JP2010170854A - Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents
Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDFInfo
- Publication number
- JP2010170854A JP2010170854A JP2009012585A JP2009012585A JP2010170854A JP 2010170854 A JP2010170854 A JP 2010170854A JP 2009012585 A JP2009012585 A JP 2009012585A JP 2009012585 A JP2009012585 A JP 2009012585A JP 2010170854 A JP2010170854 A JP 2010170854A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- electrolyte battery
- nonaqueous electrolyte
- coating film
- aqueous electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は非水電解質との間の電気抵抗が低減される非水電解質電池用正極の製造方法、非水電解質電池用正極及び非水電解質電池に関する。 The present invention relates to a method for producing a positive electrode for a non-aqueous electrolyte battery in which electrical resistance with the non-aqueous electrolyte is reduced, a positive electrode for a non-aqueous electrolyte battery, and a non-aqueous electrolyte battery.
近年、リチウムやリチウム合金を負極に用い、非水電解液や固体電解質等の非水電解質を用いた非水電解質電池において、より薄型で高出力の電池が求められている。このような要求に応えるための非水電解質電池用正極として焼結方式の非水電解質電池用正極(以下、単に「正極」ともいう)がある。 In recent years, non-aqueous electrolyte batteries using lithium or a lithium alloy as a negative electrode and a non-aqueous electrolyte such as a non-aqueous electrolyte or a solid electrolyte have been required to be thinner and have a higher output. As a positive electrode for a nonaqueous electrolyte battery to meet such a demand, there is a sintered positive electrode for a nonaqueous electrolyte battery (hereinafter also simply referred to as “positive electrode”).
従来の焼結方式の正極は、正極材料の粉末の成形体を焼結することにより製造されていた。具体的には、リチウム複合酸化物の粉末やリチウム複合酸化物の原料粉末等を、金型に充填してプレス成形し、得られた成形体を所定の温度で焼結することにより製造されていた。 Conventional sintered positive electrodes have been manufactured by sintering powdered compacts of positive electrode materials. Specifically, lithium composite oxide powder, lithium composite oxide raw material powder, etc. are filled in a mold and press-molded, and the obtained molded body is sintered at a predetermined temperature. It was.
しかし、上記の成形体を焼結する焼結方式(以下、「成形体焼結方式」ともいう)では、例えば厚さを60μm程度以下に製造することが難しいため、さらに薄い正極が求められる現状を満足する非水電解質電池を提供することはできなかった。 However, in the sintering method for sintering the molded body (hereinafter also referred to as “molded body sintering method”), for example, it is difficult to produce a thickness of about 60 μm or less. It was not possible to provide a nonaqueous electrolyte battery satisfying the above.
また、この方式では、正極材料の粉末の金型内への均一な充填が困難であるため、焼結反応が均一に進行せず、得られる焼結体の均一な密度分布の確保等が困難であり、この方式による正極を用いた非水電解質電池は、電池容量が劣るという問題があった。 In addition, in this method, since it is difficult to uniformly fill the positive electrode material powder in the mold, the sintering reaction does not proceed uniformly, and it is difficult to ensure a uniform density distribution of the obtained sintered body. Therefore, the nonaqueous electrolyte battery using the positive electrode according to this method has a problem that the battery capacity is inferior.
上記成形体焼結方式による正極の問題点を解決するため、グリーンシート法により塗膜(グリーンシート)を形成し、形成した塗膜を焼結する焼結方式(以下、「グリーンシート焼結方式」ともいう)による正極が提案されている(例えば、特許文献1の請求項2)。 In order to solve the problem of the positive electrode due to the above-mentioned green body sintering method, a coating method (green sheet) is formed by the green sheet method, and the formed coating film is sintered (hereinafter referred to as “green sheet sintering method”). The positive electrode is also proposed (for example, claim 2 of Patent Document 1).
グリーンシート焼結方式は、正極材料の粉末をバインダ、分散剤、溶剤等と共に混錬して得られたスラリーを基材上に薄く塗布し、溶剤を除去して得られた塗膜を焼結する方式であり、薄い正極の製造に適しており、また、前記成形体に比べてより均一な充填を得ることができるという利点もある。 In the green sheet sintering method, a slurry obtained by kneading the positive electrode material powder together with a binder, a dispersant, a solvent, etc. is thinly applied onto a substrate, and the coating film obtained by removing the solvent is sintered. This method is suitable for the production of a thin positive electrode and has an advantage that a more uniform filling can be obtained as compared with the molded body.
しかしながら、前記のようなグリーンシート焼結方式による正極は、充分に電気抵抗が低く、また充分に高い電池容量を有する非水電解質電池が得られているとは言えないのが現状である。 However, the positive electrode by the green sheet sintering method as described above cannot be said to be a non-aqueous electrolyte battery having a sufficiently low electric resistance and a sufficiently high battery capacity.
そこで、本発明は、従来に比較して充分に電気抵抗が低く、また充分に高い電池容量を有する非水電解質電池を得ることができるグリーンシート焼結方式による非水電解質電池用正極の製造方法と非水電解質電池用正極および非水電解質電池を提供することを課題とする。 Therefore, the present invention provides a method for producing a positive electrode for a non-aqueous electrolyte battery by a green sheet sintering method, which can obtain a non-aqueous electrolyte battery having a sufficiently low electric resistance and a sufficiently high battery capacity as compared with the prior art. And a positive electrode for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery.
本発明者らは、上記の課題に鑑み、鋭意研究の結果、焼結工程において加圧しながら加熱することにより、前記課題を解決する方法を見出し、本発明を完成するに至った。 In view of the above problems, the present inventors have intensively researched and found a method for solving the above problems by heating while applying pressure in the sintering process, and have completed the present invention.
(A)本発明の非水電解質電池用正極の製造方法は、
リチウム複合酸化物を主体とする正極材料の粉末と溶剤とを含むスラリーを調製するスラリー調製工程と、
前記スラリーを基材上に塗布し、前記溶剤を除去して塗膜を調製する塗膜調製工程と、
前記塗膜を加圧しながら加熱して焼結する焼結工程を有することを特徴とする。
(A) The method for producing the positive electrode for a non-aqueous electrolyte battery of the present invention comprises:
A slurry preparation step of preparing a slurry containing a powder of a positive electrode material mainly composed of lithium composite oxide and a solvent;
A coating film preparation step of applying the slurry on a substrate and removing the solvent to prepare a coating film;
It has the sintering process which heats and heat-sinters the said coating film, and is sintered.
上記(A)の発明により、従来に比較して充分に電気抵抗が低く、充分に高い電池容量を有する非水電解質電池を得ることができるグリーンシート焼結方式による非水電解質電池用正極を製造することができる。 According to the invention of (A), a positive electrode for a non-aqueous electrolyte battery is manufactured by a green sheet sintering method, which can obtain a non-aqueous electrolyte battery having a sufficiently low electric resistance and a sufficiently high battery capacity as compared with the prior art. can do.
本発明者らは、上記した従来のグリーンシート焼結方式による正極を用いた非水電解質電池において電気抵抗が充分に低くならなかった原因につき検討した結果、正極と非水電解質の界面の電気抵抗が大きいためであり、これが正極に含まれる焼結体の表面粗度が大きいことに起因していることを見出した。 As a result of examining the cause of the electrical resistance not being sufficiently lowered in the non-aqueous electrolyte battery using the positive electrode by the conventional green sheet sintering method described above, the electrical resistance at the interface between the positive electrode and the non-aqueous electrolyte was determined. This is because the surface roughness of the sintered body contained in the positive electrode is large.
さらに検討した結果、グリーンシート方式による正極の焼結体を製造する際に、通常は単に焼結しているが、加圧しながら加熱して焼結することにより、焼結体の表面粗度を充分小さくできることを見出した。このように表面粗度を充分小さくできるのは、加圧しながら加熱して焼結することにより、粉末(粒子)間の接点が増加し、焼結性が向上するためであると推測される。そして、このように表面粗度を小さくした焼結体を含む非水電解質電池用正極を用いることにより、正極と非水電解質の界面におけるリチウムイオンの拡散が阻害され難くなるため、界面の電気抵抗を低減させた非水電解質電池を得ることができる。具体的には、加圧しながら加熱して焼結することにより、焼結体の表面粗度Raを10nm以下、通常は6nm程度と小さくすることができる。 As a result of further investigation, when producing a sintered body of a positive electrode by a green sheet method, it is usually simply sintered, but by heating and sintering while applying pressure, the surface roughness of the sintered body is reduced. It was found that it can be made sufficiently small. The reason why the surface roughness can be sufficiently reduced in this way is presumed to be that the contact between the powders (particles) is increased and the sinterability is improved by heating and sintering while applying pressure. Then, by using the positive electrode for a non-aqueous electrolyte battery including a sintered body having a reduced surface roughness in this way, it becomes difficult to inhibit the diffusion of lithium ions at the interface between the positive electrode and the non-aqueous electrolyte. A non-aqueous electrolyte battery with reduced can be obtained. Specifically, the surface roughness Ra of the sintered body can be reduced to 10 nm or less, usually about 6 nm, by heating and sintering while applying pressure.
さらに、前記のように加圧しながら加熱することにより、焼結体の気孔率についても5%程度と小さくでき、活物質の充填密度も向上させることができることが分かった。即ち、加圧しながら加熱して焼結することにより、エネルギー密度も向上させることができる効果も得られることが分かった。 Furthermore, it was found that by heating while applying pressure as described above, the porosity of the sintered body can be reduced to about 5%, and the packing density of the active material can be improved. That is, it has been found that the effect of improving the energy density can be obtained by heating and sintering while applying pressure.
なお、前記正極材料の粉末としては、主としてLiCoO2やLiCoO2のCoの一部が他の金属で置換されたリチウム複合酸化物の粉末を主体とした材料が用いられるが、これらの材料にCo3O4等の金属酸化物や導電剤等が含まれていてもよい。 In addition, as the powder of the positive electrode material, a material mainly composed of lithium composite oxide powder in which a part of Co in LiCoO 2 or LiCoO 2 is substituted with another metal is used. A metal oxide such as 3 O 4 or a conductive agent may be contained.
また、前記スラリーには、バインダ、分散剤等が添加されていてもよい。また、溶剤としては、たとえば、各種アルコール、N−メチル−2−ピロリドン等の各種有機溶剤が好ましく用いられる。 Moreover, a binder, a dispersant, or the like may be added to the slurry. As the solvent, for example, various organic solvents such as various alcohols and N-methyl-2-pyrrolidone are preferably used.
「塗膜調製工程」では、塗膜の溶剤の除去を促進するために加熱を行ってもよい。なお、加熱を行う場合には、溶剤を完全に蒸発させるという面から、スラリーを基材上に塗布した後、塗膜を大気下等の開放された雰囲気中で加熱することが好ましい。また、溶剤を除去して塗膜を固化するだけでなく、例えばバインダを用いた場合、塗膜に含まれるバインダを分解除去する仮焼成を行うことが好ましい。なお、塗膜乾燥性向上や脱バインダ性向上のため、塗膜の厚さは500μm以下が好ましい。 In the “coating film preparation step”, heating may be performed to promote the removal of the solvent of the coating film. In the case of heating, it is preferable to heat the coating film in an open atmosphere such as the air after applying the slurry on the substrate in terms of completely evaporating the solvent. In addition to removing the solvent to solidify the coating film, for example, when a binder is used, it is preferable to perform temporary baking to decompose and remove the binder contained in the coating film. In addition, the thickness of the coating film is preferably 500 μm or less for improving the drying property of the coating film and improving the binder removal property.
「焼結工程」における雰囲気、加圧力、温度等は、各種の正極材料の粉末を用いた塗膜の焼結において、充分に焼結が行われるように適宜設定される。具体的には、雰囲気は不活性ガス雰囲気が好ましく、材料粉末の分解を抑制するために、絶対圧が0.5気圧程度である減圧雰囲気が好ましい。加圧力は、焼成時の粒子間接点を増加させるために、10から200MPa程度、特に30〜50MPaが好ましい。焼結温度は、950℃±100℃程度が好ましい。さらに、焼結の為の加熱は、均一性の確保、雰囲気の調節等の面から通電加熱により行なうことが好ましい。 The atmosphere, applied pressure, temperature, and the like in the “sintering step” are appropriately set so that the coating is sufficiently performed in the sintering of the coating film using various positive electrode material powders. Specifically, the atmosphere is preferably an inert gas atmosphere, and a reduced pressure atmosphere having an absolute pressure of about 0.5 atm is preferable in order to suppress decomposition of the material powder. The applied pressure is preferably about 10 to 200 MPa, particularly 30 to 50 MPa in order to increase the particle indirect point during firing. The sintering temperature is preferably about 950 ° C. ± 100 ° C. Furthermore, the heating for sintering is preferably performed by energization heating in terms of ensuring uniformity and adjusting the atmosphere.
(B)本発明の非水電解質電池用正極は、
リチウム複合酸化物を主体とし、表面粗度Raが10nm以下の表面を少なくとも一面有する焼結体を含むことを特徴とする。
(B) The positive electrode for a non-aqueous electrolyte battery of the present invention is
It includes a sintered body mainly composed of a lithium composite oxide and having at least one surface with a surface roughness Ra of 10 nm or less.
上記(B)の発明においては、焼結体が、表面粗度Raが10nm以下の表面を少なくとも一面有しているため、このような面を非水電解質と対向させて用いることにより、正極と非水電解質の界面におけるリチウムイオンの拡散が阻害され難く、正極と非水電解質の界面の電気抵抗を充分に低減することができる。 In the invention of (B), since the sintered body has at least one surface with a surface roughness Ra of 10 nm or less, such a surface is used facing the nonaqueous electrolyte, The diffusion of lithium ions at the non-aqueous electrolyte interface is hardly inhibited, and the electrical resistance at the interface between the positive electrode and the non-aqueous electrolyte can be sufficiently reduced.
(C)本発明の非水電解質電池は、
リチウム複合酸化物を主体とし、表面粗度Raが10nm以下の表面を少なくとも一面有する焼結体を含む非水電解質電池用正極と、固体電解質とを備えた非水電解質電池であって、
前記固体電解質が前記焼結体の表面粗度Ra10nm以下の表面と対向していることを特徴とする。
(C) The nonaqueous electrolyte battery of the present invention is
A nonaqueous electrolyte battery comprising a positive electrode for a nonaqueous electrolyte battery comprising a sintered body mainly comprising a lithium composite oxide and having a surface roughness Ra of at least one surface of 10 nm or less, and a solid electrolyte,
The solid electrolyte is opposed to the surface of the sintered body having a surface roughness Ra of 10 nm or less.
上記(C)の発明においては、前記固体電解質が正極である前記焼結体の表面粗度Ra10nm以下の表面と対向しているため、正極と固体電解質の界面においてリチウムイオンの拡散を阻害され難く、正極と非水電解質の界面の電気抵抗が確実に小さいため、充分に電気抵抗が低い非水電解質電池を提供することができる。 In the invention of (C), since the solid electrolyte faces the surface having a surface roughness Ra of 10 nm or less of the sintered body which is the positive electrode, it is difficult to inhibit diffusion of lithium ions at the interface between the positive electrode and the solid electrolyte. Since the electric resistance at the interface between the positive electrode and the non-aqueous electrolyte is surely small, a non-aqueous electrolyte battery having a sufficiently low electric resistance can be provided.
正極の表面に対して馴染み難い固体電解質を用いた非水電解質電池においても、正極と固体電解質を良好に接触させて正極と固体電解質の界面の電気抵抗を充分に低減することができるため、本発明は固体電解質を用いた全固体型の非水電解質電池において特に顕著な効果を発揮する。 Even in a non-aqueous electrolyte battery using a solid electrolyte that is difficult to adjust to the surface of the positive electrode, the electrical resistance at the interface between the positive electrode and the solid electrolyte can be sufficiently reduced by sufficiently contacting the positive electrode and the solid electrolyte. The invention exhibits a particularly remarkable effect in an all-solid-state nonaqueous electrolyte battery using a solid electrolyte.
なお、上記(C)の発明における「対向」とは、非水電解質電池用正極と固体電解質とが接触して対向する場合だけでなく、非水電解質電池用正極と固体電解質とが、ナノメーターオーダーの厚みを持つLiNbO3などの層(緩衝層と呼ばれる。緩衝層は、ミクロンオーダーの厚みを持つ非水電解質電池用正極や固体電解質に比べて、極めて薄い。)を介在させて対向するような場合を含む。 The “opposite” in the invention of (C) is not only the case where the positive electrode for the nonaqueous electrolyte battery and the solid electrolyte are in contact with each other, but the positive electrode for the nonaqueous electrolyte battery and the solid electrolyte are nanometers. A layer such as LiNbO 3 having a thickness of the order (referred to as a buffer layer. The buffer layer is extremely thinner than a positive electrode for a non-aqueous electrolyte battery or a solid electrolyte having a thickness of a micron order) to be opposed to each other. Including cases.
本発明によれば、充分に電気抵抗が低く、また充分に高い電池容量を有する非水電解質電池を得ることができるグリーンシート焼結方式による非水電解質電池用正極の製造方法と非水電解質電池用正極および非水電解質電池を提供することができる。 According to the present invention, a method for producing a positive electrode for a non-aqueous electrolyte battery by a green sheet sintering method and a non-aqueous electrolyte battery capable of obtaining a non-aqueous electrolyte battery having a sufficiently low electric resistance and a sufficiently high battery capacity, and the non-aqueous electrolyte battery A positive electrode for use and a non-aqueous electrolyte battery can be provided.
以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。 Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.
1.実施例
本実施例は、LiCoO2を主体とするグリーンシート焼結方式による焼結体からなる非水電解質電池用正極の例である。
イ.スラリーの調製
はじめに、正極を作製するためのスラリーの調製について説明する。リチウム複合酸化物であるLiCoO2の粉末(日本化学工業社製)100重量部と、バインダとしてPVB樹脂(エスレック社製)5重量部と、可塑剤としてDPB(双葉化学社製)を3重量部、溶剤としてトルエン(関東化学社製)26重量部をボールミルで24時間混錬して各材料が均一に分散したスラリーを作製した。
1. Example This example is an example of a positive electrode for a non-aqueous electrolyte battery made of a sintered body by a green sheet sintering method mainly composed of LiCoO 2 .
I. Preparation of Slurry First, preparation of a slurry for producing a positive electrode will be described. 100 parts by weight of LiCoO 2 powder (made by Nippon Kagaku Kogyo Co., Ltd.) which is a lithium composite oxide, 5 parts by weight of PVB resin (made by ESREC) as a binder, and 3 parts by weight of DPB (made by Futaba Chemical) as a plasticizer Then, 26 parts by weight of toluene (manufactured by Kanto Chemical Co., Inc.) as a solvent was kneaded with a ball mill for 24 hours to prepare a slurry in which each material was uniformly dispersed.
ロ.塗膜の調製
得られたスラリーを、厚さ50μmのポリエステルフィルムにメタルスキージを用いて厚さ150μm、直径19mmに、かつ均一に塗布した。
B. Preparation of Coating Film The obtained slurry was uniformly applied to a 50 μm thick polyester film with a metal squeegee to a thickness of 150 μm and a diameter of 19 mm.
次に、大気炉内で120℃、20分間加熱して溶媒を除去した後、ポリエステルフィルムから剥離させ、厚さ150μm、直径19mmの塗膜を得た。 Next, after removing the solvent by heating at 120 ° C. for 20 minutes in an atmospheric furnace, it was peeled from the polyester film to obtain a coating film having a thickness of 150 μm and a diameter of 19 mm.
ハ.焼結
次に、得られた塗膜を焼結した。図1は塗膜を焼結して正極を作製する方法を模式的に示す図である。図1において、12は正極であり、41は下部カーボン治具であり、42は上部カーボン治具であり、51は下部電極兼プレス板であり、52は上部電極兼プレス板であり、60は筒状カーボン治具である。
C. Sintering Next, the obtained coating film was sintered. FIG. 1 is a diagram schematically showing a method for producing a positive electrode by sintering a coating film. In FIG. 1, 12 is a positive electrode, 41 is a lower carbon jig, 42 is an upper carbon jig, 51 is a lower electrode and press plate, 52 is an upper electrode and press plate, and 60 is It is a cylindrical carbon jig.
得られた塗膜を、筒状カーボン治具60に挿入し、上下から上部カーボン治具42と下部カーボン治具41で挟み、さらに、上部カーボン治具42と下部カーボン治具41を上部電極兼プレス板52と下部電極兼プレス板51で挟む。そして周囲を0.5気圧の減圧アルゴン(Ar)雰囲気にし、圧力30MPaのプレス圧Pで加圧しながら、上部電極兼プレス板52と下部電極兼プレス板51の間に交流を通電して950℃に加熱し、この状態を3時間保持して焼結させ、厚さ120μm、直径16mmのLiCoO2の焼結体からなる正極12を得た。 The obtained coating film is inserted into a cylindrical carbon jig 60 and sandwiched between the upper carbon jig 42 and the lower carbon jig 41 from above and below, and the upper carbon jig 42 and the lower carbon jig 41 are also used as the upper electrode. It is sandwiched between the press plate 52 and the lower electrode / press plate 51. Then, the surroundings are set to a reduced-pressure argon (Ar) atmosphere of 0.5 atm, and an alternating current is passed between the upper electrode / press plate 52 and the lower electrode / press plate 51 while being pressurized with a press pressure P of 30 MPa, and 950 ° C. The positive electrode 12 made of a sintered body of LiCoO 2 having a thickness of 120 μm and a diameter of 16 mm was obtained.
ここで、加熱に交流電源を用いたのは、均一なプレスと加熱のための制御が容易なことによる。また、減圧アルゴン雰囲気としたのは、材料粉末の分解を抑制することを考慮したことによる。なお、図を見易くするため、図1においては便宜上、上部カーボン治具42および下部カーボン治具41と正極12を離して記載している。 Here, the reason why the AC power supply is used for heating is that uniform pressing and control for heating are easy. The reason why the reduced pressure argon atmosphere is used is that suppression of the decomposition of the material powder is taken into consideration. In order to make the drawing easier to see, in FIG. 1, for convenience, the upper carbon jig 42 and the lower carbon jig 41 are separated from the positive electrode 12.
2.比較例
本比較例は、加圧せずに大気雰囲気下において焼結した点以外は実施例と同様にして正極を作製した例である。以下に本比較例の焼結方法を説明する。
2. Comparative Example This comparative example is an example in which a positive electrode was produced in the same manner as in the example except that sintering was performed in an air atmosphere without applying pressure. The sintering method of this comparative example will be described below.
図2は比較例における正極を作製する方法を模式的に示す図である。図2において11は正極であり、20は加熱用基板であり、30は大気炉である。得られた塗膜を加熱用基板20の上に載置し、図2に示すように、大気炉30を用いて加圧せずに加熱して焼結することにより正極11を作製した。 FIG. 2 is a diagram schematically showing a method for producing a positive electrode in a comparative example. In FIG. 2, 11 is a positive electrode, 20 is a heating substrate, and 30 is an atmospheric furnace. The obtained coating film was placed on the heating substrate 20, and as shown in FIG. 2, the positive electrode 11 was produced by heating and sintering without applying pressure using the atmospheric furnace 30.
(正極の評価)
イ.表面粗度
実施例の正極12と比較例の正極11の断面を走査型電子顕微鏡(SEM)で撮影し、表面粗度Raを比較した。実施例と比較例の断面SEM像を図3に示す。(a)が比較例であり、(b)が実施例である。
(Evaluation of positive electrode)
I. Surface Roughness The cross sections of the positive electrode 12 of the example and the positive electrode 11 of the comparative example were photographed with a scanning electron microscope (SEM), and the surface roughness Ra was compared. FIG. 3 shows cross-sectional SEM images of the example and the comparative example. (A) is a comparative example, (b) is an Example.
図3の断面SEM像から、比較例の表面粗度Raが66nmであるのに対して、実施例の表面粗度Raは6nmと小さくなっていることが分かる。このため、実施例の正極を用いた場合、正極と固体電解質との界面においてリチウムイオンの拡散が阻害され難くなり、ひいては電気抵抗が小さな非水電解質電池が得られる。 From the cross-sectional SEM image of FIG. 3, it can be seen that the surface roughness Ra of the comparative example is 66 nm, whereas the surface roughness Ra of the example is as small as 6 nm. For this reason, when the positive electrode of an Example is used, it becomes difficult to inhibit the spreading | diffusion of lithium ion in the interface of a positive electrode and a solid electrolyte, and a nonaqueous electrolyte battery with small electrical resistance is obtained by extension.
ロ.気孔率
また、実施例の正極12と比較例の正極11の表面を走査型電子顕微鏡(SEM)で撮影し、気孔率を比較した。実施例と比較例の表面SEM像を図4に示す。(a)が比較例であり、(b)が実施例である。
B. Porosity Moreover, the surface of the positive electrode 12 of an Example and the positive electrode 11 of a comparative example was image | photographed with the scanning electron microscope (SEM), and the porosity was compared. The surface SEM image of an Example and a comparative example is shown in FIG. (A) is a comparative example, (b) is an Example.
図4の表面SEM像から、正極の気孔率は比較例が11%であるのに対して、実施例は5%と小さく、緻密になっているのが分かる。このため、実施例の正極を用いた場合、正極の活物質の充填密度が大きく向上し、ひいてはエネルギー密度が十分に大きな非水電解質二次電池が得られ、同じエネルギー密度であれば薄くて済むため小型、軽量な非水電解質電池が得られる。 From the surface SEM image of FIG. 4, it can be seen that the porosity of the positive electrode is 11% in the comparative example, whereas the example is as small as 5% and is dense. For this reason, when the positive electrode of the example is used, the packing density of the active material of the positive electrode is greatly improved, and thus a non-aqueous electrolyte secondary battery having a sufficiently large energy density can be obtained. Therefore, a small and lightweight non-aqueous electrolyte battery can be obtained.
なお、非水電解質電池の中でも、非水電解質二次電池は一般的に高出力電子デバイス等の用途に使用されるため、特に電気抵抗が小さいことが求められる。このため、本発明は非水電解質二次電池において顕著な効果を発揮する。 Among non-aqueous electrolyte batteries, non-aqueous electrolyte secondary batteries are generally used for applications such as high-power electronic devices, and thus are particularly required to have low electrical resistance. For this reason, this invention exhibits a remarkable effect in a nonaqueous electrolyte secondary battery.
11、12 正極
20 加熱用基板
30 大気炉
41 下部カーボン治具
42 上部カーボン治具
51 下部電極兼プレス板
52 上部電極兼プレス板
60 筒状カーボン治具
11, 12 Positive electrode 20 Heating substrate 30 Atmospheric furnace 41 Lower carbon jig 42 Upper carbon jig 51 Lower electrode / press plate 52 Upper electrode / press plate 60 Cylindrical carbon jig
Claims (3)
前記スラリーを基材上に塗布し、前記溶剤を除去して塗膜を調製する塗膜調製工程と、
前記塗膜を加圧しながら加熱して焼結する焼結工程とを有することを特徴とする非水電解質電池用正極の製造方法。 A slurry preparation step of preparing a slurry containing a powder of a positive electrode material mainly composed of lithium composite oxide and a solvent;
A coating film preparation step of applying the slurry on a substrate and removing the solvent to prepare a coating film;
A method for producing a positive electrode for a non-aqueous electrolyte battery, comprising a sintering step of heating and sintering the coating film while applying pressure.
前記固体電解質が前記焼結体の表面粗度Ra10nm以下の表面と対向していることを特徴とする非水電解質電池。 A nonaqueous electrolyte battery comprising a positive electrode for a nonaqueous electrolyte battery comprising a sintered body mainly comprising a lithium composite oxide and having a surface roughness Ra of at least one surface of 10 nm or less, and a solid electrolyte,
The non-aqueous electrolyte battery, wherein the solid electrolyte is opposed to a surface having a surface roughness Ra of 10 nm or less of the sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009012585A JP2010170854A (en) | 2009-01-23 | 2009-01-23 | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009012585A JP2010170854A (en) | 2009-01-23 | 2009-01-23 | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010170854A true JP2010170854A (en) | 2010-08-05 |
Family
ID=42702793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009012585A Pending JP2010170854A (en) | 2009-01-23 | 2009-01-23 | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010170854A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206753A (en) * | 2012-03-29 | 2013-10-07 | Hitachi Zosen Corp | Manufacturing method of all-solid secondary battery and all-solid secondary battery |
KR20140096335A (en) * | 2011-11-02 | 2014-08-05 | 이-뗀 | Method for the production of electrodes for fully solid batteries |
JP2014154239A (en) * | 2013-02-05 | 2014-08-25 | Seiko Epson Corp | Method for manufacturing active material compact, active material compact, method for manufacturing lithium battery, and lithium battery |
CN104282938A (en) * | 2013-07-09 | 2015-01-14 | 中国科学院上海硅酸盐研究所 | Method for preparing metal-rich modified layer-containing solid electrolyte for sodium cell by inner-transplant method |
CN108475764A (en) * | 2016-01-27 | 2018-08-31 | 于利奇研究中心有限公司 | The method for manufacturing ceramic cathode layer on a current collector |
JP2018206469A (en) * | 2017-05-30 | 2018-12-27 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Solid-state secondary battery and manufacturing method of all-solid secondary battery |
US11799171B2 (en) | 2017-05-30 | 2023-10-24 | Samsung Electronics Co., Ltd. | All-solid secondary battery and method of preparing the same |
US11967694B2 (en) | 2018-05-07 | 2024-04-23 | I-Ten | Porous electrodes for electrochemical devices |
-
2009
- 2009-01-23 JP JP2009012585A patent/JP2010170854A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102020272B1 (en) * | 2011-11-02 | 2019-09-10 | 이-뗀 | Method for the production of electrodes for fully solid batteries |
KR20140096335A (en) * | 2011-11-02 | 2014-08-05 | 이-뗀 | Method for the production of electrodes for fully solid batteries |
CN104011905A (en) * | 2011-11-02 | 2014-08-27 | I-Ten公司 | Method for manufacturing all-solid-state battery electrode |
JP2014534590A (en) * | 2011-11-02 | 2014-12-18 | アイ テン | Method for producing all solid state battery electrode |
JP2018073840A (en) * | 2011-11-02 | 2018-05-10 | アイ テン | Method for the production of electrode for fully solid battery |
JP2013206753A (en) * | 2012-03-29 | 2013-10-07 | Hitachi Zosen Corp | Manufacturing method of all-solid secondary battery and all-solid secondary battery |
JP2014154239A (en) * | 2013-02-05 | 2014-08-25 | Seiko Epson Corp | Method for manufacturing active material compact, active material compact, method for manufacturing lithium battery, and lithium battery |
CN104282938A (en) * | 2013-07-09 | 2015-01-14 | 中国科学院上海硅酸盐研究所 | Method for preparing metal-rich modified layer-containing solid electrolyte for sodium cell by inner-transplant method |
JP7050674B2 (en) | 2016-01-27 | 2022-04-08 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Manufacturing method of ceramic cathode layer on current collector |
JP2019507458A (en) * | 2016-01-27 | 2019-03-14 | フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for producing a ceramic cathode layer on a current collector |
CN108475764B (en) * | 2016-01-27 | 2021-09-14 | 于利奇研究中心有限公司 | Method for manufacturing ceramic cathode layer on current collector |
CN108475764A (en) * | 2016-01-27 | 2018-08-31 | 于利奇研究中心有限公司 | The method for manufacturing ceramic cathode layer on a current collector |
JP2018206469A (en) * | 2017-05-30 | 2018-12-27 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Solid-state secondary battery and manufacturing method of all-solid secondary battery |
JP7075726B2 (en) | 2017-05-30 | 2022-05-26 | 三星電子株式会社 | Manufacturing method of all-solid-state secondary battery and all-solid-state secondary battery |
US11799171B2 (en) | 2017-05-30 | 2023-10-24 | Samsung Electronics Co., Ltd. | All-solid secondary battery and method of preparing the same |
US11967694B2 (en) | 2018-05-07 | 2024-04-23 | I-Ten | Porous electrodes for electrochemical devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010170854A (en) | Method of manufacturing positive electrode for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
US20190355966A1 (en) | Methods of forming carbon-silicon composite material on a current collector | |
US9178208B2 (en) | Composite materials for electrochemical storage | |
KR20200096816A (en) | Binders for electrochemically active substances and methods of forming them | |
CN110783524B (en) | Electrode for solid-state battery and solid-state battery | |
KR20140014142A (en) | Electrode material having high capacitance | |
CN112310465B (en) | Method for manufacturing sulfide impregnated solid state battery | |
CN112382793B (en) | Sulfide impregnated solid state battery | |
JP7183529B2 (en) | LAMINATED GREEN SHEET, ALL-SOLID SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF | |
CN110783523B (en) | Electrode for solid-state battery and solid-state battery | |
KR20240127941A (en) | Method for manufacturing an all-solid-state battery containing a sulfide-based solid electrolyte and an all-solid-state battery containing the same | |
US11258053B2 (en) | Lithium ion solid-state battery and method for producing the same | |
US20160141623A1 (en) | Bipolar electrode, bipolar all-solid battery manufactured by using the same, and manufacturing method thereof | |
JP7160753B2 (en) | Solid-state battery manufacturing method and solid-state battery | |
CN110783521B (en) | Electrode for solid-state battery and solid-state battery | |
KR20210049767A (en) | Electrode for solid-state batteries and solid-state battery | |
JP2018206486A (en) | Laminate green sheet, all-solid secondary battery and manufacturing method thereof | |
JP2009238576A (en) | All-solid battery, manufacturing method of all-solid battery, and electron conductivity imparting method | |
CN113196545A (en) | All-solid-state battery and method for manufacturing all-solid-state battery | |
JP2009181882A (en) | Method of manufacturing lithium battery | |
JP5775444B2 (en) | Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery | |
KR102456770B1 (en) | Method of manufacturing a solid electrolyte layer and cathode composite layer containing a sulfide-based solid electrolyte and all-solid electrolyte cell comprising the same | |
JP7002199B2 (en) | Manufacturing method of all-solid-state battery | |
JP2018142406A (en) | All-solid battery and manufacturing method of the same | |
JP6529857B2 (en) | Secondary battery and method of manufacturing secondary battery |