KR20080054998A - 2nd shock reducing method at hybrid engine starting - Google Patents

2nd shock reducing method at hybrid engine starting Download PDF

Info

Publication number
KR20080054998A
KR20080054998A KR1020060127798A KR20060127798A KR20080054998A KR 20080054998 A KR20080054998 A KR 20080054998A KR 1020060127798 A KR1020060127798 A KR 1020060127798A KR 20060127798 A KR20060127798 A KR 20060127798A KR 20080054998 A KR20080054998 A KR 20080054998A
Authority
KR
South Korea
Prior art keywords
torque
engine
hybrid
control step
target torque
Prior art date
Application number
KR1020060127798A
Other languages
Korean (ko)
Inventor
심재윤
최우석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060127798A priority Critical patent/KR20080054998A/en
Publication of KR20080054998A publication Critical patent/KR20080054998A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

A secondary shock reducing method in starting a hybrid engine is provided to reduce shock during first explosion by minimizing target torque during first explosion in an engine and to control secondary shock changed according to an OPD(Operating Point Determination), at uniform level by keeping target torque uniform. A secondary shock reducing method in starting a hybrid engine comprises a follow-up control step for executing engine demand torque fixed at a constant value, by adding predetermined torque to friction torque if an engine start bit and a fuel injection bit are input at the same time(S302,S304); a maintenance and control step for keeping engine demand torque uniform by delaying engine demand torque for the predetermined time to a hybrid mode range while predetermined torque is added to friction torque(S306,S308); and a follow-up control step for determining target torque with reference to maximum torque at the present speed and engine maximum torque at the normal state by executing engine demand torque according to an OPD, if an engine start bit and a fuel injection bit are not input at the same time or after a maintenance and control step is executed, and then passing only target torque of a low-frequency band by restraining the inclination of target torque(S310,S312,S314,S316,S318).

Description

하이브리드엔진 기동시 2차충격 저감방법{2nd Shock Reducing Method at Hybrid Engine Starting}2nd Shock Reducing Method at Hybrid Engine Starting}

도 1a와 도 1b는 종래 하이브리드엔진 기동의 로직 블록도와 순서도,1A and 1B are a logic block diagram and a flow chart of a conventional hybrid engine startup,

도 2는 도 1에 따른 엔진 2차충격을 나타내는 그래프,Figure 2 is a graph showing the engine secondary shock according to Figure 1,

도 3a와 도 3b는 본 발명에 따른 하이브리드엔진 기동의 로직 블록도와 순서도,3A and 3B are a logic block diagram and a flowchart of a hybrid engine startup according to the present invention;

도 4a와 도 4b는 본 발명 적용전과 적용 후의 엔진기동시 토크선도.4A and 4B are torque diagrams during engine start before and after applying the present invention.

본 발명은 하이브리드엔진 기동시 2차충격 저감방법에 관한 것으로서, 더욱 상세하게는 전기자동차 모드(EV Mode)에서 엔진과 모터를 동시에 구동하는 하이브리드 모드로 전환하는 시점의 연료주입 점화로 인한 충격을 저감하는 방법에 관한 것이다.The present invention relates to a secondary impact reduction method when starting a hybrid engine, and more particularly, to reduce the impact of fuel injection ignition at the time of switching to the hybrid mode of driving the engine and the motor at the same time in the electric vehicle mode (EV mode). It is about how to.

하이브리드 전기자동차(HEV)는 예컨대 엔진과 모터의 2개의 동력원을 갖고서 목적에 따라서 각각을 가장 효율적으로 사용해 에너지 절약과 저공해를 달성하는 것이다.Hybrid electric vehicles (HEVs), for example, have two power sources, an engine and a motor, each of which is used most efficiently according to the purpose to achieve energy savings and low pollution.

하드타입 HEV는 엔진, 모터, 제네레이터를 조합하여 각 주행 상황에 따라 최적의 효율로 운행되도록 제어되고 있으며, 기존의 화석연료 차량과는 달리 초기 시동시 EV(Electric Vehicle) 모드를 가지고 있기 때문에 시동시 엔진이 즉시 On되지 않고 엔진 기동을 위해 발전기에 토크를 인가하여 엔진 RPM이 상승하면 점화가 시작된다.Hard type HEV is controlled to operate with optimum efficiency according to each driving situation by combining engine, motor, and generator.In contrast to conventional fossil fuel vehicles, it has EV (Electric Vehicle) mode at initial start-up. The engine does not turn on immediately, but when the engine RPM rises by applying torque to the generator to start the engine, the ignition starts.

이처럼 하드타입 하이브리드 차량의 경우 빈번한 엔진 On/Off 현상이 발생하고 이로부터 야기되는 충격은 승차감 저감의 커다란 문제를 남기고 있다.In the case of such a hard type hybrid vehicle, frequent engine on / off occurs, and the impact caused therefrom leaves a big problem of reducing ride comfort.

도 1a와 도 1b는 종래 하이브리드엔진 기동의 로직 블록도와 순서도로서, 하이브리드제어유닛(HCU)의 종래 엔진 기동 로직이다.1A and 1B are a logic block diagram and a flowchart of a conventional hybrid engine startup, which is a conventional engine startup logic of a hybrid control unit (HCU).

도 1a에서 점선 로직은 운전점결정(OPD: Operating Point Determination) 블록에서 결정된 엔진의 운전점을 실제 지령으로 연산하는 부분으로, 엔진의 토크 지령은 엔진제어기(ECU)로부터 입력된 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크맵 블록(12)에 의해 제한된다.In FIG. 1A, the dotted line logic is a part of calculating the operating point of the engine determined by the operating point determination (OPD) block as an actual command, and the torque command of the engine is the maximum at the current speed input from the engine controller (ECU). Torque and steady state engine maximum torque map block 12 are limited.

전기자동차 모드(EV Mode)에서(S102) 엔진과 모터를 동시에 구동하는 하이브리드 모드로 전환하는 시점에서, 스위치1 블록(SW1)은 연료 주입(CF_Inj_FuelOnoff)이 시작되면(S104), 상부로 스위칭되어 OPD 블록에서 결정된 운전점에 따른 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 연결되어(S106) MIN MAX 제한맵 블록(14)에 입력되고, 상기 MIN MAX 제한맵 블록(14)은 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크맵 블록(12)에서 결정된 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크를 참고로 그 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 따른 타깃 토크를 결정한다(S108).In the EV mode (S102), at the time of switching to the hybrid mode for driving the engine and the motor at the same time, the switch 1 block SW1 switches to the upper part when the fuel injection (CF_Inj_FuelOnoff) is started (S104). The MIN MAX limit map block 14 is connected to the engine demand torque VT_SoOpd_EngTa_Nm according to the operating point determined in the block (S106), and the MIN MAX limit map block 14 is the maximum torque and the steady state at the current speed. The target torque according to the engine demand torque VT_SoOpd_EngTa_Nm is determined with reference to the maximum torque at the current speed and the steady state engine maximum torque determined in the engine maximum torque map block 12 (S108).

상기 타깃 토크의 급격한 상승이나 하강을 줄이기 위해 토크변화율 제한 블록(16)에서 상기 타깃 토크의 기울기(변화율)를 제한(Rate_Limit_Tq)하고(S110), 고주파 대역에서의 타깃 토크가 입력되지 않도록 하기 위해 LPF 블록(18)에서는 고주파 대역의 타깃 토크는 차단하고 저주파 대역의 타깃 토크만 통과시켜(S112) 최종적으로 타깃 엔진 토크(VT_SoTrc_EngTq-Nm)를 출력하게 된다(S114).In order to reduce the sudden rise or fall of the target torque, the slope (change rate) of the target torque is limited (Rate_Limit_Tq) in the torque change rate limiting block 16 (S110), and LPF to prevent the target torque in the high frequency band from being input. In block 18, the target torque of the high frequency band is blocked and only the target torque of the low frequency band is passed (S112), and finally, the target engine torque VT_SoTrc_EngTq-Nm is output (S114).

결국, 종래에는 엔진 토크의 출력은 연료 주입 요청에 의해 엔진의 타깃 토크를 별다른 제어없이 그대로 추종하도록 설정되어 있었다.As a result, conventionally, the output of the engine torque has been set to follow the target torque of the engine as it is without any control by the fuel injection request.

상기한 바와 같이 종래 엔진 시동의 경우 HCU는 운전자가 요구하는 운전점에 도달하기 위하여 타깃 토크만큼의 요구 토크를 내도록 ECU를 제어하고, 이 ECU는 초폭시 운전점에 따라 급격하게 엔진의 토크를 상승시키며 이에 의한 충격은 엔진 기동 2차 충격의 상당한 부분을 차지하게 된다.As described above, in the case of a conventional engine start, the HCU controls the ECU to generate a required torque equal to the target torque in order to reach a driving point required by the driver, and the ECU sharply increases the torque of the engine according to the ultra-low driving point. The resulting impact is a significant part of the engine start secondary shock.

즉, 엔진 폭발시 공기량과 점화시기 등의 영향으로 급격히 상승한 엔진 토크가 구동축으로 전달되어 도 2와 같이 연료주입시 엔진 크랭킹(Cranking) 충격(엔진 기동 2차 충격)이 발생한다.That is, the engine torque rapidly increased due to the amount of air during the engine explosion and the ignition timing is transmitted to the drive shaft to generate an engine cranking shock (engine starting secondary shock) as shown in FIG. 2.

이에 의해 운전자가 느끼는 승차감과 운전성이 떨어지며, 또한 운전자가 요구하는 출력이 변화하기 때문에 이에 따른 요구 토크가 변하게 되므로 초폭시 충격 또한, 일정치 않아 운전자가 느끼는 불쾌감이 더해지게 되는 문제점이 있었다.As a result, the ride feeling and driving ability which the driver feels are deteriorated, and since the required torque is changed because the output required by the driver is changed, there is a problem that the shock at the time of addition is not constant and the discomfort felt by the driver is added.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 2차 충격으로 정의되는 폭발시의 충격을 저감할 수 있는 방안을 통해 하드타입 HEV의 운전성을 개선하고 승차감을 향상시킬 수 있는 하이브리드엔진 기동시 2차충격 저감방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, hybrid engine start that can improve the operability and ride comfort of the hard type HEV through a method that can reduce the impact of the explosion defined as secondary impact The purpose is to provide a secondary impact reduction method.

상술한 목적을 달성하기 위한 본 발명에 따른 하이브리드엔진 기동시 2차충격 저감방법은, 하이브리드 전기자동차(HEV)의 모드를 전기자동차 모드(EV Mode)에서 엔진과 모터를 동시에 구동하는 하이브리드 모드로 전환하는 시점에서 하이브리드엔진을 기동하는 방법에 있어서;In the hybrid engine startup method according to the present invention for achieving the above-described secondary impact reduction method, the mode of the hybrid electric vehicle (HEV) is switched to the hybrid mode for driving the engine and motor at the same time in the electric vehicle mode (EV Mode) A method of starting a hybrid engine at a point in time;

엔진 스타트 비트와 연료 주입 비트가 동시에 입력되는 경우에 마찰토크에 일정량의 토크를 더해서 상수값으로 고정된 엔진요구토크를 수행하는 추종제어단계와, 상기 마찰 토크에 일정량의 토크가 가해진 상태에서 엔진의 요구 토크를 하이브리드 모드 구간까지 소정시간 동안 지연시켜 엔진 요구 토크를 일정하게 유지시키는 유지제어단계와, 상기 엔진 스타트 비트와 연료 주입 비트가 동시에 입력되지 않거나 상기 유지제어단계를 수행한 후, 운전점에 따른 엔진 요구 토크를 수행하여 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크를 참고로 타깃 토크를 결정하고, 상기 타깃 토크의 기울기를 제한하며 저주파 대역의 타깃 토크만 통과시키는 추종제어단계로 이루어지는 것을 특징으로 한다.When the engine start bit and the fuel injection bit are input at the same time, a follow-up control step of performing a fixed engine demand torque by adding a fixed amount of torque to the friction torque, and a constant amount of torque is applied to the friction torque. A maintenance control step of maintaining a constant engine demand torque by delaying the required torque to the hybrid mode section for a predetermined time, and after the engine start bit and the fuel injection bit are not simultaneously input or the maintenance control step is performed, The target torque is determined by referring to the maximum torque at the current speed and the steady state engine maximum torque by performing the required torque according to the engine, and the tracking control step of restricting the slope of the target torque and passing only the target torque in the low frequency band is performed. It features.

이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.

도 3a와 도 3b는 본 발명에 따른 하이브리드엔진 기동의 로직 블록도와 순서 도이다.3A and 3B are a logic block diagram and a flow chart of a hybrid engine startup in accordance with the present invention.

전기자동차 모드(EV Mode)에서(S300) 엔진과 모터를 동시에 구동하는 하이브리드 모드로 전환하는 시점에서, AND 게이트 블록(100)은 엔진 스타트 비트(F_Eng_Start)와 연료 주입 비트(CF_Inj_FuelOnoff)가 동시에 입력되면(S302) 즉, 엔진 스타트 비트가 1이고 연료 주입이 시작되면, 스위치3 블록(SW3)으로 신호를 출력하고, 이에 의해 상기 스위치3 블록(SW3)은 상부로 스위칭되어 상수값으로 고정된 엔진요구토크 변수(C_SoTrc_ConstEngTq_Nm) 변수 쪽의 루프를 수행한다(S304).In the EV mode (S300), when switching to the hybrid mode for driving the engine and the motor at the same time, the AND gate block 100 when the engine start bit (F_Eng_Start) and the fuel injection bit (CF_Inj_FuelOnoff) is input at the same time (S302) That is, when the engine start bit is 1 and fuel injection is started, the signal is output to the switch 3 block SW3, whereby the switch 3 block SW3 is switched upward and fixed to a constant value. The loop of the torque variable (C_SoTrc_ConstEngTq_Nm) variable side is performed (S304).

상기 엔진 스타트 비트=1은 엔진이 800rpm에 도달하면 적용된다.The engine start bit = 1 is applied when the engine reaches 800 rpm.

상기 상수값으로 고정된 엔진요구토크(C_SoTrc_ConstEngTq_Nm) 변수는 보정(Calibration) 변수로서 마찰 토크(V_Eng_FrictionTq_Nm)에 일정량의 토크(예를 들어 5Nm 바람직하게는 3~10Nm)가 더해진다.The engine demand torque (C_SoTrc_ConstEngTq_Nm) variable fixed to the constant value is added to a friction torque (V_Eng_FrictionTq_Nm) as a calibration variable and a certain amount of torque (for example, 5 Nm, preferably 3 to 10 Nm).

상기한 단계를 수행하여 제1단계 추종 제어가 수행된다.The first step following control is performed by performing the above steps.

다음 상기 마찰 토크에 일정량의 토크가 가해진 상태에서 엔진의 요구 토크를 지연시키되(S306), 시간 상수(C 예를 들어 10msec) 동안 지연시켜(S308), HEV 모드 구간까지 엔진 요구 토크(Demand_Engine_Torque)를 일정하게 유지시킨다.Next, the required torque of the engine is delayed in a state in which a predetermined amount of torque is applied to the friction torque (S306), but delayed for a time constant (C, for example, 10 msec) (S308), and the engine required torque (Demand_Engine_Torque) until the HEV mode section. Keep it constant

상기한 단계를 수행하여 제2단계 유지 제어가 수행된다.The second step maintenance control is performed by performing the above steps.

상기 제2단계 유지 제어 수행이 완료되면, 스위치3 블록(SW3)은 하부로 스위칭되어 OPD 블록에서 결정된 운전점에 따른 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 연결된다.When the second stage maintenance control is completed, the switch 3 block SW3 is switched downward to be connected to the engine request torque VT_SoOpd_EngTa_Nm according to the operating point determined in the OPD block.

한편, 상기 AND 게이트 블록(100)은 엔진 스타트 비트가 연료 주입 비트 중 어느 하나 비트만 입력되거나 모두 입력되지 않으면 신호를 출력하지 않게 되고, 스위치3 블록(SW3)은 신호가 입력되지 않는 경우에 하부로 스위칭되어 OPD 블록에서 결정된 운전점에 따른 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 연결된다.Meanwhile, the AND gate block 100 does not output a signal when only one of the fuel injection bits is input or not all of the fuel injection bits, and the switch 3 block SW3 is lower when the signal is not input. Is connected to the engine demand torque VT_SoOpd_EngTa_Nm according to the operating point determined in the OPD block.

그리고 상기 스위치3 블록(SW3) 후단의 스위치2 블록(SW2)은 연료 주입(CF_Inj_FuelOnoff)이 시작되는 경우에 상부로 스위칭되어 상기 운전점에 따른 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 연결되어(S310) MIN MAX 제한맵 블록(104)에 입력되고, 상기 MIN MAX 제한맵 블록(104)은 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크맵 블록(102)에서 결정된 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크를 참고로 그 엔진 요구 토크(VT_SoOpd_EngTa_Nm)에 따른 타깃 토크를 결정한다(S312).When the fuel injection CF_Inj_FuelOnoff is started, the switch 2 block SW2 after the switch 3 block SW3 is switched upward and connected to the engine demand torque VT_SoOpd_EngTa_Nm according to the operating point (S310). The MIN MAX limit map block 104 is input to the limit map block 104, and the maximum torque at the current speed and the maximum torque at the current speed determined in the steady state engine maximum torque map block 102 and the steady state engine max. The target torque according to the engine demand torque VT_SoOpd_EngTa_Nm is determined with reference to the torque (S312).

상기 타깃 토크의 급격한 상승이나 하강을 줄이기 위해 토크변화율 제한 블록(106)에서 상기 타깃 토크의 기울기(변화율)를 제한(Rate_Limit_Tq)하고(S314), 고주파 대역에서의 타깃 토크가 입력되지 않도록 하기 위해 LPF 블록(108)에서는 고주파 대역의 타깃 토크는 차단하고 저주파 대역의 타깃 토크만 통과시켜(S316) 최종적으로 타깃 엔진 토크(VT_SoTrc_EngTq-Nm)를 출력하게 된다(S318).In order to reduce the sudden rise or fall of the target torque, the slope (change rate) of the target torque is limited (Rate_Limit_Tq) in the torque change rate limiting block 106 (S314), so that the target torque in the high frequency band is not inputted. In block 108, the target torque of the high frequency band is blocked and only the target torque of the low frequency band is passed (S316) to finally output the target engine torque (VT_SoTrc_EngTq-Nm) (S318).

상기한 단계를 수행하여 제3단계 추정 제어가 수행된다.The third step estimation control is performed by performing the above steps.

이와 같이 본 발명은 크게 추종제어 제1단계, 유지제어 제2단계, 추종제어 제3단계로 이루어진다.As described above, the present invention is largely composed of the following step of the following control, the second step of the maintaining control, and the third step of the following control.

도 4a와 도 4b는 본 발명 적용전과 적용 후의 엔진기동시 토크선도로서, 도 4b에서 EV 모드에서 HEV 모드로 변환하는 시점에서 상기한 제1,2,3단계 제어를 통해 2차 충격의 상당부분을 차지하는 엔진 요구 토크(Demand_Engine_Torque)의 급격한 변화를 개선할 수 있음을 알 수 있다.Figures 4a and 4b is a torque diagram when the engine is started before and after the application of the present invention, a significant portion of the secondary impact through the first, second and third stage control described above at the time of switching from the EV mode to the HEV mode in FIG. It can be seen that it is possible to improve a sudden change in the engine demand torque Demand_Engine_Torque occupying.

이상에서 살펴본 바와 같이 본 발명에 의하면, 엔진 초폭시의 타깃 토크를 최소화하여 초폭시 충격 크기를 감소시키고, 초폭시의 타깃 토크를 일정한 값으로 유지시켜 운전점에 따라 2차 충격의 크기가 변화하는 것을 일정하게 제어함으로써 하드타입 HEV의 운전성을 개선하고 승차감을 향상시킬 수 있다.As described above, according to the present invention, it is possible to minimize the target torque during the engine explosion and to reduce the magnitude of the impact shock, and to maintain the target torque at the constant value at a constant value. By controlling it constantly, it is possible to improve the operability and ride comfort of the hard type HEV.

Claims (1)

하이브리드 전기자동차(HEV)의 모드를 전기자동차 모드(EV Mode)에서 엔진과 모터를 동시에 구동하는 하이브리드 모드로 전환하는 시점에서 하이브리드엔진을 기동하는 방법에 있어서;A method of starting a hybrid engine at a time of switching a mode of a hybrid electric vehicle (HEV) to a hybrid mode for simultaneously driving an engine and a motor in an electric vehicle mode (EV mode); 엔진 스타트 비트와 연료 주입 비트가 동시에 입력되는 경우에 마찰토크에 일정량의 토크를 더해서 상수값으로 고정된 엔진요구토크를 수행하는 추종제어단계와,A follow-up control step of performing a fixed engine demand torque by adding a predetermined amount of torque to the friction torque when the engine start bit and the fuel injection bit are simultaneously input; 상기 마찰 토크에 일정량의 토크가 가해진 상태에서 엔진의 요구 토크를 하이브리드 모드 구간까지 소정시간 동안 지연시켜 엔진 요구 토크를 일정하게 유지시키는 유지제어단계와,A maintenance control step of maintaining a constant engine demand torque by delaying a required torque of the engine for a predetermined time to a hybrid mode section in a state where a predetermined amount of torque is applied to the friction torque; 상기 엔진 스타트 비트와 연료 주입 비트가 동시에 입력되지 않거나 상기 유지제어단계를 수행한 후, 운전점에 따른 엔진 요구 토크를 수행하여 현재 속도에서의 최대 토크와 정상상태 엔진 최대 토크를 참고로 타깃 토크를 결정하고, 상기 타깃 토크의 기울기를 제한하며 저주파 대역의 타깃 토크만 통과시키는 추종제어단계로 이루어지는 것을 특징으로 하는 하이브리드엔진 기동시 2차충격 저감방법.After the engine start bit and the fuel injection bit are not input at the same time or after performing the maintenance control step, the target torque is determined by referring to the maximum torque at the current speed and the steady state engine maximum torque by performing the required engine torque according to the driving point. Determining, limiting the slope of the target torque and the following control step of passing only the target torque of the low frequency band, characterized in that the secondary shock reduction method when starting the hybrid engine.
KR1020060127798A 2006-12-14 2006-12-14 2nd shock reducing method at hybrid engine starting KR20080054998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060127798A KR20080054998A (en) 2006-12-14 2006-12-14 2nd shock reducing method at hybrid engine starting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060127798A KR20080054998A (en) 2006-12-14 2006-12-14 2nd shock reducing method at hybrid engine starting

Publications (1)

Publication Number Publication Date
KR20080054998A true KR20080054998A (en) 2008-06-19

Family

ID=39801873

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060127798A KR20080054998A (en) 2006-12-14 2006-12-14 2nd shock reducing method at hybrid engine starting

Country Status (1)

Country Link
KR (1) KR20080054998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272897B2 (en) 2016-04-15 2019-04-30 Hyundai Motor Company Control method of power train for hybrid vehicle and control system for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10272897B2 (en) 2016-04-15 2019-04-30 Hyundai Motor Company Control method of power train for hybrid vehicle and control system for the same

Similar Documents

Publication Publication Date Title
JP4596016B2 (en) Vehicle travel control device
CN1265086C (en) Device and method for controlling automatic stop and start of engine in vehicle
CN104554266B (en) Hybrid vehicle with dynamic mapping of pedal position to wheel output demand
EP3112234B1 (en) Control device of electric vehicle
JP2000018377A (en) Oil pump control device of automatic transmission
US20130024061A1 (en) Control unit for hybrid vehicle
US20160001769A1 (en) Transmission control device and transmission control method
JP2000006683A (en) Traveling speed control system for vehicle
KR20080054998A (en) 2nd shock reducing method at hybrid engine starting
CN112752688B (en) Vehicle control device
JP2005271618A (en) Accelerator reaction force controlling device of hybrid electric automobile
JP4483697B2 (en) Power generation control system
JP2005132356A (en) Method for operating driving unit
KR20190066415A (en) Driving control method for hybrid vhicle
JPH0993724A (en) Electric automobile
KR100428366B1 (en) Method for controlling of moving mode on hybrid electric vehicle
JP4876911B2 (en) Vehicle driving force control device
JPH10329587A (en) Engine combustion mode switching control device for vehicle drive system
JP2006312959A (en) Power generation control method and engine control device
KR100957332B1 (en) Method of control to expand fuel cut-off range for soft type HEV
JP2007168789A (en) Controller of hybrid car
JP3767614B2 (en) Engine operation control device for hybrid electric vehicle
US20230271598A1 (en) Method for Controlling Vehicle and System for Controlling Vehicle
KR102484929B1 (en) Method for controlling maximum speed of vehicle driven by motor
KR100412822B1 (en) A device and method for injection controlling of diesel engine

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid