KR20080056794A - Electrode for electric double layer capacitor and method of fabrication the same - Google Patents
Electrode for electric double layer capacitor and method of fabrication the same Download PDFInfo
- Publication number
- KR20080056794A KR20080056794A KR1020060129776A KR20060129776A KR20080056794A KR 20080056794 A KR20080056794 A KR 20080056794A KR 1020060129776 A KR1020060129776 A KR 1020060129776A KR 20060129776 A KR20060129776 A KR 20060129776A KR 20080056794 A KR20080056794 A KR 20080056794A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- weight
- activated carbon
- carbon
- double layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 127
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 28
- 229910052751 metal Inorganic materials 0.000 claims abstract description 25
- 239000002184 metal Substances 0.000 claims abstract description 25
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 23
- 239000005011 phenolic resin Substances 0.000 claims abstract description 22
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 19
- 239000002612 dispersion medium Substances 0.000 claims abstract description 18
- 229940058401 polytetrafluoroethylene Drugs 0.000 claims abstract description 17
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 16
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims abstract description 16
- 239000004917 carbon fiber Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 16
- 229920000191 poly(N-vinyl pyrrolidone) Polymers 0.000 claims abstract description 15
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims abstract description 14
- 239000001768 carboxy methyl cellulose Substances 0.000 claims abstract description 14
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims abstract description 14
- 235000013162 Cocos nucifera Nutrition 0.000 claims abstract description 13
- 244000060011 Cocos nucifera Species 0.000 claims abstract description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 239000003054 catalyst Substances 0.000 claims abstract description 8
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 27
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 20
- 239000002086 nanomaterial Substances 0.000 claims description 20
- 239000011248 coating agent Substances 0.000 claims description 18
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011888 foil Substances 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 16
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 15
- 239000002482 conductive additive Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 13
- 238000001035 drying Methods 0.000 claims description 12
- 239000007772 electrode material Substances 0.000 claims description 12
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000002002 slurry Substances 0.000 claims description 11
- 239000011148 porous material Substances 0.000 claims description 10
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 9
- 239000011812 mixed powder Substances 0.000 claims description 9
- 230000008021 deposition Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 7
- 238000003825 pressing Methods 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 6
- 239000005977 Ethylene Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 6
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 3
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 2
- 229940105329 carboxymethylcellulose Drugs 0.000 claims 4
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 claims 2
- 239000002003 electrode paste Substances 0.000 claims 1
- 239000000654 additive Substances 0.000 abstract description 4
- 230000000996 additive effect Effects 0.000 abstract description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 14
- 230000001965 increasing effect Effects 0.000 description 9
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 8
- 229920001568 phenolic resin Polymers 0.000 description 8
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 6
- 238000005336 cracking Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
도 1은 본 발명에 사용되는 금속 집전체를 보인 것으로, 망상구조의 메쉬 포일을 보인 사시도.1 is a perspective view showing a mesh foil of a network structure showing a metal current collector used in the present invention.
도 2는 본 발명에 사용되는 금속 집전체를 보인 것으로, 요홈부가 형성된 에칭 포일을 보인 표면 사진.Figure 2 shows a metal current collector used in the present invention, the surface photograph showing the etching foil formed with grooves.
도 3은 본 발명에 사용되는 금속 집전체를 보인 것으로, 요홈부가 형성된 에칭 포일에 전극을 코팅하는 공정을 보인 사시도.3 is a perspective view illustrating a process of coating an electrode on an etching foil in which grooves are formed, showing a metal current collector used in the present invention.
도 4는 본 발명에 따른 전기이중층 축전기용 전극을 케이스에 접합하는 공정을 보인 사시도.Figure 4 is a perspective view showing a step of bonding the electrode for an electric double layer capacitor according to the present invention to the case.
도 5는 본 발명에 따른 전기이중층 축전기용 전극이 적용된 코인형 전기이중층 축전기를 보인 일부 전개 단면 사시도.Figure 5 is a partially exploded cross-sectional perspective view showing a coin-type electric double layer capacitor applied electrode for an electric double layer capacitor according to the present invention.
도 6은 본 발명에 따른 전기이중층 축전기용 전극이 적용된 권취형 전기이중층 축전기를 보인 일부 전개 단면 사시도.6 is a partially exploded cross-sectional perspective view showing a wound type electric double layer capacitor to which an electrode for an electric double layer capacitor according to the present invention is applied.
<도면의 주요부분에 대한 부호설명><Code Description of Main Parts of Drawing>
1 : 음전극 1' :양전극1: negative electrode 1 ': positive electrode
1a : 음극 전극체 1b : 음극 집전체1a:
1c : 양극 전극체 1d : 양극 집전체1c:
1e : 에칭 요홈부 2 : 케이스1e: etching groove 2: case
2a : 음극 케이스 2b : 양극 케이스2a:
3 : 가스켓 4 : 세퍼레이터3: gasket 4: separator
5 : 튜브 6 : 단자5: tube 6: terminal
6a : 음극 단자 6b : 양극 단자6a:
본 발명은 전기이중층 축전기용 전극 및 그 제조방법에 관한 것으로, 보다 상세하게는 비표면적이 다른 3종류의 탄화 활성탄과, 바인더로서 PTFE, CMC와, 분산 촉매로서 PVP와, 첨가제(개량재)로서 나노구조를 형성하고 있는 카본화이버 또는 카본튜브를 적정 비율로 혼합 조성한 전극 조성물을 소정의 점도를 갖도록 분산매로 슬러리화 한 후, 이를 금속 집전체에 고착시킨 전기이중층 축전기용 전극 및 그 제조방법에 관한 것이다.BACKGROUND OF THE
전기이중층 축전기는 양극 및 음극의 두 전극(분극성 전극, 1, 1')과, 이러한 두 전극 사이의 이온(ion) 전도만 가능케 하고 절연 및 단락 방지를 위한 다공 성 재질의 세퍼레이터(전해지)와, 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스킷, 그리고 이러한 구성요소를 포장하는 금속 외장케이스로 구성되며, 세퍼레이터에 의해 분리되어 마주보는 두 전극에 전하를 인가하여 전해질 이온이 각기 다른 극을 갖는 전극 표면에 전기이중층을 형성함으로써 생성되는 전위차를 이용한 것이다.An electric double layer capacitor is capable of only two electrodes (polarized electrodes, 1 and 1 ') of the positive and negative electrodes, and a separator made of a porous material (electrolyte), which allows only ion conduction between these two electrodes and prevents insulation and short circuit. It consists of a gasket to prevent leakage of electrolyte, insulation and short circuit protection, and a metal outer case that wraps these components. The separator is separated by a separator to apply electric charge to two opposite electrodes so that electrolyte ions The potential difference produced | generated by forming an electric double layer in the electrode surface which has is used.
일반적으로, 전기이중층 축전기의 전극은 미세한 세공(pore)이 많이 형성되어 비표면적이 크고 전기전도성이 높은 활성탄과, 이러한 활성탄 입자들을 결합시키는 바인더(binder), 그리고 절연 물질인 바인더에 의한 저항 증가를 방지하거나 전도성을 보상하기 위하여 첨가되는 전도성 첨가제를 일정비율로 혼합 조성하여 전극 조성물을 얻고, 이러한 전극 조성물을 분산매에 혼합하여 슬러리 형태로 만든 후 이를 시트(sheet)화하거나 알루미늄 포일 등의 금속 집전체 상에 코팅시킨 형태의 전극이 많이 사용되고 있다.In general, the electrode of the electric double layer capacitor is formed with a large number of fine pores (pore) to increase the resistance by the activated carbon having a high specific surface area and high electrical conductivity, a binder for bonding the activated carbon particles, and an insulating material binder In order to prevent or compensate for conductivity, the conductive additives are mixed to a certain ratio to obtain an electrode composition, and the electrode composition is mixed with a dispersion medium to form a slurry, which is then sheeted or a metal current collector such as aluminum foil. The electrode of the form coated on the surface is used a lot.
종래, 전기이중층 축전기용 전극 조성물을 조성함에 있어서는 코코넛 쉘(shell)계 탄화 활성탄(비표면적 1,500~1,700/g)과 페놀 레진계 탄화 활성탄(비표면적 2000~2,500/g)을 각각 30~40중량%, 바인더로서 폴리비닐리덴플루오라이드(PVDF; poly-vinylidene-fluoride) 또는 폴리테트라플루오르에틸렌(PTFE; poly-tetrafluoroethylene) 5~10중량%, 그리고 전도성 첨가제(개량재)로서 카본 블랙(carbon black) 10~30중량%를 혼합 조성하고, 이러한 전극 조성물을 분산매 N-메틸-2-피롤리돈(NMP; N-methyl-2-pyrrolidone) 등으로 슬러리화하여 이를 직접 시트화 하거나, 금속 집전체 상에 코팅, 고착시켜 제조하였다. 그러나, 종래 이러한 전극 조성물은 전도성 첨가제의 사용이 카본 블랙 등의 비표면적이 50/g이하로 전기전도성이 우수한 카본으로 한정되었으며, 제조된 전극 조성물은 전기전도도가 낮고, 비표면적의 범위가 협소하게 한정되어, 낮은 정전용량을 갖게 됨에 따라 고용량 전극 제조에 용이하지 못하였다. 즉, 단순한 전기전도도 향상을 위한 전도성 개량제의 역할에만 국한된 성능으로 인하여 제조된 전극의 체적을 증가하는 수단만이 수행해야만 고용량 특성을 갖는 활성탄소계 분극성 전극을 얻을 수 있었다. 또한, 상기한 전극 조성물의 슬러리는 구상, 또는 입상 형상의 카본블랙의 형상특성에 따라 전극 제조의 공정 중 각각의 소재와의 결합력이 약하여 고온 건조 시 균열(crack)이 발생하는 등의 문제점이 있었다.Conventionally, in forming the electrode composition for an electric double layer capacitor, 30-40 weight of coconut shell carbon activated carbon (specific surface area 1,500-1,700 / g) and phenol resin-based carbon activated carbon (specific surface area 2000-2,500 / g), respectively. %, 5-10% by weight of polyvinylidene-fluoride (PVDF) or polytetrafluoroethylene (PTFE) as a binder, and carbon black as a conductive additive (modifier) 10 to 30% by weight of the mixed composition, and the electrode composition is slurried with a dispersion medium N-methyl-2-pyrrolidone (NMP; N-methyl-2-pyrrolidone) or the like and sheeted directly, or on a metal current collector It was prepared by coating and fixing on. However, such an electrode composition is conventionally limited to carbon having excellent electrical conductivity with a specific surface area of 50 / g or less such as carbon black, and the prepared electrode composition has low electrical conductivity and a narrow range of specific surface area. It is limited, and as it has a low capacitance, it is not easy to manufacture a high capacitance electrode. That is, due to the performance limited only to the role of the conductivity improver for improving the electrical conductivity, only a means for increasing the volume of the manufactured electrode was able to obtain an activated carbon-based polarizable electrode having high capacity characteristics. In addition, the slurry of the electrode composition has a problem in that the bonding strength with each material during the electrode manufacturing process is weak according to the shape characteristics of the spherical or granular carbon black, so that a crack occurs during high temperature drying. .
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출한 것으로, 전기이중층 축전기의 전극 조성물을 조성함에 있어서, 비표면적이 다른 3종류의 탄화 활성탄과, 바인더로서 PTFE 및 높은 점성을 갖는 CMC를 사용하고, 상기 CMC의 분산성을 높이기 위한 분산 촉매로서 PVP를 첨가하고, 첨가제로서 일정 비표면적과 동시에 높은 전기전도도 특성을 나타내는 나노구조를 형성하고 있는 카본화이버 또는 카본튜브를 첨가하여 적정 비율로 조성함으로써 분산매에 의해 슬러리화된 도전성 페이스트가 보다 넓은 비표면적 분포, 높은 결합력과 높은 전기 전도도 특성을 갖게 하여 금속 집전체 상에 코팅 시 두께 조절이 용이하고, 정전용량의 설계가 가능하며, 우수한 전기적 성능을 갖는 전기이중층 축전기용 전극 및 그 제조방법을 제공하려는 것이다.Accordingly, the present invention has been made in order to solve the above problems, and in forming an electrode composition of an electric double layer capacitor, three kinds of carbon activated carbon having different specific surface areas, PTFE and CMC having high viscosity as binders are used. And adding PVP as a dispersion catalyst for enhancing the dispersibility of the CMC, and adding carbon fiber or carbon tube forming a nanostructure exhibiting a high specific conductivity at the same time as a specific specific surface area and adding the composition at an appropriate ratio. The conductive paste slurried by the dispersion medium has a wider specific surface area distribution, high bonding force, and high electrical conductivity, so that the thickness can be easily adjusted when coating on the metal current collector, the capacitance can be designed, and the excellent electrical performance is achieved. It is to provide an electrode for an electric double layer capacitor having and a method of manufacturing the same.
본 발명은 비표면적이 1,500~1,700/g인 코코넛 쉘(shell)계 탄화 활성탄 5~30중량%, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 5~30중량%, 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄 10~50중량%의 분말 활성탄과;The present invention is 5 to 30% by weight of coconut shell carbon activated carbon having a specific surface area of 1,500 to 1,700 / g, 5 to 30% by weight of phenol resin based activated carbon having a specific surface area of 2,000 to 2,500 / g, and a specific surface area of 2,500. 10-50% by weight of powdered activated carbon of phenol resin-based activated carbon of 3,500 / g;
폴리테트라플루오르에틸렌(PTFE; poly-tetrafluoroethylene) 1~5중량%, 카르복시메틸셀룰로오스(CMC; carboxymethylcellulose) 0.2~5중량%의 바인더와;1 to 5% by weight of polytetrafluoroethylene (PTFE; poly-tetrafluoroethylene) and 0.2 to 5% by weight of carboxymethylcellulose (CMC);
상기 CMC의 분산 촉매로서 PVP(poly-N-vinylpyrrolidone) 0.2~5중량%와;0.2-5% by weight of poly-N-vinylpyrrolidone (PVP) as a dispersion catalyst of the CMC;
나노구조를 형성하고 있는 카본화이버 또는 카본튜브 5~30중량%의 첨가제(개량재)를 혼합하여 얻어진 전극 조성물을 분산매에 혼합하여 적정한 점도를 갖도록 슬러리화하여 도전성 페이스트를 얻고, 이를 금속 집전체에 코팅, 고착시킨 전기이중층 축전기용 전극 및 그 제조방법을 제공한다.Electrode composition obtained by mixing 5-30% by weight of an additive (improving material) of carbon fiber or carbon tube forming a nanostructure is mixed with a dispersion medium to slurry to obtain an appropriate viscosity to obtain a conductive paste, which is applied to a metal current collector. The present invention provides a coated and fixed electrode for an electric double layer capacitor and a method of manufacturing the same.
본 발명에 따르면, 상기 전극 조성물에 의한 전도성 페이스트의 점도를 500~50,000cps 범위로 넓은 점도 분포와 함께 높은 점도를 갖게 할 수 있다. 이에 따라, 금속 집전체 상에 코팅 시 전극의 두께 조절이 가능하며, 높은 점도에 의해 전극 밀도가 증가되어 높은 정전용량을 갖는다. 또한, 두께 조절이 가능하므로 정전용량을 임의적으로 조절할 수 있게 된다. 아울러 통상적으로 많이 사용되고 있는 NMP(N-methyl-2-pyrrolidone) 등의 유기 용매를 포함하여 물(증류수)도 분산매로 사용할 수 있다.According to the present invention, the viscosity of the conductive paste by the electrode composition may have a high viscosity with a wide viscosity distribution in the range of 500 to 50,000 cps. Accordingly, it is possible to control the thickness of the electrode when coating on the metal current collector, the electrode density is increased by the high viscosity has a high capacitance. In addition, since the thickness can be adjusted, the capacitance can be arbitrarily adjusted. In addition, water (distilled water) may also be used as a dispersion medium, including organic solvents such as NMP (N-methyl-2-pyrrolidone), which are commonly used.
이하에서는, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.
본 발명은 전극물질로서 비표면적이 크고 전기전도성이 높은 분말 활성탄을 전극물질에 적용함에 있어서, 종래와 같이 비표면적이 1,500~1,700/g인 코코넛 쉘(shell)계 탄화 활성탄과 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄을 사용하고, 이에 더하여 본 발명에 따라 화를 위한 높은 정전용량을 갖도록 하기 위하여 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄이 도입된다.In the present invention, when applying powdered activated carbon having a large specific surface area and high electrical conductivity as an electrode material to an electrode material, a coconut shell-based carbonized activated carbon having a specific surface area of 1,500 to 1,700 / g and a specific surface area of 2,000 to 2,000 are used. Phenol resin based carbon activated carbon having 2,500 / g is used, and in addition, phenolic resin based carbon activated carbon having a specific surface area of 2,500 to 3,500 / g is introduced in order to have a high capacitance for oxidation according to the present invention.
본 발명에 따르면, 이와 같이 비표면적이 다른 3종류의 탄화 활성탄을 조성함에 있어서, 전극 조성물 전체 중량 대비 비표면적이 1,500~1,700/g인 코코넛 쉘(shell)계 탄화 활성탄 5~30중량%, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 5~30중량%, 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄 10~50중량%로 적정 조성함으로써 탄화 활성탄이 가지는 비표면적 및 세공의 분포도가 증가되며 전기이중층 축전기의 고용량설계가 가능하게 된다. 즉, 전극의 단위 체적당 최대 용량을 발휘하는 기준 중의 하나인 체적 밀도의 측면에서 상기 발명에 의한 비율과 방법에 의해 전극 체적 밀도가 증가하는 효과를 발휘하게 되는 것이다.According to the present invention, in forming three kinds of carbonized activated carbon having different specific surface areas, 5 to 30% by weight of coconut shell hydrocarbon activated carbon having a specific surface area of 1,500 to 1,700 / g relative to the total weight of the electrode composition. The specific surface area and pores of the activated carbon are obtained by appropriate composition of 5 to 30% by weight of phenolic resin activated carbon having a surface area of 2,000 to 2,500 / g, and 10 to 50% by weight of phenol resin based activated carbon having a specific surface area of 2,500 to 3,500 / g. The distribution of is increased and high capacity design of the electric double layer capacitor is possible. That is, in terms of volume density, which is one of the criteria for exposing the maximum capacity per unit volume of the electrode, the electrode volume density is increased by the ratio and method according to the present invention.
또한, 본 발명에서의 바인더로서 폴리테트라플루오르에틸렌(PTFE; poly-tetrafluoro-ethylene) 1~5중량%와, 도전성 페이스트에 높은 점도를 부여하고자 카르복시메틸셀룰로오스(CMC; carboxymethylcellulose) 0.2~5중량%가 사용된다. 아울러, 상기 높은 점성을 갖는 CMC의 분산성을 높이기 위해 CMC의 분산 촉매로서 PVP(poly-N-vinylpyrrolidone) 0.2~5중량%가 첨가된다.In addition, as a binder in the present invention, 1 to 5% by weight of polytetrafluoroethylene (PTFE) and 0.2 to 5% by weight of carboxymethylcellulose (CMC) are added to give high viscosity to the conductive paste. Used. In addition, in order to increase the dispersibility of the CMC having high viscosity, 0.2-5% by weight of poly-N-vinylpyrrolidone (PVP) is added as a dispersion catalyst of the CMC.
본 발명에 사용되는 전도성 개량제는 헤마타이트(Fe2O3)분말과 알루미나(Al2O3)분말을 중량비 1 : 1로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하여, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기중에서 1,300에서 2시간 유지하고 노냉한 후, 괴상의 혼합물을 전기로에서 꺼내어 분쇄기로 입도 100 이하의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관형상로에서 650까지 질소로 승온하고 수소 1l/min 및 에틸렌 0.1l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후 증착된 평균직경 10~50의 속이 빈 대롱 모양의 나노구조를 형성하고 있는 카본튜브, 또는 이와 동일한 방법으로 Fe2O3-MgO를 1 : 1로 사용한 경우, Fe2O3 : SiO2를 1 : 1로 사용한 경우, Fe2O3 : SiO2 : MgO를 1 : 0.5 : 0.5로 사용한 경우, Fe2O3 : SiO2 : MgO : Al2O3를 1 : 0.5 : 0.5 : 0.5로 사용한 경우, NiO : MgO를 1 : 1로 사용한 경우, CoO : SiO2를 1 : 1로 사용한 경우, Fe2O3 : NiO : Al2O3를 1 : 1 : 1로 사용한 경우, 그리고 Fe2O3 : NiO : CoO : Al2O3 : SiO2 : MgO를 1 : 1 : 1 : 1 : 1 : 1로 사용한 경우의 촉매를 제조하여 평균직경 10~50의 나노구조를 형성하고 있는 카본튜브,The conductivity improving agent used in the present invention is mixed with hematite (Fe 2 O 3 ) powder and alumina (Al 2 O 3 ) powder in a weight ratio of 1: 1 to a drum mixer and mixed for 3 hours, the mixed powder 10g alumina container In a box-type furnace, the furnace was kept at 1,300 for 2 hours in the air, and after cooling, the mass mixture was taken out of the furnace, and 0.3 g of a powder having a particle size of 100 or less was put into an alumina boat in a grinder, and a tubular furnace equipped with a quartz tube having a diameter of 60 was used. Heated to nitrogen up to 650 and replaced with a mixed gas of hydrogen 1l / min and ethylene 0.1l / min, followed by reduction and carbon deposition for 40 minutes, then replaced with nitrogen, cooled to room temperature, and then deposited with an average diameter of 10-50 screwing the Fe 2 O 3 -MgO as empty daerong shape of carbon tubes that form the nanostructures, or the same method 1: If using a 1, Fe 2 O 3 : Fe 2 O 3 when SiO 2 is used as 1: 1. : SiO 2 : Fe 2 O 3 when MgO is used at 1: 0.5: 0.5 : SiO 2 : When MgO: Al 2 O 3 is used as 1: 0.5: 0.5: 0.5, when NiO: MgO is used as 1: 1 and when CoO: SiO 2 is used as 1: 1, Fe 2 O 3 : When NiO: Al 2 O 3 is used as 1: 1: 1, and Fe 2 O 3 : NiO: CoO: Al 2 O 3 : SiO 2 : Carbon tube having a nanostructure having an average diameter of 10 to 50 by preparing a catalyst when MgO is used as 1: 1: 1: 1: 1: 1: 1,
또는 헤마타이트(Fe2O3)분말과 산화니켈(NiO)분말을 중량비 1 : 1로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하여, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기중에서 900에서 2시간 유지하고 노냉시켜 소결된 혼합물을 전 기로에서 꺼내어 분쇄기로 파쇄하여 평균 입도 100 이하의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관상로에서 550까지 질소로 승온하고 수소 1l/min및 에틸렌 0.2l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후, 증착된 평균직경 200의 속이 찬 대롱 모양의 나노구조를 형성하고 있는 카본화이버,Alternatively, hematite (Fe 2 O 3 ) powder and nickel oxide (NiO) powder are mixed in a weight ratio of 1: 1, mixed in a drum mixer for 3 hours, and 10 g of the mixed powder is placed in an alumina container and 900 in the air in a box-type electric furnace. The mixture was sintered and cooled in a furnace for 2 hours, and the sintered mixture was taken out of the electric furnace and crushed by a pulverizer. 0.3 g of powder having an average particle size of 100 or less was placed in an alumina boat and heated to nitrogen up to 550 in a tubular furnace equipped with a quartz tube with a diameter of 60. Substitute 40 ml of mixed gas of 1l / min and 0.2l / min of ethylene, perform reduction and carbon deposition for 40 minutes, replace with nitrogen, cool to room temperature, and form a hollow nano structure with a solid average diameter of 200. Carbon fiber,
또는 산화니켈(Fe2O3)분말과 산화구리(CuO)분말을 중량비 7 : 3으로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하고, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기중에서 1,000에서 2시간 유지하고 노냉하여, 소결된 혼합물을 전기로에서 꺼내어 분쇄기로 파쇄하여 평균 입도 100의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관상로에서 550까지 질소로 승온하고 수소 1l/min및 아세틸렌 0.2l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후 증착된 평균직경 200의 속이 찬 대롱 모양의 나노구조를 형성하고 있는 카본화이버를 5~30중량%가 사용된다.Alternatively, the nickel oxide (Fe 2 O 3 ) powder and the copper oxide (CuO) powder are mixed in a weight ratio of 7: 3, mixed in a drum mixer for 3 hours, and 10 g of the mixed powder is placed in an alumina container and stored in a box-type electric furnace at 1,000 in air. After 2 hours of cooling in a furnace, the sintered mixture was taken out of the electric furnace and crushed by a pulverizer. 0.3 g of powder having an average particle size of 100 was placed in an alumina boat, and heated to nitrogen up to 550 in a tubular furnace equipped with a 60-diameter quartz tube. Substituting a mixture gas of / min and acetylene 0.2l / min, reducing and carbon deposition reaction for 40 minutes, then replaced with nitrogen, cooled to room temperature and formed a hollow nanostructure with a solid diameter of 200 5 to 30% by weight of carbon fiber is used.
종래 첨가제는 입자 자체에 세공(pore)이 형성되지 않은 카본 블랙(carbon black)과 VGCF을 단독 또는 혼합하여 사용할 수 있으나, 카본 블랙을 독립 첨가하게 되면 저항 감소를 위해서 다량 첨가해야 하고, 이는 곧 정전용량 감소의 원인이 된다. 또한, 우수한 전도성을 갖는 VGCF를 단독으로 사용할 수 있으나, VGCF가 고가임을 감안하여 이들을 적정 혼합하여 사용하는 것이 바람직하다. 따라서, 비표면적이 확보되어 있는 상술의 제조 공정을 통해 제조된 것을 특성으로하는 나노구조 를 형성하고 있는 카본화이버 또는 카본튜브 5~30중량%로 적정 혼합하여 사용하게 되면 높은 전기 전도성 및 저항 감소 등의 효과를 얻을 수 있다. 이상에서 표현된 중량비는 전극 조성물 전체 중량에 대한 중량%이다. Conventional additives can be used alone or mixed with carbon black (pore) is not formed in the particles (pore) alone or mixed, but if carbon black is added independently to add a large amount to reduce the resistance, which is a blackout It causes a decrease in capacity. In addition, VGCF having excellent conductivity may be used alone, but in consideration of VGCF being expensive, it is preferable to use them by proper mixing. Therefore, when appropriately mixed with 5 to 30% by weight of carbon fiber or carbon tube forming nanostructures characterized by the above-described manufacturing process having a specific surface area is secured, high electrical conductivity and resistance reduction, etc. The effect can be obtained. The weight ratio expressed above is the weight% with respect to the total weight of an electrode composition.
상기 나노구조를 형성하고 있는 카본화이버 또는 카본튜브은 세공(pore)이 형성되 있고, 종래 전도성 개량제와 비교하여 전기전도도가 우수한 미세공 구조로 되어 있다.The carbon fiber or carbon tube forming the nanostructure has pores formed therein, and has a fine pore structure with excellent electrical conductivity as compared with the conventional conductivity improving agent.
또한, 위와 같이 조성된 전극 조성물은 NMP 등의 유기 용매를 포함한 물(증류수)에 의해도 분산될 수 있다. 바람직한 분산 방법은 전극 조성물에 분산매를 소량씩 첨가해 가면서 점도를 측정해 가며 소정의 점도를 갖도록 슬러리화하여 도전성 페이스트를 얻는다.In addition, the electrode composition prepared as described above may be dispersed by water (distilled water) including an organic solvent such as NMP. In a preferred dispersion method, a small amount of the dispersion medium is added to the electrode composition, the viscosity is measured, and the slurry is slurried to have a predetermined viscosity to obtain a conductive paste.
본 발명에 따르면, 상기와 같이 전극 조성물을 적정 조성함으로써 전기이중층 축전기에 요구되는 정전용량, 내부저항 및 누설전류 등의 우수한 전기적 성능을 가지며 분산매로 슬러리화하여 얻어진 도전성 페이스트의 점도를 500~50,000cps의 넓은 범위로 조절할 수 있다. 이에 따라, 금속 집전체 상에 코팅 시 전극의 두께 조절이 가능하다. 또한, 높은 점도에 의해 전극 밀도가 증가되어 높은 정전용량을 갖는다. 아울러, 두께 조절이 가능하여 정전용량을 증가할 수 있게 된다. 이에 더하여 건조 시간이 길어져 생산성이 감소되고, 고온 건조 시 균열(crack)이 발생되는 종래에 반하여, 본 발명에 따른 나노구조를 형성하고 있는 카본화이버 또는 카본튜브을 첨가하여 제조된 전극 조성물을 사용하게 되면 건조 시간이 단축되며, 고온에서 건조시킬 경우에도 균열이 발생되지 않는다.According to the present invention, the composition of the electrode composition as described above has excellent electrical performance such as capacitance, internal resistance and leakage current required for the electric double layer capacitor, and the viscosity of the conductive paste obtained by slurrying with a dispersion medium is 500 to 50,000 cps. Can be adjusted to a wide range of. Accordingly, the thickness of the electrode when the coating on the metal current collector is possible. In addition, the electrode viscosity is increased by the high viscosity, and has a high capacitance. In addition, the thickness can be adjusted to increase the capacitance. In addition, the drying time is longer, productivity is reduced, and cracks are generated when drying at a high temperature, whereas using an electrode composition prepared by adding carbon fibers or carbon tubes forming a nanostructure according to the present invention is used. The drying time is shortened, and cracking does not occur even when dried at a high temperature.
상기 도전성 페이스트는 Al, Ni 등의 금속 포일(foil) 형태의 집전체 상에 코팅된다. 바람직하게는 도 1에 보인 바와 같은 다수의 공극이 형성된 망상구조의 메쉬 포일(mesh foil)이나 도 2에 보인 바와 같은 상하부 양면에 요홈부가 형성된 에칭 포일(etching foil) 형태의 금속 집전체 상에 코팅하되, 상하부 단면 혹은 양면에 코팅한다. 즉, 상부면에 도전성 페이스트를 적층, 코팅하여 집전체에 형성된 공극 또는 요홈부에 충분히 함입되게 한 후 건조시키고, 하부면에 적층, 코팅하여 건조시킨다. 메쉬 포일에 코팅시키는 경우, 전극물질인 도전성 페이스트가 상하부 단면 혹은 양면에 적층, 코팅되어 전체 코팅 두께가 두꺼워지므로 전극의 정전용량이 증대되어 결국 축전기의 수명이 증대될 뿐만 아니라, 상하부 단면 혹은 양면에 적층된 도전성 페이스트 층 상호간은 공극에 함입된 전극물질에 의해 결합되어 있어 전극물질의 집전체부터의 박리 현상이 억제된다. 또한, 에칭 포일에 코팅시키는 경우, 요홈부에 의한 집전체의 표면적이 넓어짐에 따라 집전체와 도전성 페이스트의 접촉면적이 증가되어 두 구성요소 간에 전기전도가 향상되고 더욱 견고하게 결합된다.The conductive paste is coated on a current collector in the form of a metal foil such as Al or Ni. Preferably, a coating is performed on a mesh foil of a network structure in which a plurality of voids are formed as shown in FIG. 1 or an etching foil in which grooves are formed on both upper and lower surfaces as shown in FIG. 2. However, the upper and lower sections or both surfaces are coated. That is, the conductive paste is laminated and coated on the upper surface to be sufficiently embedded in the pores or recesses formed in the current collector, and then dried, and the laminated and coated on the lower surface to dry. In the case of coating on the mesh foil, the conductive paste, which is an electrode material, is laminated and coated on the upper and lower end surfaces or both sides to increase the overall coating thickness, thereby increasing the capacitance of the electrode and eventually increasing the life of the capacitor. The laminated conductive paste layers are bonded to each other by the electrode material embedded in the voids, and the peeling phenomenon from the current collector of the electrode material is suppressed. In addition, in the case of coating on the etching foil, as the surface area of the current collector by the groove portion becomes wider, the contact area of the current collector and the conductive paste is increased, so that the electrical conductivity between the two components is improved and more firmly coupled.
후속하여 코팅, 건조된 단면 혹은 양면을 100~250의 온도로 가열된 롤(heating roll)을 사용하여 압착한다. 이와 같이 가열된 롤을 사용하여 압착 공정을 수행함에 따라 전극물질은 공극 또는 요홈부에 충분히 밀착되고 집전체에 완전 고착되어 일체화된다. 이와 더불어, 탄화 활성탄 입자 상호간은 충분히 밀착되어 입자 상호간의 접촉이 긴밀해지고, 단위 체적당 분말 활성탄 입자의 밀도가 증가됨에 따라 접촉저항이 감소된다. 이는 결국 전기이중층 축전기 전체로서 고려하 는 경우에 있어서의 내부저항이 감소되는 효과를 발휘한다.Subsequently, the coated, dried section or both sides are pressed using a heating roll heated to a temperature of 100-250. As the pressing process is performed using the heated rolls as described above, the electrode material is sufficiently intimately adhered to the voids or recesses and is completely fixed to the current collector to be integrated. In addition, the carbonized activated carbon particles are in close contact with each other, resulting in intimate contact between the particles, and the contact resistance decreases as the density of the powdered activated carbon particles per unit volume increases. This, in turn, has the effect of reducing the internal resistance when considered as an electric double layer capacitor as a whole.
이하에서는, 본 발명의 바람직한 실시예를 통하여 상세히 설명한다.Hereinafter, it will be described in detail through a preferred embodiment of the present invention.
[실시예 1]Example 1
비표면적이 1,500~1,700/g인 코코넛 쉘계 탄화 활성탄 20중량부, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 10중량부, 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄 30중량부를 용기에 투입하고, 여기에 PTFE 2중량부, CMC 0.75중량부, PVP 0.5중량부를 투입하였다.20 parts by weight of coconut shell carbonized activated carbon having a specific surface area of 1,500 to 1,700 / g, 10 parts by weight of phenolic resin activated carbon having a specific surface area of 2,000 to 2,500 / g, and a phenolic resin activated carbon having a specific surface area of 2,500 to 3,500 / g 30 The weight part was put into a container, and 2 weight part of PTFE, 0.75 weight part of CMC, and 0.5 weight part of PVP were added here.
전도성 첨가제로는 헤마타이트(Fe2O3)분말과 알루미나(Al2O3)분말을 중량비 1 : 1로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하여, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기중에서 1,300에서 2시간 유지하고 노냉한 후, 괴상의 혼합물을 전기로에서 꺼내어 분쇄기로 입도 100 이하의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관형상로에서 650까지 질소로 승온하고 수소 1l/min 및 에틸렌 0.1l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후 증착된 평균직경 10~50의 속이 빈 대롱 모양의 나노구조를 형성하고 있는 카본튜브 50중량부를 첨가하여 전극물질을 혼합 조성하였다. 그리고, 분산매로서 증류수를 소량씩 첨가해 가면서 코팅 가능한 슬러리 상태가 되도록 저속 교반하여 도전성 페이스트를 얻었다. 이때, 교반과 동시에 점도를 측정하였으며, 도전성 페이스트의 점도가 약 8,000~10,000cps 범위에 이르렀을 때 증류수 투입을 중단하였다.As the conductive additive, hematite (Fe 2 O 3 ) powder and alumina (Al 2 O 3 ) powder were mixed in a weight ratio of 1: 1 and placed in a drum mixer for 3 hours, and the mixed powder 10g was placed in an alumina container. After holding for 2 hours at 1,300 in the atmosphere in an electric furnace, and cooling down, the mass mixture was taken out of the electric furnace, and 0.3 g of powder having a particle size of 100 or less was put in an alumina boat by a pulverizer. After heating up and substituting with a mixed gas of hydrogen 1l / min and ethylene 0.1l / min, reducing and carbon deposition reaction for 40 minutes, replacing with nitrogen and cooling to room temperature 50 parts by weight of the carbon tube forming the nanostructure of was added to mix the electrode material. Then, a small amount of distilled water was added as a dispersion medium, and the mixture was stirred at low speed so as to form a slurry that can be coated, thereby obtaining a conductive paste. At this time, the viscosity was measured at the same time as stirring, distilled water was stopped when the viscosity of the conductive paste reached the range of about 8,000 ~ 10,000cps.
상기 도전성 페이스트를 알루미늄 메쉬 포일 집전체의 상부면에 코팅기를 사용하여 적층, 코팅하고, 이를 오븐에서 130~180의 고온에서 1~3시간 동안 건조시켰다. 이때, 광학 현미경(max 5000배)으로 균열발생 여부를 확인하였다. 다시 집전체의 하부면에 도전성 페이스트를 적층, 코팅한 후 건조시켰다. 그리고, 180로 가열된 롤 프레스에서 압착 공정을 수행하였다. The conductive paste was laminated and coated on the upper surface of the aluminum mesh foil current collector using a coater, and dried in an oven at a high temperature of 130 to 180 for 1 to 3 hours. At this time, the occurrence of cracks was confirmed by an optical microscope (
이와 같이 제조된 전극 박(foil)을 직경 10로 타고하고 양극과 음극케이스 내에 용접하여 결합시켰다.The electrode foil thus prepared was taken to have a diameter of 10 and welded and bonded to the anode and the cathode case.
상기 음극케이스와 용접 결합된 전극을 전해지를 사이에 두고 다시 양극 케이스와 용접 결합된 전극을 조합하여 도 3에 보인 바와 같이, 양극 케이스가 결합된 양전극, 음극 케이스가 결합된 음전극, 전해지 및 가스킷으로 구성하여, 코인형 전기이중층 축전기를 제작하였다. 그리고, 양전극, 음전극 및 전해지에는 유기계 전해액 propylene carbonate tetra-etyl ammonium tetra-fluorobonate(0.6~1.2N농도)를 함침시켰다. As shown in FIG. 3, the anode case is welded and the electrode electrode is welded and the electrode is sandwiched between the cathode and the electrode, and the cathode and the cathode are coupled to each other. A coin-type electric double layer capacitor was produced. In addition, the positive electrode, the negative electrode, and the electrolyte were impregnated with an organic electrolyte solution propylene carbonate tetra-etyl ammonium tetra-fluorobonate (concentration of 0.6 to 1.2 N).
본 발명자는 상기와 같이 본 발명에 따른 전극으로 구성한 전기이중층 축전기에 대하여 정전용량, 누설전류 및 내부저항을 평가하였다. 또한, 상기 금속 집전체에 도전성 페이스트를 코팅하여 건조 과정을 거친 전극에 대하여 균열발생 여부를 광학 현미경(max 5000배)으로 평가하였다. 그 결과를 하기 [표 1]에 나타내었다.The present inventors evaluated the capacitance, the leakage current and the internal resistance of the electric double layer capacitor constituted by the electrode according to the present invention as described above. In addition, the coating of the conductive paste on the metal current collector was evaluated for the occurrence of cracking with respect to the electrode subjected to the drying process by an optical microscope (
[실시예 2]Example 2
비표면적이 1,500~1,700/g인 코코넛 쉘계 탄화 활성탄 20중량부, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 10중량부, 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄 30중량부를 용기에 투입하고, 여기에 PTFE 2중량부, CMC 0.75중량부, PVP 0.5중량부를 투입하였다.20 parts by weight of coconut shell carbonized activated carbon having a specific surface area of 1,500 to 1,700 / g, 10 parts by weight of phenolic resin activated carbon having a specific surface area of 2,000 to 2,500 / g, and a phenolic resin activated carbon having a specific surface area of 2,500 to 3,500 / g 30 The weight part was put into a container, and 2 weight part of PTFE, 0.75 weight part of CMC, and 0.5 weight part of PVP were added here.
전도성 첨가제로는 헤마타이트(Fe2O3)분말과 산화니켈(NiO)분말을 중량비 1 : 1로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하여, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기중에서 900에서 2시간 유지하고 노냉시켜 소결된 혼합물을 전기로에서 꺼내어 분쇄기로 파쇄하여 평균 입도 100 이하의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관상로에서 550까지 질소로 승온하고 수소 1l/min및 에틸렌 0.2l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후, 증착된 평균직경 200의 속이 찬 대롱 모양의 나노구조를 형성하고 있는 카본화이버 50중량부를 첨가하여 전극물질을 혼합 조성하였다.As the conductive additive, hematite (Fe 2 O 3 ) powder and nickel oxide (NiO) powder were mixed in a weight ratio of 1: 1, and then mixed in a drum mixer for 3 hours, and 10 g of the mixed powder was put in an alumina container in a box-type electric furnace. The mixture was sintered in an air furnace at 900 for 2 hours, sintered, and the sintered mixture was taken out of the electric furnace and crushed by a crusher. Substituted with a mixed gas of hydrogen 1l / min and ethylene 0.2l / min, reduced for 40 minutes and carbon deposition reaction, and then replaced with nitrogen, cooled to room temperature, and the solid nanostructure of the solid shape of the average diameter 200 deposited 50 parts by weight of the carbon fibers forming was added to mix the electrode materials.
그리고, 분산매로서 증류수를 소량씩 첨가해 가면서 코팅 가능한 슬러리 상태가 되도록 저속 교반하여 도전성 페이스트를 얻었다. 이때, 교반과 동시에 점도를 측정하였으며, 도전성 페이스트의 점도가 약 8,000~10,000cps 범위에 이르렀을 때 증류수 투입을 중단하였다. Then, a small amount of distilled water was added as a dispersion medium, and the mixture was stirred at low speed so as to form a slurry that can be coated, thereby obtaining a conductive paste. At this time, the viscosity was measured at the same time as stirring, distilled water was stopped when the viscosity of the conductive paste reached the range of about 8,000 ~ 10,000cps.
상기 도전성 페이스트를 알루미늄 메쉬 포일 집전체의 상부면에 코팅기를 사용하여 적층, 코팅하고, 이를 오븐에서 130~180의 고온에서 1~3시간 동안 건조시켰다. 이 때, 광학 현미경(max 5000배)으로 균열발생 여부를 확인하였다. 다시 집전체의 하부면에 도전성 페이스트를 적층, 코팅한 후 건조시켰다. 그리고, 180로 가열된 롤 프레스에서 압착 공정을 수행하였다.The conductive paste was laminated and coated on the upper surface of the aluminum mesh foil current collector using a coater, and dried in an oven at a high temperature of 130 to 180 for 1 to 3 hours. At this time, cracking was confirmed by an optical microscope (
이와 같이 제조된 전극 박(foil)을 직경 10로 타고하고 양극과 음극케이스 내에 용접하여 결합시켰다.The electrode foil thus prepared was taken to have a diameter of 10 and welded and bonded to the anode and the cathode case.
상기 음극케이스와 용접 결합된 전극을 전해지를 사이에 두고 다시 양극 케이스와 용접 결합된 전극을 조합하여 도 3에 보인 바와 같이, 양극 케이스가 결합된 양전극, 음극 케이스가 결합된 음전극, 전해지 및 가스킷으로 구성하여, 코인형 전기이중층 축전기를 제작하였다. 그리고, 양전극, 음전극 및 전해지에는 유기계 전해액 propylene carbonate tetra-etyl ammonium tetra-fluorobonate(0.6~1.2N농도)를 함침시켰다. As shown in FIG. 3, the anode case is welded and the electrode electrode is welded and the electrode is sandwiched between the cathode and the electrode, and the cathode and the cathode are coupled to each other. A coin-type electric double layer capacitor was produced. In addition, the positive electrode, the negative electrode, and the electrolyte were impregnated with an organic electrolyte solution propylene carbonate tetra-etyl ammonium tetra-fluorobonate (concentration of 0.6 to 1.2 N).
본 발명자는 상기와 같이 본 발명에 따른 전극으로 구성한 전기이중층 축전기에 대하여 정전용량, 누설전류 및 내부저항을 평가하였다. 또한, 상기 금속 집전체에 도전성 페이스트를 코팅하여 건조 과정을 거친 전극에 대하여 균열발생 여부를 광학 현미경(max 5000배)으로 평가하였다. 그 결과를 하기 [표 1]에 나타내었다.The present inventors evaluated the capacitance, the leakage current and the internal resistance of the electric double layer capacitor constituted by the electrode according to the present invention as described above. In addition, the coating of the conductive paste on the metal current collector was evaluated for the occurrence of cracking with respect to the electrode subjected to the drying process by an optical microscope (
[실시예 3]Example 3
비표면적이 1,500~1,700/g인 코코넛 쉘계 탄화 활성탄 20중량부, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 10중량부, 비표면적이 2,500~3,500/g인 페놀 레진계 탄화 활성탄 30중량부를 용기에 투입하고, 여기에 PTFE 2중량부, CMC 0.75중량부, PVP 0.5중량부를 투입하였다.20 parts by weight of coconut shell carbonized activated carbon having a specific surface area of 1,500 to 1,700 / g, 10 parts by weight of phenolic resin activated carbon having a specific surface area of 2,000 to 2,500 / g, and a phenolic resin activated carbon having a specific surface area of 2,500 to 3,500 / g 30 The weight part was put into a container, and 2 weight part of PTFE, 0.75 weight part of CMC, and 0.5 weight part of PVP were added here.
전도성 첨가제로는 산화니켈(Fe2O3)분말과 산화구리(CuO)분말을 중량비 7 : 3으로 섞어 드럼 믹서에 넣고 3시간 동안 혼합하고, 혼합된 분말 10g을 알루미나 용기에 담아 상자형 전기로에서 대기 중에서 1,000에서 2시간 유지하고 노냉하여, 소결된 혼합물을 전기로에서 꺼내어 분쇄기로 파쇄하여 평균 입도 100의 분말 0.3g을 알루미나 보트에 넣고 직경 60의 석영튜브가 장착된 관상로에서 550까지 질소로 승온하고 수소 1l/min및 아세틸렌 0.2l/min의 혼합가스로 치환한 후 40분간 환원 및 탄소 증착반응을 시킨 후 질소로 치환하여 상온까지 냉각 후 증착된 평균직경 200의 속이 찬 대롱 모양의 나노구조를 형성하고 있는 카본화이버 50중량부를 첨가하여 전극물질을 혼합 조성하였다. As the conductive additive, nickel oxide (Fe 2 O 3 ) powder and copper oxide (CuO) powder were mixed in a weight ratio of 7: 3, mixed in a drum mixer for 3 hours, and 10 g of the mixed powder was put in an alumina container in a box-type electric furnace. Maintained at 1,000 to 2 hours in the air and cooled in a furnace, the sintered mixture was taken out of the electric furnace and crushed by a pulverizer, and 0.3g of powder having an average particle size of 100 was placed in an alumina boat and heated to nitrogen up to 550 in a tubular furnace equipped with a 60-diameter quartz tube. After replacing with a mixed gas of hydrogen 1l / min and acetylene 0.2l / min and reducing and carbon deposition reaction for 40 minutes, and then replaced with nitrogen and cooled to room temperature, the solid nanostructure of a solid diameter of 200 is deposited 50 parts by weight of the formed carbon fibers were added to mix the electrode materials.
그리고, 분산매로서 증류수를 소량씩 첨가해 가면서 코팅 가능한 슬러리 상태가 되도록 저속 교반하여 도전성 페이스트를 얻었다. 이때, 교반과 동시에 점도를 측정하였으며, 도전성 페이스트의 점도가 약 8,000~10,000cps 범위에 이르렀을 때 증류수 투입을 중단하였다. Then, a small amount of distilled water was added as a dispersion medium, and the mixture was stirred at low speed so as to form a slurry that can be coated, thereby obtaining a conductive paste. At this time, the viscosity was measured at the same time as stirring, distilled water was stopped when the viscosity of the conductive paste reached the range of about 8,000 ~ 10,000cps.
상기 도전성 페이스트를 알루미늄 메쉬 포일 집전체의 상부 면에 코팅기를 사용하여 적층, 코팅하고, 이를 오븐에서 130~180의 고온에서 1~3시간 동안 건조시켰다. 이때, 광학 현미경(max 5000배)으로 균열발생 여부를 확인하였다. 다시 집전체의 하부 면에 도전성 페이스트를 적층, 코팅한 후 건조시켰다. 그리고, 180로 가열된 롤 프레스에서 압착 공정을 수행하였다.The conductive paste was laminated and coated on the upper surface of the aluminum mesh foil current collector using a coater, and dried in an oven at a high temperature of 130 to 180 for 1 to 3 hours. At this time, the occurrence of cracks was confirmed by an optical microscope (
이와 같이 제조된 전극 박(foil)을 직경 10로 타고하고 양극과 음극케이스 내에 용접하여 결합시켰다.The electrode foil thus prepared was taken to have a diameter of 10 and welded and bonded to the anode and the cathode case.
상기 음극케이스와 용접 결합된 전극을 전해지를 사이에 두고 다시 양극 케이스와 용접 결합된 전극을 조합하여 도 3에 보인 바와 같이, 양극 케이스가 결합된 양전극, 음극 케이스가 결합된 음전극, 전해지 및 가스킷으로 구성하여, 코인형 전기이중층 축전기를 제작하였다. 그리고, 양전극, 음전극 및 전해지에는 유기계 전해액 propylene carbonate tetra-etyl ammonium tetra-fluorobonate(0.6~1.2N농도)를 함침시켰다. As shown in FIG. 3, the anode case is welded and the electrode electrode is welded and the electrode is sandwiched between the cathode and the electrode, and the cathode and the cathode are coupled to each other. A coin-type electric double layer capacitor was produced. In addition, the positive electrode, the negative electrode, and the electrolyte were impregnated with an organic electrolyte solution propylene carbonate tetra-etyl ammonium tetra-fluorobonate (concentration of 0.6 to 1.2 N).
본 발명자는 상기와 같이 본 발명에 따른 전극으로 구성한 전기이중층 축전기에 대하여 정전용량, 누설전류 및 내부저항을 평가하였다. 또한, 상기 금속 집전체에 도전성 페이스트를 코팅하여 건조 과정을 거친 전극에 대하여 균열발생 여부를 광학 현미경(max 5000배)으로 평가하였다. 그 결과를 하기 [표 1]에 나타내었다.The present inventors evaluated the capacitance, the leakage current and the internal resistance of the electric double layer capacitor constituted by the electrode according to the present invention as described above. In addition, the coating of the conductive paste on the metal current collector was evaluated for the occurrence of cracking with respect to the electrode subjected to the drying process by an optical microscope (
[비교예 1]Comparative Example 1
비표면적이 1,500~1,700/g인 코코넛 쉘계 탄화 활성탄 40중량부, 비표면적이 2,000~2,500/g인 페놀 레진계 탄화 활성탄 30중량부를 용기에 투입하고, 여기에 PVDF 10중량부 그리고 나노구조를 형성하고 있는 카본화이버 또는 카본튜브 20중량부를 첨가하여 전극물질을 혼합 조성하였다. 그리고, 코팅 가능한 슬러리 상태가 될 때까지 분산매로서 NMP를 소량씩 첨가해 가면서 저속 교반하였다. 또한, 교반과 동시에 점도를 측정하였으며, 코팅 가능한 슬러리가 되었을 때 점도는 약 2,500cps 정도로 낮게 평가되었다.40 parts by weight of coconut shell carbonized activated carbon having a specific surface area of 1,500 to 1,700 / g, and 30 parts by weight of phenol resin carbonized activated carbon having a specific surface area of 2,000 to 2,500 / g were placed in a container, and 10 parts by weight of PVDF and nanostructures were formed therein. 20 parts by weight of the carbon fiber or carbon tube was added to mix the electrode materials. And it stirred at low speed, adding small amount NMP as a dispersion medium until it became the slurry state which can be coated. In addition, the viscosity was measured at the same time as the stirring, the viscosity was evaluated as low as about 2,500cps when the slurry was coatable.
위와 같이 얻어진 슬러리를 상기 실시예 1과 동일한 방법으로 코팅, 건조 및 압착 공정을 수행하여 전극을 제조하였다. 이를 도 3에 보인 바와 같은 코인형 전기이중층 축전기에 적용하였다. 그리고, 이에 대하여 실시예 1과 동일한 방법으로 정전용량, 누설전류 및 내부저항, 그리고 건조 과정을 거친 전극에 대하여 균열 발생여부를 평가하였다. 그 결과를 하기 [표 1]에 나타내었다.The slurry obtained as described above was coated, dried, and pressed in the same manner as in Example 1 to prepare an electrode. This was applied to the coin-type electric double layer capacitor as shown in FIG. Then, in the same manner as in Example 1, the capacitance, leakage current and internal resistance, and whether the crack was generated for the electrode subjected to the drying process was evaluated. The results are shown in the following [Table 1].
[표 1]TABLE 1
상기 [표 1]에서 알 수 있는 바와 같이, 본 발명에 따른 전극이 적용된 전기 이중층 축전기는 정전용량, 누설전류 및 내부저항에 있어서 우수한 전기적 특성을 보이고 있음을 알 수 있다. 전극 밀도 및 전기 전도도가 우수하여 상대적으로 누설전류의 감소 특성이 있으며, 이는 곧 높은 충전 효율을 발휘할 것이라 사료된다. 또한, 고온에서 건조한 경우에도 균열이 발생하지 않음을 알 수 있다.As can be seen in Table 1, it can be seen that the electric double layer capacitor to which the electrode according to the present invention is applied shows excellent electrical characteristics in capacitance, leakage current and internal resistance. Due to the excellent electrode density and electrical conductivity, there is a characteristic of reducing the leakage current, which is expected to exhibit high charging efficiency soon. In addition, it can be seen that cracking does not occur even when dried at a high temperature.
전술한 바와 같이, 본 발명은 전기이중층 축전기에 요구되는 정전용량, 내부저항 및 누설전류 등의 우수한 전기적 성능을 확보할 수 있다. 이에 따라, 금속 집전체 상에 코팅 시 나노구조의 전도성 첨가제의 특성에 의하여 전극의 두께 조절이 용이하며, 높은 점도에 의해 전극 밀도가 증가되어 높은 정전용량을 갖는다. 아울러, 두께 조절이 가능하여 정전용량을 임의적으로 조절할 수 있게 된다. As described above, the present invention can ensure excellent electrical performance such as capacitance, internal resistance, leakage current, and the like required for the electric double layer capacitor. Accordingly, the thickness of the electrode can be easily controlled by the characteristics of the conductive additive of the nanostructure when coating on the metal current collector, and the electrode density is increased by the high viscosity to have a high capacitance. In addition, the thickness can be adjusted to arbitrarily adjust the capacitance.
이에 더하여 본 발명은 고온에서 건조시킬 경우에도 균열이 발생되지 않는다. 또한, 도전성 페이스트를 집전체에 고착 시 압착 공정을 수행함으로써 전극물질의 전극 밀도를 증가시켜 접촉저항이 감소되어 전기이중층 축전기의 내부저항이 감소되는 효과를 발휘한다.In addition, the present invention does not generate cracks even when dried at a high temperature. In addition, when the conductive paste is adhered to the current collector, a pressing process is performed to increase the electrode density of the electrode material, thereby reducing the contact resistance, thereby reducing the internal resistance of the electric double layer capacitor.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060129776A KR20080056794A (en) | 2006-12-19 | 2006-12-19 | Electrode for electric double layer capacitor and method of fabrication the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060129776A KR20080056794A (en) | 2006-12-19 | 2006-12-19 | Electrode for electric double layer capacitor and method of fabrication the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080056794A true KR20080056794A (en) | 2008-06-24 |
Family
ID=39802820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060129776A KR20080056794A (en) | 2006-12-19 | 2006-12-19 | Electrode for electric double layer capacitor and method of fabrication the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20080056794A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101031227B1 (en) * | 2009-09-14 | 2011-04-29 | 한국세라믹기술원 | Manufacturing method of high density electrode for supercapacitor and supercapacitor electrode manufactured by the method |
KR101139326B1 (en) * | 2009-05-13 | 2012-04-26 | 주식회사 아모그린텍 | Method for manufacturing of nano-size manganese oxide catalyst for zinc-air battery and Method for manufacturing air electrode for zinc-air battery using the same |
KR20210067772A (en) * | 2019-11-29 | 2021-06-08 | 한국생산기술연구원 | Method of manufacturing high hardness high thermal conductivity Cu-alloy and high hardness high thermal conductivity Cu-alloy by using the same |
KR20220003778A (en) * | 2020-07-02 | 2022-01-11 | 표형주 | Apparatus and method for automatic control to optimize product production process using cloud |
-
2006
- 2006-12-19 KR KR1020060129776A patent/KR20080056794A/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101139326B1 (en) * | 2009-05-13 | 2012-04-26 | 주식회사 아모그린텍 | Method for manufacturing of nano-size manganese oxide catalyst for zinc-air battery and Method for manufacturing air electrode for zinc-air battery using the same |
KR101031227B1 (en) * | 2009-09-14 | 2011-04-29 | 한국세라믹기술원 | Manufacturing method of high density electrode for supercapacitor and supercapacitor electrode manufactured by the method |
KR20210067772A (en) * | 2019-11-29 | 2021-06-08 | 한국생산기술연구원 | Method of manufacturing high hardness high thermal conductivity Cu-alloy and high hardness high thermal conductivity Cu-alloy by using the same |
KR20220003778A (en) * | 2020-07-02 | 2022-01-11 | 표형주 | Apparatus and method for automatic control to optimize product production process using cloud |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Nomura et al. | 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls | |
JP6503700B2 (en) | Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery | |
US20190355966A1 (en) | Methods of forming carbon-silicon composite material on a current collector | |
US8178155B2 (en) | Carbon-based ultracapacitor | |
JPH10275747A (en) | Electric double layer capacitor | |
KR100762797B1 (en) | Electrode For Energy Storage Device And Manufacturing Method thereof | |
JP2010170854A (en) | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
KR20080056794A (en) | Electrode for electric double layer capacitor and method of fabrication the same | |
KR102068204B1 (en) | Electrode of electric double layer capacitor | |
US7209341B2 (en) | Polarizing electrode, manufacturing method thereof, and electric double-layer capacitor | |
KR20220010804A (en) | Multi layer electrode for secondary battery | |
KR102068205B1 (en) | electric double layer capacitor | |
KR102177976B1 (en) | Method for manufacturing graphene composite, eletrode active material and secondary battery including the same | |
KR100917408B1 (en) | Electrode for electrochemical capacitor and process for preparing the same | |
KR101919048B1 (en) | Manufacturing method of anode for lithium secondary battery | |
CN102664289A (en) | Cathode conducting transition layer for sodium-sulphur battery and sodium-sulphur battery with same | |
CN111755665A (en) | Lithium ion battery negative electrode material, battery negative electrode and application thereof | |
KR102536073B1 (en) | Carbon-silicon composite and preparation method thereof | |
KR100571189B1 (en) | Electrode for electric double layer capacitor and manufacturing method thereof | |
KR100733580B1 (en) | Electrode composition containing active carbon particles in which carbon nano fibers are growed, and method for manufacturing the same | |
KR101120504B1 (en) | Electrode for electrochemical capacitor and process for preparing the same | |
KR20220038024A (en) | Method of Forming a Carbon-Silicon Composite Material on a Current Collector | |
KR20110117633A (en) | Electrode for electrochemical device, method for fabricating the same and electrochemical device | |
KR101815190B1 (en) | Manufacturing method of electrod for electric energy storage device and electrod for electric energy storage device by the method | |
KR20160113409A (en) | Fabricating Method of Rithium Secondary Battery including the Printable Gel type Hybrid Electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration | ||
NORF | Unpaid initial registration fee |