온도 증가에 의하여 연소되며, 이로써 검댕(soot)의 발생이 저감될 수 있다.Looking specifically at the filtering action by the DPF filter (1 '), as shown in Figure 2, in the DOC (3) while the exhaust gas is advanced in substantially parallel flow along the impermeable catalyst wall (3') Is oxidized. However, in the CPF 2, as shown in FIG. 3 showing the cross-sectional view, the plug 2 ″ is disposed at the front and rear ends of the porous wall 2 ′ with the catalyst, thereby passing through the DOC 3. As one exhaust gas passes through the upper and lower porous walls 2 ', particulate matter is deposited on the surface thereof. The particulate matter thus precipitated is burned by an increase in the temperature inside the filter, thereby reducing the generation of soot.

또, 도 1의 (5′) 및 (5″)은 압력 파이프로서 압력파이프(5′)는 배기가스의 최종 압력을 측정하기 위하여 CPF(2)의 후방과 연통하고, 압력파이프(5″)는 배기가스의 유입 압력을 측정하기 위하여 DOC(3)의 전방과 연통하고 있으며, 각 압력파이프(5′, 5″)의 타단은 도시하지 않은 압력 측정기에 연결되어 있다. 그리고 압력측정기에서 계산된 CPF(2) 후방의 압력값(Pcpfo)과 DOC(3)의 전방의 압력값(Pdoci)의 차이는 ECU에 의하여 배기가스의 통과량 및 적절함과 탄소 알갱이의 퇴적량 등을 평가하는 정보로 활용된다.In addition, 5 'and 5' of FIG. 1 are pressure pipes, and the pressure pipe 5 'communicates with the back of the CPF 2 in order to measure the final pressure of exhaust gas, and the pressure pipe 5 ". Is in communication with the front of the DOC 3 to measure the inlet pressure of the exhaust gas, and the other end of each pressure pipe 5 ', 5 &quot; is connected to a pressure measuring device (not shown). The difference between the pressure value Pcpfo at the rear of the CPF 2 and the pressure value Pdoci at the front of the DOC 3 calculated by the pressure gauge is determined by the ECU for the passage and appropriateness of the exhaust gas and the amount of carbon grain deposition. It is used as information to evaluate the back.

그러나 이와 같이 측정된 CPF의 차압에는 오차가 발생할 수 있는 요소가 많아서 CPF 내부에 쌓여 있는 검댕의 량을 정확하게 판별하기 어렵다는 문제점이 있었다.However, there is a problem that it is difficult to accurately determine the amount of soot accumulated in the CPF because there are many factors that can cause an error in the differential pressure of the CPF measured in this way.

본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 재생이 완료된 후 필터의 상태를 빈 필터라고 판단함으로써, 필터 내부에 축적된 검댕의 양을 ECU가 정확하게 판단할 수 있으며, 이 결과 최적의 시간에 필터를 재생시킴으로써 필터의 내구성을 향상시키고, 연비 및 오일의 희석(dilution) 정도를 개선할 수 있는 CPF 차압센서의 검댕 검출 시 차압 학습 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above-described problems, and by determining the state of the filter as an empty filter after regeneration is completed, the ECU can accurately determine the amount of soot accumulated in the filter. It is an object of the present invention to provide a differential pressure learning method for detecting soot in a CPF differential pressure sensor which can improve the durability of the filter and improve fuel economy and dilution of oil by regenerating the filter at the time of.

상기 목적을 달성하기 위해, 본 발명은 CPF의 차압을 학습하는 방법에 있어서, CPF의 재생이 완료된 후 CPF 내부에 검댕(soot)이 쌓여 있지 않다고 판단한 후, 상기 재생 CPF의 차압을 측정하는 단계를 포함하는 것을 특징으로 하여, CPF 차압센서의 검댕 검출 시 차압 학습 방법은 검댕의 양을 ECU가 정확하게 판단할 수 있는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for learning the differential pressure of the CPF, after determining that there is no soot accumulated inside the CPF after the regeneration of the CPF, measuring the differential pressure of the regenerated CPF The differential pressure learning method when detecting soot of the CPF differential pressure sensor is characterized in that the ECU can accurately determine the amount of soot.

나아가, 상기 CPF 내부에 검댕이 쌓여있지 않다고 판단하는 단계는, 상기 CPF의 재생 후 상기 소정 기간 경과하는 것이 바람직하다.Further, the determining that no soot is accumulated in the CPF is preferably performed after the predetermined period of time after regeneration of the CPF.

나아가 상기 CPF의 차압이란, 빈 필터의 차압(monolith 차압)과, 검댕(soot)에 의한 차압, 그리고 먼지(ash)에 의한 차압을 합한 값인 것이 바람직하다.Furthermore, the differential pressure of the CPF is preferably the sum of the differential pressure of the empty filter, the differential pressure due to soot, and the differential pressure due to dust.

나아가 상기 빈 필터의 차압은, 검댕이 쌓이지 않은 상태의 차압이고, 상기 검댕에 의한 차압은, 차압센서의 차압에서 검댕이 쌓이지 않은 상태의 필터 차압을 제외한 차압이며, 그리고 상기 먼지에 의한 차압은, 먼지 요소(ash factor)에 의하여 계산된 값인 것이 바람직하다.Further, the differential pressure of the empty filter is a differential pressure in which no soot is accumulated, and the differential pressure due to soot is a differential pressure except a filter differential pressure in which no soot is accumulated in the differential pressure of the differential pressure sensor, and the differential pressure due to dust is It is preferably a value calculated by the (ash factor).

이하 첨부된 도면을 참조하여 본 발명에 따른 CPF 차압센서의 검댕 검출 시 차압 학습 방법의 일실시예에 대해 상세히 설명하기로 한다.Hereinafter, an embodiment of a differential pressure learning method for detecting soot of a CPF differential pressure sensor according to the present invention will be described in detail with reference to the accompanying drawings.

차압센서는 CPF 내부에 쌓여 있는 검댕(soot)의 정도를 차압 신호를 통해서 판단하는데, 이 때 발생하는 오차의 요소는 크게 1) 필터(CPF) 별로 배압 특성이 상이한 점과, 2) 차압센서가 인식하는 과정에서 오차가 발생한다는 점이다.The differential pressure sensor judges the degree of soot accumulated in the CPF through the differential pressure signal. The error occurs at this time. 1) The back pressure characteristic of each filter (CPF) is different, and 2) The differential pressure sensor The error occurs in the recognition process.

스틸 하우징(4; 도 1 참조)의 내부 벽에는 워쉬코트(washcoat; 주로 알루미나 성분)가 코팅되어 있는데, 이 코팅의 정도가 CPF 전후단에 형성되는 차압에 영향을 미치게 된다. 이 코팅 정도에 따른 편차는 검댕의 정도를 ECU가 인식하는데 있어서 오차 요소로 작용하게 된다. The inner wall of the steel housing 4 (see FIG. 1) is coated with a washcoat (primarily an alumina component), the extent of which affects the differential pressures formed before and after the CPF. This variation in coating level is an error factor in ECU's recognition of soot level.

속도(km/h)Speed (km / h) case 1case 1 case 2case 2 PdiffPdiff monolithmonolith PdiffPdiff monolithmonolith 120120 7070 72.6372.63 60.69560.695 75.2875.28 140140 109.9109.9 108108 94.6594.65 107.3107.3 160160 160160 141.3141.3 131131 137.9137.9

위 표는 두 차량의 스테디(steady) 상태에서, 검댕이 쌓이지 않은 CPF(필터)의 전후단 차압을 측정한 데이터이다. Pdiff 값은 차량에서 측정된 필터 전후단의 차압이고, monolith 값은 빈 필터를 기준으로 작성된 차압이며,ECU는 이 빈 필터의 차압정보(monolith)를 기준으로 검댕이 쌓인 정도를 파악하게 된다. 여기서 확인된 case 1 및 case 2의 두 필터는 각각 임의로 선택된 빈 필터로서, 위와 같이 Pdiff와 monolith 사이의 상당한 편차가 나타나는 점을 확인할 수 있다.The table above shows the measured data of the differential pressure before and after the CPF (filter) that is not accumulated soot in the steady state of the two vehicles. The Pdiff value is the differential pressure before and after the filter measured in the vehicle, the monolith value is the differential pressure based on the empty filter, and the ECU determines the degree of soot accumulation based on the differential pressure information of the empty filter. The two filters of case 1 and case 2 identified here are randomly selected empty filters, respectively, and it can be seen that a significant deviation between Pdiff and monolith occurs as described above.

그리고 차량 내구에 따라 센서 드리프트(sensor drift; 오일 먼지 때문에 센서의 감지력이 감소하는 현상)이 발생하거나, 혹은 차압센서의 단품 편차로 인하여 차압 인식의 오차가 발생할 수 있다.In addition, sensor drift (a phenomenon in which the sensing force of the sensor decreases due to oil dust) may occur depending on the vehicle durability, or an error in the differential pressure recognition may occur due to a deviation of the differential pressure sensor.

도 5를 참고하여 차압 모델에 의하여 검댕의 양을 인식하는 과정을 살펴보면, 우선 차압센서로부터 차압 정보, 배기가스의 유동 및 온도에 대한 정보를 읽어 들인다. 그리고 빈 필터에서 형성된 차압(monolith)을 기준으로 결정하고, 여기서 빈 필터의 차압값을 뺀 상태에서 차압센서의 차압을 유동저항으로 환산한다. 그리고 이 유동저항 및 차압정보로부터 검댕의 량을 계산한 후, 이 값을 인식하게 된다.Looking at the process of recognizing the amount of soot by the differential pressure model with reference to Figure 5, first to read the differential pressure information, information on the flow and temperature of the exhaust gas from the differential pressure sensor. And it is determined based on the differential pressure (monolith) formed in the empty filter, where the differential pressure of the differential pressure sensor is converted into flow resistance in a state of subtracting the differential pressure value of the empty filter. After calculating the amount of soot from the flow resistance and the differential pressure information, this value is recognized.

차압센서가 인지하는 차압이란, “빈 필터의 차압(monolith 차압) + 검댕(soot)에 의한 차압 + 먼지(ash)에 의한 차압”이 되고, 여기서 ‘빈 필터의 차 압’이란 검댕(soot)이 쌓이지 않은 상태의 차압(필터의 기질(substrate) 및 워쉬코트에 의한 차압의 합)이 된다. 이 차압들을 구체적으로 살펴보면 다음과 같다.The differential pressure that the differential pressure sensor recognizes is "the differential pressure of the empty filter (monolith differential pressure) + the differential pressure due to soot + the differential pressure due to the ash", where the "pressure differential of the empty filter" is soot This differential pressure in the unstacked state (sum of the pressure of the filter substrate and the washcoat) is obtained. Specifically, the differential pressures are as follows.

첫 번째로, 빈 필터의 차압은 검댕이 쌓이지 않은 필터에 대해서 필터 단품이 가지는 차압에 관한 정보를 ECU 데이터로 매핑(mapping)하도록 되어 있다.Firstly, the differential pressure of the empty filter is configured to map the information on the differential pressure of the filter unit to ECU data for the filter which has not accumulated soot.

빈 CPF의 차압을 엔진 단체에서 측정한 그래프(도 4)를 참고하면, 빈 필터의 차압에 대한 최대값(max)과 평균값(average)에서 오차가 발생하며, 이 때 평균값과 최대값의 차이로 ECU가 인식하는 최대의 오차는 9g 정도이다. 이러한 차이는 필터 단품에서 검댕이 쌓이지 않은 상태에서 필터 전후단에 형성되는 압력차에 기인한다. 검댕이 쌓이는 정도에 의하여 차압은 점점 상승하나, 필터 단품에서 전후단의 압력 차이는 ECU가 검댕을 잘못 인식하게 된다.Referring to the graph in which the differential pressure of the empty CPF is measured by the engine alone (FIG. 4), an error occurs in the maximum value (max) and the average value (average) of the differential pressure of the empty filter. The maximum error that the ECU recognizes is about 9g. This difference is due to the pressure difference formed before and after the filter in the state where soot is not accumulated in the filter unit. The differential pressure gradually increases due to the accumulation of soot, but the pressure difference between the front and rear ends of the filter unit causes the ECU to recognize soot incorrectly.

두 번째로, 검댕에 의한 차압은, 차압센서의 차압에서 검댕이 쌓이지 않은 상태의 필터 차압을 제외한 차압이다. 도 4에서 최대값의 차압을 형성하는 필터에서는 검댕이 쌓이지 않은 상태라도 검댕이 9g 쌓여있다고 판단할 수 있다.Secondly, the differential pressure due to soot is the differential pressure excluding the filter differential pressure in which the soot is not accumulated in the differential pressure of the differential pressure sensor. In the filter forming the maximum differential pressure in FIG. 4, it can be determined that 9g of soot is accumulated even if soot is not accumulated.

마지막으로, 먼지(ash)에 의한 차압은 먼지 요소(ash factor)에 의하여 게산된 값으로, 이 값 역시 차압센서가 인식하는 차압에서 빠지게 된다.Finally, the differential pressure due to ash is a value calculated by the dust factor, and this value is also subtracted from the differential pressure recognized by the differential pressure sensor.

따라서 본 발명에서는, CPF의 재생이 완료된 후의 필터(CPF) 상태를 빈 필터라고 ECU가 판단한다. 이 때 필터의 전단과 후단에 형성되는 차압을 빈 필터의 차압이라고 판단하게 된다. 즉 재생이 종료된 후 일정시간 동안은 필터 내부에 검댕이 쌓여있지 않다고 판단하는 방법이며, 이 기간 중에 ECU는 빈 필터의 차압정보를 수집하여 종래에 빈 필터의 차압으로 사용되는 monolith map에 학습한 차압 정보를 보상하게 된다. 이 결과, 재생 완료 시에 빈 필터에 대한 정보 학습을 함으로써 종래와 같은 검댕 양 측정의 오차는 없어지게 된다.Therefore, in the present invention, the ECU determines that the filter CPF state after the regeneration of the CPF is completed is an empty filter. At this time, it is determined that the differential pressures formed at the front and rear ends of the filter are the differential pressures of the empty filters. In other words, it is a method that judges that there is no soot accumulated inside the filter for a certain time after the end of the regeneration. During this period, the ECU collects the differential pressure information of the empty filter and learns the differential pressure learned in the monolith map which is conventionally used as the differential pressure of the empty filter. Information will be rewarded. As a result, when the reproduction is completed, information on the empty filter is learned so that the error of the soot amount measurement as in the prior art is eliminated.

이상, 상술한 바와 같이, 본 발명의 CPF 차압센서의 검댕 검출 시 차압 학습 방법은 필터 내부에 축적된 검댕의 양을 ECU가 정확하게 판단할 수 있으며, 이 결과 최적의 시간에 필터를 재생시킴으로써 필터의 내구성을 향상시키고, 연비 및 오일의 희석(dilution) 정도를 개선할 수 있는 효과를 발휘한다.As described above, in the differential pressure learning method when detecting the soot of the CPF differential pressure sensor of the present invention, the ECU accurately determines the amount of soot accumulated in the filter, and as a result, the filter is regenerated by regenerating the filter at an optimal time. It has the effect of improving durability and improving the fuel economy and the degree of dilution of oil.

본 발명은 기재된 실시예에 한정하는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않는 한 다양하게 수정 및 변형을 할 수 있음은 당업자에게 자명하다고 할 수 있는 바, 그러한 변형예 또는 수정예들은 본 발명의 특허청구범위에 속하는 것이다.The present invention is not limited to the described embodiments, and various modifications and changes can be made to those skilled in the art without departing from the spirit and scope of the present invention. Such modifications or modifications may be made to the present invention. It belongs to the claims of the.

Claims (4)

CPF의 차압을 학습하는 방법에 있어서,In the method of learning the differential pressure of the CPF, CPF의 재생이 완료된 후 CPF 내부에 검댕(soot)이 쌓여 있지 않다고 판단한 후,After the CPF has been regenerated, it is determined that soot is not accumulated inside the CPF. 상기 재생 CPF의 차압을 측정하는 단계를 포함하는 것을 특징으로 하는 CPF 차압센서의 검댕 검출 시 차압 학습 방법.The differential pressure learning method when detecting the soot of the CPF differential pressure sensor, characterized in that it comprises the step of measuring the differential pressure of the regenerated CPF. 제 1항에 있어서,The method of claim 1, 상기 CPF 내부에 검댕이 쌓여있지 않다고 판단하는 단계는,The step of determining that soot is not accumulated in the CPF, 상기 CPF의 재생 후 소정 기간 경과하는 것을 특징으로 하는 CPF 차압센서의 검댕 검출 시 차압 학습 방법A differential pressure learning method when detecting soot of a CPF differential pressure sensor, characterized in that a predetermined period of time passes after regeneration of the CPF. 제 1항에 있어서,The method of claim 1, 상기 CPF의 차압이란,The differential pressure of the CPF is 빈 필터의 차압(monolith 차압)과, 검댕(soot)에 의한 차압, 그리고 먼지(ash)에 의한 차압을 합한 값인 것을 특징으로 하는 CPF 차압센서의 검댕 검출 시 차압 학습 방법.A method for learning differential pressure when detecting soot of a CPF differential pressure sensor, characterized in that the sum of the differential pressure of the empty filter, the differential pressure due to soot, and the differential pressure due to dust. 제 3항에 있어서,The method of claim 3, wherein 상기 빈 필터의 차압은, 검댕이 쌓이지 않은 상태의 차압이고,The differential pressure of the empty filter is a differential pressure in a state in which soot is not accumulated, 상기 검댕에 의한 차압은, 차압센서의 차압에서 검댕이 쌓이지 않은 상태의 필터 차압을 제외한 차압이며, 그리고,The differential pressure due to the soot is the differential pressure except the filter differential pressure in which the soot is not accumulated in the differential pressure of the differential pressure sensor, and 상기 먼지에 의한 차압은, 먼지 요소(ash factor)에 의하여 계산된 값인 것을 특징으로 하는 CPF 차압센서의 검댕 검출 시 차압 학습 방법.The differential pressure due to the dust is a differential pressure learning method when detecting soot of the CPF differential pressure sensor, characterized in that the value calculated by the dust (ash factor).
KR1020070027089A 2007-03-20 2007-03-20 Learning method of pressure-difference of cpf sensor in detecting soot KR20080085482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070027089A KR20080085482A (en) 2007-03-20 2007-03-20 Learning method of pressure-difference of cpf sensor in detecting soot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070027089A KR20080085482A (en) 2007-03-20 2007-03-20 Learning method of pressure-difference of cpf sensor in detecting soot

Publications (1)

Publication Number Publication Date
KR20080085482A true KR20080085482A (en) 2008-09-24

Family

ID=40025200

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070027089A KR20080085482A (en) 2007-03-20 2007-03-20 Learning method of pressure-difference of cpf sensor in detecting soot

Country Status (1)

Country Link
KR (1) KR20080085482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134975B1 (en) * 2009-12-04 2012-04-09 기아자동차주식회사 Initial dpf regeneration method
CN109057928A (en) * 2018-08-17 2018-12-21 潍柴动力股份有限公司 Analysis method, device and the electronic equipment of ash accumulation degree in a kind of DPF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101134975B1 (en) * 2009-12-04 2012-04-09 기아자동차주식회사 Initial dpf regeneration method
CN109057928A (en) * 2018-08-17 2018-12-21 潍柴动力股份有限公司 Analysis method, device and the electronic equipment of ash accumulation degree in a kind of DPF
CN109057928B (en) * 2018-08-17 2020-08-21 潍柴动力股份有限公司 Method and device for analyzing ash accumulation degree in DPF and electronic equipment

Similar Documents

Publication Publication Date Title
WO2021121060A1 (en) Method for calculating carbon load of dpf
CN106907223B (en) The trouble-shooter of emission control system
US7171803B2 (en) Exhaust gas purification system of internal combustion engine
KR100605836B1 (en) Filter control device
CN105089757B (en) Method and device for detecting soot and ash loads of a particle filter
JP4506539B2 (en) Exhaust gas purification device for internal combustion engine
JP2009293518A (en) Exhaust emission control device for internal combustion engine
CA2715125C (en) Method for determining the charge state of a particle filter installed in the exhaust gas line of an internal combustion engine and device for reducing the particle emissions of an internal combustion engine
JP5030020B2 (en) Exhaust gas purification device for internal combustion engine
CN106837496B (en) Engine particulate purifying regeneration control system
BR112016022297B1 (en) METHOD AND SYSTEM FOR MONITORING A PHYSICAL QUANTITY RELATED TO A PARTICULATE MASS IN AT LEAST ONE EXHAUST PIPE
JP2008536054A (en) Method for diagnosing presence of exhaust gas after-treatment device and use of on-board diagnostic technology
US20040055287A1 (en) Internal combustion engine exhaust gas purifying system
JP2009270503A (en) Exhaust emission control device of internal combustion engine
JP2008121557A (en) Exhaust emission control device of internal combustion engine
KR20080085482A (en) Learning method of pressure-difference of cpf sensor in detecting soot
JP3908204B2 (en) Filter control device
US7140176B2 (en) Particulate filter regeneration method for a motor vehicle
KR101240937B1 (en) Regeneration method and apparatus of diesel particulate filter
JP4868292B2 (en) Exhaust gas purification device for internal combustion engine
JP2009270502A (en) Exhaust emission control device of internal combustion engine
KR101302911B1 (en) Method for setting period of regeneration in CPF
KR102324288B1 (en) Method and device for diagnosis of a particle filter arranged in the exhaust gas system of a petrol-operated internal combustion engine
KR20070062309A (en) Diesel catalyze particulate filter diagnosis system of diesel vehicle and method thereof
KR101305045B1 (en) Device and Method for Measuring Real Time Soot Oxidation Rate of Diesel Particulate Filter using Temperature Sensor, and Regeneration Control Method of Diesel Particulate Filter using the Method for Measuring Real Time Soot Oxidation Rate

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination