KR20080059924A - 씨모스 이미지 센서의 제조 방법 - Google Patents

씨모스 이미지 센서의 제조 방법 Download PDF

Info

Publication number
KR20080059924A
KR20080059924A KR1020060133869A KR20060133869A KR20080059924A KR 20080059924 A KR20080059924 A KR 20080059924A KR 1020060133869 A KR1020060133869 A KR 1020060133869A KR 20060133869 A KR20060133869 A KR 20060133869A KR 20080059924 A KR20080059924 A KR 20080059924A
Authority
KR
South Korea
Prior art keywords
gas
film
photoresist
sccm
etching
Prior art date
Application number
KR1020060133869A
Other languages
English (en)
Inventor
민병승
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020060133869A priority Critical patent/KR20080059924A/ko
Publication of KR20080059924A publication Critical patent/KR20080059924A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31127Etching organic layers
    • H01L21/31133Etching organic layers by chemical means
    • H01L21/31138Etching organic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 반도체 제조 기술에 관한 것으로 특히, 반도체 소자 제조 공정 중, 포토다이오드의 집광율을 증가시키는 씨모스 이미지 센서 및 그 제조 방법에 관한 것이다. 이를 위해 본 발명은, 기판 상에 포토다이오드를 형성하는 단계, 상기 포토다이오드 상에 층간절연막을 형성하는 단계, 상기 층간절연막을 식각하여 상기 포토다이오드를 노출시키는 오픈영역을 형성하는 단계, 상기 오픈영역의 측벽면에 측벽반사막을 형성하는 단계, 상기 오픈영역에 포토레지스트를 매립하는 단계, 상기 포토레지스트를 일부 노출시키는 하드마스크 패턴을 형성하는 단계, 노출된 상기 포토레지스트를 제거하는 단계, 상기 포토레지스트 패턴이 제거된 결과물 상에 패시베이션막을 형성하는 단계 및 상기 패시베이션막 상에 컬러필터를 형성하는 단계를 포함하는 씨모스 이미지 센서의 제조 방법을 제공한다.
포토다이오드, 이미지센서, 집광, 측벽반사막, 컬러필터

Description

씨모스 이미지 센서의 제조 방법{METHOD FOR FABRICATING CMOS IMAGE SENSOR}
도 1은 통상의 씨모스 이미지센서에서 1개의 포토다이오드(PD)와 4개의 모스(MOS) 트랜지스터로 구성된 단위화소(Unit Pixel)를 도시한 회로도.
도 2는 종래기술에 따라 형성된 씨모스 이미지 센서의 단면도.
도 3은 본 발명의 제1 실시예에 따라 제조된 씨모스 이미지 센서를 나타낸 단면도.
도 4는 본 발명의 제2 실시예에 따라 제조된 씨모스 이미지 센서를 나타낸 단면도.
도 5A 내지 도 5E는 본 발명의 제1 실시예에 따른 씨모스 이미지 센서의 제조 방법을 나타낸 순서도.
도 6A 내지 도 6G는 본 발명의 제2 실시예에 따른 씨모스 이미지 센서의 제조 방법을 나타낸 순서도.
* 도면의 주요부분에 대한 부호의 설명 *
201 : 반도체 기판 202 : 소자분리막
203A : 층간절연막 204 : 금속배선
208 : 측벽반사막 210A : 제2 하드마스크
212 : 에어갭영역 205 : 제1 하드마스크
213 : 패시베이션막 214 : 컬러필터
215 : 마이크로렌즈
본 발명은 반도체 제조 기술에 관한 것으로 특히, 반도체 소자 제조 공정 중, 씨모스(CMOS) 이미지 센서(Image Sensor)의 제조 공정에 관한 것이다.
일반적으로, 이미지 센서는 디지털 카메라, 휴대폰 등의 가정용 제품이나, 병원에서 사용되는 내시경, 지구를 돌고 있는 인공위성의 망원경에 이르기까지 매우 광범위한 분야에서 사용되고 있으며, 다양한 이미지 센서중, 씨모스 제조 기술로 생산되는 씨모스(CMOS) 이미지 센서는 광학적 이미지를 전기적 신호로 변환시키는 소자로서, 화소수 만큼 모스(MOS)트랜지스터를 만들고 이것을 이용하여 차례차례 출력을 검출하는 스위칭 방식을 채용하고 있다. 씨모스 이미지 센서는, 종래 이미지 센서로 널리 사용되고 있는 씨씨디(CCD) 이미지센서에 비하여 구동 방식이 간편하고 다양한 스캐닝 방식의 구현이 가능하며, 신호처리 회로를 단일칩에 집적할 수 있어 제품의 소형화가 가능할 뿐만 아니라, 호환성의 씨모스 기술을 사용하므로 제조 단가를 낮출 수 있고, 전력 소모 또한 크게 낮다는 장점을 지니고 있어서 휴대폰, PC, 감시 카메라 등의 저가, 저전력을 요하는 분야에 쓰이고 있다.
도 1은 통상의 씨모스 이미지센서에서 1개의 포토다이오드(PD)와 4개의 모스(MOS) 트랜지스터로 구성된 단위화소(Unit Pixel)를 도시한 회로도로서, 빛을 받아 광전하를 생성하는 포토다이오드(10)와, 포토다이오드(10)에서 모아진 광전하를 플로팅확산영역(12)으로 운송하기 위한 트랜스퍼 트랜지스터(11)와, 원하는 값으로 플로팅 확산영역의 전위를 세팅하고 전하를 배출하여 플로팅 확산영역(12)를 리셋시키기 위한 리셋 트랜지스터 (13)와, 플로팅 확산영역의 전압이 게이트로 인가되어 소스 팔로워 버퍼 증폭기(Source Follower Buffer Amplifier) 역할을 하는 드라이브 트랜지스터(14)와, 스위칭(Switching) 역할로 어드레싱(Addressing) 역할을 수행하는 셀렉트 트랜지스터(15)로 구성된다. 단위 화소 밖에는 출력신호(Output Signal)를 읽을 수 있도록 로드(load) 트랜지스터(16)가 형성된 모습을 도시하고 있다.
도 2는 종래기술에 따라 형성된 씨모스 이미지 센서의 단면도이다.
기존의 씨모스 이미지 센서의 경우 줄어든 디자인 룰에 의해 배선층 및 층간막이 증가하고, 이로 인한 굴절률의 차이에 따라 입사광의 왜곡이 심화되고 있다.
뿐만 아니라, 듀얼 다마신(Dual Damascene) 공정을 이용한 경우, 층간막과 다른 굴절율을 갖는 식각정지막이나 이온주입 방지막을 이용하게되므로 빛의 방향이 변화하게 되어 인접한 픽셀로 입사하게 되는 결함이 발생하게 된다.
또한, 층간막 형성시 플라즈마, 세정 및 열 공정을 수행하므로 인해 층간막 의 굴절률에 변화가 발생하게 되어 인접한 포토다이오드로 입사광이 입사하게 되는 문제점이 발생하게 된다. 그리고, 층간막이 다층화 되므로 인해 층간막 내에 결함이 발생했을 경우, 이 결함으로 인해 입사광이 난반사된다.
도 2를 참조하면, 입사광①은 정상적으로 포토다이오드(PD1)에 집광되지만, 입사광②, 입사광③ 및 입사광④는 그렇지 못함을 볼 수 있다. 이러한 문제점은 위에서 설명한 문제점 및 결함에 의해 발생되는 것으로써, 이들은 크로스 토크(cross talk)와 같은 씨모스 이미지 센서의 센싱 능력(sensitivity)을 저해하는 요인으로 작용한다.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 포토다이오드의 집광율을 증가시키는 씨모스 이미지 센서 및 그 제조 방법을 제공하는 것을 제1 목적으로 한다.
그리고, 크로스 토크 문제를 해결하는 씨모스 이미지 센서 및 그 제조 방법을 제공하는 것을 제2 목적으로 한다.
상기의 목적을 달성하기 위한 본 발명의 제1 측면에 따르면, 기판 상에 포토다이오드를 형성하는 단계, 상기 포토다이오드 상에 층간절연막을 형성하는 단계, 상기 층간절연막을 식각하여 상기 포토다이오드를 노출시키는 오픈영역을 형성하는 단계, 상기 오픈영역의 측벽면에 측벽반사막을 형성하는 단계, 상기 오픈영역에 포토레지스트를 매립하는 단계, 상기 포토레지스트를 일부 노출시키는 하드마스크 패턴을 형성하는 단계, 노출된 상기 포토레지스트를 제거하는 단계, 상기 포토레지스트 패턴이 제거된 결과물 상에 패시베이션막을 형성하는 단계 및 상기 패시베이션막 상에 컬러필터를 형성하는 단계를 포함하는 씨모스 이미지 센서의 제조 방법을 제공한다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.
도 3은 본 발명의 제1 실시예에 따라 제조된 씨모스 이미지 센서를 나타낸 단면도이다.
도 3을 참조하면, 반도체 기판(301)에 로코스(LOCOS) 또는 STI(Shallow Trench Isolation) 공정을 진행하여 소자분리막(302)이 형성되고, 소자분리막(302)과 인접하게 포토다이오드(PD1, PD2)가 형성된다.
포토다이오드(PD1, PD2) 상부에는 하나의 층으로 이루어진 광투과막(309)과 광투과막(309)의 측벽에 형성되어 입사광이 인접하는 픽셀 - 인접 포토다이오드 - 에 조사되는 것을 억제하기 위한 측벽 반사막(308)과 컬러필터(310)와 마이크로렌즈(311)가 형성되어 있다. 그리고, 광투과막(309)과 컬러필터(310) 사이에는 패시베이션막으로써, 질화막 또는 산화막 또는 이들의 적층막이 형성될 수 있다.
광투과막(309)은 복수층으로 이루어진 층간절연막(303A)을 리세스(recess)시 켜 형성된 오픈영역에 포토레지스트를 매립시켜 형성되는 것이 바람직한데, 기존과 비교할 경우 단층의 층간막이라 할 수 있다. 즉, 기존의 적층구조를 갖는 층간막이 아닌 단층의 층간막으로써, 광이 입사되는 과정에 발생할 수 있는 문제점을 해결한다.
측벽 반사막(308)은 질화막인 것이 바람직한데, 질화막은 입사되는 광의 입사각이 수직에 가까우면 광을 투과하고, 수평에 가까우면 반사시킨다. 이를 통해 입사광이 해당하는 포토다이오드(PD1 또는 PD2)에 입사될 수 있도록 반사시킨다.
컬러필터(310)는 안료를 함유하고 있는 포토레지스트 패턴으로 형성된다.
이하 금속배선(304), 층간절연막(303A)과 같은 일반적으로 씨모스 이미지 센서가 포함하고 있는 부분에 대한 언급은 생략하기로 한다.
다음으로, 도 4는 본 발명의 제2 실시예에 따라 제조된 씨모스 이미지 센서를 나타낸 단면도이다.
도 4를 참조하면, 반도체 기판(401)에 로코스(LOCOS) 또는 STI(Shallow Trench Isolation) 공정을 진행하여 소자분리막(402)이 형성되고, 소자분리막(402)과 인접하게 포토다이오드(PD3, PD4)가 형성된다.
포토다이오드(PD3, PD4) 상부에는 하나의 층으로 이루어진 어에갭(air gap)영역(412)과 에어갭영역(412)의 측벽에 형성되어 입사광이 인접하는 픽셀 - 인접 포토다이오드 - 에 조사되는 것을 억제하기 위한 측벽 반사막(408)과 컬러필터(414)와 마이크로렌즈(415)가 형성되어 있다.
에어갭영역(412)은 복수층으로 이루어진 층간절연막(403A)을 리세스시켜 형 성된 오픈영역이 공기가 채워져 있는 영역으로써, 위의 광투과막(도3의 309)과 같이 기존의 적층구조를 갖는 층간막이 아닌 단층의 공간으로써, 광이 입사되는 과정에 발생할 수 있는 문제점을 해결한다. 또한, 에어갭영역(412)을 형성하기 위해 어에갭영역(412) 상에 보호막(416)이 형성된다. 보호막(416)은 저온산화막인 것이 바람직하다.
측벽 반사막(408)은 질화막인 것이 바람직한데, 질화막은 입사되는 광의 입사각이 수직에 가까우면 광을 투과하고, 수평에 가까우면 반사시킨다. 이를 통해 입사광이 해당하는 포토다이오드(PD3 또는 PD4)에 입사될 수 있도록 반사시킨다.
컬러필터(414)는 안료를 함유하고 있는 포토레지스트 패턴으로 형성된다.
이하 금속배선(404), 층간절연막(403A) 및 패시베이션막(413)과 같은 일반적으로 씨모스 이미지 센서가 포함하고 있는 부분에 대한 언급은 생략하기로 한다.
도 5A 내지 도 5E는 본 발명의 제1 실시예에 따른 씨모스 이미지 센서의 제조 방법을 나타낸 순서도로써, 도 3에 대응되는 제조 방법이라 할 수 있다.
우선, 도 5A에 도시된 바와 같이, 반도체 기판(101)에 소자분리막(102)을 형성한다.
이때, 반도체 기판(101)은 p+형 기판에 p에피층이 형성된 것으로써, 고농도의 p+형 기판 상에 저농도의 p에피층을 사용하는 이유는 첫째, 저농도의 p에피층이 존재하므로 포토다이오드의 공핍영역(Depletion region)을 크고, 깊게 증가시킬 수 있어 광전하를 모으기 위한 포토다이오드의 능력(ability)을 증가시킬 수 있고, 둘째, p에피층의 하부에 고농도의 p+형 기판을 갖게되면, 이웃하는 단위화소(pixel) 로 전하가 확산되기 전에 이 전하가 빨리 재결합(Recombination)되기 때문에 광전하의 불규칙 확산(Random Diffusion)을 감소시켜 광전하의 전달 기능 변화를 감소시킬 수 있기 때문이다.
그리고, 본 도면에서는 소자분리막(102)을 STI(Shallow Trench Isolation) 공정을 통하여 형성하였으나, 실리콘국부산화(LOCOS) 방식등으로도 형성할 수 있다.
이어서, 게이트절연막, 게이트전도막을 순차적으로 증착한 후, 선택적 식각하여 게이트전극을 형성한다.
이어서, 게이트전극의 상부 중 일부를 덮고, 포토다이오드가 형성될 광감지영역을 오픈하는 이온주입 방지막을 형성한후, 이를 이용하여 포토다이오드(PD1, PD2)를 형성한다.
이어서, 포토다이오드(PD1, PD2)이 형성된 기판에 산화막으로 층간절연막(103)을 형성한다. 이 층간절연막(103)은 복수층으로 이루어지며, 각 층마다 금속배선(104)이 형성된다. 일반적으로 씨모스 이미지 센서는 2~4개층의 금속배선(104)을 형성하는 것이 일반적으로, 본 도면에서는 2개 층의 금속배선(104)만을 도시한 것이다.
이어서, 층간절연막(103) 상부에 하드마스크(105)로 TEOS(tetra ethyl ortho silicate)막을 형성한다.
다음으로, 도 5B에 도시된 바와 같이, 하드마스크(105) 상에 포토레지스트 패턴(106)을 형성한다.
포토레지스트 패턴(106)은 적어도 포토다이오드(PD1, PD2)의 폭보다 좁지 않는 것이 바람직하다. 더욱 바람직하게는 후에 형성될 측벽반사막의 두께를 고려했을때, 적어도 포토다이오드(PD1, PD2)의 폭과 같거나 더 커야 한다.
이어서, 포토레지스트 패턴(106)을 식각장벽으로 식각하여 층간절연막(103)을 리세스한다. 이때, 포토다이오드(PD1, PD2) 표면에 데미지가 가해질 수 있기 때문에 일정 두께로 포토다이오드(PD1, PD2) 상부의 층간절연막(103)은 잔류시킬 수 있다. 또는 콘택홀 형성시 미스얼라인에 의해 포토다이오드(PD1, PD2) 또는 소스/드레인 영역에 데미지를 방지하기 위해 형성한 식각정지막(도면부호는 없으나, 이하 설명의 편의를 위해 'AA'라 표기함) - 질화막 - 상부에서 멈추게 할 수도 있다.
그리고, 층간절연막(103)의 식각은 C4F8 또는 C2F6/O2/Ar/N2의 혼합가스를 이용한 건식식각으로 진행한다. 이때, 층간절연막(103)과 식각정지막(AA)간의 식각선택비를 높게 하는 레시피(recipe) 비율을 선택하여 진행할 수 있다. 이를 위해 공정을 위의 식각가스를 이용한 멀티스텝(multi step)으로 진행할 수 있는데, 제1 스텝:제2 스텝의 O2가스의 비율을 제1 스텝 > 제2스텝으로 선택하여 질화막 상부에서 보다 수월하게 식각멈춤이 일어날 수 있도록 한다. 즉, 제1 스텝에서는 O2의 양을 감소시켜 식각 속도를 빠르게 하고, 제2 스텝에서는 O2의 양을 증가시켜 식각정지막(AA) 상에서 식각이 멈추도록 유도하는 것이다.
또한, 위의 C4F8과 C2F6는 CXFY 계열의 식각가스 중 하나일 뿐이고, 어느 하나 를 선택하여 식각가스로 사용할 수 있다. 또한, CHF3/CF4의 혼합가스를 식각가스로 사용할 수 있으며, 위의 CXFY 계열의 가스와 CHF3/CF4의 가스와 혼합하여 사용할 수도 있다.
층간절연막(103) 식각시의 공정 조건은 다음과 같다.
각 식각 가스의 유량은 CXFY 가스가 2~200sccm, O2가스가 2~100sccm, Ar가스가 10~2000sccm, N2가스가 2~500sccm 및 CHF3가스가 2~200sccm이다. 그리고, 저 및 중 용량의 플라즈마(low and middle density plasma)를 이용하여 진행하며, 10~500mT의 압력, 500~3000W의 소스파워(source power) 및 100~2000W의 바이어스 파워(bias power)로 진행한다.
이어서, 포토레지스트 패턴(106)을 제거한다.
다음으로, 도 5C에 도시된 바와 같이, 오픈영역(107)이 형성된 결과물에 측벽반사막(108)을 형성한다. 이때, 측벽반사막(108)은 질화막인 것이 바람직하며, 그 두께는 질화막이 형성된 상태에서 오픈영역(107)의 폭이 포토다이오드(PD1, PD2)의 폭보다 작지 않도록 형성되어야 한다. 이때, 오픈영역(107)의 측벽면에만 측벽반사막(108)을 형성할 수도 있다.
다음으로, 도 5D에 도시된 바와 같이, 오픈영역(107) 내부에 광투과막(109)을 매립한다. 광투과막(109)은 포토레지스트로 형성하는 것이 바람직하다.
이어서, 매립 후에는 평탄화를 위해 에치백(etch back) 또는 화학적기계적연마 공정을 진행한다.
다음으로, 도 5E에 도시된 바와 같이, 오픈영역(107) 내부에 광투과막(109)이 매립된 결과물 상에 컬러필터(108)를 형성한다.
컬러필터(108) 하부에는 패시베이션막과 오버코팅(over coating)층을 개재시킬 수 있고, 컬러필터(108)는 안료를 함유하고 있는 포토레지스트 패턴으로 형성된다.
이어서, 컬러필터(108) 상에는 마이크로렌즈(111)를 형성하여 씨모스 이미지 센서를 제조한다.
이렇게 제조된 씨모스 이미지 센서는 입사광이 입사되는 과정에서 복층의 광투과막 - 층간절연막 - 으로 인해 불량이 발생했던 종래의 문제점을 단층으로 이루어진 광투과막(109)으로 해결한다. 또한, 입사광②와 같이 인접 포토다이오드(PD2)로 조사되는 문제점에 대해서도 측벽 반사막(108)으로 해결한다.
다음으로, 도 6A 내지 도 6G는 본 발명의 제2 실시예에 따른 씨모스 이미지 센서의 제조 방법을 나타낸 순서도로써, 도 4에 대응되는 제조 방법이라 할 수 있다.
우선, 도 6A에 도시된 바와 같이, 반도체 기판(201)에 소자분리막(202)을 형성한다.
이때, 반도체 기판(201)은 p+형 기판에 p에피층이 형성된 것으로써, 고농도의 p+형 기판 상에 저농도의 p에피층을 사용하는 이유는 첫째, 저농도의 p에피층이 존재하므로 포토다이오드의 공핍영역(Depletion region)을 크고, 깊게 증가시킬 수 있어 광전하를 모으기 위한 포토다이오드의 능력(ability)을 증가시킬 수 있고, 둘 째, p에피층의 하부에 고농도의 p+형 기판을 갖게되면, 이웃하는 단위화소(pixel)로 전하가 확산되기 전에 이 전하가 빨리 재결합(Recombination)되기 때문에 광전하의 불규칙 확산(Random Diffusion)을 감소시켜 광전하의 전달 기능 변화를 감소시킬 수 있기 때문이다.
그리고, 본 도면에서는 소자분리막(202)을 STI(Shallow Trench Isolation) 공정을 통하여 형성하였으나, 실리콘국부산화(LOCOS) 방식등으로도 형성할 수 있다.
이어서, 게이트절연막, 게이트전도막을 순차적으로 증착한 후, 선택적 식각하여 게이트전극을 형성한다.
이어서, 게이트전극의 상부 중 일부를 덮고, 포토다이오드가 형성될 광감지영역을 오픈하는 이온주입 방지막을 형성한후, 이를 이용하여 포토다이오드(PD3, PD4)를 형성한다.
이어서, 포토다이오드(PD3, PD4)가 형성된 기판에 산화막으로 층간절연막(203)을 형성한다. 이 층간절연막(203)은 복수층으로 이루어지며, 각 층마다 금속배선(204)이 형성된다. 일반적으로 씨모스 이미지 센서는 2~4개층의 금속배선(204)을 형성하는 것이 일반적으로, 본 도면에서는 2개 층의 금속배선(204)만을 도시한 것이다.
이어서, 층간절연막(203) 상부에 제1 하드마스크(205)로 TEOS(tetra ethyl ortho silicate)막을 형성한다.
다음으로, 도 6B에 도시된 바와 같이, 제1 하드마스크(205) 상에 포토레지스 트 패턴(206)을 형성한다.
포토레지스트 패턴(206)은 적어도 포토다이오드(PD3, PD4)의 폭보다 좁지 않는 것이 바람직하다. 더욱 바람직하게는 후에 형성될 측벽반사막의 두께를 고려했을때, 적어도 포토다이오드(PD3, PD4)의 폭과 같거나 더 커야 한다.
이어서, 포토레지스트 패턴(206)을 식각장벽으로 식각하여 층간절연막(203)을 리세스한다. 이때, 포토다이오드(PD3, PD4) 표면에 데미지가 가해질 수 있기 때문에 일정 두께로 포토다이오드(PD3, PD4) 상부의 층간절연막(203)을 잔류시킬 수 있다. 또는 콘택홀 형성시 미스얼라인에 의해 포토다이오드(PD3, PD4) 또는 소스/드레인 영역에 데미지를 방지하기 위해 형성한 식각정지막(도면부호는 없으나, 이하 설명의 편의를 위해 'BB'라 표기함) - 질화막 - 상부에서 멈추게 할 수도 있다.
그리고, 층간절연막(203)의 식각은 C4F8 또는 C2F6/O2/Ar/N2의 혼합가스를 이용한 건식식각으로 진행한다. 이때, 층간절연막(203)과 식각정지막(BB)간의 식각선택비를 높게 하는 레시피(recipe) 비율을 선택하여 진행할 수 있다. 이를 위해 공정을 위의 식각가스를 이용한 멀티스텝(multi step)으로 진행할 수 있는데, 제1 스텝:제2 스텝의 O2가스의 비율을 제1 스텝 > 제2스텝으로 선택하여 질화막 상부에서 보다 수월하게 식각멈춤이 일어날 수 있도록 한다. 즉, 제1 스텝에서는 O2의 양을 감소시켜 식각 속도를 빠르게 하고, 제2 스텝에서는 O2의 양을 증가시켜 식각정지막(BB) 상에서 식각이 멈추도록 유도하는 것이다.
또한, 위의 C4F8과 C2F6는 CXFY 계열의 식각가스 중 하나일 뿐이고, 어느 하나를 선택하여 식각가스로 사용할 수 있다. 또한, CHF3/CF4의 혼합가스를 식각가스로 사용할 수 있으며, 위의 CXFY 계열의 가스와 CHF3/CF4의 가스와 혼합하여 사용할 수도 있다.
층간절연막(203) 식각시의 공정 조건은 다음과 같다.
각 식각 가스의 유량은 CXFY 가스가 2~200sccm, O2가스가 2~100sccm, Ar가스가 10~2000sccm, N2가스가 2~500sccm 및 CHF3가스가 2~200sccm이다. 그리고, 저 및 중 용량의 플라즈마(low and middle density plasma)를 이용하여 진행하며, 10~500mT의 압력, 500~3000W의 소스파워(source power) 및 100~2000W의 바이어스 파워(bias power)로 진행한다.
이어서, 포토레지스트 패턴(206)을 제거한다.
다음으로, 도 6C에 도시된 바와 같이, 오픈영역(207)이 형성된 결과물에 측벽반사막(208)을 형성한다. 이때, 측벽반사막(208)은 질화막인 것이 바람직하며, 그 두께는 질화막이 형성된 상태에서 오픈영역(207)의 폭이 포토다이오드(PD3, PD4)의 폭보다 작지 않도록 형성되어야 한다. 이때, 오픈영역(207)의 측벽면에만 측벽반사막(208)을 형성할 수도 있다.
다음으로, 도 6D에 도시된 바와 같이, 오픈영역(207) 내부에 희생막(209)을 매립한다. 희생막(209)은 포토레지스트로 형성하는 것이 바람직하다.
이어서, 희생막(209) 매립 후에는 평탄화를 위해 에치백(etch back) 또는 화학적기계적연마 공정을 진행한다.
이어서, 희생막(209)이 형성된 결과물 상에 제2 하드마스크(210)를 형성한다. 제2 하드마스크(210)는 저온산화막(low tempercture oxide)으로 형성하는 것이 바람직하다.
다음으로, 도 6E에 도시된 바와 같이, 제2 하드마스크(210) 상에 포토레지스트 패턴(211)을 형성한다.
포토레지스트 패턴(211)은 적어도 희생막(209)의 일부가 노출될수 있는 폭을 갖고 있어야 한다. 즉, 포토레지스트 패턴(211)을 식각장벽으로 식각하였을때, 포토레지스트 패턴(211)을 기준으로 일측 또는 양측에서 희생막(209)이 노출되어야 한다.
이어서, 포토레지스트 패턴(211)을 식각장벽으로 제2 하드마스크(210)와 측벽반사막(208)의 일부를 식각하여 희생막(209)을 노출시킨다. 여기서, 측벽반사막(208)까지 식각하게 되면, 희생막(209)의 노출부위가 확장되기 때문에 손쉽게 희생막(209)을 제거할 수 있다.
제2 하드마스크(210)의 식각은 건식식각으로써, 플라즈마 식각 또는 RIE(reactive ion etching) 식각 - 건식 식각의 한 종류로써, 플라즈마 식각과 원리는 같으나 활성화된 이온(ion)을 이용해서 화학적 및 물리적 반응에 의해 식각하는 방법을 나타냄 - 방식으로 식각한다. 그리고, 두 식각 방식은 유사한 건식식각 공정이라서 동일한 공정 조건을 통해 진행한다.
제2 하드마스크(210) 식각시의 식각 가스는 C4F8 또는 C2F6/O2/Ar/N2의 혼합가스를 이용한다. 또한, 위의 C4F8과 C2F6는 CXFY 계열의 식각가스 중 하나일 뿐이고, 어느 하나를 선택하여 식각가스로 사용할 수 있다. 또한, CHF3/CF4의 혼합가스를 식각가스로 사용할 수 있으며, 위의 CXFY 계열의 가스와 CHF3/CF4의 가스와 혼합하여 사용할 수도 있다.
이어서, 공정 조건은 다음과 같다.
각 식각 가스의 유량은 CXFY 가스가 2~200sccm, O2가스가 2~100sccm, Ar가스가 10~2000sccm, N2가스가 2~500sccm 및 CHF3가스가 2~200sccm이다. 그리고, 저 및 중 용량의 플라즈마(low and middle density plasma)를 이용하여 진행하며, 10~500mT의 압력, 500~3000W의 소스파워(source power) 및 100~2000W의 바이어스 파워(bias power)로 진행한다.
그리고, 측벽반사막(208)의 식각은 제2 하드마스크(210)의 식각공정 조건과 동일하게 진행할 수 있고, 또는 다운 플로우(down flow) 방식으로 진행할 수 있는데, 이때는 CF4/O2의 혼합가스를 베이스(base)로 진행한다.
다음으로, 도 6F에 도시된 바와 같이, O2 가스를 이용하여 노출된 희생막(209)을 제거한다. 이로써 에어갭(air gap)영역(212)이 형성된다.
에어갭영역(212) 상부에는 제2 하드마스크(210A)만이 존재하게 된다. 이는 도 4F에 도시된 평면도를 보면 에어갭영역(212)의 측벽을 측벽반사막(208)이 감싸 고, 에어갭영역(212) 상부에는 제2 하드마스크(210A)가 존재하는 것을 알 수 있다.
그리고, 희생막(209) 제거시 포토레지스트 패턴(211)도 함께 제거된다. 이때의 식각은 O2가스로 진행한다.
희생막(209)의 제거는 처음에는 저온으로 진행하여 희생막(209)의 표면경화(hardening) 영역과 폴리머(polymer) 영역을 제거한다. 그후에 저온 또는 고온으로 진행하여 나머지 희생막(209)을 제거한다.
다음으로, 도 6G에 도시된 바와 같이, 패시베이션막(213)과 컬러필터(214) 및 마이크로렌즈(215)를 순차적으로 형성한다.
패시베이션막(213)은 질화막으로써, CVD(chemical vapor deposition) 방식 또는 PECVD(plasma enhanced chemical vapor deposition) 방식을 통해 형성하는 것이 바람직하다. 이는 자칫 패시베이션막(213)이 에어갭영역(212) 내에 형성될 수 있는 것을 방지하기 위한 방식으로써, 위와 같은 CVD 방식 또는 PECVD 방식을 사용할 경우 측벽반사막(208)과 제2 하드마스크(210A)간의 공간이 작아서 에어갭영역(212) 내부에 패시베이션막(213)이 침투되는 현상을 방지할 수 있기 때문이다.
그리고, 패시베이션막(213)과 컬러필터(214) 사이에는 오버코팅층을 개재시켜 컬러필터(214)의 바닥면을 평탄화 시킬 수 있도 있다.
또한, 컬러필터(214)는 안료를 함유하고 있는 포토레지스트 패턴으로 형성된다.
이렇게 제조된 씨모스 이미지 센서는 입사광이 입사되는 과정에서 복층의 광 투과막 - 층간절연막 - 으로 인해 불량이 발생했던 종래의 문제점을 단층으로 이루어진 에어갭영역(212)으로 해결한다. 또한, 입사광②와 같이 인접 포토다이오드(PD4)로 조사되는 문제점에 대해서도 측벽 반사막(208)으로 해결한다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.
이상에서 살펴본 바와 같이, 본 발명은 단층의 광투과막 및 에어갭영역을 통해 입사광의 굴절 및 반사에 따른 문제점을 해결한다.
따라서, 입사광이 목표하는 포토다이오드에 올바르게 입사하게 되어, 수광 손실을 줄일 수 있을 뿐만 아니라, 측벽 반사막으로써 인접 포토다이오드로 빛이 유입되어 발생하는 문제점을 방지할 수 있다.
결과적으로, 본 발명은 씨모스 이미지 센서의 센싱 능력을 향상시키는 효과를 얻을 수 있다.

Claims (9)

  1. 기판 상에 포토다이오드를 형성하는 단계;
    상기 포토다이오드 상에 층간절연막을 형성하는 단계;
    상기 층간절연막을 식각하여 상기 포토다이오드를 노출시키는 오픈영역을 형성하는 단계;
    상기 오픈영역의 측벽면에 측벽반사막을 형성하는 단계;
    상기 오픈영역에 포토레지스트를 매립하는 단계;
    상기 포토레지스트를 일부 노출시키는 하드마스크 패턴을 형성하는 단계;
    노출된 상기 포토레지스트를 제거하는 단계;
    상기 포토레지스트 패턴이 제거된 결과물 상에 패시베이션막을 형성하는 단계; 및
    상기 패시베이션막 상에 컬러필터를 형성하는 단계
    를 포함하는 씨모스 이미지 센서의 제조 방법.
  2. 제1항에 있어서,
    상기 포토다이오드를 형성한 후에, 콘택홀 형성시 미스얼라인에 의한 하부층에 데미지가 가해지는 것을 방지하기 위한 식각정지막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  3. 제1항에 있어서,
    상기 층간절연막을 식각하는 단계는 CxFy 가스 또는 CxFy/O2/Ar/N2의 혼합가스 또는 CHF3/CxFy의 혼합가스를 이용한 건식식각으로 진행하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  4. 제3항에 있어서,
    상기 건식식각은 CXFY 가스가 2~200sccm, O2가스가 2~100sccm, Ar가스가 10~2000sccm, N2가스가 2~500sccm 및 CHF3가스가 2~200sccm의 유량으로 진행하고, 10~500mT의 압력, 500~3000W의 소스파워(source power) 및 100~2000W의 바이어스 파워(bias power)로 진행하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  5. 제1항에 있어서,
    상기 포토레지스트를 제거하는 단계는 O2가스로 진행하는 것을 특징으로 하 는 씨모스 이미지 센서의 제조 방법.
  6. 제1항에 있어서,
    상기 포토레지스트를 일부 노출시키는 상기 하드마스크 패턴을 형성하는 단계는,
    상기 포토레지스트가 형성된 결과물 상에 하드마스크를 형성하는 단계;
    상기 하드마스크상에 상기 포토레지스트 상부와 완전히 오버랩되지 않는 포토레지스트 패턴을 형성하는 단계;
    상기 하드마스크를 식각하는 단계; 및
    상기 하드마스크를 식가장벽으로 상기 층간절연막 상에 형성된 측벽반사막을 식각하여 상기 포토레지스트의 노출영역을 확장시키는 단계를 포함하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  7. 제6항에 있어서,
    상기 하드마스크를 식각하는 단계 및 상기 측벽반사막을 식각하는 단계는 CxFy 가스 또는 CxFy/O2/Ar/N2의 혼합가스 또는 CHF3/CxFy의 혼합가스를 이용한 건식식각으로 진행하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  8. 제7항에 있어서,
    상기 건식식각은 CXFY 가스가 2~200sccm, O2가스가 2~100sccm, Ar가스가 10~2000sccm, N2가스가 2~500sccm 및 CHF3가스가 2~200sccm의 유량으로 진행하고, 10~500mT의 압력, 500~3000W의 소스파워(source power) 및 100~2000W의 바이어스 파워(bias power)로 진행하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
  9. 제6항에 있어서,
    상기 측벽반사막을 식각하는 단계는 CF4/O2의 혼합가스를 베이스(base)로 하는 다운 플로우(down flow) 방식으로 진행하는 것을 특징으로 하는 씨모스 이미지 센서의 제조 방법.
KR1020060133869A 2006-12-26 2006-12-26 씨모스 이미지 센서의 제조 방법 KR20080059924A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060133869A KR20080059924A (ko) 2006-12-26 2006-12-26 씨모스 이미지 센서의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060133869A KR20080059924A (ko) 2006-12-26 2006-12-26 씨모스 이미지 센서의 제조 방법

Publications (1)

Publication Number Publication Date
KR20080059924A true KR20080059924A (ko) 2008-07-01

Family

ID=39812629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060133869A KR20080059924A (ko) 2006-12-26 2006-12-26 씨모스 이미지 센서의 제조 방법

Country Status (1)

Country Link
KR (1) KR20080059924A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325804A (zh) * 2013-06-28 2013-09-25 上海宏力半导体制造有限公司 Cmos图像传感器结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325804A (zh) * 2013-06-28 2013-09-25 上海宏力半导体制造有限公司 Cmos图像传感器结构

Similar Documents

Publication Publication Date Title
US7524690B2 (en) Image sensor with a waveguide tube and a related fabrication method
US8378440B2 (en) Back-lit image sensor and method of manufacture
US8187909B2 (en) Backside illuminated image sensor having deep light reflective trenches
US7393477B2 (en) Method of fabricating microlens structure
US7112511B2 (en) CMOS image sensor having prism and method for fabricating the same
KR20090128899A (ko) 후면 조사 이미지 센서 및 그 제조방법
JP2006080533A (ja) Cmosイメージセンサ及びその製造方法
JP2012182427A (ja) 半導体装置の製造方法
JP2006191000A (ja) 光電変換装置
JP5760340B2 (ja) イメージセンサー用の光導波路アレイ
JP6039294B2 (ja) 半導体装置の製造方法
KR101053768B1 (ko) 후면 조사 이미지 센서 및 그 제조방법
US8119436B2 (en) Image sensor having optical waveguide structure and method for manufacturing the same
KR100938951B1 (ko) 후면 조사 이미지 센서 및 그 제조방법
KR20080059924A (ko) 씨모스 이미지 센서의 제조 방법
US20080036026A1 (en) Metal line of image sensor
TWI622165B (zh) 影像感測器及其製作方法
JP2010118661A (ja) イメージセンサー及び前記イメージセンサーの製造方法
KR20070023418A (ko) 집광 효율을 증가시킨 이미지센서 및 그 제조 방법
KR20070035206A (ko) 이미지 센서 및 그 제조방법
KR100730471B1 (ko) 씨모스 이미지 센서 및 그의 제조 방법
KR20090022329A (ko) 이미지 센서의 금속배선 형성방법
TW201935671A (zh) 具有類光導管結構之影像感測器
KR100718771B1 (ko) 광 감도가 향상된 이미지센서의 제조방법
KR100938723B1 (ko) 후면 조사 이미지 센서 및 그 제조방법

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITN Withdrawal due to no request for examination