JP2009270503A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2009270503A
JP2009270503A JP2008122254A JP2008122254A JP2009270503A JP 2009270503 A JP2009270503 A JP 2009270503A JP 2008122254 A JP2008122254 A JP 2008122254A JP 2008122254 A JP2008122254 A JP 2008122254A JP 2009270503 A JP2009270503 A JP 2009270503A
Authority
JP
Japan
Prior art keywords
dpf
differential pressure
collector
regeneration
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008122254A
Other languages
Japanese (ja)
Inventor
Satoru Nosaka
覚 野坂
Shigeto Yabaneta
茂人 矢羽田
Yasuhiro Kariya
安浩 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008122254A priority Critical patent/JP2009270503A/en
Priority to DE102009002603A priority patent/DE102009002603A1/en
Publication of JP2009270503A publication Critical patent/JP2009270503A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/47

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine capable of accurately estimating an ash deposit quantity after finishing complete regeneration of a DPF (diesel particulate filter). <P>SOLUTION: Regeneration operation is performed up to the time t2 while erecting a regeneration performing flag as it is even after the time t1 when the complete regeneration of the DPF is finished. DPF differential pressure is measured up to t2 from the tine t1, and the ash deposit quantity in the DPF is estimated from a differential pressure value, and a characteristic between longitudinal differential pressure and a PN despot quantity in the DPF is corrected based on an estimate value. Since the regeneration operation is continued up to t2 from the tine t1, an exhaust flow rate is sufficient, and a DPF differential pressure value is improved in accuracy without reducing. Since the regeneration operation is further continued up to t2 from the time t1, PM is not deposited again, and the DPF differential pressure value is not influenced by redeposit of the PM. Thus, the ash deposit quantity can be accurately calculated from the DPF differential pressure value up to t2 from the time t1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

今日、環境保護意識の高まりのなかで内燃機関に対してすぐれた排気浄化性能が求められている。特にディーゼルエンジンにおいては、エンジンから排出される黒煙などのいわゆる粒子状物質(PM:Particulate Matter)の除去が重要である。この目的のために排気管の途中にディーゼルパティキュレートフィルタ(DPF:Diesel Particulate Filter)が装備されることが多い。   Today, with increasing awareness of environmental protection, excellent exhaust purification performance is required for internal combustion engines. In particular, in diesel engines, it is important to remove so-called particulate matter (PM) such as black smoke discharged from the engine. For this purpose, a diesel particulate filter (DPF) is often provided in the middle of the exhaust pipe.

DPFがPMを捕集することにより排気中のPMは大部分が除去されるが、DPF内にPMが堆積し続ける一方では、DPFは目詰まりを起こしてしまうので、PMの堆積量が大きくなったら堆積されたPMを燃焼して除去することで、DPFを再生する必要がある。DPF内に堆積したPMを燃焼するためにシリンダ内でのメイン噴射後のポスト噴射などの手法が採られる。   Most of the PM in the exhaust gas is removed by the DPF collecting the PM. However, while the PM continues to accumulate in the DPF, the DPF is clogged, so the amount of accumulated PM increases. Then, it is necessary to regenerate the DPF by burning and removing the accumulated PM. In order to burn the PM accumulated in the DPF, a method such as post injection after main injection in the cylinder is employed.

DPFの再生のために燃料が消費されるので、頻繁なDPF再生は燃費の悪化を招いてしまう。一方DPF再生の回数が少なすぎると、堆積量が過剰となり再生処理において昇温し過ぎてDPFが破損する可能性がある。したがってDPF再生は適切な時期に行わなければならない。そのためにDPFにおけるPMの堆積量を何らかの方法でできるだけ正確に推定するシステムの開発が必要である。   Since fuel is consumed to regenerate the DPF, frequent DPF regeneration leads to deterioration of fuel consumption. On the other hand, if the number of times of DPF regeneration is too small, the amount of deposition becomes excessive, and the temperature rises during the regeneration process, which may damage the DPF. Therefore, DPF regeneration must be performed at an appropriate time. Therefore, it is necessary to develop a system for estimating the amount of PM deposited in the DPF as accurately as possible by some method.

PMの堆積量の推定方法として図5の特性を用いる方法がある。図5は、PM堆積量とDPF差圧との間の特性である。PM堆積量とDPF差圧とを示す点はPM堆積中は初期点100から特性線110、130上を通って上昇し、PM燃焼中は破線150、170を通って初期点100へ戻る。DPFの前後差圧を計測し、その計測値と図5の特性とからPM堆積量を推定する。   There is a method of using the characteristics shown in FIG. FIG. 5 is a characteristic between the PM deposition amount and the DPF differential pressure. The point indicating the PM deposition amount and the DPF differential pressure rises from the initial point 100 through the characteristic lines 110 and 130 during PM deposition, and returns to the initial point 100 through dashed lines 150 and 170 during PM combustion. The differential pressure across the DPF is measured, and the PM deposition amount is estimated from the measured value and the characteristics shown in FIG.

しかし図5の特性はDPFへのアッシュの堆積を考慮して補正する必要がある。アッシュとは主にエンジンオイル中の金属成分が酸化したものである。アッシュがDPFに堆積することによって図5の特性は図6のように変更される。。図6には特性線110、130のみが示されている。図6に示されているとおり、アッシュがDPFに堆積する程、DPF差圧の値は押し上げられる。またアッシュ堆積量が増加するほど有効濾過面積が減少し、より早くDPFにおけるPM堆積層が厚くなるので、図6における特性線の傾きが大きくなる傾向がある。   However, the characteristics of FIG. 5 need to be corrected in consideration of ash accumulation on the DPF. Ash is mainly oxidized metal components in engine oil. As the ash is deposited on the DPF, the characteristics shown in FIG. 5 are changed as shown in FIG. . In FIG. 6, only characteristic lines 110 and 130 are shown. As shown in FIG. 6, as the ash accumulates on the DPF, the value of the DPF differential pressure is increased. Further, as the ash deposition amount increases, the effective filtration area decreases and the PM deposition layer in the DPF becomes thicker earlier, so that the slope of the characteristic line in FIG. 6 tends to increase.

PM堆積量を精度よく推定するためには、アッシュの堆積量を精度よく求める必要がある。従来技術においてアッシュの堆積量の推定として、DPFの完全再生、すなわちPM堆積量がゼロとなるまでDPFを再生することが終了した後にDPF差圧を計測して行う手法がある。DPF完全再生の終了後ならばPMの堆積はないとみなせるので、DPFの差圧値がアッシュの堆積量と相関を示すと考えられるからである。例えば下記特許文献1には、完全再生の終了のたび毎にアッシュの堆積量を推定する手法が示されている。   In order to accurately estimate the PM accumulation amount, it is necessary to accurately obtain the ash accumulation amount. In the prior art, as an estimation of the ash accumulation amount, there is a method of measuring the DPF differential pressure after completing the complete regeneration of the DPF, that is, regenerating the DPF until the PM accumulation amount becomes zero. This is because it can be considered that there is no PM accumulation after the completion of the complete regeneration of the DPF, and therefore, it is considered that the differential pressure value of the DPF correlates with the ash accumulation amount. For example, Patent Document 1 below discloses a technique for estimating the amount of accumulated ash each time complete regeneration ends.

特開2004−211650号公報JP 2004-21650 A

しかし特許文献1の手法において、DPF完全再生終了直後は、排気ガスの温度が低下し排気ガスの体積が縮小するので排気ガスの体積流量が減少する。排気ガスの体積流量が減少すると、DPFの前後差圧値は小さくなる。一般にDPF差圧値にはばらつきがみられるので、DPFの前後差圧値が小さくなることは、前後差圧計測値におけるばらつきあるいは誤差の占める比重が高まることを意味する。したがってDPF完全再生終了直後にはDPF差圧計測値の信頼性が低い場合がある。   However, in the method of Patent Document 1, immediately after the completion of the DPF complete regeneration, the temperature of the exhaust gas is lowered and the volume of the exhaust gas is reduced, so that the volume flow rate of the exhaust gas is reduced. When the volume flow rate of the exhaust gas decreases, the differential pressure value across the DPF decreases. In general, variation is observed in the DPF differential pressure value, so that the front-rear differential pressure value of the DPF becomes smaller means that the variation in the front-rear differential pressure measurement value or the specific gravity occupied by the error increases. Therefore, the reliability of the DPF differential pressure measurement value may be low immediately after the completion of the DPF complete regeneration.

またDPF完全再生終了直後には急加速や急減速など運転条件が急激に変動している場合もある。運転条件が急激に変動している場合にも排気ガス流量が大きく変動するので、DPF差圧値の信頼性は低い。したがってDPF完全再生直後は運転条件が変動している場合にも、DPF差圧値を用いて推定したアッシュ堆積量の信頼性は低い。   In addition, immediately after the completion of DPF complete regeneration, the operating conditions such as sudden acceleration and sudden deceleration may change rapidly. Since the exhaust gas flow rate fluctuates greatly even when the operating conditions fluctuate rapidly, the reliability of the DPF differential pressure value is low. Therefore, the reliability of the ash deposition amount estimated using the DPF differential pressure value is low even when the operating conditions fluctuate immediately after the complete regeneration of the DPF.

このようにDPF完全再生終了後にはDPF差圧値、さらにはそれを用いて推定したアッシュ堆積量の信頼性は低い場合があるが、こうした不具合を回避するために完全再生終了後にDPF差圧計測値の信頼性が回復するまで待つ場合には別の問題が発生する。すなわちDPF再生終了から時間が経過するほど再びPMが堆積する。したがって、DPF差圧値がPMの再堆積の影響を受けてしまう。よって、DPF差圧値から推定したアッシュの堆積量の精度は低減する。   Thus, the DPF differential pressure value after completion of DPF complete regeneration, and the ash deposition amount estimated using the DPF may be low in reliability. However, in order to avoid such problems, DPF differential pressure measurement is performed after complete regeneration completes. Another problem arises when waiting for the reliability of the value to recover. That is, PM accumulates again as time elapses from the end of DPF regeneration. Therefore, the DPF differential pressure value is affected by the redeposition of PM. Therefore, the accuracy of the ash accumulation amount estimated from the DPF differential pressure value is reduced.

DPF完全再生終了直後にDPF差圧を計測してアッシュ堆積量を推定する際に発生するこうした不具合の回避は、上記特許文献1を含む従来技術において考慮されていない。   The avoidance of such problems that occur when the DPF differential pressure is measured and the ash deposition amount is estimated immediately after the completion of the complete regeneration of the DPF is not taken into consideration in the prior art including the above-mentioned Patent Document 1.

そこで本発明が解決しようとする課題は、上記問題点に鑑み、DPF完全再生終了後にDPF差圧を計測してアッシュ堆積量を推定し、DPF差圧とPM堆積量との特性を補正する排気浄化装置において、DPF完全再生終了後に迅速にDPF差圧を計測できない場合にアッシュ堆積量を精度よく推定できない不具合を回避できる内燃機関の排気浄化装置を提供することにある。   Therefore, in view of the above problems, the problem to be solved by the present invention is to measure the DPF differential pressure after completion of the DPF complete regeneration, estimate the ash accumulation amount, and correct the characteristics of the DPF differential pressure and the PM accumulation amount. It is an object of the present invention to provide an exhaust gas purification apparatus for an internal combustion engine that can avoid the problem that the ash deposition amount cannot be accurately estimated when the DPF differential pressure cannot be measured quickly after the DPF complete regeneration is completed.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記課題を達成するために、本発明に係る内燃機関の排気浄化装置は、排気通路の途中に配置されて粒子状物質を捕集する捕集器と、前記捕集器における粒子状物質の堆積量を推定する推定手段と、前記推定手段による前記堆積量の推定値が第1の所定値より大きくなると、前記捕集器に堆積した前記粒子状物質を燃焼して前記捕集器を再生する再生手段と、前記再生手段による再生によって前記捕集器における前記粒子状物質の堆積量が第2の所定値以下となると完全再生状態であると判別する判別手段と、前記判別手段によって前記完全再生状態であると判別された後に、再生運転を延長する再生運転延長手段と、前記再生運転延長手段によって前記再生運転が延長されている間に前記捕集器におけるアッシュの堆積の程度を示す情報を取得する取得手段と、前記取得手段で取得された情報により、前記推定手段による推定方法を補正する補正手段とを備えたことを特徴とする。   In order to achieve the above object, an exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a collector arranged in the middle of an exhaust passage for collecting particulate matter, and deposition of particulate matter in the collector An estimation means for estimating the amount, and when the estimated value of the accumulation amount by the estimation means is greater than a first predetermined value, the particulate matter deposited on the collector is burned to regenerate the collector. A regenerating means, a recognizing means for recognizing that the accumulated amount of the particulate matter in the collector is equal to or less than a second predetermined value by regenerating by the regenerating means, and the complete regenerating by the determining means. A regeneration operation extending means for extending the regeneration operation after being determined to be in a state, and information indicating a degree of ash accumulation in the collector while the regeneration operation is being extended by the regeneration operation extending means. Obtaining means Tokusuru, the information acquired by the acquisition unit, characterized by comprising a correction means for correcting the estimation method according to the estimating means.

これにより本発明に係る内燃機関の排気浄化装置では、捕集器の完全再生終了後に再生運転を延長して、その間に不燃物質であるアッシュの捕集器への堆積の程度を示す情報を取得し、それに基づいて粒子状物質の堆積量の推定方法を補正するので、アッシュの堆積の程度を調べている間に粒子状物質が捕集器に再堆積することが抑制され、捕集器にはアッシュのみが堆積している状態に保たれる。したがって粒子状物質の再堆積によってアッシュの堆積程度の情報の精度が劣化することが回避されるので、精度のよいアッシュ堆積程度の情報によって粒子状物質の堆積量の推定方法を補正して、より精度良く粒子状物質の堆積量が推定できる。そして、その推定値に基づいて捕集器への粒子状物質の堆積量を推定して、それが所定値を超えたら捕集器を再生するので、より適切なタイミングで捕集器の再生ができる。したがって堆積量の真値が推定値よりも過小となって再生が頻繁すぎて燃費が悪化することも、堆積量の真値が推定値よりも過大となって再生時に過昇温して捕集器が破損することの回避できる排気浄化装置が実現できる。   Thus, in the exhaust gas purification apparatus for an internal combustion engine according to the present invention, the regeneration operation is extended after the complete regeneration of the collector, and information indicating the degree of accumulation of ash, which is an incombustible substance, on the collector is acquired during that time. Since the method for estimating the amount of particulate matter accumulated is corrected based on this, it is possible to prevent particulate matter from re-depositing on the collector while the degree of ash accumulation is being investigated. Is kept in a state where only ash is accumulated. Therefore, it is avoided that the accuracy of the information on the degree of ash deposition is deteriorated due to the redeposition of the particulate matter. Accumulated amount of particulate matter can be estimated. Then, the amount of particulate matter deposited on the collector is estimated based on the estimated value, and the collector is regenerated when it exceeds a predetermined value. Therefore, the collector can be regenerated at a more appropriate timing. it can. Therefore, the true value of the accumulation amount is less than the estimated value and regeneration is too frequent, resulting in poor fuel consumption. It is possible to realize an exhaust emission control device capable of avoiding damage to the vessel.

また前記捕集器の前後差圧を計測する計測手段と、前記捕集器の前後差圧と前記捕集器における粒子状物質の堆積量との間の特性を記憶する記憶手段とを備え、前記推定手段は、前記計測手段によって計測された前後差圧の値と、前記記憶手段に記憶された前記特性とから、前記捕集器における粒子状物質の堆積量を推定し、前記取得手段は、前記再生運転延長手段によって前記捕集器の前記再生運転が延長されている間に前記計測手段によって計測された前後差圧の値を取得し、前記補正手段は、前記取得手段が取得した情報により前記記憶手段に記憶された前記特性を補正するとしてもよい。   Also, a measuring means for measuring the differential pressure across the collector, and a storage means for storing characteristics between the differential pressure across the collector and the amount of particulate matter deposited in the collector, The estimating means estimates the amount of particulate matter deposited in the collector from the value of the differential pressure before and after measured by the measuring means and the characteristics stored in the storage means, and the acquiring means The value of the differential pressure measured by the measuring means while the regeneration operation of the collector is extended by the regeneration operation extending means is acquired, and the correcting means is the information acquired by the acquiring means. The characteristic stored in the storage means may be corrected by the above.

これにより、粒子状物質の堆積量の推定は捕集器の前後差圧の計測値と前後差圧と粒子状物質堆積量との間の特性とを用いて行われ、完全再生状態において捕集器の再生運転が延長されている間に計測された捕集器の前後差圧によって同特性を補正するので、粒子状物質の再堆積の影響が含まれないので精度よくアッシュの堆積程度を示す情報である前後差圧の値によって適切に前後差圧と粒子状物質堆積量との間の特性を補正することができる。よって、適切に補正された特性を用いて粒子状物質の堆積量を推定するので、適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   As a result, the amount of particulate matter deposited is estimated using the measured value of the differential pressure across the collector and the characteristics between the differential pressure before and after and the amount of particulate matter deposited. Since the same characteristic is corrected by the differential pressure across the collector measured while the regenerative operation of the vessel is extended, it does not include the effects of particulate matter redeposition, so it accurately indicates the degree of ash deposition. The characteristic between the front-rear differential pressure and the particulate matter deposition amount can be appropriately corrected by the value of the front-rear differential pressure as information. Therefore, since the amount of particulate matter deposited is estimated using appropriately corrected characteristics, the collector can be regenerated at an appropriate timing. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

また前記再生運転延長手段によって前記捕集器の前記再生運転が延長されている間に前記計測手段によって計測された前後差圧の値により前記捕集器におけるアッシュの堆積量を推定するアッシュ堆積量推定手段を備え、前記取得手段は、前記アッシュ堆積量推定手段により推定された前記アッシュの堆積量を取得するとしてもよい。   Further, the ash accumulation amount for estimating the ash accumulation amount in the collector based on the value of the differential pressure measured by the measuring means while the regeneration operation of the collector is extended by the regeneration operation extending means. An estimation means may be provided, and the acquisition means may acquire the ash accumulation amount estimated by the ash accumulation amount estimation means.

これにより、完全再生状態において捕集器の再生運転が延長されている間に計測された捕集器の前後差圧から捕集器におけるアッシュの堆積量を算出するので、前後差圧の値は粒子状物質の再堆積の影響が含まれないので精度よくアッシュの堆積程度を示し、その前後差圧の値によって精度よくアッシュの堆積量が算出できる。そして精度よいアッシュの堆積量を用いて適切に捕集器の前後差圧と粒子状物質堆積量との間の特性を補正するので、適切に補正された特性を用いて精度よく粒子状物質の堆積量を推定して、適切なタイミングで捕集器の再生ができる。したがって再生が頻繁すぎて燃費が悪化することも、真の堆積量が過大で再生時に過昇温して捕集器が破損することも回避できる。   As a result, the amount of ash deposited in the collector is calculated from the differential pressure across the collector measured while the regeneration operation of the collector is extended in the complete regeneration state. Since the effect of particulate matter redeposition is not included, the degree of ash accumulation can be accurately indicated, and the amount of ash accumulation can be accurately calculated from the differential pressure value before and after. And, since the characteristics between the differential pressure before and after the collector and the particulate matter accumulation amount are corrected appropriately using the accurate ash accumulation amount, the particulate matter is accurately detected using the appropriately corrected property. The amount of deposition can be estimated, and the collector can be regenerated at an appropriate timing. Therefore, it can be avoided that the regeneration is too frequent and the fuel consumption is deteriorated, and that the true accumulation amount is excessive and the temperature rises during the regeneration and the collector is damaged.

以下、本発明の実施形態を図面を参照しつつ説明する。まず図1は、本発明に係る内燃機関の排気浄化装置1の実施例の概略図である。図1に示す排気浄化装置1の例は、4気筒のディーゼルエンジン2(以下では単にエンジンと称する)に対して構成されており、吸気管3、排気管4、EGR管5を備える。   Embodiments of the present invention will be described below with reference to the drawings. First, FIG. 1 is a schematic view of an embodiment of an exhaust gas purification apparatus 1 for an internal combustion engine according to the present invention. The example of the exhaust emission control device 1 shown in FIG. 1 is configured for a four-cylinder diesel engine 2 (hereinafter simply referred to as an engine), and includes an intake pipe 3, an exhaust pipe 4, and an EGR pipe 5.

吸気管3からエンジン2に空気が供給され、排気管4へ排気が排出される。吸気管3にはエアフロメータ31が装備されている。エアフロメータ31によって吸気量が計測される。エンジン2にはインジェクタ21が装備されてシリンダ内に燃料が供給される。   Air is supplied from the intake pipe 3 to the engine 2, and the exhaust is discharged to the exhaust pipe 4. The intake pipe 3 is equipped with an air flow meter 31. The intake air amount is measured by the air flow meter 31. The engine 2 is equipped with an injector 21 to supply fuel into the cylinder.

EGR管5によって排気管4から吸気管3へ排気を還流する排気ガス再循環(EGR:Exhaust Gas Recirculation)が行われる。排気ガス再循環によって、エンジン2における燃焼温度を抑制してNOxの排出量を低減することができる。   Exhaust gas recirculation (EGR) for recirculating exhaust gas from the exhaust pipe 4 to the intake pipe 3 is performed by the EGR pipe 5. By exhaust gas recirculation, the combustion temperature in the engine 2 can be suppressed and the amount of NOx emissions can be reduced.

排気管4の途中にDPF6が配置されている。DPF6には酸化触媒が担持されており、いわゆる酸化触媒付きDPFであるとすればよい。DPF6の入口側と出口側とにはそれぞれ排気温度センサ61、62が配置されて、それぞれの位置における排気温度が計測される。またDPF6の入口側と出口側における排気圧の差である前後差圧(差圧、DPF差圧)を計測する差圧センサ63も装備されている。   A DPF 6 is disposed in the middle of the exhaust pipe 4. An oxidation catalyst is supported on the DPF 6 and may be a so-called DPF with an oxidation catalyst. Exhaust temperature sensors 61 and 62 are disposed on the inlet side and the outlet side of the DPF 6, respectively, and the exhaust temperature at each position is measured. Also provided is a differential pressure sensor 63 that measures a front-rear differential pressure (differential pressure, DPF differential pressure), which is a difference in exhaust pressure between the inlet side and the outlet side of the DPF 6.

また排気浄化装置1は電子制御装置7(ECU:Electronic Control Unit)を備える。ECU7は各種演算をおこなうCPUやその作業領域のRAM、各種情報の記憶を行うメモリ71などを有する構造とする。ECU7によりインジェクタ21によるエンジン2への燃料噴射や、図示されない吸気スロットルの開度調節などが制御される。エアフロメータ31、排気温度センサ61、62、差圧センサ63の計測値はECU7へ送られる。またECU7はタイマ72を備えて時間を計測することができる。   The exhaust emission control device 1 includes an electronic control unit 7 (ECU: Electronic Control Unit). The ECU 7 has a structure having a CPU for performing various calculations, a RAM for its work area, a memory 71 for storing various information, and the like. The ECU 7 controls fuel injection to the engine 2 by the injector 21 and adjustment of the opening of an intake throttle (not shown). The measured values of the air flow meter 31, the exhaust temperature sensors 61 and 62, and the differential pressure sensor 63 are sent to the ECU 7. The ECU 7 includes a timer 72 and can measure time.

DPF6は例えば代表的な構造として、いわゆるハニカム構造において入口側と出口側とを交互に目詰めした構造とすればよい。またDPF6は酸化触媒が担持された酸化触媒付きDPFであるとすればよい。エンジン2の運転中に排出される排気には粒子状物質(PM)が含まれ、このPMはDPF6の上記構造のDPF壁を排気が通過するときに、このDPF壁の内部あるいは表面に捕集される。   For example, the DPF 6 may have a structure in which the inlet side and the outlet side are alternately packed in a so-called honeycomb structure. The DPF 6 may be a DPF with an oxidation catalyst on which an oxidation catalyst is supported. The exhaust gas discharged during the operation of the engine 2 contains particulate matter (PM), and this PM is collected inside or on the surface of the DPF wall when the exhaust gas passes through the DPF wall having the above structure of the DPF 6. Is done.

DPF6に堆積したPMの堆積量が十分大きくなった度ごとに、堆積したPMを燃焼することによって除去し、DPF6を再生する。DPF6の再生のための方法として、例えばインジェクタ13からメイン噴射後のタイミングでポスト噴射をおこなう。ポスト噴射によってDPF6に送られた未燃燃料がDPF6に担持された酸化触媒の作用で昇温してDPF6に堆積したPMを燃焼させる。   Every time the amount of PM deposited on the DPF 6 becomes sufficiently large, the deposited PM is removed by burning, and the DPF 6 is regenerated. As a method for regenerating the DPF 6, for example, post-injection is performed from the injector 13 at a timing after the main injection. The unburned fuel sent to the DPF 6 by the post-injection is heated by the action of the oxidation catalyst supported on the DPF 6 to burn the PM deposited on the DPF 6.

本実施例では以上の構成のもとで、PM堆積量とDPF前後差圧(DPF差圧、前後差圧、差圧)との特性をメモリ71に記憶しておき、同特性とDPF差圧の計測値とからPM堆積量を推定する。そしてPM堆積量の推定値が所定値を越えたらDPF6の再生処理を行う。DPF6の再生処理が完全再生として終了した度ごとに、DPF6におけるアッシュの堆積量を推定する。そしてアッシュの堆積量の推定値に応じてDPF差圧とPM堆積量との特性線を補正する。以下でその詳細を説明する。   In the present embodiment, the characteristics of the PM deposition amount and the DPF front-rear differential pressure (DPF differential pressure, front-rear differential pressure, differential pressure) are stored in the memory 71 under the above configuration, and the same characteristics and the DPF differential pressure are stored. The PM deposition amount is estimated from the measured value. When the estimated value of the PM accumulation amount exceeds a predetermined value, the DPF 6 is regenerated. Each time the regeneration process of the DPF 6 is completed as a complete regeneration, the amount of ash accumulated in the DPF 6 is estimated. Then, the characteristic line between the DPF differential pressure and the PM accumulation amount is corrected according to the estimated value of the ash accumulation amount. Details will be described below.

上述のとおりPM堆積量とDPF差圧との関係は、一般に図5に示された関係となる(あるいは近似される)。すなわち、内燃機関の運転が続いてDPFへのPM堆積が進行するに従って、PM堆積量とDPF差圧とを示す点は初期点100から第1特性線110(特性線)上を図示右上へ移動し、さらに遷移点120に達すると以後は第2特性線130(特性線)上を図示右上へ移動する。   As described above, the relationship between the PM deposition amount and the DPF differential pressure is generally the relationship shown in FIG. 5 (or approximated). That is, as the PM accumulation on the DPF proceeds as the internal combustion engine continues to operate, the point indicating the PM accumulation amount and the DPF differential pressure moves from the initial point 100 to the upper right in the figure on the first characteristic line 110 (characteristic line). When the transition point 120 is further reached, the second characteristic line 130 (characteristic line) is moved to the upper right in the figure.

第1特性線110はDPFのフィルタ壁の気孔内にPMが堆積する段階に対応し、第2特性線130はフィルタ壁の壁面上にPMが堆積する段階に対応する。フィルタ壁の壁内にPMが堆積する場合は壁面上に堆積する場合よりも排気ガスの流路を新たに狭める度合いが大きく、それにより差圧値を高めるので、第1特性線110は第2特性線130よりも図示のとおり傾きが大きい。なお傾きはDPF差圧の増分とPM堆積量の増分との比とする。   The first characteristic line 110 corresponds to a stage where PM accumulates in the pores of the filter wall of the DPF, and the second characteristic line 130 corresponds to a stage where PM accumulates on the wall surface of the filter wall. When PM is accumulated in the wall of the filter wall, the degree of newly narrowing the exhaust gas flow path is greater than when PM is accumulated on the wall surface, thereby increasing the differential pressure value. The slope is larger than the characteristic line 130 as shown in the figure. The slope is the ratio between the increase in the DPF differential pressure and the increase in the PM deposition amount.

点140に達したときにPM堆積量が所定値と判断されてDPF再生が開始されたとすると、図5の破線のようにその後のPM堆積量とDPF差圧は推移する。すなわちPM堆積量とDPF差圧の値は、まず破線150に沿って減少し、遷移点160後は破線170に沿って減少して初期点100へ戻る。   If the PM accumulation amount is determined to be a predetermined value when the point 140 is reached and DPF regeneration is started, the subsequent PM accumulation amount and the DPF differential pressure change as indicated by the broken line in FIG. That is, the PM accumulation amount and the DPF differential pressure value first decrease along the broken line 150, and after the transition point 160, decrease along the broken line 170 and return to the initial point 100.

破線150はフィルタ壁の気孔内に堆積したPMが燃焼している段階であり、したがって破線150は第1特性線110と傾きが等しい。破線170はフィルタ壁の壁面上に堆積したPMが燃焼している段階であり、したがって破線170は第2特性線130と傾きが等しい。以上のように図5に示された平行四辺形の(あるいは近似される)特性によって、PM堆積時およびPM燃焼時のPM堆積量とDPF差圧との値は推移する。図5に示された特性を予め求めておきメモリ71に記憶しておく。   A broken line 150 is a stage where PM deposited in the pores of the filter wall is burning, and therefore, the broken line 150 has the same inclination as the first characteristic line 110. The broken line 170 is a stage where PM deposited on the wall surface of the filter wall is burning. Therefore, the broken line 170 has the same inclination as the second characteristic line 130. As described above, the PM deposition amount and the DPF differential pressure during PM deposition and PM combustion change according to the parallelogram (or approximate) characteristics shown in FIG. The characteristics shown in FIG. 5 are obtained in advance and stored in the memory 71.

次に、本発明におけるDPF6の再生、特性線110、130の補正処理について説明する。その手順手順は図2に示されている。図2の手順がECU7によって自動的に実行されるとすればよい。   Next, regeneration of the DPF 6 and correction processing of the characteristic lines 110 and 130 in the present invention will be described. The procedure is shown in FIG. The procedure shown in FIG. 2 may be automatically executed by the ECU 7.

まず手順S10でECU7はDPF6におけるPMの堆積量を推定する。PMの堆積量の推定は、DPF6の前後差圧を計測し、メモリ71から上述の図5の特性を呼び出して、特性線110あるいは130において、差圧計測値におけるPM堆積量を取得すればよい。DPF6の前後差圧は差圧センサ63によって計測すればよい。   First, in step S10, the ECU 7 estimates the amount of PM accumulated in the DPF 6. The PM accumulation amount may be estimated by measuring the differential pressure across the DPF 6 and calling the above-described characteristic of FIG. 5 from the memory 71 to obtain the PM accumulation amount at the differential pressure measurement value on the characteristic line 110 or 130. . The differential pressure across the DPF 6 may be measured by the differential pressure sensor 63.

次にS20でECU7は、S10で推定したPM堆積量が所定値(第1の所定値)以上かどうかを判断する。図2ではこの所定値(第1の所定値)をM1で示している。ECU7はPM堆積量が所定値以上の場合(S20:Yes)はS30に進み、所定値未満の場合(S20:No)は再びS10に戻り、PM堆積量が所定値以上になるまで上述の手順を繰り返す。   Next, in S20, the ECU 7 determines whether or not the PM accumulation amount estimated in S10 is greater than or equal to a predetermined value (first predetermined value). In FIG. 2, this predetermined value (first predetermined value) is indicated by M1. The ECU 7 proceeds to S30 when the PM accumulation amount is equal to or greater than the predetermined value (S20: Yes), and returns to S10 again when the PM accumulation amount is less than the predetermined value (S20: No). repeat.

S30へ進んだ場合は、PM堆積量が十分大きいとみなされる場合である。そこでS30でECU7はDPF6の再生を実行する。DPF6の再生の手法としては上述のとおり例えばポスト噴射を実行すればよい。   When the process proceeds to S30, the PM accumulation amount is considered to be sufficiently large. Therefore, in S30, the ECU 7 performs regeneration of the DPF 6. As a method for regenerating the DPF 6, for example, post injection may be executed as described above.

S40でECU7はDPF6におけるPM堆積量を推定する。S40でのPM堆積量の推定は、DPF6の再生中における推定である(一方S10におけるPM堆積量の推定は、DPF6の再生中ではない)。つまりS40によってDPF6の再生中におけるPM堆積量の減少状態を把握できる。S40におけるPMの堆積量の推定は、DPF6の前後差圧を計測し、メモリ71から上述の図5の特性を呼び出して、破線150あるいは170において差圧計測値におけるPM堆積量を取得すればよい。DPF6の前後差圧は差圧センサ63によって計測すればよい。   In S40, the ECU 7 estimates the PM accumulation amount in the DPF 6. The estimation of the PM deposition amount in S40 is an estimation during regeneration of the DPF 6. (On the other hand, the estimation of the PM deposition amount in S10 is not during regeneration of the DPF 6.) That is, the decrease state of the PM accumulation amount during regeneration of the DPF 6 can be grasped by S40. The estimation of the PM accumulation amount in S40 may be performed by measuring the differential pressure across the DPF 6 and calling the characteristics shown in FIG. 5 from the memory 71 to obtain the PM accumulation amount at the differential pressure measurement value at the broken line 150 or 170. . The differential pressure across the DPF 6 may be measured by the differential pressure sensor 63.

あるいはS40においては、予めDPF6の内部温度とその温度における堆積したPMの単位時間当たりの燃焼量との関係を示すマップをメモリ71に記憶しておき、そのマップとDPF6の内部温度履歴とからDPF再生中のPM堆積量を推定してもよい。その際DPF6の内部温度は排気温度センサ61、62いずれかの計測値でもよいし、両計測値の平均値でもよい。また排気温度センサ61、62のいずれかあるいは両センサの計測値からDPF6の内部温度を推定するモデルを予め求めてメモリ71に記憶しておき、このモデルを用いてDPFの内部温度を推定してもよい。さらにS40におけるPM堆積量の推定は上述の2つの方法を組み合わせてもよい。   Alternatively, in S40, a map showing the relationship between the internal temperature of the DPF 6 and the combustion amount per unit time of the accumulated PM at that temperature is stored in the memory 71 in advance, and the DPF is calculated from the map and the internal temperature history of the DPF 6. The amount of accumulated PM during regeneration may be estimated. In this case, the internal temperature of the DPF 6 may be a measured value of either the exhaust temperature sensor 61 or 62, or may be an average value of both measured values. Also, a model for estimating the internal temperature of the DPF 6 from one of the exhaust temperature sensors 61 and 62 or the measured values of both sensors is obtained in advance and stored in the memory 71, and the internal temperature of the DPF is estimated using this model. Also good. Further, the estimation of the PM deposition amount in S40 may be a combination of the above two methods.

S50でECU7は、S40で推定したPM堆積量が所定値(第2の所定値)以下かどうかを判断する。図2ではこの所定値(第2の所定値)をM2で示している。ECU7は、PM堆積量が所定値以下の場合(S50:Yes)はS60に進み、所定値より大きい場合(S50:No)は再びS40に戻り、PM堆積量が所定値以下になるまで上述の手順を繰り返す。以下ではM2を例えば0あるいは誤差の存在も考慮して微小な値とした場合を説明する。つまりS30によって実行されたDPF6の再生が完全再生として終了した場合である。   In S50, the ECU 7 determines whether or not the PM accumulation amount estimated in S40 is equal to or less than a predetermined value (second predetermined value). In FIG. 2, this predetermined value (second predetermined value) is indicated by M2. The ECU 7 proceeds to S60 when the PM accumulation amount is equal to or smaller than the predetermined value (S50: Yes), and returns to S40 again when it is larger than the predetermined value (S50: No), until the PM accumulation amount becomes equal to or smaller than the predetermined value. Repeat the procedure. Hereinafter, a case where M2 is set to a minute value in consideration of, for example, 0 or the presence of an error will be described. That is, this is a case where the regeneration of the DPF 6 executed in S30 is completed as complete regeneration.

S60に進んだ場合は、DPF6の完全再生によってPM堆積量がゼロかあるいはその誤差の範囲になったとみなせる場合である。そこで以下で説明するように、再生運転を所定時間延長して、その間にアッシュ堆積量を推定し、図5の特性を補正する。ここで再生運転とは、S30によるDPF6の再生時における運転を指し、ポスト噴射が行われる。   When the process proceeds to S60, it can be considered that the PM accumulation amount is zero or the error range is reached by the complete regeneration of the DPF 6. Therefore, as will be described below, the regeneration operation is extended for a predetermined time, during which the ash accumulation amount is estimated and the characteristics of FIG. 5 are corrected. Here, the regeneration operation refers to an operation at the time of regeneration of the DPF 6 by S30, and post injection is performed.

まずS60でECU7は再生運転の延長を決定し、タイマ72をスタートさせる。これにより完全再生終了後の経過時間が計測される。次にS70でECU7は、経過時間が所定時間以内かどうかを判断する。ここで経過時間とはS60でタイマ72をスタートさせてからの経過時間である。つまり、DPF6の完全再生終了後の経過時間である。図2では所定時間はT1で示している。   First, in S60, the ECU 7 decides to extend the regeneration operation and starts the timer 72. Thereby, the elapsed time after the completion of the complete reproduction is measured. Next, in S70, the ECU 7 determines whether or not the elapsed time is within a predetermined time. Here, the elapsed time is the elapsed time since the timer 72 was started in S60. That is, the elapsed time after the complete regeneration of the DPF 6 is completed. In FIG. 2, the predetermined time is indicated by T1.

所定時間は例えば少なくとも5秒程度以上は確保して、以下で示す差圧検出条件が成立することを待ち、また長くても1分程度以下して再生運転延長が長すぎて燃費が悪化することを回避すれば好適である。ECU7は、経過時間が所定時間以内の場合(S70:Yes)はS80へ進み、所定時間を過ぎた場合(S70:No)はS120に進む。   For example, the predetermined time should be secured for at least about 5 seconds, wait for the differential pressure detection condition shown below to be satisfied, and be less than about 1 minute at the longest, and the regeneration operation extension may be too long, resulting in deterioration of fuel consumption. It is preferable to avoid this. If the elapsed time is within the predetermined time (S70: Yes), the ECU 7 proceeds to S80, and if the predetermined time has passed (S70: No), the ECU 7 proceeds to S120.

次にS80でECU7はDPF差圧を検出するのに適した条件が成立しているかどうかを判断する。ECU7は、DPF差圧を検出するのに適した条件が成立している場合(S80:Yes)はS90に進み、DPF差圧を検出するのに適した条件が成立していない場合(S80:No)は再びS70へ戻り、上述の手順を繰り返す。   Next, in S80, the ECU 7 determines whether a condition suitable for detecting the DPF differential pressure is satisfied. If the condition suitable for detecting the DPF differential pressure is satisfied (S80: Yes), the ECU 7 proceeds to S90, and if the condition suitable for detecting the DPF differential pressure is not satisfied (S80: No) returns to S70 again and repeats the above procedure.

上述のとおり、一般に排気ガス流量(排気流量)が小さすぎるとDPF6の差圧を精度よく検出できない。また急加速、急減速時などの排気流量が大きく変化する場合にもDPF6の差圧を精度よく検出できない。したがってS80におけるDPF差圧を検出するのに適した条件とは例えば、所定流量以上の排気流量があり、かつエンジン2の運転条件が定常状態に近いとみなせることである。したがってS80では例えば、排気ガスの流量を算出し、同流量値が所定の閾値より大きく、かつ過去の所定時間内での排気ガス流量値が所定の範囲内におさまっていることを判別すればよい。排気ガス流量の算出方法は後述する。   As described above, generally, if the exhaust gas flow rate (exhaust flow rate) is too small, the differential pressure of the DPF 6 cannot be detected with high accuracy. Further, even when the exhaust flow rate changes greatly during sudden acceleration or sudden deceleration, the differential pressure of the DPF 6 cannot be detected with high accuracy. Therefore, the condition suitable for detecting the DPF differential pressure in S80 is, for example, that the exhaust flow rate is equal to or higher than a predetermined flow rate and that the operating condition of the engine 2 can be regarded as close to a steady state. Therefore, in S80, for example, the flow rate of the exhaust gas is calculated, and it is determined that the flow rate value is larger than a predetermined threshold value and that the exhaust gas flow rate value in the past predetermined time is within a predetermined range. . A method for calculating the exhaust gas flow rate will be described later.

次にS90でECU7はDPF6の差圧を検出する。これは差圧センサ63により計測すればよい。S90でのDPF6の差圧の検出は例えば複数回行って平均値を算出すれば計測値のばらつきの影響を抑えられる。次にS100でECU7は排気ガスの流量を算出する。この算出方法は後述する。   Next, in S90, the ECU 7 detects the differential pressure of the DPF 6. This may be measured by the differential pressure sensor 63. The detection of the differential pressure of the DPF 6 in S90 is performed, for example, a plurality of times, and the average value is calculated, so that the influence of the variation in the measured value can be suppressed. Next, in S100, the ECU 7 calculates the flow rate of the exhaust gas. This calculation method will be described later.

S110でECU7は、DPF6におけるアッシュの堆積量を算出する。この算出は図3のマップを用いて行う。図3はDPF6におけるアッシュ堆積量をパラメータとしたDPF6の差圧と排気ガス流量との関係である。S110においては、S80で検出したDPF差圧の値と、S85で算出した排気ガス流量とをからなる点を図3上に示し、その点がアッシュ堆積量がいくつの線上にあるかを求めることによりアッシュ堆積量を算出する。図3のマップは予め求めておいてメモリ71に記憶しておけばよい。   In S110, the ECU 7 calculates the amount of ash accumulated in the DPF 6. This calculation is performed using the map of FIG. FIG. 3 shows the relationship between the differential pressure of the DPF 6 and the exhaust gas flow rate using the ash deposition amount in the DPF 6 as a parameter. In S110, the point consisting of the value of the DPF differential pressure detected in S80 and the exhaust gas flow rate calculated in S85 is shown on FIG. 3, and the number of ash deposition amounts on that point is obtained. The ash deposition amount is calculated by The map shown in FIG. 3 may be obtained in advance and stored in the memory 71.

S120へ進む場合はS110でアッシュ堆積量を算出した後か、アッシュ堆積量を算出できずにDPF6の完全再生終了から所定時間を経過した後である。したがって、S120でECU7は再生運転を終了する。   The process proceeds to S120 after the ash accumulation amount is calculated in S110, or after a predetermined time elapses after the complete regeneration of the DPF 6 without calculating the ash accumulation amount. Accordingly, in S120, the ECU 7 ends the regeneration operation.

S130でECU7は特性線110、130を補正する。S130での補正は、図6において、S110で算出したアッシュ堆積量での特性線110、130を選択することである。特性線110、130の補正にしたがって、図5の破線150、170も補正する。補正後の破線150、170はそれぞれ補正後の特性線110、130と平行にすればよい。図6に示されるマップは予め求めておいてメモリ71に記憶しておけばよい。以上が図2の処理手順である。図2の処理が終了したら再びECU7は図2の処理をS10から自動的に開始すればよい。   In S130, the ECU 7 corrects the characteristic lines 110 and 130. The correction in S130 is to select the characteristic lines 110 and 130 at the ash deposition amount calculated in S110 in FIG. In accordance with the correction of the characteristic lines 110 and 130, the broken lines 150 and 170 in FIG. The corrected broken lines 150 and 170 may be parallel to the corrected characteristic lines 110 and 130, respectively. The map shown in FIG. 6 may be obtained in advance and stored in the memory 71. The above is the processing procedure of FIG. When the processing of FIG. 2 is completed, the ECU 7 may automatically start the processing of FIG. 2 again from S10.

図4には、図2の処理を実行したときの各種数値の時間推移が示されている。再生実施フラグとはゼロと非ゼロの2値をとる変数であり、ECU7がDPF6の再生を実施しているときに立てられる(非ゼロ値にされる)。図2のS30を処理する時点でECU7が再生実施フラグを立てるとすればよい。差圧検出要求フラグもゼロと非ゼロの2値をとる変数であり、ECU7がDPF6の差圧の検出を要求しているときに立てられる(非ゼロ値にされる)。図2のS90を処理する時点でECU7が差圧検出要求フラグを立てるとすればよい。   FIG. 4 shows time transitions of various numerical values when the processing of FIG. 2 is executed. The regeneration execution flag is a variable that takes binary values of zero and non-zero, and is set when the ECU 7 is performing regeneration of the DPF 6 (set to a non-zero value). The ECU 7 may set the regeneration execution flag at the time of processing S30 in FIG. The differential pressure detection request flag is also a variable that takes binary values of zero and non-zero, and is set when the ECU 7 requests detection of the differential pressure of the DPF 6 (set to a non-zero value). The ECU 7 may set the differential pressure detection request flag at the time of processing S90 in FIG.

時刻t1は完全再生が終了した時刻、つまり図2のS50が肯定判断(Yes)となった時刻である。時刻t2は再生運転を終了した時刻であり、図2のS120を処理した時刻である。したがって図4のとおり再生実施フラグは時刻t2まで、差圧検出要求フラグは時刻t1からt2まで立てられる。   The time t1 is the time when the complete reproduction is finished, that is, the time when S50 in FIG. 2 is affirmative (Yes). Time t2 is the time when the regeneration operation ends, and is the time when S120 of FIG. 2 is processed. Therefore, as shown in FIG. 4, the regeneration execution flag is raised from time t2 and the differential pressure detection request flag is raised from time t1 to t2.

図4において排気流量、DPF差圧、PM堆積量の時間推移は、実線が本発明を、破線が従来技術を表す。従来の排気流量は時刻t1以降、完全再生終了後ただちに再生運転を終了することにより低減していた。一方本発明での排気流量は、時刻t1以降も時刻t2まで再生運転を延長するので、時刻t2までは排気流量が低減しない。すなわち、時刻t1からt2までの間、差圧検出に必要な排気流量が維持される。   In FIG. 4, as for the time transition of the exhaust gas flow rate, the DPF differential pressure, and the PM deposition amount, the solid line represents the present invention, and the broken line represents the prior art. The conventional exhaust flow rate has been reduced by ending the regeneration operation immediately after completion of the complete regeneration after time t1. On the other hand, the exhaust flow rate in the present invention extends the regeneration operation until time t2 even after time t1, so the exhaust flow rate does not decrease until time t2. That is, the exhaust gas flow rate required for differential pressure detection is maintained from time t1 to time t2.

そして従来技術では、時刻t1以降の排気流量の減少の影響を受けて、DPF差圧は時刻t1以降低減していた。それに対し本発明では、時刻t1以降も排気流量が減少しないことにより、DPF差圧が時刻t1以降も急激には減少しない。したがって、従来技術では時刻t1以降においてDPF差圧値が減少するので差圧の計測値における誤差の比重が高いが、本発明では時刻t1以降もDPF差圧値が維持されることにより計測値の精度劣化が抑制される。   In the prior art, the DPF differential pressure has been reduced after time t1 due to the influence of the decrease in the exhaust flow rate after time t1. On the other hand, in the present invention, since the exhaust flow rate does not decrease after time t1, the DPF differential pressure does not decrease rapidly after time t1. Therefore, in the prior art, since the DPF differential pressure value decreases after time t1, the specific gravity of the error in the measured pressure value is high. However, in the present invention, the DPF differential pressure value is maintained even after time t1, so Accuracy degradation is suppressed.

また従来技術では、時刻t1に再生運転が終了するので、時刻t1からPMの再堆積が始まる。一方本発明では時刻t2まで再生運転を延長するので、時刻t2以降にならないとPMの再堆積はない。したがって本発明では時刻t1からt2までの間はPMの再堆積はないので、同時間区間に計測されるDPF差圧値に再堆積したPMの影響がなく、DPF差圧値からアッシュの堆積量が精度よく推定できる。   In the prior art, since the regeneration operation ends at time t1, PM redeposition starts from time t1. On the other hand, in the present invention, the regeneration operation is extended until time t2, so that PM does not re-deposit until time t2. Therefore, in the present invention, there is no redeposition of PM from time t1 to time t2, so there is no influence of redeposited PM on the DPF differential pressure value measured in the same time interval, and the amount of ash accumulated from the DPF differential pressure value. Can be estimated accurately.

次に排気ガスの流量の算出方法を説明する。ここで流量とは、単位時間あたりの体積流量とすればよい。エアフロメータ31で計測した吸気の単位時間当たりの質量流量を排気ガスの体積流量に変換する。排気ガスの体積流量の算出は次の式(E1)にしたがって行う。なおV(m/sec)が排気ガスの単位時間あたりの体積流量、G(g/sec)が吸気の単位時間当たりの質量流量、Tdpf(K)がDPF温度、P0(kPa)が大気圧、ΔP(kPa)がDPF差圧、Q(cc/sec)が単位時間当たりの燃料噴射量をそれぞれ示している。
V(m/sec)
=[G(g/sec)/28.8(g/mol)]
×22.4×10−3(m/mol)
×[Tdpf(K)/273(K)]
×[P0(kPa)/(P0(kPa)+ΔP(kPa))]
+Q(cc/sec)/207.3(g/mol)
×0.84(g/cc)×6.75
×22.4×10−3(m/mol)
×[P0(kPa)/(P0(kPa)+ΔP(kPa))] (E1)
Next, a method for calculating the exhaust gas flow rate will be described. Here, the flow rate may be a volume flow rate per unit time. The mass flow rate per unit time of intake air measured by the air flow meter 31 is converted into the exhaust gas volume flow rate. The calculation of the volume flow rate of the exhaust gas is performed according to the following equation (E1). V (m 3 / sec) is a volume flow rate per unit time of exhaust gas, G (g / sec) is a mass flow rate per unit time of intake air, Tdpf (K) is a DPF temperature, and P0 (kPa) is an atmospheric pressure. , ΔP (kPa) indicates the DPF differential pressure, and Q (cc / sec) indicates the fuel injection amount per unit time.
V (m 3 / sec)
= [G (g / sec) /28.8 (g / mol)]
× 22.4 × 10 −3 (m 3 / mol)
× [Tdpf (K) / 273 (K)]
× [P0 (kPa) / (P0 (kPa) + ΔP (kPa))]
+ Q (cc / sec) /207.3 (g / mol)
× 0.84 (g / cc) × 6.75
× 22.4 × 10 −3 (m 3 / mol)
× [P0 (kPa) / (P0 (kPa) + ΔP (kPa))] (E1)

式(E1)の右辺第1項は吸気の質量流量を体積流量に変換したものであり、第2項は、噴射燃料の燃焼による吸気から排気ガスへの増量分である。第2項中、0.84(g/cc)は軽油の代表的な液密度である。22.4×10−3(m/mol)は摂氏0度、1気圧(atm)での理想気体の1mol当たりの体積である。6.75は燃料噴射量1(mol)に対する排気ガスのモル数の増加率である。 The first term on the right side of the equation (E1) is obtained by converting the mass flow rate of the intake air into the volume flow rate, and the second term is an increase from the intake air to the exhaust gas due to the combustion of the injected fuel. In the second term, 0.84 (g / cc) is a typical liquid density of light oil. 22.4 × 10 −3 (m 3 / mol) is a volume per 1 mol of an ideal gas at 0 degree Celsius and 1 atmosphere (atm). 6.75 is an increase rate of the number of moles of exhaust gas with respect to the fuel injection amount 1 (mol).

増加率(6.75)は以下により得ている。軽油の組成は代表的には、C1527.3(分子量207.3)と表され、燃焼は次の反応式(E2)で表される。したがって、燃料噴射量1(mol)に対し、排気ガスは6.75(=(15+13.5)−21.75)倍のモル数となる。
1527.3+21.75O→15CO+13.5HO (E2)
The increase rate (6.75) is obtained as follows. The composition of light oil is typically represented as C 15 H 27.3 (molecular weight 207.3), and combustion is represented by the following reaction formula (E2). Therefore, the number of moles of exhaust gas is 6.75 (= (15 + 13.5) -21.75) times the fuel injection amount 1 (mol).
C 15 H 27.3 +21.75 O 215 CO 2 + 13.5H 2 O (E2)

また、燃料噴射はECU7で決定される所定の噴射時期にのみ噴射され、間欠的な噴射となる。式(E1)中の燃料噴射量Qは、非噴射期間も合わせた平均的な燃料噴射量である。   Further, the fuel is injected only at a predetermined injection timing determined by the ECU 7, and becomes intermittent injection. The fuel injection amount Q in the formula (E1) is an average fuel injection amount including the non-injection period.

吸気の単位時間当たりの質量流量G(g/sec)はエアフロメータ31で計測すればよい。DPF温度Tdpf(K)は排気温度センサ61、62で計測すればよい。DPF前後差圧ΔP(kPa)は、差圧センサ63で計測すればよい。単位時間当たりの燃料噴射量Q(cc/sec)はECU7による噴射量の指令値を用いればよい。   The mass flow rate G (g / sec) per unit time of intake may be measured by the air flow meter 31. The DPF temperature Tdpf (K) may be measured by the exhaust temperature sensors 61 and 62. The differential pressure ΔP (kPa) before and after the DPF may be measured by the differential pressure sensor 63. As the fuel injection amount Q (cc / sec) per unit time, an injection amount command value by the ECU 7 may be used.

なおDPF温度Tdpf(K)は排気温度センサ61、62いずれかの計測値でもよいし、両計測値の平均値でもよい。また排気温度センサ61、62いずれかあるいは両センサの計測値からDPF6の内部温度を推定するモデルを予め求めてメモリ71に記憶しておき、このモデルを用いてDPF温度Tdpf(K)を推定してもよい。また、この式ではDPF6の下流が大気圧であるとして扱っているが、DPF下流圧がマフラ圧損等により大気圧で無い場合は、その下流圧分をDPF差圧に更に加えて体積流量を算出すればよい。以上が排気ガスの流速の算出方法である。   The DPF temperature Tdpf (K) may be a measured value of either the exhaust temperature sensor 61 or 62, or may be an average value of both measured values. Further, a model for estimating the internal temperature of the DPF 6 is obtained in advance from the measured values of either or both of the exhaust temperature sensors 61 and 62 and stored in the memory 71, and the DPF temperature Tdpf (K) is estimated using this model. May be. In addition, this formula treats the downstream of DPF 6 as atmospheric pressure, but if the DPF downstream pressure is not atmospheric pressure due to muffler pressure loss, etc., the downstream pressure is further added to the DPF differential pressure to calculate the volume flow rate. do it. The above is the method for calculating the exhaust gas flow velocity.

なお図5及び図6の特性は、排気ガス流量を一定とした場合の特性である。メモリ71にはDPF差圧と排気ガス流量とPM堆積量との3つの量の間の特性が記憶されているとすればよい。そしてS130では、こうした3つの量の間の特性が補正されるとすればよい。   The characteristics shown in FIGS. 5 and 6 are characteristics when the exhaust gas flow rate is constant. The memory 71 may store the characteristics among the three amounts of the DPF differential pressure, the exhaust gas flow rate, and the PM accumulation amount. In S130, it is only necessary that the characteristics between these three quantities are corrected.

上記実施例において、DPF6が捕集器を構成する。S10、S40の手順とECU7とが推定手段を構成する。S30の手順とECU7とが再生手段を構成する。S50の手順とECU7とが判別手段を構成する。S60の手順とECU7とが再生運転延長手段を構成する。S90の手順とECU7とが取得手段を構成する。   In the said Example, DPF6 comprises a collector. The procedures of S10 and S40 and the ECU 7 constitute the estimation means. The procedure of S30 and the ECU 7 constitute a regeneration means. The procedure of S50 and the ECU 7 constitute the determining means. The procedure of S60 and the ECU 7 constitute a regeneration operation extending means. The procedure of S90 and the ECU 7 constitute acquisition means.

S130の手順とECU7とが補正手段を構成する。差圧センサ63が計測手段を構成する。メモリ71が記憶手段を構成する。S110の手順とECU7とがアッシュ堆積量推定手段を構成する。時刻t1からt2までの時間が所定時間である。なお上記実施例でエンジン2をディーゼルエンジンでなくリーンバーンガソリンエンジンとしても上で述べたのと同等の効果が得られる。   The procedure of S130 and the ECU 7 constitute correction means. The differential pressure sensor 63 constitutes a measuring unit. The memory 71 constitutes a storage unit. The procedure of S110 and the ECU 7 constitute ash accumulation amount estimation means. The time from time t1 to t2 is a predetermined time. In the above embodiment, the same effect as described above can be obtained even if the engine 2 is a lean burn gasoline engine instead of a diesel engine.

本発明の実施形態における内燃機関の排気浄化装置の概略構成図。1 is a schematic configuration diagram of an exhaust emission control device for an internal combustion engine in an embodiment of the present invention. DPF再生・特性線補正処理を示すフローチャート。7 is a flowchart showing DPF regeneration / characteristic curve correction processing. アッシュ堆積量をパラメータとしたDPF差圧と排気ガス流量の関係を示す図。The figure which shows the relationship between the DPF differential pressure and exhaust gas flow volume which made the ash accumulation amount the parameter. 再生実施フラグ、差圧検出要求フラグ、排気流量、DPF差圧、PM堆積量の時間推移を示す図。The figure which shows the time transition of the regeneration implementation flag, the differential pressure detection request flag, the exhaust gas flow rate, the DPF differential pressure, and the PM accumulation amount. DPF差圧とPM堆積量の関係を示す図。The figure which shows the relationship between DPF differential pressure | voltage and PM deposition amount. アッシュ堆積量をパラメータとしたDPF差圧とPM堆積量の関係を示す図。The figure which shows the relationship between the DPF differential pressure which made the ash deposition amount the parameter, and PM deposition amount.

符号の説明Explanation of symbols

1 排気浄化装置
2 ディーゼルエンジン(エンジン、内燃機関)
3 吸気管
5 排気管
6 ディーゼルパティキュレートフィルタ(DPF、捕集器)
21 インジェクタ
31 エアフロメータ
61、62 排気温度センサ
63 差圧センサ
10 電子制御装置(ECU)
71 メモリ
72 タイマ
1 Exhaust purification device 2 Diesel engine (engine, internal combustion engine)
3 Intake pipe 5 Exhaust pipe 6 Diesel particulate filter (DPF, collector)
21 Injector 31 Air flow meter 61, 62 Exhaust temperature sensor 63 Differential pressure sensor 10 Electronic control unit (ECU)
71 Memory 72 Timer

Claims (3)

排気通路の途中に配置されて粒子状物質を捕集する捕集器と、
前記捕集器における粒子状物質の堆積量を推定する推定手段と、
前記推定手段による前記堆積量の推定値が第1の所定値より大きくなると、前記捕集器に堆積した前記粒子状物質を燃焼して前記捕集器を再生する再生手段と、
前記再生手段による再生によって前記捕集記における前記粒子状物質の堆積量が第2の所定値以下となると完全再生状態であると判別する判別手段と、
前記判別手段によって前記完全再生状態であると判別された後に、再生運転を延長する再生運転延長手段と、
前記再生運転延長手段によって前記再生運転が延長されている間に前記捕集器におけるアッシュの堆積の程度を示す情報を取得する取得手段と、
前記取得手段で取得された情報により、前記推定手段による推定方法を補正する補正手段とを備えたことを特徴とする内燃機関の排気浄化装置。
A collector arranged in the middle of the exhaust passage to collect particulate matter;
Estimating means for estimating the amount of particulate matter deposited in the collector;
Regenerating means for regenerating the collector by burning the particulate matter deposited on the collector when the estimated value of the accumulation amount by the estimating means is greater than a first predetermined value;
Discriminating means for discriminating that the particulate matter is deposited in the completely regenerated state when the accumulated amount of the particulate matter in the collection and recording becomes a second predetermined value or less by regeneration by the regeneration means;
A regeneration operation extending means for extending the regeneration operation after it is determined by the determination means that the complete regeneration state;
Obtaining means for obtaining information indicating a degree of ash accumulation in the collector while the regeneration operation is extended by the regeneration operation extending means;
An exhaust emission control device for an internal combustion engine, comprising: correction means for correcting an estimation method by the estimation means based on information acquired by the acquisition means.
前記捕集器の前後差圧を計測する計測手段と、
前記捕集器の前後差圧と前記捕集器における粒子状物質の堆積量との間の特性を記憶する記憶手段とを備え、
前記推定手段は、前記計測手段によって計測された前後差圧の値と、前記記憶手段に記憶された前記特性とから、前記捕集器における粒子状物質の堆積量を推定し、
前記取得手段は、前記再生運転延長手段によって前記捕集器の前記再生運転が延長されている間に前記計測手段によって計測された前後差圧の値を取得し、
前記補正手段は、前記取得手段が取得した情報により前記記憶手段に記憶された前記特性を補正する請求項1に記載の内燃機関の排気浄化装置。
Measuring means for measuring the differential pressure across the collector;
Storage means for storing characteristics between the differential pressure across the collector and the amount of particulate matter deposited in the collector;
The estimation means estimates the amount of particulate matter deposited in the collector from the value of the differential pressure before and after measured by the measurement means and the characteristics stored in the storage means,
The acquisition means acquires the value of the differential pressure before and after measured by the measurement means while the regeneration operation of the collector is extended by the regeneration operation extension means,
2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the correction unit corrects the characteristic stored in the storage unit based on information acquired by the acquisition unit.
前記再生運転延長手段によって前記捕集器の前記再生運転が延長されている間に前記計測手段によって計測された前後差圧の値により前記捕集器におけるアッシュの堆積量を推定するアッシュ堆積量推定手段を備え、
前記取得手段は、前記アッシュ堆積量推定手段により推定された前記アッシュの堆積量を取得する請求項2に記載の内燃機関の排気浄化装置。
Ash accumulation amount estimation for estimating the ash accumulation amount in the collector based on the differential pressure value measured by the measuring means while the regeneration operation of the collector is extended by the regeneration operation extending means. With means,
The exhaust purification device for an internal combustion engine according to claim 2, wherein the acquisition means acquires the ash accumulation amount estimated by the ash accumulation amount estimation means.
JP2008122254A 2008-05-08 2008-05-08 Exhaust emission control device of internal combustion engine Pending JP2009270503A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008122254A JP2009270503A (en) 2008-05-08 2008-05-08 Exhaust emission control device of internal combustion engine
DE102009002603A DE102009002603A1 (en) 2008-05-08 2009-04-23 Exhaust gas cleaning device for internal combustion engine, has collecting device which is arranged in exhaust duct of internal combustion engine, where collecting device is provided for collecting particulate matter of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008122254A JP2009270503A (en) 2008-05-08 2008-05-08 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009270503A true JP2009270503A (en) 2009-11-19

Family

ID=41437280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008122254A Pending JP2009270503A (en) 2008-05-08 2008-05-08 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009270503A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775182A (en) * 2014-01-22 2014-05-07 潍柴动力股份有限公司 Method and related device for calculating and verifying ash content of DPF (diesel particulate filter) of diesel engine
WO2014196453A1 (en) 2013-06-03 2014-12-11 いすゞ自動車株式会社 Exhaust purification device
JP2018009513A (en) * 2016-07-14 2018-01-18 トヨタ自動車株式会社 Purification device for internal combustion engine
CN109653852A (en) * 2018-12-21 2019-04-19 潍柴动力股份有限公司 A kind of diesel particulate trap deashing processing determination method and device
JP2019152165A (en) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2020002824A (en) * 2018-06-26 2020-01-09 株式会社クボタ Exhaust treatment device for diesel engine
DE102019119061A1 (en) 2018-07-17 2020-01-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust treatment device
FR3085424A1 (en) * 2018-09-04 2020-03-06 Psa Automobiles Sa METHOD FOR ESTIMATING A RESIDUE MASS IN A PARTICLE FILTER
CN114033532A (en) * 2021-11-08 2022-02-11 凯龙高科技股份有限公司 DPF active regeneration period determination method and device, electronic equipment and storage medium
CN114876617A (en) * 2022-05-09 2022-08-09 潍柴动力股份有限公司 Diesel engine DPF ash quality estimation method and device and electronic equipment

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196453A1 (en) 2013-06-03 2014-12-11 いすゞ自動車株式会社 Exhaust purification device
US10030567B2 (en) 2013-06-03 2018-07-24 Isuzu Motors Limited Exhaust purification device
CN103775182A (en) * 2014-01-22 2014-05-07 潍柴动力股份有限公司 Method and related device for calculating and verifying ash content of DPF (diesel particulate filter) of diesel engine
JP2018009513A (en) * 2016-07-14 2018-01-18 トヨタ自動車株式会社 Purification device for internal combustion engine
JP2019152165A (en) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2020002824A (en) * 2018-06-26 2020-01-09 株式会社クボタ Exhaust treatment device for diesel engine
US11131230B2 (en) 2018-06-26 2021-09-28 Kubota Corporation Exhaust treatment device for diesel engine
DE102019119061A1 (en) 2018-07-17 2020-01-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust treatment device
DE102019119061B4 (en) 2018-07-17 2024-03-21 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas treatment device
FR3085424A1 (en) * 2018-09-04 2020-03-06 Psa Automobiles Sa METHOD FOR ESTIMATING A RESIDUE MASS IN A PARTICLE FILTER
CN109653852A (en) * 2018-12-21 2019-04-19 潍柴动力股份有限公司 A kind of diesel particulate trap deashing processing determination method and device
CN114033532A (en) * 2021-11-08 2022-02-11 凯龙高科技股份有限公司 DPF active regeneration period determination method and device, electronic equipment and storage medium
CN114033532B (en) * 2021-11-08 2022-12-30 凯龙高科技股份有限公司 DPF active regeneration period determination method and device, electronic equipment and storage medium
CN114876617A (en) * 2022-05-09 2022-08-09 潍柴动力股份有限公司 Diesel engine DPF ash quality estimation method and device and electronic equipment
CN114876617B (en) * 2022-05-09 2024-01-16 潍柴动力股份有限公司 Diesel engine DPF ash quality estimation method and device and electronic equipment

Similar Documents

Publication Publication Date Title
JP2009270503A (en) Exhaust emission control device of internal combustion engine
JP5067614B2 (en) Exhaust gas purification device for internal combustion engine
JP2009293518A (en) Exhaust emission control device for internal combustion engine
JP5030020B2 (en) Exhaust gas purification device for internal combustion engine
JP2008190470A (en) Regeneration device for exhaust emission control filter
CN112282905B (en) DPF carbon loading capacity estimation method and device
JP2008057443A (en) Exhaust emission control device
JP5093617B2 (en) Exhaust gas purification device for internal combustion engine
JP2010101205A (en) Dpf regeneration timing determination method and determination device
JP6365560B2 (en) Exhaust gas purification device for internal combustion engine
JP2008121557A (en) Exhaust emission control device of internal combustion engine
JP2006316726A (en) Particulate deposit quantity calculating device
JP4449650B2 (en) Diesel engine exhaust aftertreatment system
JP2009520152A5 (en)
WO2016152896A1 (en) Exhaust purification device and control method for same
JP4150308B2 (en) Exhaust purification device
JP2005307745A (en) Exhaust emission control device
JP4905863B2 (en) Exhaust gas purification device for internal combustion engine
JP4930416B2 (en) Exhaust purification device
JP4008867B2 (en) Exhaust purification equipment
JP2009270502A (en) Exhaust emission control device of internal combustion engine
JP2009036177A (en) Exhaust-gas purification device for internal combustion eigine
JP2006316727A (en) Particulate deposit quantity calculating device
JP4185882B2 (en) Exhaust purification device
JP4868292B2 (en) Exhaust gas purification device for internal combustion engine