JP4868292B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4868292B2
JP4868292B2 JP2007319468A JP2007319468A JP4868292B2 JP 4868292 B2 JP4868292 B2 JP 4868292B2 JP 2007319468 A JP2007319468 A JP 2007319468A JP 2007319468 A JP2007319468 A JP 2007319468A JP 4868292 B2 JP4868292 B2 JP 4868292B2
Authority
JP
Japan
Prior art keywords
time ratio
pressure loss
collector
self
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007319468A
Other languages
Japanese (ja)
Other versions
JP2009144518A (en
Inventor
安浩 苅谷
覚 野坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007319468A priority Critical patent/JP4868292B2/en
Priority to DE102008054491A priority patent/DE102008054491A1/en
Publication of JP2009144518A publication Critical patent/JP2009144518A/en
Application granted granted Critical
Publication of JP4868292B2 publication Critical patent/JP4868292B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

今日、環境保護意識の高まりのなかで内燃機関に対してすぐれた排気浄化性能が求められている。特にディーゼルエンジンにおいては、エンジンから排出される黒煙などのいわゆる排気微粒子(または粒子状物質、パティキュレートマター、PM)の除去がより一層の普及にために重要である。この目的のために排気管の途中にディーゼルパティキュレートフィルタ(DPF)が装備されることが多い。   Today, with increasing awareness of environmental protection, excellent exhaust purification performance is required for internal combustion engines. In particular, in a diesel engine, removal of so-called exhaust particulates (or particulate matter, particulate matter, PM) such as black smoke discharged from the engine is important for further spread. For this purpose, a diesel particulate filter (DPF) is often provided in the middle of the exhaust pipe.

DPFがPMを捕集することにより排気中のPMは大部分が除去されるが、DPF内にPMが堆積し続ける一方では、DPFは目詰まりを起こしてしまうので、堆積されたPMを燃焼して除去することで、DPFを再生する必要がある。DPF内に堆積したPMを燃焼するためにシリンダ内でのメイン噴射後のポスト噴射などの手法が採られる。   Although most of the PM in the exhaust gas is removed by the DPF collecting the PM, the PM continues to accumulate in the DPF, but the DPF clogs and burns the accumulated PM. It is necessary to regenerate the DPF. In order to burn the PM accumulated in the DPF, a method such as post injection after main injection in the cylinder is employed.

DPFの再生のために燃料が消費されるので、頻繁なDPF再生は燃費の悪化を招いてしまう。一方DPF再生の回数が少なすぎると、堆積量が過剰となり再生処理において昇温し過ぎてDPFが破損する可能性がある。したがってDPF再生は適切な時期に行わなければならない。そのためにDPFにおけるPMの堆積量を何らかの方法でできるだけ正確に推定し、その推定値がDPF再生を必要とするレベルに達したら再生を実行するシステムの開発が必要である。   Since fuel is consumed to regenerate the DPF, frequent DPF regeneration leads to deterioration of fuel consumption. On the other hand, if the number of times of DPF regeneration is too small, the amount of deposition becomes excessive, and the temperature rises during the regeneration process, which may damage the DPF. Therefore, DPF regeneration must be performed at an appropriate time. Therefore, it is necessary to develop a system that estimates the amount of PM accumulated in the DPF as accurately as possible by some method, and executes regeneration when the estimated value reaches a level that requires DPF regeneration.

下記特許文献1には、パティキュレートフィルタへの排気微粒子の堆積量の増大による通気抵抗の増大で、パティキュレートフィルタの入口と出口との間の圧力の差である差圧(圧損)が増大することを利用して、この差圧を検出し、検出差圧が所定値を超えると再生すべき時期だと判断する技術が開示されている。   In Patent Document 1 below, a difference in pressure (pressure loss), which is a difference in pressure between the inlet and outlet of the particulate filter, increases due to an increase in ventilation resistance due to an increase in the amount of exhaust particulates deposited on the particulate filter. A technique is disclosed that detects this differential pressure and determines that it is time to regenerate when the detected differential pressure exceeds a predetermined value.

特開平7−332065号公報Japanese Patent Laid-Open No. 7-332065

発明者は、PM堆積量とDPF圧損(差圧)との関係は、一般に図11に示された関係となる(あるいは近似される)との知見を得ている。すなわち、内燃機関の運転が続いてDPFへのPM堆積が進行するに従って、PM堆積量とDPF圧損とを示す点は図11に示された初期点20から第1特性線21(特性線)上を図示右上へ移動し、さらに遷移点22に達すると以後は第2特性線23(特性線)上を図示右上へ移動する。   The inventor has obtained knowledge that the relationship between the PM deposition amount and the DPF pressure loss (differential pressure) is generally (or approximated) to the relationship shown in FIG. That is, as the PM accumulation on the DPF proceeds as the internal combustion engine continues to operate, the point indicating the PM accumulation amount and the DPF pressure loss is on the first characteristic line 21 (characteristic line) from the initial point 20 shown in FIG. Is moved to the upper right in the figure, and when the transition point 22 is reached, the second characteristic line 23 (characteristic line) is moved to the upper right in the figure.

第1特性線21はDPFのフィルタ壁の気孔内にPMが堆積する段階に対応し、第2特性線23はフィルタ壁の壁面上にPMが堆積する段階に対応する。フィルタ壁の壁内にPMが堆積する場合は壁面上に堆積する場合よりも排気ガスの流路を新たに狭める度合いが大きく、それにより圧損値を高めるので、第1特性線21は第2特性線23よりも図示のとおり傾きが大きい。なお傾きはDPF圧損の増分とPM堆積量の増分との比とする。   The first characteristic line 21 corresponds to a stage where PM accumulates in the pores of the filter wall of the DPF, and the second characteristic line 23 corresponds to a stage where PM accumulates on the wall surface of the filter wall. When PM accumulates in the wall of the filter wall, the degree of newly narrowing the exhaust gas flow path is larger than when depositing on the wall surface, thereby increasing the pressure loss value. Therefore, the first characteristic line 21 is the second characteristic line. The inclination is larger than the line 23 as shown in the figure. Note that the slope is the ratio between the increase in DPF pressure loss and the increase in PM deposition.

図11に示された特性を予め求めておけば、DPF圧損値を得ることでDPF内のPMの堆積量が推定できる。こうして推定されたPM堆積量が再生を必要とするレベルに達した度に、DPFを再生すればよい。   If the characteristics shown in FIG. 11 are obtained in advance, the amount of PM deposited in the DPF can be estimated by obtaining the DPF pressure loss value. The DPF may be regenerated whenever the estimated amount of PM deposition reaches a level that requires regeneration.

図11の点24に達したときにPM堆積量が過剰と判断されてDPF再生が開始されたとすると、図11の点線のようにその後のPM堆積量とDPF圧損は推移する。すなわちPM堆積量とDPF圧損の値は、まず直線25に沿って減少し、遷移点26後は直線27に沿って減少して初期点20へ戻る。   If it is determined that the PM accumulation amount is excessive when the point 24 in FIG. 11 is reached and the DPF regeneration is started, the subsequent PM accumulation amount and the DPF pressure loss change as indicated by the dotted line in FIG. That is, the PM accumulation amount and the DPF pressure loss value first decrease along the straight line 25, and after the transition point 26, decrease along the straight line 27 and return to the initial point 20.

直線25はフィルタ壁の壁面上に堆積したPMが燃焼している段階であり、したがって直線25は第1特性線21と傾きが等しい。また直線27はフィルタ壁の気孔内に堆積したPMが燃焼している段階であり、したがって直線27は第2特性線23と傾きが等しい。以上のように図11に示された平行四辺形の(あるいは近似される)特性によって、PM堆積時およびPM燃焼時のPM堆積量とDPF圧損との値は推移する。   The straight line 25 is a stage where PM deposited on the wall surface of the filter wall is burning, and therefore the straight line 25 has the same inclination as the first characteristic line 21. The straight line 27 is a stage where PM deposited in the pores of the filter wall is combusting. Therefore, the straight line 27 has the same inclination as the second characteristic line 23. As described above, the PM deposition amount and the DPF pressure loss during PM deposition and PM combustion change depending on the parallelogram (or approximate) characteristics shown in FIG.

しかし図11の特性はアッシュの存在を考慮に入れていない。アッシュとは、エンジンオイルのなかのカルシウム成分と、エンジンオイル中や燃料中の硫黄成分とが結合した物質であり、安定的で燃焼しにくい特性を有する。このアッシュがDPFに堆積することによって、すすと触媒との接触を阻害するので、すすの燃焼にとって障害となる。   However, the characteristics of FIG. 11 do not take into account the presence of ash. Ash is a substance in which a calcium component in engine oil is combined with a sulfur component in engine oil or fuel, and has a characteristic of being stable and difficult to burn. As the ash accumulates on the DPF, soot impedes contact with the catalyst, which is an obstacle to soot combustion.

またPMとともにアッシュもDPFに堆積すれば、アッシュの存在は圧損の真値を図11の値よりも押し上げる要因となる。したがって、アッシュを考慮していない図11を用いるとPMの堆積量の推定値の精度が低く留まってしまう。アッシュの堆積を考慮にいれて図11の特性線を補正すれば、より精度よくPM堆積量が推定できるが、上記特許文献1を含めて従来文献では、こうした補正は考慮されていない。   Further, if ash accumulates in the DPF together with PM, the presence of ash causes the true value of the pressure loss to be pushed up from the value shown in FIG. Therefore, when FIG. 11 in which ash is not taken into consideration is used, the accuracy of the estimated value of the PM accumulation amount remains low. If the characteristic line in FIG. 11 is corrected in consideration of the ash accumulation, the PM accumulation amount can be estimated with higher accuracy. However, the conventional literature including the above-mentioned Patent Document 1 does not consider such correction.

そこで本発明が解決しようとする課題は、上記問題点に鑑み、アッシュの堆積の影響を考慮に入れることで、パティキュレートフィルタにおけるPM堆積量をより精度よく推定できる内燃機関の排気浄化装置を提供することにある。   Therefore, in view of the above problems, the problem to be solved by the present invention is to provide an exhaust gas purification apparatus for an internal combustion engine that can more accurately estimate the PM accumulation amount in the particulate filter by taking into consideration the effect of ash accumulation. There is to do.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、排気通路の途中に配置されて粒子状物質を捕集する捕集器と、その捕集器における入口側と出口側との圧力差である圧損を計測する圧損計測手段と、前記捕集器における前記圧損と、前記捕集器における粒子状物質の堆積量との間の特性を、前記粒子状物質の堆積量と前記捕集器の圧損とを2つの座標軸とした平面上における前記堆積量がゼロの点である初期点から伸びた特性線として記憶する特性記憶手段と、その特性記憶手段によって記憶された前記特性と前記圧損計測手段によって計測された前記圧損とから前記粒子状物質の前記捕集器における堆積量の推定値を算出する推定手段と、その推定手段によって算出された推定値が所定の閾値よりも大きくなると前記捕集器に堆積した前記粒子状物質を燃焼して前記捕集器を再生する再生手段と、前記特性記憶手段に記憶された前記特性を、前記再生手段によって前記粒子状物質の堆積量がゼロとなるように前記捕集器が再生された時点で前記圧損計測手段によって計測された前記捕集器の前記圧損である完全再生後圧損に応じて補正する補正手段と、前記捕集器において前記粒子状物質が前記再生手段によらずに燃焼する状態である自燃運転の時間と前記自燃運転ではない非自燃運転の時間のうち、自燃運転の時間比率が大きいほど、前記特性線における遷移点を挟んだ傾きの異なる2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくする補正をおこなう第2補正手段と、を備えたことを特徴とする。 In order to achieve the above object, an exhaust emission control device for an internal combustion engine according to the present invention includes a collector arranged in the middle of an exhaust passage to collect particulate matter, and an inlet side and an outlet side of the collector The pressure loss measuring means for measuring the pressure loss that is a pressure difference between the pressure loss, the pressure loss in the collector, and the amount of particulate matter deposited in the collector, and the amount of particulate matter deposited Characteristic storage means for storing as a characteristic line extending from an initial point where the amount of deposition on the plane with the pressure loss of the collector as two coordinate axes is zero, and the characteristics stored by the characteristic storage means And an estimation means for calculating an estimated value of the amount of the particulate matter deposited in the collector from the pressure loss measured by the pressure loss measuring means, and the estimated value calculated by the estimation means is less than a predetermined threshold value. As it grows, Reproducing means for reproducing the collector by burning the particulate matter deposited on collector unit, the stored the characteristic to the characteristic storage means, the deposition amount of the particulate matter by the reproducing means and zero Correction means for correcting according to the pressure loss after complete regeneration which is the pressure loss of the collector measured by the pressure loss measuring means when the collector is regenerated, and the particles in the collector The larger the time ratio of the self-combustion operation is, the more the time ratio of the self-combustion operation is between the time of the self-combustion operation in which the particulate matter is burned without using the regeneration means and the time of the non-self-combustion operation that is not the self-combustion operation. And a second correction means for performing correction to increase the inclination of the portion farther than the initial point out of the two portions having different inclinations .

これにより本発明に係る内燃機関の排気浄化装置では、不燃物質であるアッシュの捕集器への堆積量に応じて捕集器の圧損と特性記憶手段に記憶された粒子状物質の堆積量との特性を補正するので、アッシュの堆積を考慮に入れて補正された特性によって、より精度良く粒子状物質の堆積量が推定できる。そして、その推定値に基づいて捕集器への粒子状物質の堆積量を推定して、それが所定値を超えたら捕集器を再生するので、より適切なタイミングで捕集器の再生ができる。したがって堆積量の推定値が真値より過大となって再生が頻繁すぎて燃費が悪化することも、堆積量の推定値が真値よりも過小となって再生時に過昇温して捕集器が破損することの回避できる排気浄化装置が実現できる。   Thus, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the pressure loss of the collector and the accumulated amount of the particulate matter stored in the characteristic storage means according to the accumulated amount of the ash, which is an incombustible material, on the collector. Therefore, the amount of particulate matter deposited can be estimated more accurately by the characteristics corrected in consideration of ash accumulation. Then, the amount of particulate matter deposited on the collector is estimated based on the estimated value, and the collector is regenerated when it exceeds a predetermined value. Therefore, the collector can be regenerated at a more appropriate timing. it can. Therefore, the estimated value of the accumulated amount is excessively greater than the true value, and regeneration is too frequent, resulting in deterioration of fuel consumption. It is possible to realize an exhaust emission control device that can avoid damage to the exhaust gas.

また前記補正手段は、前記再生手段によって前記粒子状物質の堆積量がゼロとなるように前記捕集器が再生された時点で前記圧損計測手段によって計測された前記捕集器の前記圧損である完全再生後圧損に応じて前記特性を補正するとしてもよい。   Further, the correction means is the pressure loss of the collector measured by the pressure loss measuring means when the collector is regenerated so that the accumulation amount of the particulate matter becomes zero by the regeneration means. The characteristics may be corrected according to the pressure loss after complete regeneration.

これにより、完全再生後の捕集器の圧損を用いて捕集器における粒子状物質の堆積特性を補正する。後述するようにアッシュの堆積量は完全再生後の捕集器の圧損と相関を有する。よって、簡易に計測できる完全再生後の捕集器の圧損を計測することによりアッシュの堆積量の情報を得て粒子状物質の堆積特性を補正するので、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, the deposition characteristic of the particulate matter in the collector is corrected using the pressure loss of the collector after complete regeneration. As will be described later, the amount of accumulated ash has a correlation with the pressure loss of the collector after complete regeneration. Therefore, by measuring the pressure loss of the collector after complete regeneration that can be easily measured, information on the amount of ash deposition is obtained and the particulate matter deposition characteristics are corrected, so regeneration of the collector at a more appropriate timing. Can do. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記特性記憶手段に記憶された前記特性は、前記捕集器における前記粒子状物質の堆積量と前記捕集器の圧損とを2つの座標軸とした平面上における、前記堆積量がゼロの点である初期点から伸びた特性線からなり、前記補正手段は、前記特性線の前記初期点の前記圧損が前記完全再生後圧損となるように、前記特性線を平行移動する補正を行う初期点補正手段を備えたとしてもよい。   The characteristic stored in the characteristic storage means is a point where the accumulation amount is zero on a plane having two coordinate axes, the amount of accumulation of the particulate matter in the collector and the pressure loss of the collector. An initial point for performing a correction for translating the characteristic line so that the pressure loss at the initial point of the characteristic line becomes the pressure loss after the complete regeneration. Correction means may be provided.

これにより、アッシュ堆積量と相関を有する完全再生後の捕集器の圧損を用いて、粒子状物質の堆積特性における特性線の初期点を補正する。よって完全再生するたびに、アッシュの堆積を反映して増加した圧損値へと初期点を移動させるので、アッシュの堆積を正確に反映した特性線に補正される。よって、この特性線を用いて粒子状物質の堆積量を推定することによって、適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, the initial point of the characteristic line in the deposition characteristics of the particulate matter is corrected using the pressure loss of the collector after complete regeneration having a correlation with the ash deposition amount. Therefore, every time the regeneration is complete, the initial point is moved to an increased pressure loss value that reflects the accumulation of ash, so that a characteristic line that accurately reflects the accumulation of ash is corrected. Therefore, the collector can be regenerated at an appropriate timing by estimating the amount of particulate matter deposited using this characteristic line. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記特性線において、前記圧損の増分と前記堆積量の増分との比を傾きとして、前記特性線は傾きの異なる2つの部分を有し、その2つの部分の境界点を遷移点として、前記補正手段は、前記完全再生後圧損が大きいほど、前記遷移点を前記初期点に近づける補正をおこなう遷移点補正手段を備えたとしてもよい。   In the characteristic line, the ratio between the increment of the pressure loss and the increment of the deposition amount is set as an inclination, the characteristic line has two parts having different inclinations, and a boundary point between the two parts is used as a transition point. The correction unit may include a transition point correction unit that performs correction to bring the transition point closer to the initial point as the post-complete regeneration pressure loss is larger.

これにより、アッシュ堆積量と相関を有する完全再生後の捕集器の圧損を用いて、粒子状物質の堆積特性における遷移点を初期点に近づけるように補正するので、後述するように、捕集器の壁内にアッシュが堆積して、その分粒子状物質が壁内に堆積しなくなる現象を正確に反映した特性線に補正される。よってアッシュの堆積を反映した特性線により、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   As a result, the pressure drop of the collector after complete regeneration having a correlation with the ash deposition amount is used to correct the transition point in the deposition characteristics of the particulate matter so that it approaches the initial point. It is corrected to a characteristic line that accurately reflects the phenomenon in which ash accumulates in the walls of the vessel, and particulate matter no longer accumulates in the walls. Therefore, the collector can be regenerated at a more appropriate timing by the characteristic line reflecting the accumulation of ash. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記特性線において、前記圧損の増分と前記堆積量の増分との比を傾きとして、前記特性線は傾きの異なる2つの部分を有し、その2つの部分の境界点を遷移点として、前記補正手段は、前記完全再生後圧損が大きいほど、前記特性線における2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくする補正をおこなう傾き補正手段を備えたとしてもよい。   In the characteristic line, the ratio between the increment of the pressure loss and the increment of the deposition amount is set as an inclination, the characteristic line has two parts having different inclinations, and a boundary point between the two parts is used as a transition point. The correction unit may include an inclination correction unit that performs correction to increase the inclination of the part farther from the initial point of the two parts in the characteristic line as the pressure loss after complete regeneration is larger.

これにより、アッシュ堆積量と相関を有する完全再生後の捕集器の圧損を用いて、粒子状物質の堆積特性における特性線の傾きを補正するので、後述するように、捕集器の壁面上に粒子状物質とともにアッシュが堆積して、その分圧損値を押し上げる現象を正確に反映した特性線に補正される。よってアッシュの堆積を反映した特性線により、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   This corrects the slope of the characteristic line in the deposition characteristics of the particulate matter using the pressure loss of the collector after complete regeneration, which has a correlation with the ash deposition amount. It is corrected to a characteristic line that accurately reflects the phenomenon in which ash accumulates together with particulate matter and raises the partial pressure loss value. Therefore, the collector can be regenerated at a more appropriate timing by the characteristic line reflecting the accumulation of ash. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記特性記憶手段に記憶された前記特性を、不燃物質であるアッシュの前記捕集器の排気通路側壁と排気通路下流端面壁とへの堆積比率に応じて補正する第2補正手段をさらに備え、前記推定手段において用いられる前記特性は、前記補正手段と第2補正手段とによって補正された前記特性であるとしてもよい。   Further, the apparatus further comprises second correction means for correcting the characteristic stored in the characteristic storage means in accordance with a deposition ratio of ash, which is an incombustible substance, to the exhaust passage side wall and the exhaust passage downstream end face wall of the collector. The characteristic used in the estimation means may be the characteristic corrected by the correction means and the second correction means.

これにより、補正手段によるアッシュの堆積量に基づく補正に加えて、第2補正手段によってアッシュの側壁と下流端面壁への堆積比率に基づく補正も行う。それにより、さらに精度よくアッシュの堆積比率の影響を考慮にいれた特性によって粒子状物質の堆積量を推定できるので、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, in addition to the correction based on the ash accumulation amount by the correction means, the second correction means also performs correction based on the deposition ratio on the side wall of the ash and the downstream end face wall. As a result, the amount of particulate matter deposited can be estimated with higher accuracy by taking into account the effect of the ash deposition ratio, so that the collector can be regenerated at a more appropriate timing. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記特性線において、前記圧損の増分と前記堆積量の増分との比を傾きとして、前記特性線は傾きの異なる2つの部分を有し、その2つの部分の境界点を遷移点として、前記第2補正手段は、前記アッシュの前記排気通路側壁への堆積比率が大きいほど、前記特性線における2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくするとしてもよい。   In the characteristic line, the ratio between the increment of the pressure loss and the increment of the deposition amount is set as an inclination, the characteristic line has two parts having different inclinations, and a boundary point between the two parts is used as a transition point. The second correction means may increase the slope of the portion of the characteristic line farther from the initial point as the deposition ratio of the ash on the exhaust passage side wall increases.

これにより、前記捕集器の排気通路側壁と排気通路下流端面壁とへのアッシュの堆積比率を用い、その排気通路側壁への堆積比率が大きいほど特性線の傾きを大きくする補正をおこなうので、後述するように、捕集器の排気通路側壁へのアッシュの堆積の比率が大きい場合に、側壁へのアッシュの堆積によって圧損値が押し上げられる現象を正確に反映した特性線に補正される。よって、この特性線を用いて適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, since the ash accumulation ratio to the exhaust passage side wall and the exhaust passage downstream end face wall of the collector is used, and the accumulation ratio to the exhaust passage side wall is increased, the correction to increase the inclination of the characteristic line is performed. As will be described later, when the ash accumulation ratio on the exhaust passage side wall of the collector is large, the characteristic line accurately corrects the phenomenon that the pressure loss value is pushed up by the ash accumulation on the side wall. Therefore, the collector can be regenerated at an appropriate timing using this characteristic line. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記第2補正手段は、前記捕集器において前記粒子状物質が前記再生手段によらずに燃焼する状態である自燃運転の時間と前記自燃運転ではない非自燃運転と時間のうち、自燃運転の時間比率が大きいほど、前記特性線における2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくする補正をおこなうとしてもよい。   In addition, the second correction means includes a self-combustion operation out of a self-combustion operation time and a non-self-combustion operation time that are not in the self-combustion operation and the time in which the particulate matter is burned in the collector without using the regeneration means. The larger the time ratio is, the larger the slope of the portion of the two characteristic lines that is farther from the initial point may be corrected.

これにより、捕集器において粒子状物質が再生手段によらずに燃焼する状態である自燃運転と自燃運転ではない非自燃運転との時間比率は、後述するようにアッシュの堆積比率と相関を有するので、アッシュの堆積比率を示す情報を簡易に得ることができる。これを用いて第2補正手段によってアッシュの堆積比率を正確に反映した特性線に補正できる。よって、その特性線によって適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   As a result, the time ratio between the self-burning operation in which the particulate matter is burned without using the regeneration means in the collector and the non-self-burning operation that is not the self-burning operation has a correlation with the ash accumulation ratio as described later. Therefore, information indicating the ash deposition ratio can be easily obtained. By using this, the second correction means can correct to the characteristic line that accurately reflects the ash deposition ratio. Therefore, the collector can be regenerated at an appropriate timing by the characteristic line. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記排気通路に配置されて排気温度を計測する排気温度計測手段と、前記自燃運転と非自燃運転との時間比率を、前記排気温度計測手段によって計測された排気温度によって推定する第1時間比率推定手段とを備え、前記堆積比率推定手段で用いられる前記時間比率は、前記第1時間比率推定手段によって推定された前記時間比率であるとしてもよい。   Further, a first time ratio for estimating an exhaust gas temperature measuring means disposed in the exhaust passage and measuring a time ratio between the self-burning operation and the non-self-burning operation based on the exhaust temperature measured by the exhaust temperature measuring means. The time ratio used by the deposition ratio estimation means may be the time ratio estimated by the first time ratio estimation means.

これにより、自燃運転と非自燃運転との時間比率を、排気温度によって推定するので、簡易に計測できる排気温度を用いて時間比率を精度よく求めることができる。そして、この時間比率から第2補正手段によって特性線を補正できる。よって簡易にかつ適切に補正された特性を用いて、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, since the time ratio between the self-combustion operation and the non-self-combustion operation is estimated from the exhaust temperature, the time ratio can be accurately obtained using the exhaust temperature that can be easily measured. The characteristic line can be corrected from the time ratio by the second correction means. Therefore, the collector can be regenerated at a more appropriate timing by using the characteristic corrected easily and appropriately. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記内燃機関の回転数を計測する回転数計測手段と、前記内燃機関のアクセルの開度を計測するアクセル開度計測手段と、前記自燃運転と非自燃運転との時間比率を、前記回転数計測手段によって計測された内燃機関の回転数と前記アクセル開度計測手段によって計測されたアクセルの開度とから推定する第2時間比率推定手段とを備え、前記堆積比率推定手段で用いられる前記時間比率は、前記第2時間比率推定手段によって推定された前記時間比率であるとしてもよい。   Further, the rotational speed measuring means for measuring the rotational speed of the internal combustion engine, the accelerator opening measuring means for measuring the accelerator opening of the internal combustion engine, and the time ratio between the self-combustion operation and the non-self-combustion operation are set as the rotational speed. Second time ratio estimating means for estimating from the rotational speed of the internal combustion engine measured by the measuring means and the accelerator opening measured by the accelerator opening measuring means, and the time used by the deposition ratio estimating means The ratio may be the time ratio estimated by the second time ratio estimation means.

これにより、自燃運転と非自燃運転との時間比率を、運転領域内において内燃機関の回転数とアクセル開度とを用いて推定するので、簡易に計測できる数値を用いて時間比率を精度よく求めることができる。そして、この時間比率から第2補正手段によって特性線を補正できる。よって簡易にかつ適切に補正された特性線を用いて、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   As a result, the time ratio between the self-combustion operation and the non-self-combustion operation is estimated using the rotational speed of the internal combustion engine and the accelerator opening in the operation region, so that the time ratio is accurately obtained using a numerical value that can be easily measured. be able to. The characteristic line can be corrected from the time ratio by the second correction means. Therefore, the collector can be regenerated at a more appropriate timing by using the characteristic line corrected easily and appropriately. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記内燃機関は自動車に搭載されており、その自動車の速度を計測する車速計測手段と、前記自燃運転と非自燃運転との時間比率を、前記車速計測手段によって計測された前記自動車の速度から推定する第3時間比率推定手段とを備え、前記堆積比率推定手段で用いられる前記時間比率は、前記第3時間比率推定手段によって推定された前記時間比率であるとしてもよい。   The internal combustion engine is mounted on an automobile, and a vehicle speed measuring means for measuring the speed of the automobile and a time ratio between the self-combustion operation and the non-self-combustion operation are calculated from the speed of the automobile measured by the vehicle speed measurement means. Third time ratio estimating means for estimating, and the time ratio used by the deposition ratio estimating means may be the time ratio estimated by the third time ratio estimating means.

これにより、自燃運転と非自燃運転との時間比率を、車速を用いて推定するので、簡易に計測できる車速値を用いて精度よく時間比率を求めることができる。そして、この時間比率から第2補正手段によって特性線を補正できる。よって簡易にかつ適切に補正された特性線を用いて、より適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   Thereby, since the time ratio between the self-combustion operation and the non-self-combustion operation is estimated using the vehicle speed, the time ratio can be accurately obtained using the vehicle speed value that can be easily measured. The characteristic line can be corrected from the time ratio by the second correction means. Therefore, the collector can be regenerated at a more appropriate timing by using the characteristic line corrected easily and appropriately. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る内燃機関の排気浄化装置1の実施例の概略図である。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic view of an embodiment of an exhaust gas purification apparatus 1 for an internal combustion engine according to the present invention.

排気浄化装置1は、例えば4気筒のディーゼルエンジン2(以下では単にエンジンと称する)に対して構成されているとする。エンジン2に接続された吸気管3からエンジン2に空気が供給される。吸気管3にはエアフロメータ4が配置され、吸気量が計測される。また吸気管3には吸気スロットル12が配置され、この開度が調節されることによってエンジン2に供給される吸気量が増減する。   It is assumed that the exhaust emission control device 1 is configured, for example, for a four-cylinder diesel engine 2 (hereinafter simply referred to as an engine). Air is supplied to the engine 2 from an intake pipe 3 connected to the engine 2. An air flow meter 4 is disposed in the intake pipe 3 to measure the intake air amount. An intake throttle 12 is disposed in the intake pipe 3, and the amount of intake air supplied to the engine 2 is increased or decreased by adjusting the opening.

エンジン2にはインジェクタ13が装備されてシリンダ内に燃料が供給される。またエンジン2に接続された排気管5へ排気が排出される。電子制御装置10(ECU)によりインジェクタ13によるエンジン2への燃料噴射や、吸気スロットル12の開度調節などが制御される。ECU10は各種演算をおこなうCPUやその作業領域のRAM、各種情報の記憶を行うメモリ11などを有する構造とする。   The engine 2 is equipped with an injector 13 to supply fuel into the cylinder. Exhaust gas is discharged to an exhaust pipe 5 connected to the engine 2. The electronic control unit 10 (ECU) controls fuel injection to the engine 2 by the injector 13 and adjustment of the opening degree of the intake throttle 12. The ECU 10 has a structure including a CPU for performing various calculations, a RAM for its work area, a memory 11 for storing various information, and the like.

排気管5の途中にディーゼルパティキュレートフィルタ6(DPF)が配置されている。DPF6には酸化触媒が担持されており、いわゆる酸化触媒付きDPF(C―DPF)である。DPF6の入口側と出口側とにはそれぞれ排気温度センサ7、8が配置されて、それぞれの位置における排気温度が計測される。またDPF6の入口側と出口側における排気圧の差である差圧(圧損、DPF圧損)を計測する差圧センサ9も装備されている。エアフロメータ4、排気温度センサ7、8、差圧センサ9の計測値はECU10へ送られる。   A diesel particulate filter 6 (DPF) is disposed in the middle of the exhaust pipe 5. The DPF 6 carries an oxidation catalyst, which is a so-called DPF with an oxidation catalyst (C-DPF). Exhaust temperature sensors 7 and 8 are arranged on the inlet side and the outlet side of the DPF 6 respectively, and the exhaust temperature at each position is measured. Further, a differential pressure sensor 9 for measuring a differential pressure (pressure loss, DPF pressure loss) which is a difference between exhaust pressures on the inlet side and the outlet side of the DPF 6 is also provided. The measured values of the air flow meter 4, the exhaust temperature sensors 7 and 8, and the differential pressure sensor 9 are sent to the ECU 10.

さらに排気浄化装置1は、エンジン回転数センサ14、アクセル開度センサ15を備える。さらに排気浄化装置1およびエンジン2は自動車に搭載されて駆動力を供給するとし、車速センサ16を備える。エンジン回転数センサ14はエンジン2に装備されて、エンジン2の回転数、あるいは単位時間あたりの回転数を計測してECU10へ送る。アクセル開度センサ15は、使用者によるアクセルへの入力の度合いを計測し、ECU10へ送る。車速センサ16は周知のとおり例えばトランスミッションなどに装備されて車速を計測してECU10へ送る。   Further, the exhaust purification device 1 includes an engine speed sensor 14 and an accelerator opening sensor 15. Further, it is assumed that the exhaust purification device 1 and the engine 2 are mounted on an automobile and supplies driving force, and includes a vehicle speed sensor 16. The engine speed sensor 14 is installed in the engine 2 and measures the speed of the engine 2 or the speed per unit time and sends it to the ECU 10. The accelerator opening sensor 15 measures the degree of input to the accelerator by the user and sends it to the ECU 10. As is well known, the vehicle speed sensor 16 is mounted on, for example, a transmission, measures the vehicle speed, and sends it to the ECU 10.

DPF6は例えば代表的な構造として、いわゆるハニカム構造において入口側と出口側とを交互に目詰めした構造とすればよい。エンジン2の運転中に排出される排気には粒子状物質(PM)が含まれ、このPMはDPF6の上記構造のDPF壁を排気が通過するときに、このDPF壁の内部あるいは表面に捕集される。DPF6に堆積したPMの堆積量が十分大きくなった度ごとに、堆積したPMを燃焼することによって除去し、DPF6を再生しなければならない。DPF6の再生のための方法として、例えばインジェクタ13からメイン噴射後のタイミングでポスト噴射をおこなうといった手法が用いられる。   For example, the DPF 6 may have a structure in which the inlet side and the outlet side are alternately packed in a so-called honeycomb structure. The exhaust gas discharged during the operation of the engine 2 contains particulate matter (PM), and this PM is collected inside or on the surface of the DPF wall when the exhaust gas passes through the DPF wall having the above structure of the DPF 6. Is done. Every time the amount of PM deposited on the DPF 6 becomes sufficiently large, the deposited PM must be removed by burning to regenerate the DPF 6. As a method for regenerating the DPF 6, for example, a method of performing post injection from the injector 13 at a timing after main injection is used.

本発明においては前述の図11のPM堆積特性を、アッシュの堆積量および堆積状態に応じて補正する。これによってPM堆積量の推定精度を向上させる。補正の全体的な概要は図2に図示されたものであり、補正のための処理手順は図3のフローチャートに示されている。以下でその詳細を説明する。図3に示された手順がECU10によって実行されるとすればよい。   In the present invention, the PM deposition characteristics shown in FIG. 11 are corrected according to the amount of ash deposited and the state of deposition. This improves the estimation accuracy of the PM accumulation amount. The overall outline of the correction is shown in FIG. 2, and the processing procedure for the correction is shown in the flowchart of FIG. Details will be described below. The procedure shown in FIG. 3 may be executed by the ECU 10.

まず手順S10でDPF6が再生中であるかどうかが判断される。再生中の場合(S10:YES)はS20へ進み、再生中でない場合(S10:NO)はこのフローを終了する。   First, it is determined in step S10 whether the DPF 6 is being regenerated. If it is being reproduced (S10: YES), the process proceeds to S20, and if it is not being reproduced (S10: NO), this flow is terminated.

S20ではDPF6の完全な再生が完了したかどうかが判断される。ここで完全な再生とはDPF6に堆積したPMを全て燃焼して、PM堆積量をゼロに戻すことを意味する。完全な再生が完了している場合(S20:YES)は、S30へ進み、完了していない場合(S20:NO)は完全な再生が完了するまで、S20の処理を繰り返す。   In S20, it is determined whether or not the complete regeneration of the DPF 6 has been completed. Here, complete regeneration means that all the PM deposited on the DPF 6 is burned to return the amount of accumulated PM to zero. If complete reproduction has been completed (S20: YES), the process proceeds to S30, and if not complete (S20: NO), the process of S20 is repeated until complete reproduction is completed.

上記のとおりS30に進んだ時点では、DPF6の完全再生が終了した状態である。S30ではDPF6の圧損を計測する。これは差圧センサ9で計測すればよい。   As described above, when the process proceeds to S30, the complete regeneration of the DPF 6 has been completed. In S30, the pressure loss of the DPF 6 is measured. This may be measured by the differential pressure sensor 9.

次にS40ではPM自燃時間比率を算出する。ここでPM自燃時間比率とは、PM自燃運転状態にある時間の総運転時間に対する比率のこととする。そしてPM自燃運転状態とは、エンジン2から排出される排気温度が高いことによって、DPF6にPMが堆積しつつ、同時にPMが燃焼する状態とする。PM自燃運転状態になる排気温度としては、例えば摂氏550度以上が目安となる。以下では温度の単位は全て摂氏とする。   Next, in S40, the PM self-combustion time ratio is calculated. Here, the PM self-combustion time ratio is the ratio of the time in the PM self-combustion operation state to the total operation time. The PM self-combustion operation state is a state in which PM is deposited at the same time as PM is accumulated in the DPF 6 due to a high exhaust gas temperature discharged from the engine 2. The exhaust temperature at which the PM self-combustion operation is performed is, for example, 550 degrees Celsius or more as a guide. In the following, all temperature units are in degrees Celsius.

S40ではECU10にタイマ機能を装備しておき、エンジン2の総運転時間を計測しておき、さらにPM自燃運転時間を計測しておいて、PM自燃運転時間と総運転時間との比を算出すればよい。後述するように、PM自燃運転状態ではDPF6へのアッシュの堆積状態に特徴があるので、PM堆積特性の補正に際してそれを考慮する必要がある。   In S40, the ECU 10 is equipped with a timer function, the total operation time of the engine 2 is measured, the PM self-combustion operation time is further measured, and the ratio between the PM self-combustion operation time and the total operation time is calculated. That's fine. As will be described later, since the ash accumulation state on the DPF 6 is characteristic in the PM self-combustion operation state, it is necessary to consider it when correcting the PM accumulation characteristics.

PM自燃運転時間の計測としては例えば、以下の3とおりの方法があげられる。まず第1の方法は、排気温度を用いる方法である。上述のとおり、排気温度が550度以上の場合PM自燃運転状態になるとすれば、排気温度が550度以上のときの運転時間の総計をPM自燃時間とすればよい。排気温度は排気温度センサ7、8(センサ)で計測すればよい。その際、センサ7、8の計測値の平均を排気温度としてもよい。またセンサ7、8の計測値からDPF6内部の温度を推定するモデルを求めておいて、それで得られた推定値を排気温度としてもよい。また550度を閾値とするのでなく、使用する装置構成に対して予めPM自燃運転状態となる排気温度を求めておいて、それを使用してもよい。   Examples of the measurement of the PM self-burning operation time include the following three methods. First, the first method uses the exhaust temperature. As described above, if the PM self-combustion operation state is set when the exhaust gas temperature is 550 ° C. or higher, the total operation time when the exhaust temperature is 550 ° C. or higher may be set as the PM self-combustion time. The exhaust temperature may be measured by the exhaust temperature sensors 7 and 8 (sensors). At that time, the average of the measured values of the sensors 7 and 8 may be the exhaust temperature. Alternatively, a model for estimating the temperature inside the DPF 6 may be obtained from the measured values of the sensors 7 and 8, and the estimated value obtained there may be used as the exhaust temperature. Further, instead of setting 550 degrees as a threshold value, an exhaust gas temperature at which a PM self-combustion operation state is obtained in advance for the apparatus configuration to be used may be obtained and used.

第2の方法は、エンジン回転数とアクセル開度とを用いる方法である。図8に示されたようなエンジン回転数とアクセル開度とを座標軸とするエンジン2の運転状態を示す平面上で、高負荷、高回転でPM自燃運転状態となる領域を求めておき、この領域内にはいっている運転時間の総計をPM自燃時間とすればよい。エンジン回転数はエンジン回転数センサ14により求めればよい。アクセル開度はアクセル開度センサ15によって求めればよい。   The second method uses the engine speed and the accelerator opening. On the plane showing the operating state of the engine 2 with the engine speed and the accelerator opening as coordinate axes as shown in FIG. 8, a region where the PM self-combustion operation state is obtained at a high load and high rotation is obtained. What is necessary is just to let the sum total of the operation time which has entered in the area | region be PM self-combustion time. The engine speed may be obtained by the engine speed sensor 14. The accelerator opening may be obtained by the accelerator opening sensor 15.

第3の方法は、エンジン2が搭載されている自動車の車速を用いる方法である。車速が速ければ排気温度が高いことが想定されるので、車速値が大きいかどうかはPM自燃運転状態かそうでないかの目安を与える。PM自燃運転状態となる車速を予め求めておけばよい。例えば車速が時速150キロ以上の運転時間をPM自燃時間とすればよい。車速は車速センサ16で計測すればよい。   The third method is a method using the vehicle speed of the automobile on which the engine 2 is mounted. If the vehicle speed is high, it is assumed that the exhaust temperature is high. Therefore, whether the vehicle speed value is large gives an indication of whether or not the PM self-combustion operation state is not. What is necessary is just to obtain | require the vehicle speed which will be in PM self-combustion driving | running state previously. For example, the driving time when the vehicle speed is 150 km / h or more may be set as the PM self-combustion time. The vehicle speed may be measured by the vehicle speed sensor 16.

次にS50でPM堆積特性線の補正のための初期点、ヒステリシス、傾き、傾き補正係数を算出する。アッシュが堆積していない状態でのPM堆積特性線を図2の図示下側の特性線21、23とする。そしてアッシュの堆積によって補正された特性線を図2の図示上側の特性線21、23とする。図2のとおり、補正前の初期点20におけるDPF6の圧損はP0である。つまりP0はDPF6に何も堆積していない条件下での圧損である。   In step S50, an initial point, hysteresis, inclination, and inclination correction coefficient for correcting the PM deposition characteristic line are calculated. The PM deposition characteristic lines in a state where ash is not deposited are defined as characteristic lines 21 and 23 on the lower side of FIG. The characteristic lines corrected by the accumulation of ash are defined as characteristic lines 21 and 23 on the upper side in FIG. As shown in FIG. 2, the pressure loss of the DPF 6 at the initial point 20 before correction is P0. That is, P0 is a pressure loss under the condition that nothing is deposited on the DPF 6.

なお以下で述べる補正で完全再生後の圧損が用いられるが、この理由は、一般に完全再生後はPMは全て燃焼されてアッシュのみが堆積した状態となるので、圧損値がアッシュの堆積量を示すこととなる。よって図4に示されているように、アッシュ堆積量に対して完全再生後の圧損が単調増加の関係を有するので、完全再生後の圧損がアッシュ堆積量を示す指標となるからである。   Note that the pressure loss after complete regeneration is used in the correction described below. This is because the PM is generally burned and only ash is deposited after complete regeneration, so the pressure loss value indicates the amount of ash deposited. It will be. Therefore, as shown in FIG. 4, since the pressure loss after complete regeneration has a monotonically increasing relationship with the ash deposition amount, the pressure loss after complete regeneration becomes an index indicating the ash deposition amount.

まず初期点20を補正する。DPF6の完全再生後の圧損をP1とする。このとき補正後の特性線の初期点20を図2に示すように圧損がP1の点となるように特性線全体を図示上方へ平行移動する。これにより最新のアッシュの堆積量に対応した初期点20を有する特性線21、23へと補正される。   First, the initial point 20 is corrected. The pressure loss after complete regeneration of the DPF 6 is defined as P1. At this time, the entire characteristic line is translated upward in the drawing so that the initial point 20 of the corrected characteristic line becomes a point P1 as shown in FIG. Thus, the characteristic lines 21 and 23 having the initial point 20 corresponding to the latest ash accumulation amount are corrected.

次にヒステリシスを補正する。ヒステリシスとは初期点20を通り特性線23と同じ傾きの線と、特性線23の間の距離つまり図2に示されるH0あるいはH1の値である。ヒステリシスの値は図5により算出される。図5に示されるように、完全再生後の圧損に対してヒステリシスの値は単調減少となる。   Next, the hysteresis is corrected. Hysteresis is the distance between the characteristic line 23 passing through the initial point 20 and the characteristic line 23, that is, the value of H0 or H1 shown in FIG. The hysteresis value is calculated according to FIG. As shown in FIG. 5, the hysteresis value monotonously decreases with respect to the pressure loss after complete regeneration.

この理由を図9を用いて説明する。図9は、DPF6のフィルタ壁の断面の拡大図である。アッシュの堆積量が増加することによってフィルタ壁の気孔内へのアッシュの堆積量も増加する。これによりPMがフィルタ壁内に堆積する余地が小さくなる。したがって壁内へのPM堆積量がより少ない状態でPMの壁内への堆積が飽和することとなる。そして上述のとおり、第1特性線21はフィルタ壁内へのPM堆積に対応する特性線である。したがって結局、DPF6におけるアッシュの堆積量が大きくなるにつれて、第1特性線21は短くなり、ヒステリシスは小さくなる。以上より図5に示される傾向が得られる。   The reason for this will be described with reference to FIG. FIG. 9 is an enlarged view of a cross section of the filter wall of the DPF 6. As the amount of ash deposited increases, the amount of ash deposited in the pores of the filter wall also increases. This reduces the room for PM to accumulate in the filter wall. Therefore, the deposition of PM into the wall is saturated with a smaller amount of PM deposited in the wall. As described above, the first characteristic line 21 is a characteristic line corresponding to PM accumulation in the filter wall. Therefore, after all, as the amount of accumulated ash in the DPF 6 increases, the first characteristic line 21 becomes shorter and the hysteresis becomes smaller. From the above, the tendency shown in FIG. 5 is obtained.

図5では完全再生後の圧損がP0のときのヒステリシスがH0、P1のときがH1となっている。そしてH1はH0よりも小さい値である。これによって図2のように第1特性線21の長さが短く補正される。   In FIG. 5, the hysteresis is H0 when the pressure loss after complete regeneration is P0, and H1 when the pressure loss is P1. H1 is smaller than H0. As a result, the length of the first characteristic line 21 is corrected to be short as shown in FIG.

次に第2特性線23の傾きが補正される。第2特性線の傾きは図6により算出される。図6に示されるように、完全再生後の圧損に対して第2特性線23の傾きの値は単調増加となる。この理由を図10を用いて説明する。   Next, the inclination of the second characteristic line 23 is corrected. The slope of the second characteristic line is calculated from FIG. As shown in FIG. 6, the value of the slope of the second characteristic line 23 increases monotonously with respect to the pressure loss after complete regeneration. The reason for this will be described with reference to FIG.

図10はアッシュ、PMがともに堆積した状態でのDPF6の断面図である。エンジン2の運転によってアッシュ、PMが堆積していくが、DPF6の再生が行われるごとにPMのみが燃焼し、アッシュのみが残っていく。したがって何回かのDPF再生が行われた後にはアッシュが低層に堆積して、その上にPMが堆積する状態となる。そして一般にアッシュは、通常排気流の影響でDPF6の下流端面により多く堆積する傾向がある。   FIG. 10 is a cross-sectional view of the DPF 6 in a state where both ash and PM are deposited. Ashes and PM accumulate as the engine 2 operates, only PM is burned and only ash remains each time the DPF 6 is regenerated. Therefore, after several times of DPF regeneration, ash is deposited in a low layer, and PM is deposited thereon. In general, ash tends to accumulate more on the downstream end face of the DPF 6 due to the influence of the normal exhaust flow.

よって、より下流端面側に堆積したアッシュによって、DPF6の軸方向長がより短くなったことと同じ影響が現れる。したがって結局、こうしたアッシュの堆積が多いほど、同じPM堆積量でも、フィルタ壁の壁面上により厚くPMが堆積する。したがって同じPM堆積量でも、圧損値はより大きくなる。これは第2特性線23の傾きをより大きくすることと等価である。これにより図6が得られる。   Therefore, the same effect as the axial length of the DPF 6 becomes shorter due to the ash deposited on the downstream end face side appears. Therefore, after all, the more ash is deposited, the thicker the PM is deposited on the wall surface of the filter wall with the same amount of PM deposition. Therefore, the pressure loss value becomes larger even with the same PM deposition amount. This is equivalent to increasing the slope of the second characteristic line 23. Thereby, FIG. 6 is obtained.

図6では完全再生後の圧損がP0のときの第2特性線23の傾きがθ0、P1のときがθ1となっている。そしてθ1はθ0よりも大きい値である。これによって第2特性線23の傾きがより大きく補正される。   In FIG. 6, when the pressure loss after complete regeneration is P0, the slope of the second characteristic line 23 is θ0, and when the pressure loss is P1, θ1. Θ1 is larger than θ0. Thereby, the inclination of the second characteristic line 23 is corrected to be larger.

さらにS40で求めたPM自燃運転比率に従って、第2特性線23の傾きが補正される。このさらなる補正は図7に従う。図7に示された傾き補正係数が図6で求めた傾き値に乗算されて、第2特性線23の最終的な補正後の傾き値が算出される。図7の示されているように、傾き補正係数はPM自燃運転比率に対して単調増加となる。この理由を以下に説明する。   Further, the slope of the second characteristic line 23 is corrected according to the PM self-combustion operation ratio obtained in S40. This further correction follows FIG. The inclination correction coefficient shown in FIG. 7 is multiplied by the inclination value obtained in FIG. 6 to calculate the final corrected inclination value of the second characteristic line 23. As shown in FIG. 7, the slope correction coefficient monotonously increases with respect to the PM self-combustion operation ratio. The reason for this will be described below.

PM自燃運転状態においては、上述のとおり、PMがDPF6に堆積しながら同時に燃焼する。この状態では、PMがDPF6のフィルタ壁の壁面上に薄く定常的に堆積していく傾向が見られる。アッシュは通常PMに付着してDPF6へ流通してくるので、アッシュもフィルタ側壁上に堆積していく。つまり、アッシュのDPFの側壁への堆積量と下流端面への堆積量との比率をアッシュ堆積比率とすると、PM自燃時間比率が大きいほど、アッシュの側壁への堆積比率が大きくなる。   In the PM self-combustion operation state, as described above, PM burns simultaneously while accumulating in the DPF 6. In this state, there is a tendency that PM is thinly and constantly deposited on the wall surface of the filter wall of the DPF 6. Since ash usually adheres to PM and flows to DPF 6, ash also accumulates on the filter sidewall. In other words, if the ratio of the amount of ash deposited on the sidewall of the DPF and the amount deposited on the downstream end face is the ash deposition ratio, the larger the PM self-combustion time ratio, the greater the deposition ratio on the ash sidewall.

PMと一緒にアッシュもフィルタ壁面上に堆積していくと、同じPM堆積量でも、アッシュの堆積分だけ圧損値を押し上げることとなる。上述のように、フィルタ壁面上への堆積は第2特性線23に対応する。よって結局PM自燃運転比率が高くなることによって、第2特性線23の傾きが増加する。以上より図7が得られる。   When ash is deposited on the filter wall surface together with PM, the pressure loss value is increased by the amount of ash deposited even with the same amount of PM deposited. As described above, the deposition on the filter wall surface corresponds to the second characteristic line 23. Therefore, the slope of the second characteristic line 23 increases as the PM self-combustion operation ratio eventually increases. From the above, FIG. 7 is obtained.

上述のS40で算出されたPM自燃運転比率がR1であったとし、図7のとおりPM自燃運転比率がR1のときの傾き補正係数をk1とする。このk1と図6で求めたθ1との積が、第2特性線23の最終的な補正後の傾き値となる。   Assume that the PM self-combustion operation ratio calculated in S40 is R1, and the slope correction coefficient when the PM self-combustion operation ratio is R1 as shown in FIG. 7 is k1. The product of k1 and θ1 obtained in FIG. 6 is the final corrected slope value of the second characteristic line 23.

最後にS60で、S50で求めたヒステリシス、傾き、傾き補正係数を用いてPM堆積特性線が補正される。これにより図2の図示上側の特性線が得られる。以上が図3である。   Finally, in S60, the PM deposition characteristic line is corrected using the hysteresis, inclination, and inclination correction coefficient obtained in S50. Thereby, the characteristic line on the upper side of FIG. 2 is obtained. The above is FIG.

この補正された特性線21、23を用いて、ECU10でDPF6へのPM堆積量を推定する。そしてPM堆積量の推定値が所定の閾値を越えたら、例えばインジェクタ13からポスト噴射を行ってDPFを再生すればよい。アッシュの堆積を考慮に入れることによって補正された特性線を用いるので、より正確にPM堆積量が推定できる。   Using the corrected characteristic lines 21 and 23, the ECU 10 estimates the amount of PM deposited on the DPF 6. When the estimated value of the PM accumulation amount exceeds a predetermined threshold value, for example, post-injection may be performed from the injector 13 to regenerate the DPF. Since the characteristic line corrected by taking the ash accumulation into account is used, the PM accumulation amount can be estimated more accurately.

予め使用する装置構成に対して図5、6、7あるいはさらに図8の特性、PM自燃運転状態となる排気温度や車速の閾値を求めておいてメモリ11に記憶しておき、S50でそれを呼び出して用いればよい。   The characteristics shown in FIGS. 5, 6, 7 or FIG. 8, the exhaust temperature at which the PM self-combustion operation is performed, and the threshold value of the vehicle speed are obtained and stored in the memory 11 with respect to the apparatus configuration to be used in advance, and are stored in S50. Call and use.

なお上では第1特性線21および第2特性線23を直線としたが、これが直線近似であり、真の特性は図12のように曲線である場合もある。この場合、上記説明でヒステリシスつまり初期点20と遷移点22との間の距離を小さくする補正は、例えば図12に示されたような曲線である第1特性線にそって遷移点22を初期点20に近づける補正としてもよい。また第2特性線23の傾きを大きくする補正は、例えば図12に示された曲線である第2特性線23上の1点における接線30の傾きを大きくするように第2特性線23を補正することとすればよい。   In the above, the first characteristic line 21 and the second characteristic line 23 are straight lines, but this is a linear approximation, and the true characteristic may be a curve as shown in FIG. In this case, in the above description, the hysteresis, that is, the correction for reducing the distance between the initial point 20 and the transition point 22 is performed by, for example, initializing the transition point 22 along the first characteristic line which is a curve as shown in FIG. It is good also as correction | amendment which approaches the point 20. FIG. The second characteristic line 23 is corrected so as to increase the inclination of the tangent 30 at one point on the second characteristic line 23 which is the curve shown in FIG. 12, for example. What should I do?

上記実施例で、S40の手順が第1時間比率計測手段、第2時間比率計測手段、第3時間比率計測手段を構成する。S50、S60の手順が補正手段、初期点補正手段、遷移点補正手段、傾き補正手段、第2補正手段を構成する。   In the above embodiment, the procedure of S40 constitutes the first time ratio measuring means, the second time ratio measuring means, and the third time ratio measuring means. The procedures of S50 and S60 constitute correction means, initial point correction means, transition point correction means, inclination correction means, and second correction means.

本発明の実施形態における内燃機関の排気浄化装置の概略構成図。1 is a schematic configuration diagram of an exhaust emission control device for an internal combustion engine in an embodiment of the present invention. 補正の全体を示す概要図。The schematic diagram which shows the whole correction | amendment. PM堆積特性補正処理のフローチャート。The flowchart of PM deposition characteristic correction processing. 完全再生後の圧損とアッシュ堆積量との関係を示す図。The figure which shows the relationship between the pressure loss after complete reproduction | regeneration, and the amount of ash deposits. ヒステリシスと完全再生後の圧損との関係を示す図。The figure which shows the relationship between a hysteresis and the pressure loss after complete reproduction | regeneration. 第2特性線の傾きと完全再生後の圧損との関係を示す図。The figure which shows the relationship between the inclination of a 2nd characteristic line, and the pressure loss after complete reproduction | regeneration. 傾き補正係数とPM自燃運転比率との関係を示す図。The figure which shows the relationship between an inclination correction coefficient and PM self-combustion operation ratio. 全運転領域内におけるPM自燃運転領域を示す図。The figure which shows the PM self-combustion operation area | region in all the operation areas. DPFへのアッシュの堆積の様子を示す図。The figure which shows the mode of accumulation of the ash to DPF. DPFへのアッシュの堆積の様子を示す図。The figure which shows the mode of accumulation of the ash to DPF. DPFへのPM堆積特性線を示す図。The figure which shows the PM deposition characteristic line to DPF. DPFへのPM堆積特性線を示す図。The figure which shows the PM deposition characteristic line to DPF.

符号の説明Explanation of symbols

1 排気浄化装置
2 ディーゼルエンジン(内燃機関)
3 吸気管
5 排気管
6 ディーゼルパティキュレートフィルタ(DPF、捕集器)
7、8 排気温度センサ(排気温度計測手段)
9 差圧センサ(圧損計測手段)
10 電子制御装置(ECU、推定手段)
11 メモリ(特性記憶手段)
13 インジェクタ(再生手段)
14 エンジン回転数センサ(回転数計測手段)
15 アクセル開度センサ(アクセル開度計測手段)
16 車速センサ(車速計測手段)
21 第1特性線(特性線)
23 第2特性線(特性線)
1 Exhaust gas purification device 2 Diesel engine (internal combustion engine)
3 Intake pipe 5 Exhaust pipe 6 Diesel particulate filter (DPF, collector)
7, 8 Exhaust temperature sensor (exhaust temperature measuring means)
9 Differential pressure sensor (pressure loss measuring means)
10 Electronic control unit (ECU, estimation means)
11 Memory (characteristic storage means)
13 Injector (regeneration means)
14 Engine speed sensor (speed measurement means)
15 Accelerator opening sensor (accelerator opening measuring means)
16 Vehicle speed sensor (vehicle speed measuring means)
21 1st characteristic line (characteristic line)
23 Second characteristic line (characteristic line)

Claims (7)

排気通路の途中に配置されて粒子状物質を捕集する捕集器と、
その捕集器における入口側と出口側との圧力差である圧損を計測する圧損計測手段と、
前記捕集器における前記圧損と、前記捕集器における粒子状物質の堆積量との間の特性を、前記粒子状物質の堆積量と前記捕集器の圧損とを2つの座標軸とした平面上における前記堆積量がゼロの点である初期点から伸びた特性線として記憶する特性記憶手段と、
その特性記憶手段によって記憶された前記特性と前記圧損計測手段によって計測された前記圧損とから前記粒子状物質の前記捕集器における堆積量の推定値を算出する推定手段と、
その推定手段によって算出された推定値が所定の閾値よりも大きくなると前記捕集器に堆積した前記粒子状物質を燃焼して前記捕集器を再生する再生手段と、
前記特性記憶手段に記憶された前記特性を、前記再生手段によって前記粒子状物質の堆積量がゼロとなるように前記捕集器が再生された時点で前記圧損計測手段によって計測された前記捕集器の前記圧損である完全再生後圧損に応じて補正する補正手段と、
前記捕集器において前記粒子状物質が前記再生手段によらずに燃焼する状態である自燃運転の時間と前記自燃運転ではない非自燃運転の時間のうち、自燃運転の時間比率が大きいほど、前記特性線における遷移点を挟んだ傾きの異なる2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくする補正をおこなう第2補正手段と、
を備えたことを特徴とする内燃機関の排気浄化装置。
A collector arranged in the middle of the exhaust passage to collect particulate matter;
Pressure loss measuring means for measuring a pressure loss which is a pressure difference between the inlet side and the outlet side in the collector;
The characteristic between the pressure loss in the collector and the amount of particulate matter deposited in the collector is a plane with the amount of particulate matter deposited and the pressure drop of the collector as two coordinate axes. Characteristic storage means for storing as a characteristic line extending from an initial point where the amount of deposition at zero is a point ;
An estimation means for calculating an estimated value of the amount of accumulation of the particulate matter in the collector from the characteristic stored by the characteristic storage means and the pressure loss measured by the pressure loss measurement means;
Regeneration means for regenerating the collector by burning the particulate matter deposited on the collector when the estimated value calculated by the estimating means is greater than a predetermined threshold;
The said characteristic memorize | stored in the said characteristic memory | storage means is the said collection measured by the said pressure loss measurement means when the said collector was reproduced | regenerated so that the accumulation amount of the said particulate matter might be set to zero by the said reproduction | regeneration means. Correction means for correcting according to the pressure loss after complete regeneration, which is the pressure loss of the container ,
The larger the time ratio of the self-combustion operation, the longer the time ratio of the self-combustion operation, the non-self-combustion operation time that is the state in which the particulate matter is burned without using the regeneration means in the collector. A second correction means for performing correction to increase the inclination of a portion farther than the initial point among the two portions having different inclinations across the transition point in the characteristic line;
An exhaust emission control device for an internal combustion engine, comprising:
記補正手段は、前記特性線の前記初期点の前記圧損の値が前記完全再生後圧損となるように、前記特性線を平行移動する補正を行う初期点補正手段を備えた請求項に記載の内燃機関の排気浄化装置。 Before SL correction means, as the value of the pressure loss of the initial point of the characteristic line becomes the complete regeneration after pressure drop, in claim 1 having the initial point correcting means for correcting translating the characteristic line An exhaust gas purification apparatus for an internal combustion engine as described. 記補正手段は、前記完全再生後圧損が大きいほど、前記遷移点を前記初期点に近づける補正をおこなう遷移点補正手段を備えた請求項1または2に記載の内燃機関の排気浄化装置。 Before SL correction means, the full extent reproduced after the pressure loss is large, the exhaust purification system of an internal combustion engine according to the transition point to claim 1 or 2 including a transition point correcting means for correcting closer to the initial point. 記補正手段は、前記完全再生後圧損が大きいほど、前記特性線における2つの部分のうちで前記初期点よりも遠い方の部分の傾きを大きくする補正をおこなう傾き補正手段を備えた請求項1ないし3のいずれか1項に記載の内燃機関の排気浄化装置。 Before SL correcting means, the higher the complete regeneration after pressure loss is large, claim having a tilt correction means for correcting to increase the inclination of the portion that is further than the initial point of the two parts of the characteristic line The exhaust emission control device for an internal combustion engine according to any one of claims 1 to 3 . 前記排気通路に配置されて排気温度を計測する排気温度計測手段と、
前記自燃運転と非自燃運転との時間比率を、前記排気温度計測手段によって計測された排気温度によって推定する第1時間比率推定手段とを備え、
前記第2補正手段で用いられる前記時間比率は、前記第1時間比率推定手段によって推定された前記時間比率である請求項1ないし4のいずれか1項に記載の内燃機関の排気浄化装置。
An exhaust temperature measuring means disposed in the exhaust passage for measuring the exhaust temperature;
First time ratio estimating means for estimating the time ratio between the self-burning operation and the non-self-burning operation based on the exhaust temperature measured by the exhaust temperature measuring means;
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4 , wherein the time ratio used by the second correction means is the time ratio estimated by the first time ratio estimation means.
前記内燃機関の回転数を計測する回転数計測手段と、
前記内燃機関のアクセルの開度を計測するアクセル開度計測手段と、
前記自燃運転と非自燃運転との時間比率を、前記回転数計測手段によって計測された内燃機関の回転数と前記アクセル開度計測手段によって計測されたアクセルの開度とから推定する第2時間比率推定手段とを備え、
前記第2補正手段で用いられる前記時間比率は、前記第2時間比率推定手段によって推定された前記時間比率である請求項1ないし4のいずれか1項に記載の内燃機関の排気浄化装置。
A rotational speed measuring means for measuring the rotational speed of the internal combustion engine;
Accelerator opening measuring means for measuring the opening of the accelerator of the internal combustion engine;
A second time ratio for estimating the time ratio between the self-combustion operation and the non-self-combustion operation from the rotational speed of the internal combustion engine measured by the rotational speed measurement means and the accelerator opening measured by the accelerator opening measurement means An estimation means,
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4 , wherein the time ratio used by the second correction means is the time ratio estimated by the second time ratio estimation means.
前記内燃機関は自動車に搭載されており、
その自動車の速度を計測する車速計測手段と、
前記自燃運転と非自燃運転との時間比率を、前記車速計測手段によって計測された前記自動車の速度から推定する第3時間比率推定手段とを備え、
前記第2補正手段で用いられる前記時間比率は、前記第3時間比率推定手段によって推定された前記時間比率である請求項1ないし4のいずれか1項に記載の内燃機関の排気浄化装置。
The internal combustion engine is mounted on an automobile;
Vehicle speed measuring means for measuring the speed of the car,
A third time ratio estimating means for estimating a time ratio between the self-burning operation and the non-self-burning operation from a speed of the automobile measured by the vehicle speed measuring means;
The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4 , wherein the time ratio used by the second correction means is the time ratio estimated by the third time ratio estimation means.
JP2007319468A 2007-12-11 2007-12-11 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4868292B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007319468A JP4868292B2 (en) 2007-12-11 2007-12-11 Exhaust gas purification device for internal combustion engine
DE102008054491A DE102008054491A1 (en) 2007-12-11 2008-12-10 Exhaust gas cleaning device for use in internal-combustion engine i.e. diesel engine, of vehicle, has unit regenerating collecting unit by combustion of particles deposited in collecting unit when estimated value exceeds threshold value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007319468A JP4868292B2 (en) 2007-12-11 2007-12-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2009144518A JP2009144518A (en) 2009-07-02
JP4868292B2 true JP4868292B2 (en) 2012-02-01

Family

ID=40680234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007319468A Expired - Fee Related JP4868292B2 (en) 2007-12-11 2007-12-11 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4868292B2 (en)
DE (1) DE102008054491A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091190B2 (en) 2012-08-01 2015-07-28 GM Global Technology Operations LLC Accumulated ash correction during soot mass estimation in a vehicle exhaust aftertreatment device
JP6477621B2 (en) 2016-07-14 2019-03-06 トヨタ自動車株式会社 Internal combustion engine purification device
DE102019202400A1 (en) * 2019-02-22 2020-08-27 Robert Bosch Gmbh Determination of the loading of particle filters

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332065A (en) 1994-06-06 1995-12-19 Nippon Soken Inc Exhaust particulate purifying device of internal combustion engine
JP4048993B2 (en) * 2003-04-08 2008-02-20 日産自動車株式会社 Engine exhaust purification system
JP4534969B2 (en) * 2005-11-25 2010-09-01 株式会社デンソー Exhaust purification device for internal combustion engine
JP4956784B2 (en) * 2006-03-07 2012-06-20 日産自動車株式会社 Particulate accumulation amount detection device and detection method for exhaust gas purification filter
JP4702557B2 (en) * 2006-08-31 2011-06-15 三菱自動車工業株式会社 Exhaust purification device

Also Published As

Publication number Publication date
DE102008054491A1 (en) 2009-06-18
JP2009144518A (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4513593B2 (en) Exhaust gas purification device for internal combustion engine
JP4385775B2 (en) Exhaust gas purification device for internal combustion engine
JP3846309B2 (en) Exhaust purification device
JP3801135B2 (en) Engine exhaust gas purification device
JP4403961B2 (en) Exhaust gas purification device for internal combustion engine
US7607295B2 (en) Particulate accumulation amount estimating system
JP5030020B2 (en) Exhaust gas purification device for internal combustion engine
US7458206B2 (en) Exhaust gas purification system of internal combustion engine
JP4863111B2 (en) Exhaust purification device
JP2004308583A (en) Emission control device for engine
JP2004245123A (en) Exhaust emission control device of internal combustion engine
JP5093617B2 (en) Exhaust gas purification device for internal combustion engine
JP4363289B2 (en) Exhaust gas purification device for internal combustion engine
JP2009270503A (en) Exhaust emission control device of internal combustion engine
JP4574460B2 (en) Exhaust gas purification device for internal combustion engine
JP4270175B2 (en) Particulate deposition amount estimation device
CN113530656B (en) DPF fault monitoring method and device
CN112761766A (en) DPF carbon loading capacity estimation method and system
JP4093158B2 (en) Filter regeneration control device for diesel engine
JP4868292B2 (en) Exhaust gas purification device for internal combustion engine
JP2009520152A5 (en)
WO2016152896A1 (en) Exhaust purification device and control method for same
JP4572762B2 (en) Engine exhaust purification system
JP4905863B2 (en) Exhaust gas purification device for internal combustion engine
JP2004132358A (en) Filter control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111103

R151 Written notification of patent or utility model registration

Ref document number: 4868292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees