KR20080067435A - The production of fruit tree for transforming tree form by using mads-box gene - Google Patents

The production of fruit tree for transforming tree form by using mads-box gene Download PDF

Info

Publication number
KR20080067435A
KR20080067435A KR1020070004711A KR20070004711A KR20080067435A KR 20080067435 A KR20080067435 A KR 20080067435A KR 1020070004711 A KR1020070004711 A KR 1020070004711A KR 20070004711 A KR20070004711 A KR 20070004711A KR 20080067435 A KR20080067435 A KR 20080067435A
Authority
KR
South Korea
Prior art keywords
variety
tree
mdmads2
gene
plant
Prior art date
Application number
KR1020070004711A
Other languages
Korean (ko)
Other versions
KR100860199B1 (en
Inventor
성순기
이영표
김대일
김정희
허성
신용억
오대근
목일진
강상조
예병우
황정환
우종규
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070004711A priority Critical patent/KR100860199B1/en
Publication of KR20080067435A publication Critical patent/KR20080067435A/en
Application granted granted Critical
Publication of KR100860199B1 publication Critical patent/KR100860199B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8235Fruit-specific
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G17/00Cultivation of hops, vines, fruit trees, or like trees
    • A01G17/005Cultivation methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/005Methods for micropropagation; Vegetative plant propagation using cell or tissue culture techniques
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
    • C12N15/8207Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated by mechanical means, e.g. microinjection, particle bombardment, silicon whiskers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Abstract

A method for preparing a tree-form transformed woody plant is provided to transform the tree-form of a fruit tree without controlling growth through branch allurement by introducing an MdMADS2 gene isolated from apple into the tree. A method for preparing a tree-form transformed woody plant such as a flowering plant comprises the steps of: (a) preparing an expression vector including an MdMADS2(U78948) gene; (b) introducing the expression vector into a woody plant cell using Agrobacterium, a gene gun method, electroporation, microinjection or a direct DNA absorption method to transform the woody plant cell; and (c) tissue-culturing the transformed woody plant cell to re-differentiate it. A transgenic fruit tree is characterized in that a tree-form is transformed by transducing the MdMADS2 gene thereinto. Further, the tree-form transform is one of drooped condition, rolling condition or branch-twisted condition.

Description

MADS―Box 유전자를 이용한 수형이 변형된 과수작물의 제조{the production of fruit tree for transforming tree form by using MADS-Box gene}Production of fruit tree for transforming tree form by using MADS-Box gene}

도 1은 MdMDS2 유전자가 도입된 형질전환 후지 품종의 표현형을 비교한 사진이다:1 is MdMDS2 Here is a comparison of phenotypes of transgenic Fuji varieties with the genes introduced:

a : 야생형; 및    a: wild type; And

b : MdMADS2 유전자 형질전환 후지 품종.b: MdMADS2 Genetically Modified Fuji Varieties.

도 2는 MdMADS2 유전자가 도입된 형질전환 갈라 품종의 표현형을 비교한 사진이다:2 is MdMADS2 Here is a comparison of the phenotypes of the transgenic gala varieties with the genes introduced:

a : 야생형; 및    a: wild type; And

b : MdMADS2 유전자 형질전환 갈라 품종.b: MdMADS2 Genetically Transgenic Gala Varieties.

도 3은 MdMADS2 유전자가 도입된 형질전환 매킨토시위직 품종의 표현형을 비교한 사진이다:3 is MdMADS2 Here is a comparison of the phenotypes of the transgenic Macintosh strains with the genes introduced:

a : 야생형; 및    a: wild type; And

b : MdMADS2 유전자 형질전환 매킨토시위직 품종.b: MdMADS2 Genetically modified Macintosh varieties.

도 4는 MdMADS2 유전자가 도입된 형질전환 사과에서의 NPTII 유전자의 존재 유무를 PCR을 통해 확인한 결과이다:4 is MdMADS2 PCR confirmed the presence of NPTII gene in transgenic apples into which the gene was introduced:

a : MdMADS2 유전자가 도입된 형질전환 후지 품종;a: MdMADS2 Transgenic Fuji variety into which the gene is introduced;

b : MdMADS2 유전자가 도입된 형질전환 갈라 품종; 및b: MdMADS2 Transgenic gala varieties into which genes have been introduced; And

c: MdMADS2 유전자가 도입된 형질전환 매킨토시위직 품종.c: MdMADS2 Genetically modified transgenic macaque varieties.

도 5는 MdMADS2 유전자가 도입된 형질전환 사과에서의 NPTII 유전자 프로브를 이용한 서던블랏 결과이다:5 is MdMADS2 Southern blot results using NPTII gene probe in transgenic apples with the genes introduced:

a : MdMADS2 유전자가 도입된 형질전환 후지 품종;a: MdMADS2 Transgenic Fuji variety into which the gene is introduced;

b : MdMADS2 유전자가 도입된 형질전환 갈라 품종; b: MdMADS2 Transgenic gala varieties into which genes have been introduced;

c : MdMADS2 유전자가 도입된 형질전환 매킨토시위직 품종;c: MdMADS2 Transgenic Macintosh varieties with genes introduced;

H : HindIII 제한효소 처리구; 및H: Hind III restriction enzyme treatment group; And

X : XbaI 제한효소 처리구. X: Xba I restriction enzyme treatment.

도 6은 야생형 후지 품종의 사과와 MdMADS2 형질전환 후지 품종 사과를 비교한 사진이다:6 is apple and MdMADS2 of wild type Fuji varieties A comparison of the transgenic Fuji varieties of apples:

a : 야생형 후지 품종;    a: wild-type Fuji varieties;

b : 야생형 후지 품종의 절단면; 및     b: cut section of wild type Fuji varieties; And

c : MdMADS2 유전자가 도입된 형질전환 후지 품종의 절단면.c: Cut section of the transgenic Fuji variety into which the MdMADS2 gene was introduced.

수형 변형을 위한 과수작물 제조 방법에 관한 것으로, 더욱 상세하게는 사과에서 분리한 MdMADS2 유전자를 형질도입하여 수형 변형을 일으키는 과수작물 제조 방법에 관한 것이다.The present invention relates to a method for producing an orchard crop for tree deformation, and more particularly, to MdMADS2 isolated from apples. The present invention relates to a method for producing a fruit crop in which a transgenic gene is used to generate a male strain.

일반적으로 과수작물은 3~5년의 유년기(Juvenile)를 필요로 하고 영년생 작물로서 다년간 동일지역에서 재배해야 하는 특성을 가지기 때문에 교배육종을 통한 신품종 육성 보급이 매우 늦은 편이다. 또한, 수관면적도 상대적으로 커서 육종기간이 매우 길고 노력 및 비용이 많이 든다. 과수산업의 경쟁력은 우수한 품종, 생산기술 및 재배환경 등의 요소가 어루어져야 한다. 많은 경우 개발된 품종의 특성은 우수하나 재배 환경 때문에 과실의 특성을 충분히 나타내지 못하는 실정에 있다. 이를 보완하기 위해 고착색, 대과, 고당도 등 품질 향상을 위한 초밀식 재배, 수세안정화, 적화 및 적과 작업, 봉지 씌우기, 반사필름 설치 등에 많은 노동력이 투입되어 생산되고 있다. 특히 사과와 배 등의 과수나무는 다년생으로 시일이 지남에 따라 거목으로 성장하게 될 뿐만 아니라, 생장특성상 사람의 키가 닿지 않는 크기로 성장하기 때문에 사다리 등을 이용하여야만 농약 살포와 전지작업, 적화/적과 작업, 봉지씌우기, 수확 등 다양한 작업의 수행이 가능하게 된다. 이러한 문제점을 극복하기 위해 가지가 하늘로 자라지 않도록 억제하는 기능의 가지 유인구가 활용되고 있으며, 통상적인 새로운 가지의 유인 방법은 새 가지 유인을 위해 가지가 어릴 때 줄기와 가지 사이에 이쑤시개 등을 끼워 가지를 벌려 놓거나, 콘크리트로 된 유인추를 가지 끝에 달아 늘어트리거나, 또는 철사로 된 유인 고리와 가지유인용 유인 고리 등이 개발되어 사용되고 있다. 그러나 이러한 가지유인을 통한 수세안정화 작업은 7년 이상의 시간이 소요되며 많은 노동력이 요구되고 있고, 이러 한 노동 집약적인 재배조건으로 인해 과수 작물의 국제 경쟁력 확보가 어려운 실정이다. In general, fruit crops require three to five years of juvenile, and are young crops, and they have to be grown in the same region for many years. In addition, the crown area is relatively large, and the breeding period is very long, and the effort and cost are high. The competitiveness of the fruit industry should be based on such factors as good varieties, production techniques and growing conditions. In many cases, the characteristics of the developed varieties are excellent, but due to the cultivation environment, the characteristics of the fruit are insufficient. To compensate for this, a lot of labor has been put into production such as high-density cultivation, stabilization of water washing, redness and redness work, bagging, and reflection film installation to improve quality such as high coloring, fruit and high sugar content. In particular, the fruit trees such as apples and pears are perennials, growing not only as giant trees with the passage of time, but also because they grow to a size that does not reach the height of humans because of their growth characteristics. It will be able to perform a variety of tasks such as enemy, work, bagging and harvesting. In order to overcome this problem, branch attracting function with a function of suppressing the branch from growing to the sky is utilized, and the conventional new branch attracting method is to insert a toothpick between the stem and the branch when the branch is young for attracting a new branch. Open or hang the ends of the concrete manned weight, or wire attracted and branched attracted rings, etc. have been developed and used. However, the stabilization of water washing through eggplant induction takes more than seven years and requires a lot of labor, and due to such labor-intensive cultivation conditions, it is difficult to secure international competitiveness of fruit crops.

사과재배의 선진국인 이탈리아 남티놀주에서는 사과나무의 수형을 하수축형으로 수세안정화 시킴으로서 획기적인 투하노력 절감과 단위 생산성을 높이고 생산비를 낮추어 국제 경쟁력에 유리한 고지를 점하고 있다. 사과나무의 하수축형의 수세는 태양광 확보, 통기성 향상 등의 잇점 뿐 아니라 앞서 말한바와 같이 농약 살포와 전지작업, 적화/적과 작업, 봉지 씌우기, 수확 등 재배시의 투입되는 노동력을 절감시키는 큰 장점이 있다. 그러나 이러한 하수축형의 수세안정화는 현재까지 가지유인을 통해 이루어지고 있으며 7년 이상의 시간이 소요되는 실정이다. In Latin America, an advanced country of apple cultivation, the stabilization of apple trees with water-shrinkage stabilizes watersheds, leading to breakthrough efforts to reduce production, increase unit productivity, and lower production costs. Sewage-type water washing of apple trees not only has the advantages of securing solar light and improving breathability, but also has a great effect on reducing labor labor during cultivation, such as spraying of pesticides, pruning, red / red, bagging, and harvesting. There is an advantage. However, such sewage stabilization of the sewage type has been made through branch incentives, and it takes more than seven years.

MADS-박스 유전자는 MADS-박스라고 불리우는 보존된 영역을 가지는 전사인자(transcription factor)를 코딩하는 30개 내지 그 이상의 아미노산 서열로 구성되는 유전자 패밀리를 나타낸다. 상기 유전자 중 많은 것들은 전사 수준에서의 조절을 통하여 식물의 여러 기관 분화에 관여한다고 알려져 있다. 애기장대(Arabidopsis thaliana)에서 분류된 MADS-박스 유전자들 중에서 AP1(APETALA1) 및 AP2(APETALA2)는 A군의 유전자로 밝혀진바 있고, AP3(APETALA)와 PI(PISTILL)는 B군 유전자, AG(AGAMOUS) 유전자는 C군 유전자로 분류되어진 바 있다(Gunter Theissen et al ., Plant Molecular Biology , 2000, 42:115-149). 또한 FBP7(floral binding protein 7) 및 FBP11(floral binding protein11)은 형질전환된 페튜니아에서 상호억제(cosuppression) 작용에 의해 배주 발달에 영향을 주는 유전자로 밝혀짐으로서 새롭게 D군 유전자로 분류되었다(G. C. Angenent et al., Plant Cell , 1995, 7:1569-1582). 그러나 아직까지 어떠한 MADS-박스 유전자도 과수작물의 수형변화에 영향을 준다는 것은 보고되어진 바 없다. MADS-box genes represent a family of genes consisting of 30 or more amino acid sequences encoding transcription factors with conserved regions called MADS-boxes. Many of these genes are known to be involved in different organ differentiation of plants through regulation at the level of transcription. Arabidopsis Among the MADS- box genes classified in thaliana ), AP1 ( APETALA1 ) and AP 2 ( APETALA 2) were identified as genes of group A. AP3 ( APETALA ) and PI ( PISTIL L) were group B genes, AG ( AGAMOUS). Genes have been classified as Group C genes (Gunter Theissen et) al ., Plant Molecular Biology , 2000, 42: 115-149. FBP7 ( floral binding protein 7 ) and FBP11 ( floral binding protein11 ) has been newly classified as a group D gene because it was found to be a gene that affects the development of the embryo by cosuppression in transformed petunias (GC Angenent et. al ., Plant Cell , 1995, 7: 1569-1582). However, it has not been reported that any MADS-box gene affects the change of tree crops.

MdMADS2 유전자는 사과에서 분리한 MADS-박스 유전자로서 1999년에 Sung 등에 의하여 최초로 보고되었고, 사과 꽃 기관에서 발현되는 유전자로서 수술과 심방을 제외한 모든 꽃 기관에서 발현되어진다고 밝혀진 바 있다. 또한 사과에서 분리한 MdMADS2 유전자를 담배에 형질전환시켜 그 기능을 분석한 결과, 담배의 조기 개화 및 왜성이 나타나는 것을 볼 수 있었다. 따라서 MdMADS2 유전자는 꽃의 조기 개화에 중요한 역할을 할 것이라고 보고된바 있다(Sung et al ., Plant Physiology , 1999, 120: 969-978). The MdMADS2 gene was first reported by Sung et al. In 1999 as a MADS- box gene isolated from apples, and has been found to be expressed in all flower organs except for stamens and atria. In addition, MdMADS2 gene isolated from apples was transformed into tobacco and analyzed for its function, and early flowering and dwarfing of tobacco were observed. Therefore, the MdMADS2 gene has been reported to play an important role in early flowering of flowers (Sung et. al ., Plant Physiology , 1999, 120: 969-978).

유전학적 기법은 작물 개량 연구에서 활발히 진행되어지고 있으나 외래 유전자 도입에 의한 과수 작물의 수형변화를 유도하는 연구는 아직까지 보고된바가 없다. 그러나 외래 유전자 도입에 의한 과수의 수형 변화를 통해 수세안정화 기간 단축, 노동력 절감 및 경제성 향상 등의 효과를 가져 올 수 있음으로 산업적인 활용도가 크다고 할 수 있다.Genetic techniques have been actively conducted in crop improvement studies, but no studies have been reported to induce the change of the fruit tree crop by the introduction of foreign genes. However, it can be said that the industrial utilization is large because it can bring about the effect of shortening the time for stabilizing washing, reducing the labor force and improving economic efficiency through the change of the fruit tree by introducing foreign genes.

이에, 본 발명자들은 사과에서 분리한 MdMADS2 유전자를 도입한 결과, 수세안정화 작업을 수행하지 않고도, 과수작물에서 수형 변화를 일으킴을 확인함으로써 본 발명을 완성하였다.Thus, the present inventors have isolated MdMADS2 from apple As a result of the introduction of the gene, the present invention was completed by confirming that the water crop was changed in the fruit crops without performing the flush stabilization work.

본 발명의 목적은 가지유인을 통한 수세안정화 작업을 하지 않고도 수형 변화를 일으킬 수 있는 과수작물 제조 방법, 과수변형을 일으키는 유전자를 포함하는 발현벡터, 상기 발현벡터를 형질도입된 식물체 세포 및 상기 발현벡터가 형질도입된 과수작물 형질전환 식물체를 제공하는 것이다.An object of the present invention is a method of producing an orchard crop that can cause a change in the shape of the tree without causing water stabilization through eggplant induction, an expression vector including the gene causing the perturbation, a plant cell transduced with the expression vector and the expression vector It is to provide a transgenic plant that has been transduced.

상기 목적을 달성하기 위하여, 본 발명은 수형 변형된 목본식물 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a tree plant modified.

또한, 본 발명은 MdMADS2 유전자로 형질도입되어 수형 변화를 일으키는 과수작물 형질전환 식물체를 제공한다.In addition, the present invention MdMADS2 Provided are fruit crop transgenic plants that are transduced with the gene to produce a maleic change.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 꽃의 조기 개화에 중요한 영향을 미치는 MdMADS2 유전자를 사과 후지 품종의 어린 화아(young flower bud)에서 분리하여 MdMADS2 유전자를 식물 형질전환용 벡터에 삽입하여 MdMADS2 유전자 발현벡터를 제조하고 “pMdMADS2"라 명명하였다. 상기 pMdMADS2를 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) LBA4404에 도입하여 형질전환 사과 품종을 제작하였다. 야생형 사과 품종의 경우 가지 유인을 통한 수세안정화 작업이 필요하며 그 작업 기간이 7년 이 상이 소요되어 많은 노동력이 요구된다. 상기 제작된 사과 품종을 야생형 사과 품종과 비교한 결과, 본 발명의 MdMADS2 유전자가 형질도입된 사과 품종(후지형, 갈라형 및 매킨토시위직 품종)은 특별한 수세안정화 작업 없이도 수세 변형이 발생되었다. 또한 하수 현상 이외에도 롤링 현상 및 가지 비틀림 현상이 나타났다(도 1 내지 도 3 참조). 이러한 현상은 과수의 밀식 재배 및 가지 유인을 용이하게 하여 농약 살포와 전지 작업, 적화/적과 작업, 봉지 씌우기, 수확 등 재배 시 투입되는 노동력을 절감키실 수 있는 요인으로 작용하여 수세안정화 작업을 통한 나무 품종으로부터 경쟁력을 가질 수 있다. 또한 상기 MdMADS2 유전자는 사과 후지 품종에서 분리하였으나, 사과 품종 중 갈라 품종 및 매킨토시위직 품종에서도 공통되게 수형 변화가 일어남을 확인하였다. 이를 통해 본 발명의 MdMADS2 유전자를 이용한 과수작물 제조 방법이 다양한 과수작물에서 수형 변형을 유도할 수 있음을 알 수 있다. The inventors have found that MdMADS2 has a significant effect on the early flowering of flowers. Gene was isolated from young flower bud of apple Fuji cultivar MdMADS2 MdMADS2 by inserting the gene into the plant transformation vector Gene expression vectors were prepared and named “pMdMADS2.” The pMdMADS2 was introduced into Agrobacterium tumefaciens LBA4404 to produce transgenic apple varieties. The work duration is more than 7 years and a lot of labor is required .. As a result of comparing the produced apple varieties with wild apple varieties, the MdMADS2 of the present invention was used. Genetically transduced apple varieties (Fuji, Gala, and Macintosh) produced water deflection without special flush stabilization. In addition to the sewage phenomenon, a rolling phenomenon and branch twisting phenomenon were also observed (see FIGS. 1 to 3). This phenomenon facilitates wheat cultivation and branching of fruit trees, which can reduce the labor input during cultivation, such as pesticide spraying, cell work, red / red fruiting, bagging, and harvesting. Can be competitive from the breed. In addition, the MdMADS2 gene was isolated from the apple Fuji varieties, but it was confirmed that a change in the tree type was common in the gala variety and the Macintosh variety of the apple varieties. Through this MdMADS2 of the present invention It can be seen that the method of producing fruit trees using genes can induce tree strains in various fruit trees.

본 발명자들은 상기 형질전환 사과 품종에 MdMADS2 유전자가 정상적으로 삽입되었으며(도 4 참조), 적게는 1 카피(copy), 많게는 3 카피 이상 유전자가 도입되었음을 확인하였다(도 5 참조). 그러나 카피 수와 상관없이 1 카피만으로도 본 발명에서 이루고자하는 수형 변형이 효과적으로 일어남을 알 수 있었다(도 1 내지 3 참조). The inventors of the present invention in the transgenic apple varieties MdMADS2 The genes were inserted normally (see Figure 4), at least 1 copy (copy), more than 3 copies confirmed that the gene was introduced (see Figure 5). However, regardless of the number of copies it can be seen that only one copy of the male deformation to be achieved in the present invention effectively occurs (see Figs. 1 to 3).

본 발명자들은 비형질전환 사과 품종와 MdMADS2 유전자 형질전환 사과 품종 간의 과실을 비교하였다. 그 결과, 과실의 특성에는 변화가 없음을 관찰하였다(표 1 및 도 6 참조).We use non-transformed apple varieties and MdMADS2 Fruits were compared between transgenic apple varieties. As a result, it was observed that there was no change in the properties of the fruits (see Table 1 and Fig. 6).

그러므로 본 발명의 수형 변화된 목본식물 제조 방법은 과수의 밀식 재배 및 가지 유인을 용인하게 하여 농약 살포와 전지 작업, 적화/적과 작업, 봉지 씌우기, 수확 등 재배 시 투입되는 노동력을 절감하며, 기존의 수세안정화 작업에 소요되는 작업 시간을 절감함으로써 경쟁력있는 목본식물 재배에 유용하게 이용될 수 있다. 또한 가지 유인 및 전정 과정을 거치지 않고도 독특한 모양의 관상용 나무를 제조할 수 있다.Therefore, the method of manufacturing the modified tree plant according to the present invention tolerates wheat cultivation and eggplant induction of fruit trees to reduce the labor input during cultivation, such as pesticide spraying and pruning, red / red, bagging, harvesting, water washing By reducing the work time required for stabilization work, it can be usefully used for growing competitive woody plants. It is also possible to produce a uniquely shaped ornamental tree without going through the branches and pruning.

본 발명은 수형 변형된 목본식물 제조 방법을 제공한다.The present invention provides a method for producing a tree modified tree plant.

본 발명자들은 하기의 제조 방법을 제공한다: 1) MdMADS2(U78948) 유전자를 포함하는 발현벡터를 제조하는 단계; 2) 단계 1)의 발현벡터를 목본식물세포에 도입하여 상기 목본식물세포를 공동 배양하여 식물 세포를 형질 전환시키는 단계; 및 3) 단계 2)의 형질전환된 목본 식물 세포를 조직 배양하여 재분화하는 단계.The present inventors provide the following preparation method: 1) preparing an expression vector comprising the MdMADS2 (U78948) gene; 2) transforming plant cells by introducing the expression vector of step 1) into tree plant cells and co-culturing the tree plant cells; And 3) regenerating by tissue culture of the transformed woody plant cells of step 2).

상기 제조 방법에 있어서, 수형 변형이란 목본식물의 하수 현상, 롤링 현장 또는 가지 비틀림을 뜻한다.In the above production method, the male deformation means sewage phenomenon, rolling field or branch twist of a tree plant.

상기 제조 방법에 있어서, 목본식물은 현화식물인 것이 바람직하다. 상기 현화식물은 장미과인 것이 바람직하며, 상기 장미과로는 조팝나무아과, 장미아과, 앵도아과 또는 배나무아과인 것이 바람직하다. 상기 조팝나무아과로는 조팝나무, 꼬리조팝나무 또는 국수나무인 것이 바람직하나 이에 한정되는 것은 아니다. 상기 장미아과는 병아리꽃나무, 황매화, 나무 딸기, 곰딸기, 흰인가목, 해당화, 장미 또는 찔레나무인 것이 바람직하나 이에 한정되는 것은 아니다. 상기 앵도아과는 체리 나무, 앵두나무, 복숭아나무, 자두나무, 매길나무 또는 살구나무인 것이 바람직하나 이에 한정되는 것은 아니다. 상기 배나무아과는 사과나무, 배나무 또는 모과나무인 것이 바람직하나 이에 한정되는 것은 아니다. 상기 사과나무의 품종으로는 후지 품종, 갈라 품종, 매킨토시위직 품종, 쓰가루 품종, 홍로 품종, 레드데리셔스 품종, 골든 데리셔스 품종 또는 변이품종인 것이 바람직하나 이에 한정되는 것은 아니며, 당해업계의 당업자에게 알려진 사과 품종이라면 본 발명의 제조 방법에 이용하여도 무방하다.In the above production method, the woody plant is preferably a flowering plant. It is preferable that the flowering plant is a rosaceae, and the rosaceae is preferably a Japonica subfamily, Rosaceae subfamily, Andoaceae or Pear subfamily. The maple tree subfamily is preferably, but not limited to, a maple tree, a tail-poplar tree or a noodle tree. The rosaceae is preferably, but not limited to, chick flower, yellow plum, raspberry, bearberry, white nectar, persimmon, rose or brier. The adoaceae is preferably cherry, cherry, peach, plum, plum or apricot, but is not limited thereto. The pear subfamily is preferably an apple tree, a pear tree or a Chinese quince tree, but is not limited thereto. The varieties of the apple tree are preferably a Fuji variety, a gala variety, a Macintosh variety, a Tsugaru variety, a Hongro variety, a Red Daricious variety, a Golden Daricious variety or a mutant variety, but are not limited thereto. Apple varieties known to those skilled in the art may be used in the production method of the present invention.

상기 제조 방법에 있어서, 단계 1)의 MdMADS2 유전자의 서열은 서열번호 7인 것이 바람직하나 이에 한정된 것은 아니며, 상기 MdMADS2 유전자의 서열과 상동성이 85% 이상인 유전자라면 본 발명에서 이용 가능하다. 또한, 상기 발현벡터로 이용되는 식물 형질전환용 벡터인 pGA1530 벡터이나 이에 한정되는 것은 아니며, 당해업계의 당업자에게 알려진 식물 형질전환용 벡터라면 모두 본 발명의 제조방법에 사용하여도 무방하다. In the production method, the sequence of the MdMADS2 gene of step 1) is preferably SEQ ID NO: 7, but is not limited thereto, and the MdMADS2 Any gene having a sequence homology of 85% or more can be used in the present invention. The pGA1530 vector, which is a plant transformation vector used as the expression vector, is not limited thereto, and any plant transformation vector known to those skilled in the art may be used in the production method of the present invention.

상기 제조 방법에 있어서, 단계 2)의 도입 방법은 아그로박테리움을 이용한 방법, 유전자 총(gene gun) 방법, 전기투입법(electroporation), 현미주사법(microinjection), 직접 DNA 흡수법(Gasser C.S. and Fraley R.T., Science, 1989, 244: 1293-1299)인 것이 바람직하나 이에 한정되는 것은 아니며, 당업자에게 알려진 식물세포의 유전자 도입 방법이라면 본 발명에 사용해도 무방하다. 상기 아그로박테리움(Agrobacterium)은 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens)인 것이 바람직하나 이에 한정되는 것은 아니다.In the above production method, the introduction method of step 2) is a method using Agrobacterium, gene gun method, electroporation, microinjection, direct DNA absorption method (Gasser CS and Fraley) RT, Science , 1989, 244: 1293-1299), but is not limited thereto. Any gene transduction method of plant cells known to those skilled in the art may be used in the present invention. The Agrobacterium ( Agrobacterium) is preferably Agrobacterium tumefaciens ( Agrobacterium tumefaciens ), but is not limited thereto.

또한, 본 발명은 MdMADS2 유전자로 형질도입되어 수형 변화를 일으키는 과수작물 형질전환 식물체를 제공한다.In addition, the present invention MdMADS2 Provided are fruit crop transgenic plants that are transduced with the gene to produce a maleic change.

본 발명의 형질전환 식물체를 얻기 위하여 수행하는 조직 배양을 통한 재분화는 일반적인 형질전환 식물체 제조 공정을 통해 수행하는 것이 바람직하다. Regeneration through tissue culture carried out to obtain the transgenic plant of the present invention is preferably carried out through a general transgenic plant production process.

상기 형질전환 식물체로는 사과, 배 또는 복숭아인 것이 바람직하며, 사과인 것이 보다 바람직하고, 상기 사과의 품종으로는 후지 품종, 갈라 품종, 매킨토시위직 품종, 쓰가루 품종, 홍로 품종, 레드데리셔스 품종, 골든 데리셔스 품종 또는 변이품종인 것이 바람직하나 이에 한정되는 것은 아니며, 당해업계의 당업자에게 알려진 사과 품종이라면 본 발명의 제조 방법에 이용하여도 무방하다.The transgenic plants are preferably apples, pears or peaches, more preferably apples, and the varieties of apples are Fuji varieties, gala varieties, Macintosh varieties, Tsugaru varieties, Hongro varieties and Red Derris varieties. It is preferable that the varietal varieties or varieties of varieties, but not limited to, apple varieties known to those skilled in the art may be used in the production method of the present invention.

이하 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

<< 실시예Example 1>  1> MdMADS2MdMADS2 유전자의 Gene 클로닝과Cloning and 과수 수형변화를 위한 형질전환 벡터 제작 Transformation Vector Construction for Fruit Tree Change

사과(Malus domestica Borkh cv. Fuji)의 어린 화아(Young flower bud)를 시료로 하여 제조된 cDNA 라이브러리(SUNG. S.K. et al, Plant Physiol., 1999, 120: 969-978)를 생체내 제거(in vivo excision) 방법(stratagene, USA, Catalog #200450)에 따라 cDNA를 분리하여 cDNA 풀(pool)을 제작하였다. 유전자 염기서열 데이타 베이스인 GenBank(NIH, USA)에 수록된 MdMADS2 유전자(U78948)를 검색한 뒤 상기 유전자의 5' 말단 ORF에서 HindIII 제한효소의 염기서열을 포함하는 정방향 프라이머(서열번호 1: 5’-AAGCTTATGGGGAGGGGAAG-3’)와 3' 말단 ORF(open reading frame) 끝에서 XbaI 제한효소의 염기서열을 포함하는 역방향 프라이머(서열번호 2: 5’-TCTAGACTATTCATTAAGGTGGCG-3’)를 제작하였다. 제작된 상기 프라이머 쌍을 이용하여 사과 어린 화아의 cDNA 풀을 주형으로 하여 PCR을 수행하였다. PCR 반응의 조성은 100 ng의 cDNA 주형, 1 μM의 프라이머, 1 X Ex Taq 완충액, 0.2 mM dNTP, 2.5 unit의 폴리머라제(TaKaRa Ex Taq: TaKaRa, Japan)를 사용하였다. 반응 조건은 퍼킨 엘머(Perkin Elemer) 9600을 사용하여 94℃에서 5분간 열 변성(denaturation)시키고, 열 변성과 프라이머 결합 반응(annealing) 및 길이연장 반응(extension)을 각각 94℃/30초, 58℃/1분, 72℃/1분간 35 싸이클(cycle)을 수행하였고, 이후 말단 연장(elongation)을 72℃/5분간 하여 전 증폭과정을 종결시켰다. 증폭된 PCR 산물을 pGEM-T Easy 벡터(Promega, USA)에 클로닝한 후 T7 프라이머(서열번호 3: 5’-TAATACGACTCACTATAGGG-3’)와 SP6 프라이머(서열번호 4: 5’- TATTTAGGTGACACTATAG-3’)를 이용하여 증폭산물의 염기서열을 조사하여 MdMADS2 유전자의 ORF가 벡터로 삽입되었음을 확인하였다.Apple ( Malus domestica Borkh cv. CDNA library (SUNG. SK et . al , Plant Physiol. , 1999, 120: 969-978) in vivo removal ( in A cDNA pool was prepared by separating cDNAs according to an in vivo excision method (stratagene, USA, Catalog # 200450). MdMADS2 from GenBank (NIH, USA), Gene Sequencing Database After searching for the gene (U78948), a forward primer (SEQ ID NO: 1: 5'-AAGCTTATGGGGAGGGGAAG-3 ') and a 3' terminal ORF (open reading frame) containing a nucleotide sequence of Hind III restriction enzyme in the 5 'terminal ORF of the gene ), A reverse primer (SEQ ID NO: 2: 5'-TCTAGACTATTCATTAAGGTGGCG-3 ') containing a nucleotide sequence of Xba I restriction enzyme was prepared. PCR was performed using the prepared primer pairs as a template of the cDNA pool of apple buds. The composition of the PCR reaction was 100 ng cDNA template, 1 μM primer, 1 × Ex Taq buffer, 0.2 mM dNTP, 2.5 units of polymerase ( TaKaRa). Ex Taq : TaKaRa, Japan) was used. Reaction conditions were thermally denatured at 94 ° C. for 5 minutes using a Perkin Elemer 9600, and the thermal denaturation, primer binding and extension extensions were 94 ° C./30 sec., 58 ° C., respectively. 35 cycles were carried out at 1 ° C./1 min and 72 ° C./1 min, and then the entire amplification process was terminated by end elongation at 72 ° C./5 min. The amplified PCR product was cloned into pGEM-T Easy vector (Promega, USA), followed by T7 primer (SEQ ID NO: 3: 5'-TAATACGACTCACTATAGGG-3 ') and SP6 primer (SEQ ID NO: 4: 5'- TATTTAGGTGACACT ATAG-3'). The nucleotide sequence of the amplification product was examined to confirm that the ORF of the MdMADS2 gene was inserted into the vector.

상기 제작된 MdMADS2 유전자를 포함하는 벡터를 HindIII 및 XbaI으로 절단한 다음, 동일 효소로 절단된 식물 형질전환용 벡터인 pGA1530 벡터에 정방향으로 클로닝을 수행하였다. 식물 형질전환용 pGA1530 벡터는 35S 프로모터와 T7 터미네이 터를 가지고 있으며 선별 유전자로 NPT (neomycin phosphotransferase)유전자를 가지고 있어 카나마이신 저항성을 갖는다(Plant molecular Biology Manual, 1988, A3:1-19). 이렇게 제작된 MdMADS2가 정방향으로 삽입된 재조합 플라스미드를 ‘pMdMADS2’라 명명하였다. 그리고 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) LBA4404(Hoekema, A. et al., 1983, Nature, 303, 179-181)에 도입 후 카나마이신 배지에서 상기 재조합 플라스미드 pMdMADS2가 도입된 균주를 선발하였다. MdMADS2 produced above The vector containing the gene was cleaved with Hind III and Xba I and then cloned forward to the pGA1530 vector, which is a plant transformation vector digested with the same enzyme. Plants transformed pGA1530 vector for switching has a kanamycin resistance has got a Ney emitter 35S promoter and T7 terminator has a NPT (neomycin phosphotransferase) gene as a selection gene (Plant molecular Biology Manual , 1988, A3: 1-19). The recombinant plasmid in which MdMADS2 thus prepared was inserted in the forward direction was named 'pMdMADS2'. And Agrobacterium tumefaciens LBA4404 (Hoekema, A. et) al ., 1983, Nature , 303, 179-181) and then strains introduced with the recombinant plasmid pMdMADS2 in kanamycin medium were selected.

<< 실시예Example 2>  2> MdMADS2MdMADS2 유전자가 도입된 Genes introduced 형질전전환Transformation 사과 제작 Apple productions

pMdMADS2 유전자가 도입된 형질전환 사과를 제작하기 위하여 1) 사과 기내 계대배양; 2) 접종절편 채취; 3) 아그로박테리움(Agrobacterium) 접종 및 공동배양; 및 4) 발근배지 선발 등의 순차적인 단계로 실험을 실시하였다.To prepare transgenic apples into which the pMdMADS2 gene was introduced: 1) apple in-flight passage; 2) harvesting inoculation sections; 3) Agrobacterium (Agrobacterium) inoculation and co-culture; And 4) the experiment was carried out in a sequential step such as rooting medium selection.

사과 신초의 배양은 MS 무기염류 및 비타민 배지에 BA 1 mg/L, IBA 0.3 mg/L, GA 0.5 mg/L, 수크로오스(sucrose) 30 g/L, 플랜트 아가(plant agar) 8 g/L를 첨가하여 pH 5.8로 조정한 후 멸균기에서 121℃, 1.2 기압으로 15분간 고압 살균한 배지를 이용하였다. 증식배지로부터 자란 신초를 4주 후 발근배지(1/2 MS 배지, IBA 0.3 mg/L, 수크로오스 15 g/L, 플랜트 아가 8 g/L)로 치상한 후 8주 후 발근이 된 신초의 어린 잎을 접종 절편으로 사용하였다. 상기 실시예 1에 따라 제작된 아그로박테리움 튜메파시엔스 LBA4404(Hoekema, A. et al., 1983, Nature, 303, 179-181)를 카나마이신(kanamycin) 10 mg/L와 테트라사이클린(tetracycline) 3 mg/L를 첨가한 액체 YEB 배지에 220 rpm, 28℃에서 20시간 배양하였으며, 배양 당시의 농도는 OD600값 0.7이었다. 채취한 잎의 거치를 절단하고 직사각형으로 자른 후 아그로박테리움 튜메파시엔스 LBA4404 현탁 배양 배지(OD600값 1.3)를 150 rpm, 22℃에서 4시간 동안 진탕배양하여 접종을 수행하였다. 접종된 잎은 살균 건조된 멸균지로 흡습한 후 기존의 공동배양 배지[MS 무기염류, LS 비타민(vitamin), IBA 0.1 mg/L, TDZ 5 mg/L, 수크로오스 30 g/L, 다이신 아가(daishin agar) 8 g/L]에 아세트실린곤 200 μM이 첨가된 배지에서 3일간 암배양 하였다. 3일 후 잎 절편체를 카나마이신 50 mg/L와 세파탁심(cefotaxime) 350 mg/L가 첨가된 재분화 선발 배지에 치상하여 4주간 암배양 후 2주 약광 배양, 그 후 2주 강광 배양의 순으로 처리하였다. 선발배지의 기본 조성은 MS 무기염류, LS 비타민, IBA 0.1 mg/L, TDZ 5 mg/L, 수크로오스 30 g/L, 아가 8 g/L 였다. 선발 배지에서 재분화된 개체는 카나마이신이 없는 증식배지로 이식하였으며 증식된 신초는 재선발을 위해 카나마이신 30 mg/L을 첨가한 발근배지에 치상하였다. 성공적인 발근을 보인 개체들은 배양 용기에서 꺼내 멸균수로 배지를 제거한 후 멸균된 모래가 담긴 포트에 이식한 후 포화습도를 유지하여 활착된 개체들은 다시 인공토양(버미큘라이트:펄라이트:원예용 상토=1:1:1)에 이식하여 격리 온실로 옮겨 주고 그후 포장에 이식하였다.Cultivation of apple shoots contained 1 mg / L BA, 0.3 mg / L IBA, 0.5 mg / L GA, 30 g / L sucrose and 8 g / L plant agar in MS mineral salts and vitamin medium. After the addition was adjusted to pH 5.8, a medium sterilized at 121 ° C and 1.2 atm for 15 minutes in a sterilizer was used. After 4 weeks, shoots grown from growth medium were healed with rooting medium (1/2 MS medium, IBA 0.3 mg / L, sucrose 15 g / L, plant agar 8 g / L). The leaves were used as inoculation sections. Agrobacterium tumefaciens LBA4404 prepared according to Example 1 (Hoekema, A. et al ., 1983, Nature , 303, 179-181) were incubated for 20 hours at 220 rpm, 28 ° C in liquid YEB medium containing 10 mg / L of kanamycin and 3 mg / L of tetracycline. The concentration at the time of culture was OD 600 value 0.7. Agrobacterium tumefaciens LBA4404 Suspension culture medium (OD 600 value 1.3) was inoculated by shaking culture at 150 rpm, 22 ° C for 4 hours. The inoculated leaves were absorbed with sterile dried sterilized paper and then co-cultured with conventional coculture medium [MS inorganic salts, LS vitamins, IBA 0.1 mg / L, TDZ 5 mg / L, sucrose 30 g / L, dicin agar ( daishin agar) 8 g / L] was cultured for 3 days in medium containing 200 μM of acetylgon. After 3 days, leaf sections were placed on redistribution selection medium containing 50 mg / L of kanamycin and 350 mg / L of cefotaxime, followed by 4 weeks of cancer culture and then 2 weeks of light culture followed by 2 weeks of light culture. Treated. The basic composition of the selection medium was MS inorganic salt, LS vitamin, IBA 0.1 mg / L, TDZ 5 mg / L, sucrose 30 g / L, agar 8 g / L. Individuals re-differentiated from the selection medium were transplanted into growth medium without kanamycin, and the grown shoots were healed in rooting medium added with 30 mg / L of kanamycin for reselection. Successful rootings were removed from the culture vessels, the medium was removed with sterile water, implanted in a pot of sterile sand, and then saturated to maintain the saturation of the artificial soil (vermiculite: perlite: horticultural soils = 1: 1). 1: 1), which were transferred to the quarantine greenhouse and then transplanted to the package.

<< 실시예Example 3>  3> MdMADS2MdMADS2 유전자가 도입된 사과의 표현형 분석 Phenotypic Analysis of Apples with Genes

MdMADS2 유전자가 도입된 사과의 표현형을 비형질전환 사과의 표현형과 비교 함으로서 MdMADS2 유전자의 기능을 분석하였다. MdMADS2 By comparing the phenotype of the transgenic apple with the phenotype of the nontransgenic apple, MdMADS2 The function of the gene was analyzed.

그 결과 상기 과정을 통해 MdMADS2 유전자가 도입된 사과는 품종(후지, 갈라, 매킨토시위직)에 관계없이 과수의 수형이 하수현상, 롤링현상, 가지의 비틀림이 일어나는 공통된 표현형을 보였다(도 1 내지 3). As a result, MdMADS2 The apples to which the genes were introduced showed a common phenotype in which the fruit tree had sewage, rolling, and twisting of branches regardless of the variety (Fuji, Gala, Macintosh).

MdMADS2 유전자가 도입된 후지 품종의 경우 비형질전환체는 가지가 위로 뻗어 있는 형태이지만 형질전환 후지는 가지의 하수현상, 롤링현상, 가지의 비틀림이 일어나는 표현형을 보였다(도 1). 또한 MdMADS2 유전자가 도입된 갈라 품종의 경우에도 비형질전환체는 가지가 위로 뻣어 있는 형태이지만 형질전환 갈라 품종의 경우 가지의 하수현상, 롤링 현상, 가지의 비틀림이 일어나는 표현형을 보였다(도 2). 아울러 매킨토시위직의 경우에도 MdMADS2 형질전환 품종은 하수현상, 롤링현상, 가지의 비틀림이 일어나는 공통된 표현형을 보였다(도 3). MdMADS2 In the case of the Fuji varieties in which the gene was introduced, the non-transformant had a branch extending upward, but the transgenic Fuji showed a phenotype of sewage, rolling, and twisting of the branches (FIG. 1). Also MdMADS2 In the case of the gala varieties in which the genes were introduced, the non-transformant had a stiff up branch, but in the case of the transgenic gala varieties, the sewage phenomenon, the rolling phenomenon, and the twisting of the branches occurred (Figure 2). MdMADS2 also works for Macintosh Transformed varieties showed a common phenotype of sewage, rolling, and twisting of branches (Figure 3).

이러한 결과를 통하여 사과 후지 품종에서 클로닝한 MdMADS2 유전자는 사과의 품종에 관계없이 모두 수형의 변화를 유도하는 것을 알 수 있었다. These results showed that MdMADS2 cloned from apple Fuji varieties The genes were found to induce a change in tree type regardless of the apple variety.

본 발명자들은 MdMADS2 형질전환 사과 품종을 대상으로 NPTII 유전자의 존재 유무를 통해 MdMADS2 유전자가 도입되었음을 확인하였다. 이에 NPTⅡ 유전자 정방향 프라이머(서열번호 5: 5’-GAGGCTATTCGGCTATGACTG-3’) 및 NPT 유전자 역방향 프라이머(서열번호 6: 5’-ATCGGGAGCGGCGATACCGTA-3’)를 이용하여 PCR 방법으로 MdMADS2의 유전자 도입을 확인하였다. 이때 사용되어진 PCR 반응의 조성은 MdMADS2 형질전환 사과 잎으로부터 키트(DNeasy Plant Mini kit, #69104 QIAGEN, USA)를 이용하여 추출한 게놈 DNA 200 ng을 주형으로 하여, 1 μM의 프라이머, 1 X Ex Taq 완충액, 0.2 mM dNTP, 2.5 unit의 폴리머라제(TaKaRa Ex Taq: TaKaRa, Japan)를 사용하였다. 반응 조건은 퍼킨 엘머(Perkin Elemer) 9600을 사용하여 94℃에서 5분간 열 변성(denaturation)시키고, 열 변성과 프라이머 결합 반응(annealing) 및 길이연장 반응(extension)을 각각 94℃/30초, 57℃/1분, 72℃/1분간 35 싸이클(cycle)을 수행하였고, 이후 말단 연장(elongation)을 72℃/10분간 하여 전 증폭과정을 종결시켰다. The present inventors have MdMADS2 through the presence of the NPTII gene targeting MdMADS2 transgenic apple varieties It was confirmed that the gene was introduced. The NPTII gene forward primer (SEQ ID NO: 5'-GAGGCTATTCGGCTATGACTG-3 ') and the NPT II gene reverse primer (SEQ ID NO: 6: 5'-ATCGGGAGCGGCGATACCGTA-3') were used to confirm the introduction of MdMADS2 by PCR. . The PCR reaction composition used was 200 ng of genomic DNA extracted from MdMADS2 transgenic apple leaves using a kit (DNeasy Plant Mini kit, # 69104 QIAGEN, USA), using a primer of 1 μM, 1 X Ex Taq buffer. , 0.2 mM dNTP, 2.5 units of polymerase ( TaKaRa Ex Taq : TaKaRa, Japan) was used. Reaction conditions were thermally denatured at 94 ° C. for 5 minutes using a Perkin Elemer 9600, and the thermal denaturation, primer binding and extension extensions were 94 ° C./30 seconds, 57, respectively. 35 cycles were carried out at 1 ° C./1 min and 72 ° C./1 min, and then the entire amplification process was terminated by end elongation at 72 ° C./10 min.

그 결과, 사과의 후지 품종, 갈라 품종 및 매킨토시위직 품종 모두에서 정상적으로 MdMADS2 유전자의 도입되었음을 확인하였다(도 4). As a result, it was confirmed that the MdMADS2 gene was normally introduced in all of the Fuji varieties, the gala varieties, and the Macintosh strains of apples (FIG. 4).

<< 실시예Example 4>  4> MdMADS2MdMADS2 유전자 형질전환 사과의 서던  Southern of transgenic apple 블랏을Blot 통한 도입유전자 카피수 분석 Gene copy number analysis through

본 발명자들은 상기 MdMADS2 유전자가 형질전환된 사과 품종(후지, 갈라, 멕킨토시위직)을 대상으로 서던 블랏을 통해 도입유전자의 카피수를 분석하였다. 구체적으로 상기 MdMADS2 형질전환 사과 잎으로부터 키트(DNeasy Plant Mini kit, #69104 QIAGEN,)를 이용하여 게놈 DNA를 추출하였다. 분리된 게놈 DNA를 20 ㎍을 취하여 HindⅢ와 XbaI 제한효소로 각각 절단한 후, 1.0% 아가로스 겔에 전기영동하였다. 전기영동된 겔을 0.25 N HCl에 10분간 반응시켜 디퓨린화(depurination)시킨 후 증류수로 2회 세척하였다. 이 후 변성 용액(denature solution; 0.5 M NaOH, 1.5 M NaCl)에 30분 동안 반응시키고, 중화 용액(neutralization solution; 1.5 M NaCl, 0.5 M Tris pH7.5)에서 30분 동안 반응하여 중화시켰다. 중화시킨 아 가로스 겔을 양전하의 나일론 막(positive charged nylon membrane; Roche, Germany)으로 16시간 동안 이동시켰으며 DNA가 전이된 나일론 막을 UV 크로스-링커(UV cross-linker)로 고정시켰다. 프로브로 사용할 DNA 단편을 제조하기 위하여 PCR DIG 프로브 합성 키트(PCR DIG probe synthesis kit; Roche, Germany)를 사용하여 서열번호 5 및 6을 이용하여 딕옥시제닌(digoxigenin-dUTP)으로 표지된 NPTII 프로브를 제작하였다. 이 후 DNA가 전이된 나일론 막을 완충액(DIG Easy Hyb buffer, Roche, Germany)에 넣고 전혼성화 과정(prehybridization)을 30분간 수행하고, 딕옥시제닌으로 표지된 NPTII 프로브를 100℃의 중탕기(water bath)에서 변성(denaturation)시킨 후, 42℃에 16시간 이상 혼성화반응(hybridization)을 수행하였다. 혼성화 반응이 끝난 나일론 막은 상온(room temperature)에서 1차 세척용액(primary washing solution; 0.1% SDS, 2×SSC)으로 30분 반응시키고, 68℃에서 2차 세척용액(secondary washing solution; 0.1% SDS, 0.5×SSC)으로 30분간 세척하였다. 이후 세척된 나일론 막을 키트(DIG Wash and Block Buffer kit; Roche, Germany)와 딕옥시제닌 항체(anti-digoxigenin-AP; Roche, Germany)를 이용하여 항체 혼성화 반응을 수행한 후, 세척반응을 수행하였다. 또한 발색 키트(chemiluminescene substrate CDP-Star, Roche, Germany)로 반응 시킨 후 X-ray 필름에 감광하였다.The present inventors analyzed the copy number of the transgene through Southern blot of the apple varieties (Fuji, Gala, McIntosh Weiss) transformed with the MdMADS2 gene. Specifically MdMADS2 Genomic DNA was extracted from a transgenic apple leaf using a kit (DNeasy Plant Mini kit, # 69104 QIAGEN,). 20 μg of the isolated genomic DNA was digested with Hin dIII and Xba I restriction enzymes, and then electrophoresed on 1.0% agarose gel. The electrophoresis gel was reacted with 0.25 N HCl for 10 minutes to depurination and then washed twice with distilled water. Thereafter, the mixture was reacted in a denature solution (0.5 M NaOH, 1.5 M NaCl) for 30 minutes, and neutralized by reacting in a neutralization solution (1.5 M NaCl, 0.5 M Tris pH7.5) for 30 minutes. The neutralized agarose gel was transferred to a positively charged nylon membrane (Roche, Germany) for 16 hours and the DNA-transferred nylon membrane was fixed with a UV cross-linker. NPTII probes labeled with digoxigenin-dUTP using SEQ ID NOs: 5 and 6 were prepared using PCR DIG probe synthesis kit (Roche, Germany) to prepare DNA fragments for use as probes. Produced. After that, the nylon-transferred nylon membrane was placed in a buffer (DIG Easy Hyb buffer, Roche, Germany) and subjected to prehybridization for 30 minutes, and the NPTII probe labeled with dioxygenin was subjected to a water bath at 100 ° C. After denaturation at, hybridization was performed at 42 ° C. for at least 16 hours. After completion of the hybridization, the nylon membrane was reacted with a primary washing solution (0.1% SDS, 2 × SSC) for 30 minutes at room temperature, and a secondary washing solution (0.1% SDS) at 68 ° C. , 0.5 × SSC) for 30 minutes. The washed nylon membrane was then subjected to antibody hybridization using a kit (DIG Wash and Block Buffer kit; Roche, Germany) and a dioxygenin antibody (anti-digoxigenin-AP; Roche, Germany), followed by a washing reaction. . In addition, it was reacted with a color kit (chemiluminescene substrate CDP-Star, Roche, Germany) and was then exposed to X-ray film.

그 결과, MdMADS2가 도입된 형질전환 후지 품종은 3 카피 이상의 많은 카피수로 존재하였고(도 5a), 형질전환 갈라 품종의 경우 1~2 카피 정도로 존재하였다(도 5b). 또한 형질전환 매킨토시위직의 경우 1 카피의 MdMADS2 유전자가 도입되었 음을 확인하였다(도 5c). 이와는 대조적으로 표현형이 나타나지 않는 비형질전환체의 경우에는 NPTII 유전자가 탐지(detection)되지 않았다. 이러한 결과를 통해 MdMADS2 유전자의 도입 카피수에 상관없이 MdMADS2 유전자가 도입되었을 때 형질전환체에서 하수현상, 롤링, 가지비틀림 현상으로 대표되는 수형 변화가 이루어 졌음을 알 수 있었다.As a result, the transgenic Fuji varieties into which MdMADS2 was introduced were present in many copies of 3 or more copies (FIG. 5A), and in the case of the transgenic gala variety, 1 to 2 copies (FIG. 5B). In addition, it was confirmed that one copy of the MdMADS2 gene was introduced in the case of the transformed Macintosh. In contrast, NPTII genes were not detected in non-transformants with no phenotype. With these results, regardless of the number of copies of the introduced gene MdMADS2 MdMADS2 When the genes were introduced, it was found that the transformations represented by the sewage, rolling, and torsional distortions were made in the transformants.

<< 실시예Example 5>  5> MdMADS2MdMADS2 유전자 형질전환 사과의 과실 특성 비교Comparison of Fruit Characteristics of Transgenic Apples

MdMADS2 형질전환 사과의 과실 특성을 비형질전환체와 비교하기 위하여 품종별(후지, 갈라, 매킨토시위직)로 적숙기에 각각 20개 과실을 수확하여 평균 특성을 조사하였다. 조사항목으로는 과중, 과피색, 당도, 산도, 종자수를 조사하였다. MdMADS2 In order to compare the fruit characteristics of transgenic apples with non-transformants, 20 fruits were harvested during the ripening season (Fuji, Gala, and Macintosh). The items included were weight, skin color, sugar content, acidity and seed count.

그 결과, 표 1에서 나타나듯이 MdMADS2 형질전환 후지, 갈라, 매킨토시위직 품종들 모두 모든 항목에서 비형질전환체와 유사한 과실 특성을 나타내었다. 이러한 결과를 통해 MdMADS2 형질전환 사과는 과실의 특성은 비형질전환체와 차이점이 없고, 단지 하수현상, 롤링, 가지 비틀림 등의 수형변화만 이루어졌음을 알 수 있었다(도 6).As a result, as shown in Table 1, MdMADS2 Transformed Fuji, Gala, and Macintosh litchi varieties all exhibited similar fruit characteristics as non-transformants. These results indicate that MdMADS2 The transgenic apples did not differ from the non-transformants in the nature of the fruit, and only a change in the water, such as sewage, rolling, and torsion was found (Fig. 6).

Figure 112007004355312-PAT00001
Figure 112007004355312-PAT00001

본 발명의 과수작물 제조 방법은 MdMADS2 유전자의 발현을 조절함으로써 수세안정화 작업을 수행하지 않고도 과수의 수형 변화를 조절할 수 있다. 또한 수형 변화된 과수의 과실은 야생형 과수의 과실과 차이가 없으므로 본 발명의 제조 방법은 수세안정화 작업에 투여되는 작업 시간 및 과수작물 재배 시 노동력을 절감시킴 으로 경쟁력 있는 우수한 과수작물 품종을 개발하는데 유용하게 이용될 수 있으며, 독특한 모양의 관상용 나무를 제조하는데 유용하다. In the method of manufacturing the fruit crops of the present invention, by controlling the expression of the MdMADS2 gene, it is possible to control the water change of the fruit tree without performing the flush stabilization work. In addition, since the fruit of the fruit-changed fruit is not different from the fruit of the wild fruit, the manufacturing method of the present invention is useful in developing competitive varieties of fruit crops by reducing the working time and the labor force in the cultivation of fruit crops, which are administered to flush stabilization work. It can be used and is useful for producing a unique shaped ornamental tree.

<110> Dongbu Hannong Chemicals Co., Ltd. <120> The production of fruit for transforming tree form by using MADS-Box gene <130> 6p-09-51 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HindIII sense primer <400> 1 aagcttatgg ggaggggaag 20 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> XbaI antisense primer <400> 2 tctagactat tcattaaggt ggcg 24 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7 primer <400> 3 taatacgact cactataggg 20 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SP6 primer <400> 4 tatttaggtg acactatag 19 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII gene sense primer <400> 5 gaggctattc ggctatgact g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII antisense primer <400> 6 atcgggagcg gcgataccgt a 21 <210> 7 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> MdMADS2 gene sequence <400> 7 gtcactcata tatagacaga gaaggagaga gaccagaccc ctaccttaga gagagagaga 60 gagcagaagc catctgtgtg tcaactggtt ctttctctcc catttttctt ggtttcttgg 120 tgggatttct ggtttctcta aactaagaga tcagttcagc aggaacaacc gtatatatat 180 tactaggatt attaattatt tatttataat aataaataat tgttagagag attatgggga 240 ggggaagggt gcagctgaag agaattgaga acaagatcaa caggcaggtg accttctcaa 300 agagaaggtc ggggctgatg aagaaagctc atgagatttc tgtgctttgt gatgctgagg 360 ttgctttgat tatcttctcc accaagggca agctctttga gtactccaat gattcctgca 420 tggaaaggat cctggaaagg tacgaaagat actcatatac agagaggcag cttcttgcaa 480 atgataatga atccactgga agctggactc tggaacatgc aaagctcaag gctagggtgg 540 aggttttaca aagaaatcaa agacactata tgggagaaga tctccaatcc ttaagtctca 600 aagagcttca aaatttagag caacagcttg attctgcact gaagcacata aggtcaagaa 660 agaaccaagt tatgtacgaa tcgatttctg agctccagaa gaaggataag gcattgcagg 720 agcaaaacaa cttgctggca aagaaggtga aggagaagga gaacgcagta gctcaacagg 780 cccaattgga gcatgtgcag gagcagaggt tgaactcctc ttcctccctt cttccacggg 840 cattgcagtc cttgaatttc ggcagcgggt ccaattacca ggccattaga tcaagtgaag 900 gaataccagg agataatcag cagtatggag atgaaacccc aactccacat agacctaaca 960 tgctgctgcc cgcttggatc gtccgccacc ttaatgaata gaagaattca tcaccatgaa 1020 ataatattat ctccaaaggg aataatatta tgtgacatca attaatcaag taaacatatt 1080 atacttatat atatatatat atatatatct atatatctat accaagaaat taattggtaa 1140 tgtgcatgat gaaaacccta gactcgatct atctctaaat gtgtatcgta tgttggaatt 1200 cattaatata tcttaagggc ttgtttggta 1230 <110> Dongbu Hannong Chemicals Co., Ltd. <120> The production of fruit for transforming tree form by using          MADS-Box gene <130> 6p-09-51 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HindIII sense primer <400> 1 aagcttatgg ggaggggaag 20 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> XbaI antisense primer <400> 2 tctagactat tcattaaggt ggcg 24 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> T7 primer <400> 3 taatacgact cactataggg 20 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SP6 primer <400> 4 tatttaggtg acactatag 19 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII gene sense primer <400> 5 gaggctattc ggctatgact g 21 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII antisense primer <400> 6 atcgggagcg gcgataccgt a 21 <210> 7 <211> 1230 <212> DNA <213> Artificial Sequence <220> <223> MdMADS2 gene sequence <400> 7 gtcactcata tatagacaga gaaggagaga gaccagaccc ctaccttaga gagagagaga 60 gagcagaagc catctgtgtg tcaactggtt ctttctctcc catttttctt ggtttcttgg 120 tgggatttct ggtttctcta aactaagaga tcagttcagc aggaacaacc gtatatatat 180 tactaggatt attaattatt tatttataat aataaataat tgttagagag attatgggga 240 ggggaagggt gcagctgaag agaattgaga acaagatcaa caggcaggtg accttctcaa 300 agagaaggtc ggggctgatg aagaaagctc atgagatttc tgtgctttgt gatgctgagg 360 ttgctttgat tatcttctcc accaagggca agctctttga gtactccaat gattcctgca 420 tggaaaggat cctggaaagg tacgaaagat actcatatac agagaggcag cttcttgcaa 480 atgataatga atccactgga agctggactc tggaacatgc aaagctcaag gctagggtgg 540 aggttttaca aagaaatcaa agacactata tgggagaaga tctccaatcc ttaagtctca 600 aagagcttca aaatttagag caacagcttg attctgcact gaagcacata aggtcaagaa 660 agaaccaagt tatgtacgaa tcgatttctg agctccagaa gaaggataag gcattgcagg 720 agcaaaacaa cttgctggca aagaaggtga aggagaagga gaacgcagta gctcaacagg 780 cccaattgga gcatgtgcag gagcagaggt tgaactcctc ttcctccctt cttccacggg 840 cattgcagtc cttgaatttc ggcagcgggt ccaattacca ggccattaga tcaagtgaag 900 gaataccagg agataatcag cagtatggag atgaaacccc aactccacat agacctaaca 960 tgctgctgcc cgcttggatc gtccgccacc ttaatgaata gaagaattca tcaccatgaa 1020 ataatattat ctccaaaggg aataatatta tgtgacatca attaatcaag taaacatatt 1080 atacttatat atatatatat atatatatct atatatctat accaagaaat taattggtaa 1140 tgtgcatgat gaaaacccta gactcgatct atctctaaat gtgtatcgta tgttggaatt 1200 cattaatata tcttaagggc ttgtttggta 1230  

Claims (15)

1) MdMADS2(U78948) 유전자를 포함하는 발현벡터를 제조하는 단계;1) preparing an expression vector comprising the MdMADS2 (U78948) gene; 2) 단계 1)의 발현벡터를 목본식물세포에 도입하여 상기 목본식물세포를 형질전환하는 단계; 및2) transforming the woody plant cells by introducing the expression vector of step 1) into woody plant cells; And 3) 단계 2)의 형질전환된 목본 식물 세포를 조직 배양하여 재분화하는 단계를 포함하는 것을 특징으로 하는 수형 변형된 목본식물 제조 방법.3) A method for producing a modified tree plant, characterized in that it comprises the step of tissue culture of the transformed wood plant cells of step 2). 제 1항에 있어서, 단계 2)의 도입 방법은 아그로박테리움을 이용하는 방법, 유전자 총(gene gun) 방법, 전기투입법(electroporation), 현미주사법(microinjection), 직접 DNA 흡수법인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the introduction method of step 2) is a method using Agrobacterium, a gene gun method, an electroporation method, a microinjection method, or a direct DNA absorption method. Way. 제 1항에 있어서, 상기 수형 변형은 하수 현상, 롤링 현상 또는 가지 비틀림인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the male deformation is sewage, rolling, or branch twist. 제 1항에 있어서, 상기 목본식물은 현화식물인 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the tree plant is a flowering plant. 제 4항에 있어서, 상기 현화식물은 장미과인 것을 특징으로 하는 제조 방법.The method according to claim 4, wherein the flowering plant is rosaceae. 제 5 항에 있어서, 상기 장미과는 조팝나무아과, 장미아과, 앵도아과 또는 배나무아과인 것을 특징으로 하는 제조 방법.6. The method according to claim 5, wherein the rosaceae is Zapaceae, Rosaceae, Rhododendron or Pear subfamily. 제 6항에 있어서, 상기 조팝나무아과는 조팝나무, 꼬리조팝나무 또는 국수나무인 것을 특징으로 하는 제조 방법.7. The method according to claim 6, wherein the meadowsweet subfamily is meadowsweet, assorted poplar or noodle. 제 6항에 있어서, 상기 장미아과는 병아리 꽃나무, 황매화, 나무딸기, 곰딸기, 흰인가목, 해당화, 장미 또는 찔레나무인 것을 특징으로 하는 제조 방법.7. The method according to claim 6, wherein the rosaceae is a chick flower, a yellow plum, a raspberry, a bear, a white-eyed tree, a flower, a rose or a brier. 제 6항에 있어서, 상기 앵도아과는 체리나무, 앵두나무, 복숭아나무, 자두나무, 매길나무 또는 살구나무인 것을 특징으로 하는 제조 방법.The method according to claim 6, wherein the adoaceae is cherry, cherry, peach, plum, plum or apricot. 제 6항에 있어서, 상기 배나무아과는 사과나무, 배나무 또는 모과나무인 것을 특징으로 하는 제조 방법.The method according to claim 6, wherein the pear tree subfamily is an apple tree, a pear tree or a Chinese quince tree. 제 10항에 있어서, 상기 사과는 후지 품종, 갈라 품종, 매킨토시위직 품종, 쓰가루 품종, 홍로 품종, 레드데리셔스 품종, 골든 데리셔스 품종 또는 변이품종인 것을 특징으로 하는 제조 방법.The method of claim 10, wherein the apple is a Fuji variety, a gala variety, a Macintosh variety, a Tsugaru variety, a Hongro variety, a Red Daricious variety, a Golden Daricious variety or a mutant variety. 제 1항에 있어서, 단계 1)의 MdMADS2(U78948)의 서열은 서열번호 7인 것을 특징으로 하는 제조 방법.The method of claim 1, wherein the sequence of MdMADS2 (U78948) of step 1) is SEQ ID NO: 7. MdMADS2 유전자가 형질도입되어 수형 변화를 일으키는 과수작물 형질전환 식물체. An orchard crop transformed plant in which the MdMADS2 gene is transduced to cause a maleoid change. 제 13항에 있어서, 상기 과수작물은 사과, 배 또는 복숭아인 것을 특징으로 하는 형질전환 식물체.The transgenic plant of claim 13, wherein the fruit crop is an apple, pear or peach. 제 14항에 있어서, 상기 사과는 후지 품종, 갈라 품종, 매킨토시위직 품종, 쓰가루 품종, 홍로 품종, 레드데리셔스 품종, 골든 데리셔스 품종 또는 변이품종인 것을 특징으로 하는 형질전환 식물체.15. The transgenic plant of claim 14, wherein the apple is a Fuji variety, a gala variety, a Macintosh variety, a Tsugaru variety, a erythroma variety, a Red Daricious variety, a Golden Daricious variety, or a mutant variety.
KR1020070004711A 2007-01-16 2007-01-16 the production of fruit tree for transforming tree form by using MADS-Box gene KR100860199B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070004711A KR100860199B1 (en) 2007-01-16 2007-01-16 the production of fruit tree for transforming tree form by using MADS-Box gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070004711A KR100860199B1 (en) 2007-01-16 2007-01-16 the production of fruit tree for transforming tree form by using MADS-Box gene

Publications (2)

Publication Number Publication Date
KR20080067435A true KR20080067435A (en) 2008-07-21
KR100860199B1 KR100860199B1 (en) 2008-09-24

Family

ID=39821695

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070004711A KR100860199B1 (en) 2007-01-16 2007-01-16 the production of fruit tree for transforming tree form by using MADS-Box gene

Country Status (1)

Country Link
KR (1) KR100860199B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935672B (en) * 2010-02-08 2012-05-30 重庆市农业科学院 Agrobacterium rhizogenes transformation method for living body growth cone of woody plant
CN103190344A (en) * 2013-03-29 2013-07-10 中国林业科学研究院林业研究所 Tissue culture method of fargesii
CN106416883A (en) * 2016-09-13 2017-02-22 塔里木大学 Method for promoting generation of flower buds of apple in sandy land
CN109220303A (en) * 2018-09-26 2019-01-18 濮阳市林业科学院 Four major branch peach are tree-like and pruning method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990030639A (en) * 1997-10-02 1999-05-06 정명식 Flowering-time regulating genes, vectors comprising the same and plants transformed thereby
JP3943321B2 (en) 2000-10-30 2007-07-11 独立行政法人農業生物資源研究所 Improvement of flower pattern of plants targeting MADS box gene
KR100588713B1 (en) * 2004-02-02 2006-06-12 주식회사 동부한농 Fruit and seed development regulating gene
JP2006081493A (en) 2004-09-17 2006-03-30 Chiba Univ Gene modifying form of flower

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935672B (en) * 2010-02-08 2012-05-30 重庆市农业科学院 Agrobacterium rhizogenes transformation method for living body growth cone of woody plant
CN103190344A (en) * 2013-03-29 2013-07-10 中国林业科学研究院林业研究所 Tissue culture method of fargesii
CN103190344B (en) * 2013-03-29 2015-01-07 中国林业科学研究院林业研究所 Tissue culture method of fargesii
CN106416883A (en) * 2016-09-13 2017-02-22 塔里木大学 Method for promoting generation of flower buds of apple in sandy land
CN109220303A (en) * 2018-09-26 2019-01-18 濮阳市林业科学院 Four major branch peach are tree-like and pruning method

Also Published As

Publication number Publication date
KR100860199B1 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
Kuluev et al. Effect of ectopic expression of NtEXPA5 gene on cell size and growth of organs of transgenic tobacco plants
KR100860199B1 (en) the production of fruit tree for transforming tree form by using MADS-Box gene
CN101824433B (en) Specific gene controlling growth of Arabidopsis vascular bundle and application thereof
CN112342236B (en) Application of rice histone methyltransferase in enhancing crop drought resistance and improving single plant yield
CN107299103B (en) Thick boisiana IpASR gene and its coding albumen and application
CN109971766A (en) A kind of and plant stress tolerance-associated protein PwRBP1 and its encoding gene and application
AU2007237251B2 (en) Method to produce sterile male flowers and partenocarpic fruits by genetic silencing, associated sequences and vectors containing said sequences
CN109880830B (en) Peach polypeptide hormone synthetic gene PpRGF1 and application thereof
CN117004614A (en) Gene GhTPR_A12 for regulating cotton fiber elongation and application thereof
AU2016200894A1 (en) Genetic engineering method and material for increasing plant yield
JP3283850B2 (en) Flower regulation gene and flower regulation method
CN114480414B (en) Method for enhancing cold resistance of plants or cultivating high-cold-resistance plants
JP5403206B2 (en) Method for modifying plant morphology
CN110627887B (en) Application of SlTLFP8 protein and related biological material thereof in regulation and control of tomato drought resistance
US7405346B2 (en) Gene capable of imparting salt stress resistance
EP0814161A1 (en) Genetic control of polar auxin transport in plants and manipulation of plant growth, architecture and morphogenesis
CN114634560B (en) Cotton GhIQD21 gene sequence, cloning and application thereof
KR102445701B1 (en) Garden-mum without the need for plant growth regulator treatment
US6534695B2 (en) Identification and characterization of a Dwarf and Late Flowering 2 phenotype (DLF2) in Arabidopsis
CN117402892A (en) Pear Pybbx24 gene mutation and application of dwarfing function thereof
CN118028360A (en) Application of AHL10 gene in negative regulation of salt tolerance of plants
CN114957425A (en) Petunia PhSPL9-like transcription factor and application thereof
KR101360542B1 (en) RICE OsSERK1 GENE AND TRANSGENIC RICE TRANSFORMED WITH THE SAME
KR100965422B1 (en) Stress-Resistant Plants Transformed with AP2 Apetala 2 Domain-Containing Genes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110906

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee